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ABSTRACT

Recent advancements in physics-informed machine learning
have contributed to solving partial differential equations through
means of a neural network. Following this, several physics-
informed neural network works have followed to solve inverse
problems arising in structural health monitoring. Other works
involving physics-informed neural networks solve the wave equa-
tion with partial data and modeling wavefield data generator for
efficient sound data generation. While a lot of work has been
done to show that partial differential equations can be solved
and identified using a neural network, little work has been done
the same with more basic machine learning (ML) models. The
advantage with basic ML models is that the parameters learned
in a simpler model are both more interpretable and extensible.
For applications such as ultrasonic nondestructive evaluation,
this interpretability is essential for trustworthiness of the meth-
ods and characterization of the material system under test. In this
work, we show an interpretable, physics-informed representation
learning framework that can analyze data across multiple dimen-
sions (e.g., two dimensions of space and one dimension of time).
The algorithm comes with convergence guarantees. In addition,
our algorithm provides interpretability of the learned model as
the parameters correspond to the individual solutions extracted
from data. We demonstrate how this algorithm functions with
wavefield videos.

Keywords: Signal Processing, Machine Learning, Represen-
tation Learning, Optimization Theory, Denoising, Image and
Video Quality Assessment

1. INTRODUCTION

Guided waves have gained attention in the realm of structural
health monitoring due to their wide applicability and complex
nature. Ultrasonic guided waves have proven valuable in detect-
ing, locating, and characterizing damage within various physical
structures [1-3]. Their ability to cover large areas with minimal
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attenuation has led to their implementation in a diverse array of
structural systems, such as pipelines [2, 4-9], bridges [10, 11],
concrete structures [12], steel cables [13—15], metal aircraft com-
ponents [16, 17], and composite aircraft components [18-21]. To
measure guided waves, researchers often utilize densely sampled
wavefield imaging systems, such as scanning laser Doppler vi-
brometers [22]. Consequently, the development of efficient and
accurate methods for processing and interpreting wavefield data
has become an area of significant interest.

A recent advancement that has potential in improving the
analysis of wavefields is physics-informed machine learning.
Specifically, recent advancements in Physics-Informed Neural
Networks (PINNs) [23] have revolutionized our ability to solve
and identify partial differential equations (PDEs) using neural net-
works. This work has spurred a myriad of applications in SHM,
such as identifying cracks through ultrasound imaging[24], struc-
tural identification through neural networks [25], and solving the
wave-equation with partial data [26, 27]. While these black-box
neural network models have shown promise, their complex na-
ture often precludes interpretability and convergence guarantees
of the optimization algorithm, which are crucial factors in estab-
lishing trustworthiness and reliability for practical applications.
Additionally, these networks need a large collection of training
data, significant computational power, and a long training time.

In this paper, we present an interpretable, physics-informed
representation learning framework (based on [28-30]) capable of
analyzing wavefield data across multiple dimensions (e.g., two
dimensions of space and one dimension of time) while provid-
ing convergence guarantees for the optimization algorithm. The
proposed method offers enhanced interpretability compared to
traditional black-box neural networks, as the parameters in the
learned model correspond to the individual solutions extracted
from the data. The framework utilizes physics and data to pro-
duce required results and does not need additional data to train.

Furthermore, our framework enables the enhancement of
wavefield quality using physics-informed representation learn-
ing. The intuition of wave propagation is encoded in the wave
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equation and dates back to Brooke Taylor [31], who discovered the
wave equation through simple physical insight [32]. We leverage
this mathematical intuition of the wave equation to enforce struc-
ture into a representation learning algorithm and learn noise-free
representations that can eventually enhance the visual quality of
the wavefield. This enhancement in resolution offers advantages
for structural health monitoring like improving the reliability and
accuracy of structural defects and the like.

We demonstrate the efficacy of our algorithm by showing an
improvement in the quality of synthetic wavefield video data ob-
tained from [33]. The wave data obtained from [33] has artifacts
introduced by interpolating a low resolution video. In this paper,
we show that these artifacts can be eliminated to provide a cleaner
wavefield video.

2. WAVE-INFORMED REPRESENTATION LEARNING

In this section, we introduce wave-informed decompositions,
an approach to extract noiseless and distortion-less reconstruc-
tions of a measured wavefield video, enabling a more accurate
and efficient analysis of wave-based phenomena.

Wave-informed decompositions leverage the power of rep-
resentation learning to disentangle the individual velocity com-
ponents of a wavefield by enforcing a discretized version of the
wave equation. This approach ensures that the extracted repre-
sentations are both physically meaningful and adhere to the un-
derlying governing wave equation. We obtain the reconstruction
by recombining these representations.

To achieve this, we formulate an optimization problem that
seeks to minimize the discrepancy between the original wavefield
and the reconstructed wavefield obtained from the decomposition.
This optimization framework captures the essential constraints
derived from the discretized wave equation and ensures that the
obtained representations are consistent with the mathematical
physics of wave propagation.

Furthermore, we use an algorithm to tackle this optimiza-
tion problem, which guarantees convergence to global optimal-
ity. This algorithm is interpretable and also best reconstructs the
original wavefield, while remaining computationally tractable.

In the following sections, we will delve into the intricacies
of wave-informed decompositions, detailing the discretized wave
equation, the optimization problem formulation, and the pro-
posed algorithm for achieving global optimality. Through these
discussions, we aim to provide a comprehensive understanding
of this technique and its potential applications in various domains
involving wave-based signals.

2.1 Discrete Wavefields as Tensors

Consider a continuous wavefield f(x, y, ) on a finite struc-
ture for a finite time period. Consider for simplicity, x € [0, L],
y € [0,Ly] and ¢ € [0,T]. Let Ny, N, and N; be points be
sampled in each space dimension and time dimension respec-
tively. The sampling periods in space and time are given by,
Ax = Ly/Ny, Ay = Ly/N, and At = T /N,. Consider the tensor
U € RVxxNyXN: gych that:

Ui iyi, = f (ixAx, iyAy, i At) . ()

Note that the tensor F represents a discretized version of the
wave-field f(x, y, t). In the decomposition algorithm we present,
we consider vectorized versions of the tensors represented by
vec(F).

2.2 Discrete Version of the Wave equation
The two (spatial) dimensional wave equation for a wave prop-
agating at velocity c is given by:

d%u(x, v, 1) . u(x, y,t) 1 O%u(x, y,t)

2
0x? 0y? ¢z 0 @

Assuming that U is the tensor corresponding to the wavefield
u(x,y, t), discretized version of the wave equation is:

(I; L ® L +1; ® Ly ® I) vec(U)

:CI_Z(L,®12®II)VCC(U) 3

2.3 Formulating the Objective

Given the discretized wave data Y € RN>*MXNe our goal is
to decompose the tensor Y into a sum of tensors, each satisfying
a discrete version of the wave equation. The idea behind the
decomposition can be succinctly expressed through the following
equation:

XNy

Y=U +Uy+---U, (4)

where U; for i € [m] must satisfy a discrete version of the wave
equation. To leverage linear algebraic concepts and formulate
the problem in terms of matrix factorization, it is often more
convenient to vectorize (flatten) the tensors and work with vectors.
For the matrix factorization formulation, we rewrite equation 4
in vector form as:

yziui &)

i=1

where y = vec(Y) and u; = vec(U;), for i € [m]. Now, assuming
each u; = D;x;, with x; being a scaling factor, we ultimately
express our representation as y = Dx, where D contains D; as
its columns and x contains x; for i € [m] as its elements. This
constitutes the matrix factorization component of the objective
function.

The original setup, without vectorizing, required U; to satisfy
a discrete version of the wave equation. This translates to having
a similar assumption on D; (since x; are just scalars), albeit in a
slightly different form. Let W, (D;) = O represent the discrete
version of the wave equation with the wave velocity parameter c;.
To enforce structure from the wave equation, we can minimize
n}in ||°Wc, (Di)H§ as part of the regularizer. Additionally, we aim

to constrain the number of velocity modes to be minimal. We
achieve this by adding the squared Frobenius norms of both D
and x. This is known to induce low-rank solutions in the product
Dx due to connections with the variational form of the nuclear
norm [34], [35], [36], [37]. We finally obtain the regularizer:
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Initialization:
D=[]
x=[]
c=[]

Compute residual (z)

Gradient Descent

Perform gradient
descent to reach a

Stopping
Condition

Obtain Representations

d*,x*,c* = argmax dzx
dx,.c
such that

1 2
a1 +v[(L @1 @1+ L O L @1~ GLOLeL)d| <1

x?<1

first order stationary
point (D, X, )

D = [D,zd*], x = [¥;tx"], stepsize T > 0
c=[E;c

FIGURE 1: WAVE-INFORMED DECOMPOSITION FLOWCHART

M
OD.x) = ) 0(Dy,x;) (©6)
i=1

where ¥ > 0 is a tunable parameter and 6(D;,x;) =
ymin ”chl (Di)” + ||Dl-||§ +xl.2. The final optimization problem
Ci

formulated is:
in min =y - Dx|2
min min -— -
M D.,x,c 2 y * 2
1 M
+3 gygg%n% D) G +IDill +x7 | (D)

W, (.) is a linear operator dependent on ¢; and therefore we can
have a matrix such that, W, (v) = A.,v. For,

1
Ac=LiL, L+, ®Ly®Il, - I, I, ®L; (8)
c
and A > 0 is the regularization weighting the term (D, x).

2.4 The Optimization Algorithm

Using a flowchart (see Fig. 1), we simply state the algorithm
we use for solving this optimization, theoretical details can be
found in [29, 36, 37]. The algorithm starts with an empty matrix
D and an empty vector x and increase the number of columns
of D by 1 and appropriately change the size of vector x in each
iteration (see the block on Obtaining Representations in Fig 1
highlighted in blue, this step produces the column that needs to

be appended). The algorithm stops close to global optimality
due to the stopping condition Q°(z/1) < 1 + € (see equation 9),
which ensures the obtained D and x is O(€) close to the optimal
solution ([37], Prop. 4) for a user chosen € > 0.

o (2) U E)
% (3) = pax a7 (3)+
st. |3 +y | Acd]3 < 1,x* < 1. ©)

3. RESULTS

We use a data set of wave propagation from [33] to show
a reconstruction result. Fig. 2 represents different time frames
of the data set. The data set represents video of a waves prop-
agating over a fluid medium. Each frame in the video is 343
(= Nj) pixels high and 434 (= N;,) wide. In Fig. 2, observe the
distortions in the video frames introduced due to interpolation of
a low-resolution wavefield video. This distortion is introduced
due to the interpolation algorithm that does not respect wave be-
haviour while interpolating low resolution wavefield videos. We
consider the first 100 time points in our reconstruction. Fig. 3
shows a reconstruction based on wave-informed decomposition
algorithm. Observe that the waves are much smoother and clear
and without distortions as compared to original (Fig. 2). We have
the following empirically chosen values for running the algorithm
for e =0.1,y = 0.5(N;/m)% and A = 0.1 (see [29, 30] for details
about choice of parameter values).

The algorithm extracts relevant features, each of which are
waves that propagate at a fixed velocity. The pixelated artifacts
introduced due to low-resolution imaging are considered noise
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FIGURE 2: ORIGINAL VIDEO OF WAVES EMERGING FROM TWO DIFFERENT DROPLETS OF DIFFERENT MASSES FALLING ONTO A WATER

SURFACE

(for the wave-informed algorithm) since pixelated images are
non-smooth and do not minimize the wave equation (which needs
the image to be as smooth as possible due to the computation of
the second derivative). Thus, the non-smooth part of the image is
not learned as the representation. The representations extracted
by the algorithm are a good representative of the data and also
follow the physics of waves resulting in representations that are
smooth and hence give the visual perception of a clean and smooth
wavefield (as in Fig. 3).

4. CONCLUSIONS AND FUTURE WORK

In this study, we have presented an interpretable, physics-
informed representation learning framework for quantitative non-
destructive evaluation, offering a robust and reliable alternative to
traditional black-box neural networks. Our approach has demon-
strated the ability to analyze data across multiple dimensions
through a custom optimization process, while providing conver-
gence guarantees and improved interpretability. Our framework
has successfully demonstrated an improvement in the quality of
wavefield imaged at a low resolution. This has potential benefits

for structural health monitoring, such as improved defect detec-
tion and localization, enhanced resolution and sensitivity, and
reduced data noise and artifacts. The wavefield reconstruction
showcased in this work effectively eliminates distortions caused
by interpolation of low-resolution wavefields, paving the way for
more accurate and reliable assessments of structural integrity.

In future work, the development and implementation of ap-
propriate image and video quality metrics will be crucial in quan-
tifying the performance of our method. By measuring the image
and video quality of reconstructed wavefields, we can further
refine our framework and optimize its capabilities for various ap-
plications in the field of structural health monitoring. Addition-
ally, we plan to explore the applicability of the interpretability of
the proposed framework, demonstrating the isolation of different
velocities and further solidifying its practical advantages.

Ultimately, this research lays the foundation for advancing
the state-of-the-art in physics-informed representation learning
and contributes to the ongoing pursuit of trustworthy, inter-
pretable, and accurate methods for quantitative non-destructive
evaluation.
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FIGURE 3: WAVE-INFORMED DECOMPOSITION BASED RECONSTRUCTION OF THE VIDEO OF WAVES EMERGING FROM TWO DIFFERENT
DROPLETS OF DIFFERENT MASSES FALLING ONTO A WATER SURFACE
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