


load behaviors and find the best prefetcher selection for

each phase using a supervised learning formulation.

2) We implement a decision tree model that is lightweight,

requiring only 42 bytes of storage, yet accurate enough

to improve the execution time of cloud workloads run-

ning on a 160-core AmpereOne, a state-of-the-art many-

core platform.

3) We demonstrate our model’s ability to generalize and

improve the performance of workloads that were not

seen during training. Our evaluation includes data

collected from diverse multi-programmed and multi-

threaded workloads. Our results show that our model

can improve the performance of new workloads by up

to 25% over the platform’s default prefetcher and by

2.7% on average.

II. RELATED WORK

Prior work has proposed numerous approaches to reduce

the contention generated by prefetchers in multi-core sys-

tems. Some work is concerned with extending the design of

prefetchers [3]–[6], [13], [16], [19] while others have proposed

prefetcher-aware cache insertion and eviction policies to man-

age cache contention [8], [19]. While these solutions focus

on tuning an individual prefetcher, our approach is concerned

with managing the components of composite prefetchers.

Various studies in composite prefetching management pro-

pose heuristics to select prefetchers at runtime [11], [14], [15].

These approaches study different metrics to rank prefetcher

configurations based on performance [11], [15] or other heuris-

tics [14]. The ranking is obtained during execution time by

performing an exhaustive search that executes every prefetcher

configuration for one sample. The best-ranked configuration

is selected for a pre-determined period of time. This pro-

cess is repeated after either a fixed time window [14] or

a phase change, defined by a fixed percentage change in

system performance [11] or annotated in code [15]. However,

exhaustively searching multiple configurations during runtime

is not scalable as the number of prefetchers and applications

increases. Additionally, the time spent searching necessarily

misses optimization opportunities. Lastly, ranking prefetcher

configurations based on the performance of a single sam-

ple fails to acknowledge short-term performance variations

in workloads [1], which may lead to selecting the wrong

configuration.

More recent work has introduced ML-based composite

prefetcher management approaches. These models eliminate

the need to search the configuration space exhaustively by

learning to generalize from fewer samples. In [7], the authors

proposed formulating the problem with contextual bandits.

They train one model per prefetcher component while other

prefetchers are always on. However, they do not evaluate

the coordination of prefetchers, since the models are not

enabled simultaneously. Additionally, they found that they

never need to disable some prefetchers in their quad-core

system. This is not the case in many-core systems, where it is

sometimes beneficial to disable all prefetchers, as was shown

L2 Prefetcher Register

onoff

Hardware counters

instructions branch misses…

System

MSRPMUWorkloads

Model

Fig. 2. Prefetcher selection overview.

in Fig. 1. In [9], the authors propose using deep reinforcement

learning (RL) to coordinate multiple prefetchers. However,

deploying deep RL models on real-world systems is very

expensive in terms of training, power, storage, and latency

costs. In contrast, we propose a supervised learning model

with minimal costs that can be either implemented in existing

runtime management systems or easily deployed in hardware.

Moreover, these studies [7], [9] only considered multi-

programmed workloads and did not investigate whether their

models can improve the performance of unseen (i.e., not used

for training) program applications. Our work demonstrates that

our proposed lightweight runtime prefetcher selection model

can generalize its predictions to unseen and multi-threaded

workloads.

III. PREFETCHER SELECTION MODEL DESIGN

The task of selecting a prefetcher configuration during

runtime with a model is represented in Fig. 2. The model aims

to map a vector of hardware counter values into a prefetcher

selection decision. We collect hardware counters by accessing

the performance monitoring units (PMU) of the system and

set the prefetcher decision through a model-specific register

(MSR). This section outlines our proposed method for de-

signing and training such a model. We start by introducing

the problem formulation, followed by an explanation of our

approach, which involves both offline analysis and online

implementation.

A. Problem Formulation

The goal of a prefetcher selection policy is to minimize the

execution time of a workload, which we define as G. The

execution of a workload is represented by a trace of hardware

counters, U ∈ R
T×C , where T is the number of samples and C

is the number of collected hardware counters. An observation

of U at time t is represented as Ut. The hardware counters

are transformed into features Xt = Ω(Ut), Xt ∈ R
M , where

M is the number of features. For example, this transformation

Ω includes calculating the IPC with the instructions and cpu-

cycles hardware counters. We use ρt to represent the IPC of a

sample at time t, ρt ∈ Xt. We partition the goal of minimizing

the execution time into smaller goals that maximize the IPC

of each sample, ρt, based on the observation that the average

IPC is inversely proportional to the execution time.

At each time step t, a machine learning model, f , predicts

an output, yt+1 based on the features Xt with the goal of

2



Data collection

Workloads

System

PMUMSR

OFF

Next 

prefetcher 

config.

HW 

counter 

traces

PMU
PMU

PMU
HW 

counter 

traces

Clustering Cluster 

centers

features

p
h

a
se

s

Phase 

Classification IPC

Pref. config.

p
h

a
se

s

Data Set 

Generation <X,y>
Model 

Training

OFF

Other

pref. config.

1

2

3

4 5

Fig. 3. Proposed analysis to generate our runtime prefetcher selection model.

TABLE I
LISTS OF COLLECTED HARDWARE COUNTERS AND FEATURES.

Hardware counters (U) Features (X = Ω(U))

Instructions Instructions per cycle (IPC)
Memory accesses Memory accesses per kilo instructions
Branch misses Branch misses per kilo instructions
Cache misses Cache misses per kilo instructions
CPU cycles Cache misses to memory accesses ratio
L2 data cache refills L2 data cache refills to cache miss ratio
L2 instruction cache refills L2 instruction cache refills to branch

misses ratio

maximizing ρt+1. The output is a one-hot encoded vector,

yt ∈ {0, 1}N , where N is the number of prefetchers, and

each element in the vector indicates whether the prefetcher

should be enabled or disabled.

B. Data Analysis and Model Training

After partitioning our goal of minimizing a workload’s

execution time into smaller goals that maximize the IPC of

each sample of the workload, we need to define a ground

truth in order to train a supervised learning model. We propose

a method that analyzes data and generates labels to train a

runtime prefetcher selection model in an offline fashion. Our

method is depicted in Fig. 3, comprising five stages detailed

below.

1) Data Collection: We periodically collected hardware

counter data from different workloads to later train our model.

For each workload, we collected one trace of hardware coun-

ters per prefetcher configuration.

2) Clustering: In order to compare the samples of different

prefetcher configurations, we propose clustering similar PMU

behaviors together to find phases within the workloads. Our

methodology involves training a clustering model with data

from only one prefetcher configuration. We chose OFF as

our baseline since it shows workload behaviors without the

effects of prefetching. We scaled all features to a range

between 0 and 1 using a min-max scaler and clustered all the

workload traces of the baseline configuration using k-means.

This produces a table of cluster centers, which is then used

for phase classification.

3) Phase Classification: Once the cluster centers have been

generated using data from the baseline configuration, we use

them to classify the phases of data samples in all traces.

Next, we group all samples in the same phase and prefetcher

configuration and calculate the average IPC per phase. This

allows us to compare the performance of different prefetcher

configurations across workload phases.

4) Training Set Generation: We use the phase classification

labels to determine the best prefetcher configuration for each

sample, which we define as the configuration that yields

the highest average IPC for the corresponding phase. We

consider this definition as our ground truth. Associating each

sample and its phase classification with the best prefetcher

configuration generates a supervised training set that assigns

each sample’s features Xt to the ground truth prefetcher

selection, yt.

5) Model Training: We use our generated data set to train

a decision tree model. We found that it only needs four input

features instead of seven while maintaining high prediction

accuracy. This reduces the number of hardware counters that

we need to collect during runtime.

C. Runtime Implementation

We implemented our prefetcher selection model as a pro-

gram with a thread that is invoked every 100 ms. The thread

accesses hardware counter values using perf’s system call.

Then, it transforms the counters into features and performs

inference on the decision tree. Finally, it writes the decision

tree output to the corresponding fields in the prefetcher MSR.

IV. EXPERIMENTAL RESULTS

We collected data from one multi-programmed benchmark

suite, SPEC CPU Int Rate 2017 [18], and two multi-threaded

Java benchmark suites, DaCapo [2] and Renaissance [17],

to evaluate our approach. We use SPEC CPU workloads

for training and validation and DaCapo and Renaissance for

testing. All workloads run on AmpereOne, a cloud-scale many-

core platform with 160 ARMv8.6+ ISA cores, 2MB of L2

cache per core, 64MB of system-level cache, and 256GB of

DDR5-4800 memory running Fedora Linux 36. The platform

has 12 different prefetcher configurations, which can be tuned

with a hardware register. For each prefetcher configuration,

we collected one trace of hardware counters per workload,

resulting in a total of 120 traces (12 prefetcher options × 10

workloads). Each trace consisted of C = 7 hardware counters

collected periodically every 100 ms with Linux’s perf tool.

3





investigation should determine whether the problem is training

coverage, i.e., the input features are in a different distribution

from the training set, or the problem is workload specific,

i.e., for the same set of input features, the best prefetcher

selection is different depending on the running program. Our

proposed approach estimates the best prefetcher selection for

all the cores in the system. Future work includes investigating

lightweight runtime prefetcher selection that is more practical

for per-core decisions.

ACKNOWLEDGEMENTS

We thank Mahesh Madhav and Scott Tetrick who played a

vital role in the success of this research project. This work

was supported in part by Ampere Computing and NSF grant

CCF-1763848.

REFERENCES

[1] E. S. Alcorta Lozano and A. Gerstlauer, “Learning-based Phase-aware
Multi-core CPU Workload Forecasting,” ACM Transactions on Design

Automation of Electronic Systems, vol. 28, no. 2, pp. 23:1–23:27, Dec.
2022. [Online]. Available: https://doi.org/10.1145/3564929

[2] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann, “The
DaCapo benchmarks: Java benchmarking development and analysis,”
in Proceedings of the ACM SIGPLAN conference on Object-Oriented

Programing, Systems, Languages, and Applications, Oct. 2006, pp. 169–
190.

[3] D. Deb, J. Jose, and M. Palesi, “COPE: Reducing Cache Pollution
and Network Contention by Inter-tile Coordinated Prefetching in
NoC-based MPSoCs,” ACM Transactions on Design Automation of

Electronic Systems, vol. 26, no. 3, pp. 17:1–17:31, Dec. 2021. [Online].
Available: https://doi.org/10.1145/3428149

[4] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated control of
multiple prefetchers in multi-core systems,” in IEEE/ACM International

Symposium on Microarchitecture, Dec. 2009, pp. 316–326.
[5] M. Hashemi, K. Swersky, J. Smith, G. Ayers, H. Litz, J. Chang,

C. Kozyrakis, and P. Ranganathan, “Learning memory access
patterns,” in Proceedings of the International Conference on Machine

Learning, vol. 80, Jul 2018, pp. 1919–1928. [Online]. Available:
https://proceedings.mlr.press/v80/hashemi18a.html

[6] W. Heirman, K. D. Bois, Y. Vandriessche, S. Eyerman, and I. Hur,
“Near-side prefetch throttling: adaptive prefetching for high-performance
many-core processors,” in Proceedings of the International Conference

on Parallel Architectures and Compilation Techniques, Nov. 2018, pp.
1–11. [Online]. Available: https://doi.org/10.1145/3243176.3243181

[7] J. Hiebel, L. E. Brown, and Z. Wang, “Machine Learning for
Fine-Grained Hardware Prefetcher Control,” in Proceedings of the

International Conference on Parallel Processing, Aug. 2019, pp. 1–9.
[Online]. Available: https://doi.org/10.1145/3337821.3337854

[8] A. Jain and C. Lin, “Rethinking Belady’s Algorithm to Accommodate
Prefetching,” in ACM/IEEE International Symposium on Computer

Architecture, Jun. 2018, pp. 110–123.
[9] M. Jalili and M. Erez, “Managing Prefetchers With Deep Reinforcement

Learning,” IEEE Computer Architecture Letters, vol. 21, no. 2, pp. 105–
108, Jul. 2022.

[10] H. Kang and J. L. Wong, “To hardware prefetch or not to prefetch?
a virtualized environment study and core binding approach,” in
Proceedings of the International Conference on Architectural support

for programming languages and operating systems, Mar. 2013, pp.
357–368. [Online]. Available: https://doi.org/10.1145/2451116.2451155

[11] M. Khan, M. A. Laurenzanoy, J. Marsy, E. Hagersten, and D. Black-
Schaffer, “AREP: Adaptive Resource Efficient Prefetching for Maxi-
mizing Multicore Performance,” in International Conference on Parallel

Architecture and Compilation, Oct. 2015, pp. 367–378.
[12] S. Kondguli and M. Huang, “Division of Labor: A More Effective

Approach to Prefetching,” in ACM/IEEE International Symposium on

Computer Architecture, Jun. 2018, pp. 83–95.

[13] N. C. Nachiappan, A. K. Mishra, M. Kandemir, A. Sivasubramaniam,
O. Mutlu, and C. R. Das, “Application-aware prefetch prioritization in
on-chip networks,” in International Conference on Parallel Architectures

and Compilation Techniques, Sep. 2012, pp. 441–442.
[14] C. Navarro, J. Feliu, S. Petit, M. E. Gómez, and J. Sahuquillo,

“Bandwidth-Aware Dynamic Prefetch Configuration for IBM
POWER8,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 8, pp. 1970–1982, Aug. 2020.

[15] C. Ortega, L. Alvarez, M. Casas, R. Bertran, A. Buyuktosunoglu,
A. E. Eichenberger, P. Bose, and M. Moretó, “Intelligent Adaptation of
Hardware Knobs for Improving Performance and Power Consumption,”
IEEE Transactions on Computers, vol. 70, no. 1, pp. 1–16, Jan. 2021.

[16] B. Panda, “SPAC: A Synergistic Prefetcher Aggressiveness Controller
for Multi-Core Systems,” IEEE Transactions on Computers, vol. 65,
no. 12, pp. 3740–3753, Dec. 2016.

[17] A. Prokopec, A. Rosà, D. Leopoldseder, G. Duboscq, P. Tůma,
M. Studener, L. Bulej, Y. Zheng, A. Villazón, D. Simon, T. Würthinger,
and W. Binder, “Renaissance: benchmarking suite for parallel
applications on the JVM,” in Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation,
Jun. 2019, pp. 31–47. [Online]. Available: https://doi.org/10.1145/
3314221.3314637

[18] “SPEC CPU®2017,” https://www.spec.org/cpu2017/index.html.
[19] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback Directed

Prefetching: Improving the Performance and Bandwidth-Efficiency of
Hardware Prefetchers,” in International Symposium on High Perfor-

mance Computer Architecture, Feb. 2007, pp. 63–74.

5


	Introduction
	Related Work
	Prefetcher Selection Model Design
	Problem Formulation
	Data Analysis and Model Training
	Data Collection
	Clustering
	Phase Classification
	Training Set Generation
	Model Training

	Runtime Implementation

	Experimental Results
	Conclusion and Future Work
	References

