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Abstract
Electron Backscatter Diffraction (EBSD) is a widely used approach for charac-
terising the microstructure of various materials. However, it is difficult to accu-
rately distinguish similar (body centred cubic and body centred tetragonal, with
small tetragonality) phases in steels using standard EBSD software. One method
to tackle the problem of phase distinction is to measure the tetragonality of the
phases, which can be done using simulated patterns and cross-correlation tech-
niques to detect distortion away from a perfectly cubic crystal lattice. However,
small errors in the determination of microscope geometry (the so-called pattern
or projection centre) can cause significant errors in tetragonality measurement
and lead to erroneous results. This paper utilises a new approach for accurate
pattern centre determination via a strain minimisation routine across a large
number of grains in dual phase steels. Tetragonality maps are then produced and
used to identify phase and estimate local carbon content. The technique is imple-
mented using both kinetically simulated and dynamically simulated patterns
to determine their relative accuracy. Tetragonality maps, and subsequent phase
maps, based on dynamically simulated patterns in a point-by-point and grain
average comparison are found to consistently producemore precise and accurate
results, with close to 90% accuracy for grain phase identification,when compared
with an image-quality identificationmethod. The error in tetragonalitymeasure-
ments appears to be of the order of 1%, thus producing a commensurate ∼0.2%
error in carbon content estimation. Such an error makes the technique unsuit-
able for estimation of total carbon content of most commercial steels, which
often have carbon levels below 0.1%. However, even in the DP steel for this study
(0.1 wt.% carbon) it can be used to map carbon in regions with higher accumu-
lation (such as in martensite with nonhomogeneous carbon content).
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1 INTRODUCTION

The development of steels with higher strength and
formability has accelerated over the past few decades, in
order to deliver improved performance with less mate-
rial. The resultant alloys are key to lightweighting strate-
gies of vehiclemanufacturers, where downgauging leads to
lighter vehicles and higher fuel efficiency. Advanced high-
strength steels (AHSS) are created using complex ther-
momechanical processes that result in intricate blends of
hard and soft phases, in order to deliver both strength and
formability. The continued discovery and optimisation of
enhanced steels depends, in large part, on the ability to
characterise these complex structures, including mapping
out the various phases present. Body centred tetragonal
(BCT) martensite differs from body centred cubic (BCC)
ferrite in that is has a tetragonal lattice induced by inter-
stitial carbon atoms; tetragonality is essentially a stretch
in the c-axis, manifest as a small eigenstrain. Common
methods for distinguishing between the phases generally
rely upon differences in their properties (such as hard-
ness; see the review below), rather than quantifying the
level of tetragonality which is the basis for the difference
in behaviour.
This paper applies high-resolution electron backscatter

diffraction (HREBSD), using simulated reference patterns,
to dual phase (DP) steel in order to map the tetragonality
of the crystal lattice, and thereby distinguish the BCC and
BCT phases, as well as estimate the local carbon content
from the determined c-to-a ratio.
DP steels obtain their desirable high strength-to-

formability ratio through a composite-like microstructure
composed of ferrite and martensite phases.1 While the
percentage of the two phases varies depending on the
type of DP steel, it is typical to have DP steels with
martensite phase fractions ranging from 30% to 50%,2–4
where the characteristics of the martensite phase, specif-
ically carbon content, related tetragonality and morphol-
ogy, play a key role in the mechanical properties.5–7 The
average carbon content within the martensite will vary,
most directly with the overall carbon concentration in
the alloy and the martensite volume fraction; however,
various studies have also shown that the carbon con-
tent within a region of martensite can vary significantly.
In one case study with overall carbon concentration of
0.18%, the average carbon content in the grains was typ-
ically 0.3-0.4 wt%C, but there was a significant gradient
of carbon within the martensite region depending upon
the prior heat treatment (for example, reaching around
0.5% carbon).8 Another study developed a new technique
to map carbon content, and demonstrated large variations
across the martensite substructure. The DP steel had an
overall carbon content of 0.15%, and carbon content within

amartensite grain varied fromnegligible content to around
0.7%.9
Common methods of distinguishing the ferrite and

martensite phases within steel depend upon characteris-
tics such as their hardness, level of internal disorder (eg
dislocation content that interfereswith diffraction quality),
or reaction to chemical etchants. Colour etchants, such
as LePera etching, reveal the phases by colouring them
differently.10,11 Another common etchant used is nital.
While it does not colour the grains in the same manner as
the LePera etch, the nital etch corrodes the phases at differ-
ent rates, making them distinguishable via topography.12
Subsequent image analysis is applied in order to interpret
the surface features and extract phase fractions. Apart from
the sometimes ambiguous phase interpretation, the pro-
cess also changes the surface of the sample such that other
characterisation techniques, such as electron backscatter
diffraction (EBSD), are made more difficult or impossi-
ble. This generally precludes using EBSD on etched spec-
imens, making it difficult to subsequently match phases
with other key microstructure data like crystallographic
orientation and grain morphology.
Nanoindentation is another method used to identify

martensite within DP steels, since martensite and ferrite
have different hardness properties.1 However, both the spa-
tial and hardness resolution obtained via nanoindentation
can be limited; extremely small grains are more difficult
to characterise, and local differences in orientation (and
therefore, apparent hardness) can make the interpretation
difficult. Additionally, the process deforms the sample sur-
face, which also inhibits later characterisation techniques
such as EBSD.
For many materials, dissimilar phases can be distin-

guished via EBSD itself.13 Commercial EBSD software gen-
erally analyses a diffraction pattern from a scanning elec-
tron microscope and identifies the position of bands, that
correspond with planes of atoms, using a Hough trans-
form. By comparing the arrangement of band intersection
points with those from a database, the software can cate-
gorise phase and orientation simultaneously for each scan
point, if the correct phase was included in the list of poten-
tial phases by the user. The process of the software cate-
gorising the crystal structure and orientation is commonly
termed ‘indexing’. However, while this approach works
well for distinguishing obviously distinct phases (such as
face centred cubic and BCC), the difference between BCC
and BCT structures is often too subtle (i.e. when the level
of tetragonality is low) and requires an accuracy of band
detection by the software that is currently not available.
Other methods have been used to distinguish similar

phases via EBSD. These include separating phases by grain
size,14,15 band slope values,16 Confidence Index (CI) values,
Image Quality (IQ),17–19 kernel average misorientation20
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F IGURE 1 Image quality map of DP steel. Dark regions corre-
spond to low IQ, often indicating martensite. Brighter regions corre-
spond to higher IQ which is more typical of ferrite

or similar metrics specific to the particular commercial
EBSD software being used. For steel alloys, IQ is often
used to distinguish martensite and ferrite. It quantifies the
contrast or clarity of EBSD images in terms of the intensi-
ties of Hough peaks, relating to the crystal lattice planes.
These values are then mapped to a greyscale image, which
provides, to some extent, a map of lattice disorder across
the sample (see Figure 1). Because martensite typically has
a higher dislocation content than ferrite,21 it will produce
poorer patterns and therefore have a lower IQ value,
appearing as darker regions within the IQ map. While
this method is widely accepted as providing a reasonable
estimate of the correct phase, it has some drawbacks. In
particular, image quality is susceptible to factors other
than dislocation content in phases. Surface finish, scan
parameters (which can vary from one scan to the next),
surface debris etc.,18,19 can all adversely affect image qual-
ity. One cannot be certain if an area of low image quality
is due to a particular phase or something else entirely.
Recent work has also utilised dynamically simu-

lated patterns as references for distinguishing similar
phases.22-25 The patterns reproduce the band profiles of
real patterns much more accurately than kinematically
simulated patterns. For example, the method by Ram
et al.23 compares the real patterns to a dictionary of simu-
lated patterns that could exist for that phase, and computes
a similarity metric for each comparison. The final phase
is then the phase for which the similarity metric is high-
est, indicating the phase and the real pattern are the most
similar. Formulti-phasematerials, each pattern ismatched
against dictionary patterns for each of the probable phases.

As reported, better than 86% accuracy was obtained when
using this approach, and for FCC phases with differences
in lattice constants greater than 12%, an accuracy of 100%
was obtained.
The current paper uses a method related to that pre-

sented by Ram et al,23 in that simulated patterns (both
kinematically and dynamically simulated in our case) are
compared with real patterns in order to differentiate the
BCC from the BCT phase. However, rather than just look-
ing at some measure of goodness of fit, the actual tetrag-
onality of the lattice is quantified using cross-correlation
techniques for more detailed information regarding the
BCT phase (an idea conceived in Ref. 26).
The underlying method for determining tetragonality

has been demonstrated for ‘perfect’ silicon/SiGe crystals
using both kinematically simulated27 (Figure 2c shows an
example kinematically simulated pattern for bcc iron) and
dynamically simulated patterns28 (Figure 2b illustrates a
dynamically simulated pattern for iron). Furthermore, a
similar approach was tested for resolving pseudosymme-
try in lathe TiAl.29 However, the low image quality typi-
cally associated with EBSD of martensite presents a par-
ticularly challenging hurdle for a method that relies upon
high-fidelity patterns for distinguishing slight band shifts.
Furthermore, a critical issue relating to the comparison
of simulated patterns for determination of lattice strain
involves the accurate determination of microscope geome-
try (the ‘pattern centre’ or ‘projection centre’, PC) thatmust
be accurately reflected in the pattern simulations. Small
errors in the PC can lead to ‘phantom strains’, which cause
significant error in the tetragonality measurements.26,30
The PC indicates the position of the electron emission

point on the sample, relative to the phosphor screen refer-
ence frame.27 It is defined by x*, y* and z* Cartesian coor-
dinates that are typically given as percentages of the phos-
phor screen width or diameter. Various estimates of pat-
tern centre accuracy have been given for different fitting
algorithms;29–31 for example, in some cases it appears that
standard commercial EBSD software can achieve an accu-
racy of around 0.5% using standard working conditions,
which should result in a tetragonality error of around 0.5%
(figure 6 of Ref. 26). However, these estimates of PC accu-
racy are likelymade onmaterials that produce high-quality
patterns. Several references agree that a PC error of less
than 0.5% is needed to reduce phantom strain levels to the
order of 10−3;26,30,32 this is the order ofmagnitude of resolu-
tion desired in order to distinguish martensite from ferrite
phases.
A range of methods for more accurate PC calibration

have been previously proposed. These include shadow
casting,33 iterative fitting,34 screen moving,32 calibrating
from a single crystal with known structure and lattice
constant,34,35 and mapping Kikuchi bands onto a sphere.31
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F IGURE 2 Example Kikuchi patterns used for PC calibration of DP 980 sample. (a) Actual EBSD pattern, (b) dynamically simulated
pattern, (c) kinematically simulated pattern

Each of these methods provide calibrated PC’s to vary-
ing levels of accuracy but often require more information
than that available in a regular set of EBSD patterns. In
this paper, a new PC calibration approach is presented,
inspired by previous strain minimisation approaches,26,27
but adapted to work in polycrystalline samples with
nonzero lattice strain, and variable pattern quality.
The resultantmaps of tetragonality for DP steel are com-

pared with SEM images of the etched topography and IQ
maps of the same sample. The related phase fraction esti-
mates are assessed relative to expected values, and car-
bon content is inferred and compared withmanufacturer’s
data.

2 METHODS

2.1 Material and data acquisition

Thematerial used in this studywas a DP 980 steel obtained
from US Steel, Pittsburgh, PA, USA, with a nominal com-
position of 0.1% C, 0.15% Si, and 2.35% Mn. While the
detailed processing conditions are typically confidential
for commercial steels, thermomechanical processing of DP
980 steel starts with austenitising of the material, then
reducing the temperature to an appropriate intercritical
level, in order to achieve the desired portions of ferrite and
austenite.36 After intercritical annealing the material is
water quenched, resulting in a microstructure with about
50% volume fraction of martensite for the current steel.37
Sample preparation for EBSD consisted of mechanically

polishing to 1200-fine and then applying a final electropol-
ish. The electrolyte used consisted of 125 mL Methanol,
75 mL Butanol and 25 mL Perchloric acid, which was kept
at approximately 10 C. The samples were electropolished
at 20V and 1.1 A for 24 seconds. EBSD scans were taken

in an Apreo C Low-Vac SEM. An accelerating voltage of
20KV, current of 3.2nA, and working distance of 20 mm
were used, with a standard sample tilt of 70 degrees (see
Ref. 38 ch 1). Patterns were collected by an EDAXDigiview
camera at 1 × 1 binning with the default background sub-
tract applied, and indexed using EDAX’s OIMData Collec-
tion 7.2 software (pattern images were 925 × 925 pixels). In
both cases, EBSD patterns were saved for all points within
a scan for later analysis.

2.2 Tetragonality and pattern centre

Using Brigham Young University’s open source cross-
correlation software, OpenXY,39 the PC for each sample
was calibrated by effectivelyminimising themedian lattice
strain (relative to that of a cubic lattice) over many grains
within the sample at the same time, as described below. As
mentioned, PC errors cause phantom strains that would
make patterns coming from a cubic lattice appear to be
associated with a strained (noncubic) lattice. If the lattice
is known to be cubic, with only small elastic strains (eg for
the BCC ferrite phase), then varying the PC to minimise
the apparent strain associated with the EBSD patterns will
result in a correct PC position. This approach also works
on a tetragonal lattice (ie with a nonzero pseudo strain,
such as the martensite BCT lattice, which is assumed to
be a distortion of the BCC phase) provided that patterns
are taken from a distribution of grain orientations. This
was tested using purely simulated patterns (with known
tetragonality). While the minimisation of strain associated
with the EBSDpattern for a single grainwould result in the
wrong PC (since the lattice is not cubic), the error is cor-
rected by performing the strain minimisation over many
grains (with different orientations). Figure 3 illustrates the
effect using kinematically simulated reference patterns. In
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F IGURE 3 Apparent strain change with pattern centre variation for 20 random orientations, calculated using kinematically simulated
reference patterns: (a) for BCC iron reference patterns, (b) for BCT reference patterns with a single tetragonality value of 1% and (c) for random
BCT tetragonality values between 0 and 1%

Figure 3a, 20 random orientations are selected, and a refer-
ence BCC iron EBSD pattern is simulated. The simulated
PC value for x is 0.51. The x value of PC is then varied and
the OpenXY software calculates the (phantom) equivalent
elastic strain associated with the PC error. Different ori-
entations result in similar behaviour for strain versus PC
error, having a distinct minimum point (that of the correct
PC). In Figure 3b, randomly oriented BCT reference
patterns are simulated, each with a constant tetragonality
value of 1%, and the exercise is repeated. In this case, the
minimum strain for each random orientation occurs at a
different PC, but these values are centred on the correct
PC. In Figure 3c, random orientations and tetragonality
values (between 0 and 1%) are selected for each reference
pattern. The aggregated minimum strain value across the
PC range is clearly at the correct position of 0.51.
Trials on different areas of the steel, and on sets of

simulated EBSD patterns with different orientations (but
consistent tetragonality), indicated that at least 20 differ-
ent points in the sample should be chosen, ideally across
a wide range of orientations, for best results. For this
study, > 50 points were selected on an evenly-spaced grid.
The procedure is described in detail in Ref. 28 Starting from
the estimated value of PC derived by the commercial EBSD
software, the lattice distortion relative to a cubic lattice is
calculated for each of these points (after adjusting the PC
for each geometrical position). To determine the distortion,
simulated pattern is created, the distortion of the real pat-
tern relative to the simulated pattern is calculated, and any
orientation discrepency between simulated and real pat-
tern is corrected by simulating a new pattern in an itera-
tive manner for the default value of 4 iterations, and then
the lattice distortion is extracted from the measured shifts
between features in the reference and experimental pat-
terns. Dynamically simulated patterns were generated by
EMSoft40 (also described in Refs. 28,41). This process was
repeated across the space of possible correct pattern cen-
tres. Initially x* and y* were held constant while the PC

was varied across a range of z* values on either side of the
estimated value. After discarding strain values above a cer-
tain noise threshold (taken to be 0.5% strain in this study –
the default value in OpenXY; as can be seen from Figure 4,
this is well above the main population of measured strain
values), a quadratic function was fit to the median value of
strain for the remaining points (see Figure 4; the quadratic
fit is not included in the plot, in order to more easily see
the median value line). The location of the minimum indi-
cates the correct value of z*. The assumption that the cor-
rect PC is the one that, on average, minimises the strain
across the sample by the simulated pattern method is dis-
cussed in more detail in the results section. This process is
then repeated for y* and then for x*, using the updated val-
ues of the previously calibrated dimensions. The process
is then repeated once more to converge on the accurate
PC value. The order of calibration of the dimensions was
chosen due to the typically higher sensitivity of calculated
strain to the z* value, leading to easier calibration.
The corrected PCwas then fed into the relevant (ie kine-

matical or dynamical) pattern simulation routine, along
with the estimated orientation from the EBSD software.
The resultant simulated pattern was compared with the
actual EBSD pattern arising from the given point on the
sample using cross correlation analysis, as described in
previous papers.26,42 After adjusting the orientation based
on the new PC, the relative lattice strain between the
simulated and real patterns is quantified using the tech-
nique described in more detail in Refs. 27,28 Those strains
are then used to measure the corresponding tetragonality
based on the following equation35:

𝜀𝑡𝑒𝑡𝑟 = 𝜀
𝑐𝑟𝑦𝑠𝑡𝑎𝑙

33
−
𝜀
𝑐𝑟𝑦𝑠𝑡𝑎𝑙

11
+ 𝜀

𝑐𝑟𝑦𝑠𝑡𝑎𝑙

22

2
, (1)

where 𝜀𝑡𝑒𝑡𝑟 is the tetragonality as a function of the major
axis strains of the crystal lattice. For the martensite BCT
phase, the c-axis is assumed to align with the 3-direction,
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F IGURE 4 Strain calculated for a group of grains (each represented by a different colour dot) over a range of PC values. (a)-(c) Strain
values when varying Z, Y and X values of PC, respectively, while holding the other values constant; the solid lines indicate the median value

and thea and b lattice parameters are assumed to be consis-
tent with those of the bcc phase. Hence, 𝜀𝑐𝑟𝑦𝑠𝑡𝑎𝑙

11
= 𝜀

𝑐𝑟𝑦𝑠𝑡𝑎𝑙

22
=

0, and 𝜀𝑐𝑟𝑦𝑠𝑡𝑎𝑙
33

= (𝑐 − 𝑎)∕𝑎; that is 𝑐∕𝑎 = 1 + 𝜀𝑡𝑒𝑡𝑟.
Note that for the kinematically simulated patterns, the

tetragonality of the simulated lattice is adjusted until the
real and simulated patterns match, according to the cross-
correlation (see Ref. 27). For the dynamically simulated
patterns, this would be computationally inefficient (the
‘master pattern’ would need to be regenerated for each
level of tetagonality, at high computational cost43). How-
ever, if a cubic lattice is assumed, and the measured value
of tetragonality is above around 2%, the error in the mea-
sured value becomes significant due to the widening dif-
ference between the reference and experimental patterns.
Hence, master patterns of dynamically simulated patterns
were generated at different levels of tetragonality (0%, 2%,
4% and 6%), and the best fit pattern (after searching over
the three possible c-axis directions) was used as the ref-
erence pattern for a given point; the final tetragonality is
given by that of the reference pattern plus the measured
distortion from that value.
Expected tetragonality levels were determined based on

the nominal composition of the DP steel used in this study,
which contained approximately 0.1 wt% C. Actual carbon
content within the martensite phase can vary significantly
across a grain or colony as noted in Ref. 9 (and as can
be seen in figures later in this paper). These variations
cause the tetragonality (c/a ratio) to vary approximately
linearly according to carbon content based on the follow-
ing equation.35, 44, 45

𝑐∕𝑎 = 1 + 0.045 × wt%C i.e. 𝜀𝑡𝑒𝑡𝑟 = 0.045 × wt%C.

(2)

2.3 Phase identification baseline

For the DP steel in this study, IQ maps provide a good
differentiator between martensite and ferrite regions. Fig-
ure 5 includes IQ and SEM secondary electron images of
two regions of the steel, selected to illustrate two levels of
morphological complexity. The electrolyte used during the
electropolishing step slightly etched the sample surface,
helping to highlight the two phases, with the softer ferrite
undergoing a deeper etch, generally. While the beam, sam-
ple and detector geometry lead to differences in the clarity
of topographical features, depending upon orientation of
the features, the higher regions in the SEM images gen-
erally coincide with the darker martensite areas that are
apparent in the IQ maps. This provides some verification
of the phase distinguishing capability of the IQ approach
for this material. We note that while the topography has a
slight effect on the pattern centre z-value discussed above,
the very light electropolishing etch only changes the
surface height by nanometres, and hence does not have a
significant affect at the target levels of resolution discussed.
Furthermore, there is not a significant effect on pattern
quality (such as measured from the confidence index).
The threshold for distinguishing between ferrite and

martensite in the IQ map was selected by plotting the his-
togram of IQ values, and selecting the point corresponding
to the end of the initial low IQ peak (Figure 6). This peak
is assumed to correlate with regions of martensite. Since
both areas in this study used the samemicroscope settings,
and had the same range of IQ values, the same threshold
of 30,000 was used in both cases. The resulting marten-
site area fraction identified by points having IQ below this
value agrees with the fraction of martensite expected for
this material (∼50%), as will be apparent below.

 13652818, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jm

i.12980 by B
righam

 Y
oung U

niversity, W
iley O

nline Library on [29/01/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License
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F IGURE 5 (a) (Left) SEM image of etched Area 1. Raised regions correspond to martensite. (Right) IQ map of same area. (b) (Left) SEM
image of etched Area 2. (Right) IQ map of same area

F IGURE 6 Joint histogram of IQ values from Areas 1 and 2,
indicating the threshold for distinguishing martensite (below the
threshold) from ferrite (above the threshold)

3 RESULTS AND DISCUSSION

3.1 PC calibration

As previously mentioned, a PC with target error of less
than 0.5% (of phosphor screen width) is sought, to suffi-
ciently reduce the phantom strains that might cause sig-
nificant errors in tetragonality measurements. Based upon
the curve of median values in Figure 4, it appears that
a clear minimum for each axis can be identified within
∼0.005 (as a fraction of the phosphor width). Note that,
as discussed in the method section, the sensitivity of the
method is different in different directions; the curvature
of the median value line is significantly lower for the x-
dimension (Figure 4c) compared with the other dimen-
sions. Nevertheless, when a quadratic is fit to the data,
identification of the minimum to within ∼0.005 is feasi-
ble. Thus, it seems reasonable to expect that the error of

the new PC value is adequate to achieve the desired reso-
lution of 0.5%.
Several further activities were undertaken to test this

hypothesis. First, BCT dynamically simulated patterns
(with the same parameters used for the steel comparison)
with a known tetragonality (0.4%) were created over a
random set of orientations, and with known PC. Using
the approach described above, the PC that minimised
the median effective strain across the set of orientations
was determined, and found to be closer than 0.1% from
the correct value. This confirmed that by minimising
strain over a random set of orientations, the PC can be
found, even if the lattice strain is not zero, at least for
the case of perfect patterns without noise. In a typical
material, the tetragonality will vary; but if enough points
are taken to sample a range of orientations for a given
level of tetragonality, an accurate PC should be found by
this approach. In a series of tests on simulated patterns,
minimising elastic strain across a minimum of around 20
randomly sampled grains resulted in convergence to the
stated 0.1% from correct PC of the simulation.
Figure 7a demonstrates a tetragonality map (Equation 1)

of a dual phase steel using the best available PC from the
commercial software. In this case, the tetragonality calcu-
lated for ferrite grains with different orientations differs
greatly. This highlights the fact that the approximately lin-
ear relationship between PC error and a given strain com-
ponent (such as the strain along the c-axis) is highly depen-
dent upon the orientation. In addition, the PC error for this
material must be around 4% in order to give the observed
tetragonality error –much higher than the estimates above
(this assumes that the actual level of tetragonality in the
ferrite grains, as identified by Figures 7b and c, is negligi-
ble). Note that once the PC has been corrected (Figure 7b),
using the method in this paper, the tetragonality in the fer-
rite grains is less than about 0.2%. Basedupon the estimates
of phantom strain error in Ref. 35, figure 6, the levels of
tetragonality measured in the ferrite (which should have
zero tetragonality) in Figure 7b indicate that the PC error is
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F IGURE 7 (a) Original tetragonalitymap for dual phase steel, with PC taken from commercial EBSD software. (b) Tetragonalitymapwith
recalibrated PC using the method in this paper. (c) Image quality (IQ) map for the sample, indicating ferrite (high IQ areas) and martensite
(low IQ regions)

F IGURE 8 Area 1 maps: (a) Tetragonality map (equals c/a – 1, or 0.045 × tarpon content) made using kinematically simulated patterns
(b) Tetragonality map made using dynamically simulated patterns; white pixels in these images have not converged to a reliable answer in
HREBSD. (c) IQ Map of corresponding scan, where dark regions are presumably martensite and light areas are ferrite

around 0.2% for that particular sample. As a further verifi-
cation, nine individual areas of the DP steel were analysed
independently, and the PC for each area was calculated
using the current approach. The precision in PC (the stan-
dard deviation between the calculated values, based upon
the assumption that the microscope correctly determined
the correct distance between the analysed areas) was better
than 0.4%.

3.2 Tetragonality maps

Tetragonality maps were created from two separate EBSD
scans of 5 × 5 μm (Area 1) and 6.5 × 6.5 μm (Area 2) areas,
at an EBSD step size of 75 nm. Two different analyses
were undertaken for each scan area, using kinematically
and dynamically simulated patterns for cross-correlation,
respectively. For either case, the experimental pattern
from the steel must be indexable by the EBSD software

to provide the correct orientation for simulating the
initial reference pattern. While martensite is notorious
for having poor pattern quality, the polishing method
described above resulted in indexable points across the
entire scans. There may be a potential for lower fidelity
at grain boundaries due to pattern mixing, but that does
not appear to have caused a strong effect in the resultant
tetragonality maps. Figures 8 and 9 show the tetragonality
maps resulting from both approaches for each scan,
compared to the corresponding IQ map. In both cases, the
suspected ferrite grains (lighter regions on the IQ map)
have tetragonality close to 0%, as expected. Therefore,
the main difference between the kinematic and dynamic
approaches occurs within the martensite regions. Note
that points with suspect results (poor convergence of the
cross correlation method, indicated by a summed-squared
error, SSE, of greater than 25) are rejected and assigned
a white colour on the map; they are not included in
the averaging for grain tetragonality. This filtering only
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F IGURE 9 Area 2 maps: (a) Tetragonality map (equals c/a – 1, or 0.045 × wt.% carbon content) based on kinematic patterns. (b) Tetrag-
onality map based on dynamic patterns; white pixels in these images have not converged to a reliable answer in HREBSD. (c) IQ Map of
corresponding scan

F IGURE 10 Histogram of tetragonality values (equals c/a – 1,
or 0.045×wt.% carbon content) determined by the dynamic reference
pattern method for Area 1

applies to the kinematical results, where they constitute
approximately 10% of the map; the suspect points also
strongly correlate with points with confidence index, CI,
as determined by the EBSD software, of less than 0.05. The
dynamically simulated patterns produce a tetragonality
map with no points having high SSE values.
To evaluate the difference between the kinematic and

dynamic approaches, the resulting tetragonality maps
were compared directly to the corresponding IQ maps
via both a grain average and a point-by-point compar-
ison. Points/grains with tetragonality > 1% (c/a > 1.01,
carbon content > ∼0.2%) as determined by the HREBSD
approach were assumed to be martensite; this value marks
the edge of a peak on the distribution of tetragonality val-
ues calculated by HREBSD. Figure 10 shows the histogram
of tetragonality values calculated for Area 1 using the

dynamic pattern method. There is a clear transition at 0.01
tetragonality.
In the point-by-point comparison of martensite regions

as determined by the tetragonality approach versus the IQ
approach, dynamic simulation proved to have higher accu-
racy than kinematic for both areas scanned. Dynamic ref-
erence patterns resulted in an average accuracy of 83.2%
(meaning that points with tetragonality values above 1%
corresponded correctly with low IQ values for the same
point), while kinematic simulation resulted in an average
accuracy of 66.8%; these values are averaged across the
two test areas. However, both methods identify tetragonal-
ity levels with higher accuracy when assigning individual
grains to be either ferrite or martensite based on average
tetragonality. Dynamic simulation resulted in an average
accuracy of 89% (ie grains covering 89% of the total sam-
ple area were correctly assigned to the relevant phase, as
identified by the IQ map), while kinematic had an average
accuracy of 83.3%.
The performance of the dynamically simulated refer-

ence pattern method is also tabulated in Table 1 in terms
of area fraction of martensite identified by the method,
compared to IQ. As another distinguisher of martensite
versus ferrite, a best fit metric is reported, where EBSD
patterns that are closest to the cubic reference pattern (0%
tetragonality) are assigned to be ferrite, and other points
are assigned to be martensite. The average fraction of
martensite identified by IQ (accounting for the difference
in areas of the two regions) is 49%; the expected value is
∼50% (see also Refs. 2–4). While this is not a validation
of the IQ approach, due to the approximate nature of the
expected value, the small areas, and the imprecise method
of selecting the IQ threshold, it nevertheless provides
some assurance that the IQ metric provides a reasonable
distinction between phases for this particular steel. The
tetragonality metric indicates a slightly lower martensite
content than IQ for both areas. Furthermore, the best
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fit pattern approach indicates even lower fractions of
martensite, as would be expected since martensite with
low levels of tetragonality would have EBSD patterns
that are closer to the 0% tetragonal pattern than the 2%
pattern.
One of the additional benefits to measuring tetrag-

onality comes from the observed relationship between
tetragonality and carbon content. With a known tetrag-
onality value, approximate carbon content at a point
can be calculated using Equation 2. We note that other
factors relating to the processing history of the steel may
affect the tetragonality,46 and the detailed proprietary
heat treatment is not known. If the raw tetragonality data
is used to estimate carbon content, the minority of high
tetragonal values (as indicated in the Figure 10 histogram)
would dominate the results. If the points that align best
with the 6% tetragonal simulated pattern are examined,
these are predominantly single pixels, indicating that they
are associated with noise. This is possibly due to poor
indexing (ie initial estimation of their orientation), which
then results in poor estimates of tetragonality. For prac-
tical purposes, any points with tetragonality greater than
0.04 (c/a > 1.04, carbon content > ∼0.9%) were assumed
to be outliers and not included in the carbon average
calculation (see Figure 10); this removed the top 10% of
points in terms of tetragonality. Points identified as ferrite
were assumed to have 0% carbon; then, using Equation 2,
Area 1 has 0.11% carbon, and Area 2 has 0.19% carbon. This
results in a carbon content that is somewhat higher than
that reported by the manufacturer (0.1 wt%C) indicating
that tetragonality is overestimated in the martensite (or
that Eq. 2 is not accurate for this material). Given that
the tetragonality levels measured in the assumed ferrite
region are as high as 1%, this appears to be the typical
magnitude of error using the current approach. Such an
error, of 1% tetragonality, relates to ∼0.2 wt. % carbon,
which is higher than the expected carbon content in
this material. Hence improvements in dealing with the
sources of noise in the cross correlationmethod (including
the PC calibration) are needed to more accurately map
carbon content in typical carbon steels. However, it is
interesting to note that the higher tetragonality values
(and related carbon content) near the grain boundaries
in Figures 8 and 9 are consistent with observations
in Ref. 8.

4 CONCLUSIONS

Tetragonality maps were produced using cross-correlation
based HR-EBSD in order to help distinguish BCC fer-
rite from BCT martensite in a DP steel, using both kine-
matically and dynamically produced reference patterns.
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In order to attain the target 0.5% accuracy for the pat-
tern centre of the microscope (and avoid the generation
of phantom strains that confuse the tetragonality mea-
surements), a new strain minimisation approach achieved
the requirement for the material being studied. While the
current study indicates that the PC optimisation method
will work well for cubic materials, or for tetragonal mate-
rials with random textures, the accuracy of the method
for highly textured tetragonal materials has not been
assessed.
For the DP steel studied here, IQ maps generate high

contrast between ferrite and martensite regions, provid-
ing a suitable baseline for verifying tetragonality mapping
approaches. The volume fractions of martensite obtained
from the IQ maps align reasonably with manufacturer
measurements (obtained using XRD), although these com-
parisons depend upon threshold selection, and therefore
only demonstrate accuracy within about 10% volume frac-
tion. The low IQ areas also generally align with plateaus
in SEM images of the etched material, providing further
verification.
Tetragonality measurements from dynamically sim-

ulated reference patterns provide significantly better
alignment with the IQ results than the kinematically
simulated patterns. In a point-by-point comparison the
different approaches gave 83.2% and 66.8% accuracy,
respectively. When compared at the grain level (taking
the average tetragonality across a grain as the basis for
the comparison), they achieve 89% and 83.3% accuracy,
respectively. The error in the tetragonality measurement
is indicated by the fact that tetragonality values in the
assumed ferrite regions were fairly evenly distributed
between 0 and 1%. This may be related to some remaining
PC error, along with initial estimates of lattice orientation
provided by EBSD software.
A further indication of the resolution of the approach

is provided by estimating the carbon content within the
martensite, and comparing with manufacturer-provided
values. If points in the tail of the tetragonality distribution
are ignored as outliers (the single pixel points that asso-
ciate with > 4% tetragonality), then the carbon content in
the two area that were examined (low and high marten-
site contents) were 0.11% and 0.19% respectively, compared
with a manufacturer declared value of 0.1%. This aligns
with the tetragonality resolution as being approximately
1%, giving an average error in carbon content of around
0.2%.
Overall, the study demonstrates a promising method for

determining an accurate pattern centre, analysing lattice
tetragonality and identifying BCT versus BCC regions; the
magnitude of error in carbon content estimationmakes the
technique unsuitable for estimating total carbon content
of most commercial steels, which often have carbon levels

below 0.1%. However, even in the DP steel for this study
(0.1 wt.% carbon) it can be used to map carbon in regions
with higher accumulation (such as inmartensitewith non-
homogeneous carbon content).
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