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Abstract—To maximize the potential benefit of Citizen Broad-

band Radio Service (CBRS), efficient coexistence algorithms are

urgently needed for the general authorized access (GAA) users.

The goal is to allow GAA users to share the same spectrum with

priority access license (PAL) users, while providing the required

interference protection to PAL users. The main challenge in

designing an efficient coexistence solution is the absence of

collaboration from the PAL users and the uncertainty in sensed

channel information. This paper addresses these problems using a

data-driven approach based on limited data samples. We develop

a mathematical model based on chance-constrained program-

ming (CCP) to address uncertainty in sensed data samples.

By exploiting the idea of the 1-Wasserstein ambiguity set, we

reformulate the CCP problem into a deterministic Mixed-Integer

Nonlinear Program (MINLP). We propose an open RAN (O-

RAN)-based solution to MINLP at the GAA base station (BS)

that delivers a real-time scheduling solution.

I. INTRODUCTION

To best utilize the precious radio spectrum, the U.S. is
taking a lead to explore innovative technologies for spec-
trum sharing. Most notably, the FCC specified the Citizens
Broadband Radio Service (CBRS) band, a 150 MHz band
in the 3550–3700 MHz spectrum for sharing among three-
tier users: the incumbent (DoD), commercial priority access
license (PAL) and general authorized access (GAA) users [1].
The incumbent users are predominantly Navy radars along the
coast and operate in dynamic protection areas (DPAs). They
are strictly protected by the Spectrum Access System (SAS)
from interference from PAL and GAA users through channel
allocation. In the inland, PAL users should be protected from
interference from GAA users, while GAA users do not receive
any interference protection and operate on a best-effort basis.
As of January 2023, more than 300,000 CBRS BS devices
(CBSDs) were deployed in the US [2]. Additionally, there are
500 FCC certified end-user device models that use CBRS [2].
With such rapid growth, efficient coexistence mechanisms are
crucial for different-tier users in CBRS.

This paper focuses on the coexistence of the PAL and
GAA users on the inland in the CBRS band. Currently, the
FCC specifies a PAL protection area (PPA) around a PAL
base station (BS). At any point within this PPA, aggregate
interference from GAA users cannot exceed �80 dBm/10MHz
[1]. However, it is not clear how this can be achieved in
practice. Without an efficient solution to this problem, one
would either encounter low spectrum efficiency (e.g., by
separating the PAL and GAA BSs sufficiently apart in space
or in spectrum), or risk having the PAL users suffer from the
GAA users’ interference beyond the threshold.

Neither FCC [1] nor WInnForum [3] has offered any
solution to achieve efficient coexistence between PAL and
GAA users. Recent studies on CBRS (see, e.g., [4], [5])
addressed channel allocation problems to PAL and GAA CB-
SDs while protecting incumbent from interference. However,
these studies did not address potential interference issues at
the user device level during coexistence, i.e., interference
from the GAA user devices (not just GAA CBSD) to PAL
user devices. In [6] and [7], the authors explored listen-
before-talk (LBT) opportunistic random access techniques for
coexistence between GAA and PAL users. Again, they did not
consider interference from GAA users to PAL users. Before
CBRS, there was much research on the underlay coexistence
with the use of cognitive radios (see, e.g., [8]–[11]). But
the problems considered in those studies did not exactly
address the interference problem in CBRS, which has its
specific rules and operating requirements, such as PPA and
strict interference threshold, among others [1]. Further, many
solutions developed for underlay coexistence either assumed
knowledge of the underlying channel distribution (see, e.g.,
[12], [13]) or assumed perfect channel knowledge (see, e.g.,
[14], [15]). These solutions are not very useful in practice, as
such knowledge is simply unavailable to the GAA CBSD or
its users. Some recent work on cognitive radios in underlay
has utilized machine learning techniques, such as deep neural
networks (DNN) and deep learning (DL) (see, e.g., [16]–[18]).
However, none of these works has addressed the uncertainty
associated with the interference channel between primary and
secondary users.

The goal of this paper is to design a real-time solution for
efficient coexistence between GAA and PAL users on the same
spectrum. Specifically, we consider the scenario in which a
number of GAA users served by a GAA BS are operating
in a close neighborhood of PPA. The interference from the
GAA users, if not properly controlled, will interfere with the
operation of the PAL users. Our objective is to maximize the
spectrum efficiency of GAA users while providing interference
protection to PAL users with a statistical guarantee. By the
“statistical” guarantee, we mean that the probability that the
interference from the GAA users to any PAL users exceeds a
predefined threshold is strictly kept at a small target value
(a.k.a. risk level). The main challenge in this effort is the
uncertain nature of channel state information between GAA
and PAL users, due to the absence of collaboration between
these two tiers of users. Another challenge comes from the
fact that for a 5G-compliant GAA service, the scheduling
decision (including power control for each GAA user) must



Fig. 1. System Model: GAA users operating in the neighborhood of a PAL’s
PPA in the same spectrum.

be completed on a 1 ms time scale to meet the requirement
of the 5G transmission time interval (TTI).

The main contributions of this paper are:

• We develop a mathematical model to study efficient
coexistence between GAA and PAL users in the same
spectrum. Instead of assuming partial or full knowledge
of channel distributions, our model is purely data driven

and only requires a limited number of data samples
through sensing, without the cooperation of PAL users.

• To effectively address the inherent uncertainty asso-
ciated with interference channel, we employ Chance-
Constrained Programming (CCP), which offers a strong
probabilistic performance guarantee. To address the un-
known channel distributions in the chance constraints,
we propose to employ 1-Wasserstein ambiguity set
based on the limited number of real-time data samples,
which allows us to transform the original CCP problem
into a deterministic Mixed Integer Nonlinear Program
(MINLP).

• To design a real-time solution, we follow the open RAN
(O-RAN) architecture and develop each component of
our solution based on different time-scale control loops.
Specifically, our proposed solution, codenamed Mitra,
includes a non-real-time (non-RT) control loop and a
Real-Time (RT) control loop. In Mitra’s non-RT control
loop, we develop an algorithm to determine the appropri-
ate search radius of the 1-Wasserstein ambiguity set to
ensure that the unknown channel distribution falls within
this set with a high probability. In Mitra’s RT control
loop, we design a real-time algorithm based on the COTS
GPU platform.

• Through extensive experiments, we find that Mitra can
provide the desired interference protection to PAL users.
Furthermore, the running time of Mitra is under 1 ms for
all scenarios of practical interest. Mitra is fully compliant
with O-RAN architecture and can be readily deployed for
O-RAN-based GAA services in CBRS.

II. SYSTEM MODEL

Consider an outdoor PAL CBSD (base station) operating
on a set of licensed contiguous channels (up to 4, each with
10 MHz). For a Category B outdoor CBSD, its maximum
transmit power is 47 dBm/10MHz. Based on the ITU outdoor
path loss model, for CBSD’s signal strength to decay to
�96 dBm/10MHz, the radius is about 2.5 km (see Fig. 1).
The FCC has established a PPA against interference from
nearby GAA users. In our system model, we assume that
the PPA aligns with the corresponding PAL’s CBSD coverage
area (within a radius of 2.5 km from a PAL’s CBSD). At
any point inside the PPA, the FCC rule [1] requires that
aggregate cochannel interference from nearby GAA users does
not exceed a threshold of �80 dBm/10MHz. Within the PPA,
we assume that there is a set of PAL users, each with a peak
transmit power of 23 dBm/10MHz [3].

Consider an indoor1 Category A GAA CBSD that operates
outside of the PPA, with a non-overlapping coverage area.
The maximum transmission power of the GAA CBSD is 30
dBm/10MHz. Based on the ITU indoor path loss model, we
assume that the transmission range of GAA CBSD is around
80 meters. The maximum transmission power of the GAA user
devices is 23 dBm/10MHz [3].

The nonoverlapping coverage areas of the PAL and GAA
CBSDs will guarantee that the two BSs do not interfere with
each other. However, the transmission by the GAA users in the
GAA CBSD coverage area can still cause interference to PAL
users in the PAL CBSD coverage area, particularly those that
are close to the border of the GAA’s operating area (see Fig. 1).
Therefore, our goal is to ensure that aggregate interference
from GAA users does not exceed the interference threshold of
�80 dBm/10MHz for these PAL users.

To investigate this problem, we consider downlink data
transmission on the PAL side and uplink data transmission
on the GAA side (see Fig. 1), i.e. the scenario where PAL
users may be potentially interfered with by GAA users.2 To
ensure that aggregate interference from GAA users to nearby
PAL users is below the threshold, power control is needed for
GAA users. However, power control requires channel infor-
mation between GAA and PAL users. But due to the absence
of collaboration between GAA and PAL users, an indirect
mechanism is needed to estimate such channel conditions.

We assume that a GAA user estimates the channel con-
ditions to its nearby PAL users by overhearing the known
Sounding Reference Signals (SRS) during their uplink trans-
missions. On the basis of channel reciprocity in the TDD
mode, a GAA user can estimate the channels between itself
and its nearby PAL users. However, due to physical impair-
ments, environmental conditions, and estimation errors, there
is much uncertainty involved in making an accurate estimate

1The analysis for the case for an outdoor Category B GAA CBSD follows
the same token.

2The case where the GAA users may be interfered, i.e., uplink transmission
at the PAL user side and downlink transmission at the GAA user side, is not
an issue as the GAA users are not offered any interference protection from
the PAL users per FCC [1].



of channel gains between a GAA user and its neighboring PAL
users. To address such uncertainty in channel estimation, we
employ Chance-Constrained Programming (CCP). The goal
is to ensure that the interference from GAA users to PAL
users does not exceed the PAL interference threshold with
high probability (e.g., 99%).

III. PROBLEM FORMULATION

A. Mathematical Model

We employ TDD for the uplink and downlink data transmis-
sion at the GAA CBSD. Based on 5G terminology, frequency
and time resources are classified as sub-carriers and TTI,
respectively. Twelve contiguous subcarriers in one TTI are
referred to as a resource block (RB). According to 5G stan-
dards [19], contiguous RBs can be grouped together to form
an RB group (RBG) for allocation of RBs. In this paper, we
adopt this RBG concept for resource allocation. We employ the
single-user OFDMA technique for data transmission, where
each RBG can be assigned to at most one user.

Let M represent a set of PAL users, i.e., M =
{1, 2, · · · , j, · · · ,M}. Let N represent a set of GAA users,
i.e., N = {1, 2, · · · , i, · · · , N}, and let G represent a set
of RBGs, i.e., G = {1, 2, · · · , g, · · · , G}. Denote xg

i (t) as
a binary variable to represent whether or not GAA user i is
assigned to an RBG g in TTI t, i.e.,

xg
i (t) =

(
1 if GAA user i transmits to its BS on RBG g,

0 otherwise.

Based on the single-user OFDMA assumption, each RBG g
can be assigned to at most one user. We have:

X

i2N
xg
i (t)  1 (g 2 G) . (1)

Denote pgi (t) as the transmission power of GAA user i on
RBG g in TTI t and Pmax

i as the maximum power limit,
respectively. If xg

i (t) = 1, then we must have 0 < pgi (t) 
Pmax
i ; otherwise, pgi (t) = 0. Combining the two cases, we

have:

0  pgi (t)  xg
i (t)P

max
i (i 2 N , g 2 G) . (2)

Furthermore, the total transmit power allocated to a GAA user
across all RBGs must not exceed the maximum power limit.
That is, X

g2G
pgi (t)  Pmax

i (i 2 N ) . (3)

Denote hg
ij(t) as the channel gain between GAA user i and

PAL user j on RBG g in TTI t. Due to the many uncertainties
in estimating hg

ij(t), one cannot assume any knowledge of
its distribution. Our goal is to ensure that the aggregate
interference from the GAA users to each PAL user is upper
bounded by the interference threshold set by FCC (denoted as
I) with a high probability (1� ✏), where ✏ is a small number
and is called a risk parameter. We have:

P
(

X

i2N

X

g2G
hg
ij(t)p

g
i (t)  I

)
� 1� ✏ (j 2 M) . (4)

Fig. 2. An illustration of TTI-based transmission pattern at a GAA user.
Sensing (overhearing of interference channel) occurs in the blue TTIs while
computation of scheduling decision occurs during the green TTI, which will
be applied in the yellow TTI.

To represent the double sum in P {·} in a more compact form,
denote hj(t) as a row vector as follows:

hj(t) =
⇥
h1
1j(t), · · · , hG

1j(t), · · · , h1
Nj(t), · · · , hG

Nj(t)
⇤
. (5)

Denote p(t) as a column vector as follows:

p(t) =
⇥
p11(t), · · · , pG1 (t), · · · , p1N (t), · · · , pGN (t)

⇤T
. (6)

Then, constraint (4) can be written as:

P {hj(t)p(t)  I} � 1� ✏ (j 2 M) . (7)

Since we do not assume any knowledge of hj(t), we
rely on a sensing (measurement)-based technique to estimate
its distribution. For example, SDR-based sensing techniques
are commonly employed to analyze the performance of LTE
networks by sniffing downlink control information [20]. A
similar SDR-based technique can be employed to sense the
gain of the interference channel in real time here. Given that
each RB occupies a narrow band and that the duration of a
TTI is short (1 ms or shorter), the channel behavior within the
same RBG over a few contiguous TTIs should follow the same
distribution. As shown in Fig. 2, we can use this group of K
(blue) RBs (32 in the figure) to sense the interference channel
(through the SRS signals of PAL users) and collect K data
samples. Note that only a portion of symbols in these (blue)
RBs are used for sensing (overhearing), while the others are
used for uplink transmission to the GAA BS. At TTI t, the
GAA BS will use these inputs to calculate the RBG allocation
and its power levels for TTI (t+ 1).

Denote ĥk
j (t) as the k-th i.i.d. sample vector (k =

1, 2, · · · ,K) w.r.t hj(t) that will be used at the GAA BS
in TTI t. Denote ĥj(t) as the row vector that represents the
channel gain vector solely based on the K i.i.d. samples. Then
we can represent the probability mass function for ĥj(t) as
follows:

P
n
ĥj(t) = ĥk

j (t)
o
=

1

K
. (8)

In Section III-C, we will use 1-Wasserstein ambiguity set to
connect this empirical distribution to the unknown distribution.



B. Problem Formulation

For the objective function, we consider proportional fair

(PF) throughput across all GAA users for their uplink trans-
mission. The idea is that even under power control (so
that the interference threshold at the PAL users is satisfied
through chance constraints), we still want to maximize the
total throughput utility in the GAA network. Denote hg

iB(t)
as the channel gain between GAA user i and the GAA BS on
RBG g.3 Denote rgi (t) as the (bandwidth) normalized capacity
of GAA user i on RBG g at TTI t, i.e.,

rgi (t) = log2

✓
1 +

hg
iB(t)p

g
i (t)

PLPAL(dPAL) · PPAL + �2

◆
,

where PPAL represents the transmission power of PAL BS, �2

denotes the thermal noise at the GAA CBSD on each RBG g,
and PLPAL(dPAL) represents the path loss between the PAL
BS and GAA BS. Then the PF throughput objective is given
by:

X

i2N

X

g2G

rgi (t)

R̃i(t� 1)
, (9)

where R̃i(t � 1) is an input parameter that represents the
exponentially smoothed average data rate of user i up to TTI
(t� 1) over a window size of w TTIs. R̃i(t� 1) is a constant
value at TTI t and can be calculated as follows:

R̃i(t� 1) =
w � 1

w
R̃i(t� 2) +

1

w
Ri(t� 1) . (10)

In (10), Ri(t�1) represents the total data rate of user i at TTI
(t�1) over all its scheduled RBGs, which is computed at the
BS based on the scheduling results from TTI (t� 2). For the
window size (w) in the above expression, a typical value of
100 TTIs is considered. Furthermore, R̃i(t� 2) is a constant
value available to the GAA BS at TTI (t� 1).

In this paper, we are interested in maximizing the PF
throughput of all GAA users while ensuring their aggregate
interference to each PAL user below a threshold with high
probability. At TTI t, this problem can be formulated as:

(OPT) max
X

i2N

X

g2G

rgi (t)

R̃i(t� 1)

s.t. RB allocation constraints (1) ,
GAA users’ power constraints (2) and (3) ,
PAL interference threshold guarantee (7) ,
Empirical channel distribution of hj(t) (8) ,
variables: xg

i (t) 2 {0, 1}, pgi (t) � 0.

C. A Reformulation

The major difficulty with OPT lies in chance constraints (7),
due to the unknown distribution of the interference channel
gain hj . Denote the unknown distribution of hj as Phj .

3The potential uncertainty in hg
iB(t)’s is less of a concern than hg

ij(t)’s as it
will not violate any interference protection (statistical performance guarantee)
on the PAL users. So we will not employ chance constraints on the hg

iB(t)’s,
as doing so will unnecessarily complicate the problem.

We will use 1-Wasserstein distance to connect the unknown
distribution Phj and the empirical distribution Pĥj

in (8).
Define W1(P⇣1

,P⇣2
) as the 1-Wasserstein distance be-

tween two marginal distributions P⇣1
and P⇣2

equipped with
L2 norm. Denote FW1 (✓j) as the 1-Wasserstein ambiguity

set, which is a family of probability distributions such that the
1-Wasserstein distance from the empirical distribution Pĥj

to
the unknown distribution Phj is bounded by a constant (radius)
✓j , i.e.,

FW1 (✓j) =
n
Phj : W1

⇣
Phj ,Pĥj

⌘
 ✓j , hj 2 R1⇥NG

+

o
,

for j 2 M, where R1⇥NG
+ is the positive real space for a

1 ⇥ NG row vector. The larger the number of data samples,
the closer our empirical distribution is to the true distribution.

Since we plan to use only limited sensing data samples
to achieve performance guarantees to the PAL users, we
can instead adjust the radius value ✓j so that the unknown
distribution lies in the 1-Wasserstein ambiguity set, with a
high probability. However, the larger the ✓j , the more (worst-
case) probability distributions we need to consider in the
Wasserstein ball, which will degrade our objective value. So
it is important that we find an appropriate value for ✓j such
that

Phj 2 FW1 (✓j) (j 2 M) (11)

holds almost surely. We will show how to determine ✓j in
Section IV-A.

To ensure (7) hold, it is sufficient to have

inf
Pdj

2FW1 (✓j)
P {djp� I  0} � 1� ✏ (j 2 M) , (12)

where Pdj represents a distribution inside FW1(✓j). Based on
[21], it can be shown that (12) can be reformulated as follows:

Pĥj

n
ĥjp� I + ✓j kpk2  0

o
� 1� ✏ (j 2 M) , (13)

which is based on the empirical distribution Pĥj
.

But for the empirical distribution Pĥj
, we only have K

sensing data samples at the GAA users. So among these K
samples, there should be at least dK · (1� ✏)e instances that
the inequalities (�) should hold. To model this requirement,
we define an indicator function I {·}, which is 1 when the
argument holds and 0 otherwise. We have, for j 2 M and
k 2 K,

X

k2K
I
n
ĥk
jp� I + ✓j kpk2  0

o
� K · (1� ✏) . (14)

Now we can replace (7) in OPT with (14). Also, with the
inclusion of (14), (8) in OPT is no longer needed. We have:

(OPT-R) max
X

i2N

X

g2G

rgi
R̃i(t� 1)

s.t. RB allocation constraint (1) ,
GAA users’ power constraint (2) and (3) ,
PAL interference threshold guarantee (14) ,
variables: xg

i 2 {0, 1}, pgi � 0.



Fig. 3. Mitra: An overview in the O-RAN architecture

Note that in OPT-R, we are no longer dealing with the
unknown distribution Phj , but rather, we are only using the
K data samples (in (14)).

For OPT-R, although rgi in the objective function involves
a logarithmic function, it does not pose much difficulty since
it can be approximated by a convex hull relaxation [22]. The
main challenge is the indicator function in (14). One technique
to address this problem is through a bi-level formulation,

which allows to transform our problem into an upper-level
problem and a lower-level problem. The upper-level problem
is to check the feasibility of the solutions obtained from the
lower-level problem, while the lower-level problem can be
solved by a convex approximation technique called ALSO-
X [21]. However, this approach, as we shall compare in
Section V, incurs excessively high computation time even for
small-size networks. To meet the 1 ms real-time requirement,
a new solution is needed.

IV. MITRA: A DESIGN OVERVIEW

We present a real-time solution to OPT-R, codenamed
Mitra.

4 Mitra can offer a high-performing feasible solution
(including providing interference protection to the PAL users)
with a computation time under 1 ms (consistent to 5G NR
numerology 0 [23]). Mitra conforms to the latest O-RAN
architecture [24] and consists of two components: a non-RT
component and a RT component, corresponding to the non-
RT and RT control loops in O-RAN, respectively.5 The Mitra
algorithm runs at the GAA BS. Below we present the design
details of the non-RT and RT control loops in Mitra.

A. Non-RT Control Loop

As shown in Fig. 3, in the non-RT control loop, we need to
determine an appropriate value of ✓j for all PAL users. If ✓j’s
are set too large, the radius of the corresponding Wasserstein
ball will also be too large, leading to excessively large search
space for the OPT-R problem. On the other hand, if ✓j’s are
set too small, the radius of the Wasserstein ball will also be
small, leading to an infeasible solution to OPT-R with a high
probability.

We propose to determine ✓j’s by employing cross-validation

and bisection search based on a large set of previous data
samples of interference channel gain. Intuitively, the ✓j’s

4Mitra is a Hindu god known as a protector of treaties and friendship.
5In O-RAN, there is also a near-RT control loop that sits between non-RT

and RT control loops. This near-RT control loop is not needed in Mitra.

are directly proportional to their Bessel corrected standard
deviations in their data samples. That is, the higher the
standard deviation, the larger the variation and search space,
and thus the larger the corresponding value of ✓j should be set.
Therefore, it is reasonable to use this information to determine
the relative sizes among the ✓j’s. Specifically, we let
2
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(15)
where each ✓j is directly proportional to its standard deviation
through a common scaling factor ⇢ and a set of K data samples
is used.

For cross-validation, we divide past data samples into two
sets U1 and U2, each consisting of a number of windows
(each window consisting of K data samples). U1 is used to
find a starting point for ✓j based on the relationship with
the Bessel corrected standard deviation mentioned above. U2

is used to solve OPT-R and obtain power allocation results
(pgi ). Then for each PAL user j 2 M, we compare the actual
interference (hjp) with its threshold I and count the number
of violations from V channel instances (hj) to compute the
actual probability of violation (✏⇤j ). To improve the precision
of our cross-validation, we compute the average of the actual
probability of violation for each PAL user on all windows of
U2.

For bisection search, we tune a scaling factor ⇢ for all ✓j’s
proportionally based on their relative relationship through the
Bessel-corrected standard deviation. First, we set the initial
upper and lower bounds for this unknown scaling factor
to be sufficiently large and small numbers, respectively. In
each iteration, we set the current (new) scaling factor as the
midpoint of the current upper and lower bound values. We
compare the averaged actual violation probability of each PAL
user (✏̄j⇤) with the target risk level ✏ and update their flag to
be 1 if ✏̄j⇤ is greater than ✏. Then, based on the sum of all
the flags assigned to each PAL user, we increase the lower
bound value to the current scaling factor if the total flag count
is greater than 0, or decrease the upper bound value to the
current scaling factor if otherwise. We terminate the iteration
if the normalized gap between the upper and lower bound
values is below a small target value.

Once we find new ✓⇤j values, we pass them to Mitra’s RT
control loop. The period to update ✓⇤j values is on the order
of tens of seconds and is typically performed in the cloud per
O-RAN specification [24].

B. RT Control Loop

To minimize computation time, we employ the GPU and ex-
ploit parallel computing as much as possible. The pseudocode



Algorithm 1 RT component in Mitra

1: input: ĥk
j , hg

iB , R̃i(t� 2), Ri(t� 1), w, ✓⇤j , I , ✏
2: output: pgi , xg

i
3: Compute R̃i(t� 1) using (10)
4: Reduce search space based on priority metric and obtain

S sub-problems
5: parfor S sub-problems do

6: Generate an initial solution using (17)
7: Adjust transmission power per Algorithm 2
8: Compute achieved objective value
9: end parfor

10: Select the solution with the largest objective value as the
final solution

for the RT control loop is given in Algorithm 1.
Reducing Search Space: To best utilize the COTS GPU
parallel computing platform, we first divide our problem (OPT-
R) into independent subproblems that can be solved in parallel.
Based on the RBG allocation constraint (1) in OPT-R, we can
first reduce the search space for a given RBG by reducing the
set of eligible GAA users (line 4 in Algorithm 1).

To differentiate GAA users in terms of eligibility, we
introduce a priority metric, ⌘gi , if GAA i is assigned to RBG
g. Specifically, we define

⌘gi =
hg
iB

R̃i(t� 1)
(i 2 N , g 2 G). (16)

This definition is motivated by the fact that the better the
channel (hg

iB), the higher the priority. On the other hand,
the lower the long-term average data rate up to (t � 1) TTI
(R̃i(t � 1)) is, the higher the priority metric hg

iB should be,
since our objective function in OPT-R is PF. R̃i(t � 1) is
calculated using (10) based on the value of R̃i(t�2), Ri(t�1),
and the size of sliding window w (line 3 in Algorithm 1).

Based on this priority metric, for each RBG g, we can sort
⌘gi for i = 1, 2, · · · , N and select L users (out of N ) with the
highest priority metric values for further consideration. Since
each RBG g can be assigned to L GAA users, we have a total
of LG possible assignments. Suppose that our GPU hardware
can handle only S subproblems in parallel; we will have to
choose S subproblems from the total of LG subproblems.

We propose to employ random sampling, by assigning a
probability for each GAA user (among L) w.r.t. a given RBG
g. This probability can be directly proportional to the priority
metric ⌘gi or uniform. Given the large number of S, the
final result will not be very sensitive to the settings of these
probabilities, as long as each GAA user in the set L has a
reasonable probability of being chosen.
Initializing Transmission Power in Each Solution: For
each sub-problem (from a total of S sub-problems), we will
determine transmission power for GAA user i on each RBG
g (pgi ). Once they are determined, xg

i ’s can also be easily
determined (since xg

i = 1 if pgi > 0 and xg
i = 0 otherwise).

Algorithm 2 Tuning Transmission Power

1: input: ĥk
j , pgi (initial), ✓⇤j , ✏, I

2: output: pgi for all i 2 N , g 2 G
3: parfor j 2 M do

4: for k 2 K do

5: Calculate ĥk
jp+ ✓⇤j kpk2

6: end for

7: Sort the K interference values for PAL user j from
lines 4–6 in ascending order

8: Set cj as the value of the dK · (1� ✏)e-th element in
the above sorted set for PAL user j

9: Calculate individual scaling factor �j := I
cj

10: end parfor

11: Set common scaling factor ↵ := min
j2M

�j

12: parfor i 2 N do

13: parfor g 2 G do

14: Set pgi := ↵· pgi
15: end parfor

16: end parfor

17: parfor i 2 N do

18: if

X

g2G
pgi > Pmax

i then

19: parfor g 2 G do

20: Set pgi := pgi ·
Pmax
iX

g2G
pgi

21: end parfor

22: end if

23: end parfor

As a start, we initialize pgi as follows:

pgi =
Pmax
i

G
· ug

i , (17)

where Pmax
i is the maximum transmission power limit of

GAA user i over all RBGs G and ug
i is a random number

drawn from a uniform distribution, i.e., ug
i 2 U(0, 1]. Al-

though pgi ’s are randomly generated, they will be further tuned
in Algorithm 2.
Adjusting Transmission Power in Each Solution: To
ensure the feasibility of interference constraint (14) and max-
imum transmission power constraint (3) are satisfied, we
need to tune the initial transmission power (pgi ). We propose
Algorithm 2 to perform these two tasks.

For (14), we have K indicator functions associated with
each PAL user j 2 M. We must ensure at least dK · (1� ✏)e
indicator functions are satisfied for each PAL user. Based on
(14), we first calculate ĥk

jp + ✓⇤j kpk2 for each PAL user j
for k = 1, 2, · · · ,K (lines 4–6 of Algorithm 2). Next, we sort
these K values in ascending order for each PAL user j by
employing parallel sorting (line 7). Denote cj as the value of
the dK · (1� ✏)e-th element in this sorted set for the PAL user
j. Then we can find the value of cj for each of the PAL users
(line 8). Subsequently, we can find an individual scaling factor
�j based on cj to ensure that at least dK · (1� ✏)e indicator
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Fig. 4. A network topology with 5 PAL users and 10 GAA users.

functions in (14) are satisfied for the PAL user j (line 9).
Since �j’s differ among the PAL users, we can find a common
scaling factor ↵ for all the PAL users by taking the minimum
of �j’s (line 11). Based on this common scaling factor ↵, we
can scale the initial transmission power by this factor (lines
12–16). At this point, the probabilistic interference guarantee
constraint (14) for all PAL users is satisfied.

To ensure that the transmission power limit constraint (3)
is met, we need to check whether, for each GAA user i 2 N ,
its total transmission power on all RBGs (

P
g2G pgi ) is greater

than its maximum power limit Pmax
i (line 18). If yes, then

we need to scale down by Pmax
i /

P
g2G pgi over all its RBGs

(line 20).
Once all pgi ’s are determined, we can easily determine the

corresponding xg
i (that is, xg

i = 1 if pgi > 0 and 0 otherwise).
It is easy to show that this solution is feasible for OPT.
Finding the final solution: Now for each of the S feasible
solutions, we compute its objective value achieved based on
pgi ’s and xg

i ’s. This step is done in parallel for all the S sub-
problems. Then we select the solution with the best objective
value as our final solution. Algorithm 1 summarizes the RT
control loop.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Mitra. For
the non-RT control loop, we implement it in MATLAB version
R2018b on a 16-core Intel Xeon E5-2687w CPU. For the RT
control loop, we implement it on NVIDIA Tesla V100 GPU
(with 5120 CUDA cores) with CUDA 12.0 Toolkit [25].

A. Parameter Settings

The network topology used in our performance evaluation
is shown in Fig. 4, which follows the system model in
Fig. 1. Not shown in Fig. 4 is the PAL BS (Cat. B CBSD),
with a transmission power of 47 dBm. We employ the ITU
outdoor path loss model [26] for the PAL BS as follows:
PLPAL(dPAL) = 128.1 + 37.6 ⇥ log10 (dPAL) (in dB), where
dPAL represents the distance away from the PAL BS (in km).
We assume that the transmission range of the PAL BS is 2.5
km.

The GAA BS (Cat. A CBSD) is shown at the origin of
Fig. 4 and lies outside the transmission range of the PAL BS.
It has a transmission power of 25 dBm. We use the ITU indoor
path loss model [26] for the GAA BS as follows: PLGAA(d) =
38+30⇥ log10 (d) (in dB), where d is the distance away from
a GAA BS (in meters). We assume that the transmission range
of the GAA BS is 80 m. The distance between the PAL BS
and the GAA BS is set to 2.58 km.

We consider 5 PAL users near the GAA BS’s radius and 10
GAA users within the transmission radius of the GAA BS (see
Fig. 4). The coordinates of the PAL users indexed 1 to 5 are
(�60, 90), (60, 90), (40, 85), (�30, 85), (0, 90), respectively,
all in meters. The coordinates of the GAA users indexed 1
to 10 are randomly generated based on a normal distribution.
They are (75.3664, 12.0139), (0.3124, 5.5873), (�2.4602,
�31.6074), (�15.3562, �19.7356), (�48.1437, 9.9446),
(�22.7064, 21.2809), (40.1235, �30.6486), (31.5804,
�27.9023), (�68.5042, �25.7727), (49.0589, 45.1601),
respectively, all in meters.

The maximum transmission power of a GAA user is 23
dBm across all RBG [3]. We consider a total of 18 RBGs to
be allocated to GAA users. The interference and transmission
channel gains associated with these RBGs are modeled based
on path loss and Rayleigh fading. The path loss model for
GAA users follows the same ITU indoor path loss model.
We calculate the gain of the transmission channel as follows:
hg
iB = PLGAA(diB) ·fg

iB , where fg
iB represents the fast fading

between the i-th GAA user and its CBSD in RBG g, and diB
represents the distance between the GAA user i and its BS.
Thermal noise on each RBG in the GAA BS is 8⇥10�7 mW.
Similarly, the interference channel gain between the i-th GAA
user and the j-th PAL user can be calculated as follows: hg

ij =
PLGAA(dij) ·fg

ij , where fg
ij represents the fast fading between

the GAA user i and its nearby PAL user j on RBG g, and dij
is the distance between i-th GAA user and j-th PAL user.

Note that our proposed Mitra does not assume any knowl-
edge of channel distributions. But in our simulation study, we
must use some distributions to generate the random channel
gains. There is no conflict here, as such distribution informa-
tion is purposely withheld from Mitra.

We compare Mitra with two benchmarks:

• Mean formulation: We use the mean of the interference
channel gain (hj) as the perfect CSI, which transforms
our initial chance constraint (7) into a deterministic coun-
terpart with constant interference channel gain. We can
then solve this problem easily using an existing optimizer.
We used CVX version 2.2 with Gurobi (version 9.11) as
the solver in MATLAB.

• Worst-case formulation: We choose the maximum inter-
ference channel gain from the available K data samples
to represent the worst case. This worst-case assumption
will remove uncertainty and convert our CCP into a
linear deterministic constraint. We can then solve the
reformulated problem easily using the Gurobi solver.



TABLE I
✓j VALUES FOR EACH PAL USER.

✓j
✏ ⇢ j = 1 j = 2 j = 3 j = 4 j = 5
0.01 11.2520 0.2068 0.3225 0.3889 0.2254 0.2243
0.05 7.5023 0.1377 0.2178 0.2619 0.1509 0.1504
0.10 5.6275 0.1015 0.1620 0.1943 0.1116 0.1107

TABLE II
ACTUAL VIOLATION PROBABILITY ✏⇤j OF EACH PAL USER.

✏⇤j
Algorithm ✏ j = 1 j = 2 j = 3 j = 4 j = 5
Mitra 0.01 0 0 0.0024 0.0097 0.0098

0.05 0.0008 0.0009 0.0145 0.0383 0.0414
0.10 0.0039 0.0040 0.0415 0.0947 0.0985

Mean form - 0.0805 0.0814 0.3240 0.4696 0.4901
Worst-case - 0 0 0 0 0

B. Results

We first calculate the ✓j values in the non-RT control loop
of Mitra. Table I shows the ⇢ and ✓j values for each PAL
user under different ✏’s for the network topology in Fig. 4.
From Table I, we see that when ✏ increases, the values of ✓j’s
in any of the five columns decrease. This is intuitive, as the
greater the tolerance of interference violation (i.e., the greater
the ✏ is), the smaller the radius of the Wasserstein ball (search
space).

In Mitra’s RT control loop, we set L to 2, which results in
a total of 218 subproblems. We select 512 subproblems (i.e.,
S = 512) in the reduced search space. We evaluate Mitra for
three practical risk levels (✏): 0.01, 0.05, and 0.1.

We find that the value of K directly impacts the perfor-
mance of Mitra, with a larger K generating better objective
values. However, the computation time of Mitra increases
with respect to K, creating a trade-off between the achieved
objective value and K. In [27], we show that it is sufficient
to choose K = 32 for our problem.

We run Mitra for 50 TTIs (not including the initial window
of 5 TTIs). Each run employs K = 32 data samples collected
from the past 4 TTIs. To evaluate Mitra’s solution for each
TTI, we generate 1, 000 channel instances for each solution
and calculate the actual violation probability for each PAL
user. Final results are averaged over 50 TTIs.

Table II shows the actual probability of violation ✏⇤j for
each PAL user j. Clearly, for each target risk level ✏, the
actual probability of violation ✏⇤j for each PAL user remains
below the threshold, indicating the efficacy of Mitra. On the
other hand, there is a wide variance in the probabilities of
violation between PAL users in the mean formulation, with
the highest being 49% (for PAL 5). Under the worst-case
formulation, the probability of violation for all PAL users is
0, confirming its extreme conservative nature. In Fig. 5(a), we
present the averaged ✏⇤j over all PAL from Table II. We see
that the averaged ✏⇤j by Mitra is below ✏ in all three settings.
On the contrary, the average probabilities of violation by the
mean formulation are well beyond the target ✏.

Figure 5(b) presents the achieved objective values under
different algorithms in this case study. We find that Mitra’s
performance is at least 85% better than the worst-case formula-
tion and is upper bound by the mean formulation. Furthermore,
Mitra’s objective value monotonically increases with ✏. This is
intuitive, as the higher the probability of violation (✏) that the
PALs can tolerate, the higher the throughput that GAA users
are able to achieve.

To evaluate the timing performance of Mitra’s RT control
loop, we plot its running time over 50 TTIs under three
different risk levels, as shown in Fig. 5(c). As we can see in
the figure, Mitra’s RT-control loop can meet the 1 ms timing
requirement in each TTI for all ✏ settings. Further, we find that
the running time of Mitra is independent of the ✏ value. As
a comparison, we also measure the running time of solving
OPT-R directly on a solver. The average running time over 50
TTIs is around 1.2⇥ 103 seconds for ✏ = 0.10.

VI. CONCLUSION

The goal of this paper is to design a real-time solution for
the coexistence of GAA users with PAL users in the same
spectrum in CBRS. To address the lack of cooperation from
PAL users and the inherent uncertainty in sensing information,
we proposed using limited data samples to infer interference
channel information. The objective is to maximize spectrum
efficiency using the PF metric for GAA users while providing
the necessary interference protection for PAL users. The first
novelty of our proposed solution (Mitra) is the use of the
1-Wasserstein ambiguity set to approximate the unknown
distribution of the interference channel gain between GAA
and PAL users based on limited data samples through passive
sensing. The second novelty of Mitra is its clever exploitation
of the non-RT and RT control loops in O-RAN architecture,
which allows the solution to be developed in two components
across different time scales. The third novelty of Mitra is its
innovative use of GPU parallel computing in its design of
the RT control loop. Experimental results show that Mitra
can achieve coexistence with competitive spectrum efficiency
while providing probabilistic interference guarantee to PAL
users. It can also meet the 5G RT scheduling requirement (1
ms) in a practical scenario.

ACKNOWLEDGMENTS

This research was supported in part by ONR under MURI
Grant N00014-19-1-2621, NSF under grants 2246414 and
2246417, Virginia Commonwealth Cyber Initiative (CCI), and
Virginia Tech Institute for Critical Technology and Applied
Science (ICTAS).

REFERENCES

[1] The Office of the Federal Register (OFR) and the Government Pub-
lishing Office, “OFR: Electronic Code of Federal Regulations, Title
47: Telecommunication, Part 96 - Citizens Broadband Radio Service,”
Available: https://www.ecfr.gov/current/title-47/chapter-I/subchapter-D/
part-96 (Last accessed: Feb. 03, 2023).

[2] M. Woodley, “Using CBRS and haven’t heard about TARDYs3? Don’t
be late to the party,” Available: https://www.ericsson.com/en/blog/6/
2023/impact-of-tardys3-on-cbrs-commercial-operations (Last accessed:
July 03, 2023).



0.01 0.05 0.1
Risk Level ( )

0

0.05

0.1

0.2

0.3
A

ve
ra

g
e

 o
ve

r 
j* 's

Mitra

Mean

Worstcase

(a) Average actual violation probability of PAL
users.

0.01 0.05 0.1
Risk Level ( )

0

1

2

3

4

O
b

je
ct

iv
e

 v
a

lu
e

 (
b

p
s/

H
z)

Mitra

Mean

Worstcase

(b) Achieved objective value.

0 10 20 30 40 50
TTIs

0

0.5

1

R
u

n
n

in
g

 t
im

e
 (

m
s)

1 ms

(c) Running time.

Fig. 5. Performance of Mitra under different risk levels.

[3] Wireless Innovation Forum, “CBRS Deployment Guidelines for In-
stallers, Version V1.2.0,” Available: https://winnf.memberclicks.net/
assets/CBRS/WINNFTR-5001.pdf (Last accessed: Feb. 08, 2023).

[4] N. Jai, S. Li, C. Li, Y.T. Hou, W. Lou, J.H. Reed, and S. Kompella,
“Optimal Channel Allocation in the CBRS Band with Shipborne Radar
Incumbents,” in Proc. IEEE DySPAN, pp. 80–88, virtual conference,
Dec. 13–15, 2021.

[5] K.S. Manosha, S. Joshi, T. Hänninen, M. Jokinen, P. Pirinen, H. Posti,
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