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Abstract—With the recent success of representation learning
methods, which includes deep learning as a special case, there
has been considerable interest in developing techniques that
incorporate known physical constraints into the learned repre-
sentation. As one example, in many applications that involve a
signal propagating through physical media (e.g., optics, acoustics,
fluid dynamics, etc), it is known that the dynamics of the signal
must satisfy constraints imposed by the wave equation. Here
we propose a matrix factorization technique that decomposes
such signals into a sum of components, where each component
is regularized to ensure that it nearly satisfies wave equation
constraints. Although our proposed formulation is non-convex,
we prove that our model can be efficiently solved to global
optimality. Through this line of work we establish theoretical
connections between wave-informed learning and filtering theory
in signal processing. We further demonstrate the application
of this work on modal analysis problems commonly arising in
structural diagnostics and prognostics.

Index Terms—physics-guided machine learning, dictionary
learning, modal decomposition, unsupervised learning

I. INTRODUCTION

REPRESENTATION learning has gained importance in
fields that utilize data generated through physical pro-

cesses, such as weather forecasting [1], manufacturing [2],
structural health monitoring [3], acoustics [4], and medical
imaging [5]. Moreover, learning physically consistent and
interpretable features can improve our understanding of the
physically viable information about the data and the compo-
sition of the system or process generating it. Unfortunately,
however, features of the data learned through generic machine
learning algorithms typically do not correspond to physically
interpretable quantities.

For example, physically consistent solutions are important
to spatio-temporal modal analysis, where recovering modes
of vibration yield important information about a physical
system or process (e.g., buildings, bridges, space shuttles,
satellites, acoustic instruments) [6]–[10]. Furthermore, these
problems are also relevant to frequency-wavenumber spectral
analysis [11], which is the basis for many advances in RADAR
[11], seismic [12], and acoustic [13] beamforming and signal
processing, where each sinusoid may correspond to a different
source or target. Physically consistent solutions provide a
trustworthy basis in terms of the physics of the system in
contrast to any other basis, which might be obtained by
generic machine learning algorithms. This suggests the need
for learning algorithms which choose bases that are physically
consistent.

A. Related Work

Modified learning paradigms, suited to different physical
application domains, have begun to draw interest [14]. For

example, several researchers have designed physics-informed
neural networks to learn approximate solutions to a partial
differential equation [15]–[19]. These have been recently ap-
plied to ultrasonic surface waves to extract velocity parameters
and denoise data [20]. Similar physics-guided neural networks
[14], [21]–[23] use physics-based regularization to improve
data processing, demonstrating that regression tasks (such as
estimating the temperature throughout a lake) can be more
accurate and robust when compared with purely physics-based
solutions or purely data-driven solutions. These approaches
demonstrate the strong potential for physics-informed machine
learning but remain early in their study.

Representation theory has been applied to other wave-based
problems. For example, generative models have been studied
for applications in electroencephalography [24] and seismol-
ogy [25], although these learning systems do not assume
physical knowledge. Other prior work has considered sparse
generative representation of ultrasonic waves through the use
of sparse signal processing [26], dictionary learning [27]–[29],
and neural network sparse autoencoders [30]. These methods
utilize the fact that many waves can be represented as a small,
sparse sum of spatial modes and attempt to extract these modes
within the data [27]. These dictionary learning algorithms
have further been combined with wave-informed regularizers
to incorporate physical knowledge of wave propagation into
the solution [31], [32].

One of the key challenges for many of these problems is
that they typically require solving a non-convex optimization
problem, and as a result the learned representation can be
highly dependent on details such as initialization or choice of
optimization algorithm. Attention has been devoted recently
to the non-convex optimization problems that arise in repre-
sentation learning, and positive results have begun to emerge
in certain settings. For example, within the context of low-
rank matrix recovery, it has been shown that gradient descent
is guaranteed to converge to a local minimum and all local
minima will be globally optimal under certain circumstances
[33]–[36]. Further, other recent work has studied ‘structured’
matrix factorization problems, where one promotes properties
in the matrix factors by imposing regularization on the factor-
ized matrices (e.g., if one desires a factor to be sparse an ℓ1
norm penalty could be imposed on one of the matrix factors).
It has been shown that such problems can also be solved
to global optimality in certain circumstances, but whether
such guarantees can be made depends critically on how the
regularization is formulated [37]–[39].

B. Contributions

In this work we make the following contributions. We
first introduce a wave-informed matrix factorization model,
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which ensures that the recovered components minimize wave
equation constraints, allowing for direct interpretability of the
factors based on assumed physics. This is distinguished from
traditional factorization methods, such as principal component
analysis (PCA), which are not constrained by physical knowl-
edge as well as from models which explicitly parameterize
wave-like factors, and are often too constrained for a problem,
particularly in the presence of noise. In other words, our
approach balances the utilization of both prior assumptions
from physics and fills the gap between purely data driven
methods [40] and purely physics based methods.

Second, although our resulting formulation requires solving
a non-convex optimization problem, we identify its form
amenable to be provably solved to global optimality [38]. This
differs from prior wave-physics informed dictionary learning
[31], which provides no such guarantees.

Third, unlike physics-informed neural networks, we show
that our wave physics-informed matrix factorization has a sat-
isfying interpretation as an optimal filter problem. Specifically,
we show that our optimization algorithm based on [38] reveals
a solution is that of an optimal bank of 1st-order Butterworth
filters. This interpretability enables confidence in the algorithm
and intelligent selection of hyper-parameters.

In summary, this work’s novel contributions are in demon-
strating the first framework for matrix factorization that is con-
strained solely on the wave equation. Unlike wave-informed
dictionary learning [31], we show this algorithm is both highly
interpretable from a signal processing perspective and satisfies
global optimality conditions based on results the literature
[38]. Finally, we evaluate the effectiveness of the algorithm in
four scenarios – homogeneous vibrations, non-homogeneous
vibrations, travelling plane waves, and segmented vibrations.
We show that this framework outperforms most other methods
used the literature for wave mode decomposition, particularly
in the presence of high noise and segmented, spatially varying
wave behavior.

II. WAVE-INFORMED MATRIX FACTORIZATION

In this section, we develop a novel matrix factorization
framework that allows us to decompose a matrix Y, with
each column representing sampling along one dimension (e.g.,
space), as the product of two matrices DXJ, where one of
the matrices will be softly constrained to nearly satisfy wave
equation constraints. Additionally, our model will learn the
number of modes (columns in D and X) directly from the
data without specifying this a priori.

In subsection II-A, we introduce our objective function.
This subsection can be seen as an extension of the previously
proposed wave-informed dictionary learning framework to a
matrix factorization framework. In II-B, we go over a few
ideas from the optimization literature that are useful to solve
the formulated problem. In II-C and II-D, we describe the main
portions of the wave-physics informed matrix factorization
algorithm. In II-E, we describe an interesting connection of
this framework to signal processing. We emphasize that the
novel parts of this work is in subsections II-C and II-E. The
work optimization discussions in II-B are specific cases of

previous work and are shown for the benefit of the reader,
particularly those in wave physics who may not be familiar
with the optimization literature.

A. Problem Formulation

The problem formulation described in this section is in-
spired from the wave-physics regularizer proposed in [31]. In
this work, we additionally justify the wave-physics informed
problem formulation in [31] as a naturally arising idea from
the theory of solutions of partial differential equations. A key
concept in the solution of partial differential equations is the
notion of separation. For example, given a PDE in space ℓ and
time t, we can often assume the solution is of the form

fpℓ, tq “ dpℓqxptq . (1)

In the case of linear PDEs, we find that if dipℓqxiptq are
solutions for all i P r1, N s, then

fipℓ, tq “

N
ÿ

i“1

αidipℓqxiptq (2)

is also a solution for any arbitrary choice of linear coefficients,
tαiu

N
1“1. For a discrete approximation of this solution, we

note that the product of continuous functions dipℓqxiptq on
ℓ P r0, Ls and t P r0, T s can be approximated as an
outer product of two vectors, leading directly to a matrix
factorization model, where we further note that without loss
of generality the scaling coefficients pαiq can be absorbed into
the factorized matrices.

Specifically, we consider matrices pD P RNdˆN ,X P

RNtˆN q defined such that

di “ rdip0q, dip∆ℓq, ¨ ¨ ¨ , dipNd∆ℓqs
J

xi “ rxip0q, xip∆tq, ¨ ¨ ¨ , xipNt∆tqs
J

DXJ “

N
ÿ

i“1

dipℓqxiptq “

N
ÿ

i“1

dix
J
i , (3)

where di and xi denote columns of D and X, respectively,
and Nd “ tL{∆ℓu and Nt “ tT {∆tuq. Recall, we also
wish to enforce physical consistency in our model, which we
accomplish through theory-guided regularization (see [14]) in
a cost function which 1) captures how our matrix factorization
model matches the observed samples and 2) incorporates a
regularization term which enforces physical consistency in the
matrix factors. Specifically, we consider a model of the form

min
D,X

1
2}Y ´ DXJ}2F ` λΘpD,Xq (4)

where }Y´DXJ}2F is a data consistency loss, ΘpD,Xq is our
physics-informed regularizer, and λ ą 0 is a hyper-parameter
to balance the trade-off between fitting the data and satisfying
our model assumptions. When ΘpD,Xq is defined by the wave
equation, we call this wave-informed matrix factorization.

We derive a wave-informed ΘpD,Xq by considering the
one-dimensional wave equation evaluated at diplqxiptq

B2 rdipℓqxiptqs

Bl2
“

1

c2
B2 rdipℓqxiptqs

Bt2
(5)
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The above equation constrains that each dipℓqxiptq component
(i P r1, N s) is a wave. This can be seen as decomposing the
data into a superposition of simpler waves. Furthermore, the
Fourier transform in time on both sides of (5) yields

B2 rdipℓqs

Bl2
Xipωq “

´ω2

c2
dipℓqXipωq (6)

B2 rdipℓqs

Bℓ2
“

´ω2

c2
dipℓq (7)

at points where Xipωq ‰ 0. This is specifically known as the
Helmholtz equation. The Helmholtz equation is analytically
solvable for constant ω{c and the solution takes the form
dipℓq “ A sinpωℓ{cq`B cospωℓ{cq, and the constants A and B
can be determined by initial conditions. While the Helmholtz
equation is often applied in the frequency domain, it is also
applicable in time, where the relationship must be true for
every frequency-velocity (ω, c) mode in the data. Hence, if
the data is sparse in these domains (as is often the case in
modal analysis), then we can use the Helmholtz constraint to
estimate and decompose all (ω, c) modes in Y.

We discretize the Helmholtz equation such that

Ldi “ ´k2i di (8)

where ki “ ωi{ci, also known as the angular wavenumber,
and L is a discrete second derivative operator. The specific
form of L depends on the boundary conditions (e.g., Dirichlet,
Dirichlet-Neumann, etc), which can be readily found in the
numerical methods literature (see for example [41], [42]). In
this paper, we use the Laplacian matrix (L) defined by

L “
1

p∆lq2

»

—

—

—

—

—

–

´2 1 0 0 0 ¨ ¨ ¨ 0
1 ´2 1 0 0 ¨ ¨ ¨ 0
0 1 ´2 1 0 ¨ ¨ ¨ 0
...

...
...

...
...

. . .
...

0 0 0 0 0 ¨ ¨ ¨ ´2

fi

ffi

ffi

ffi

ffi

ffi

fl

. (9)

Note that to reduce notational complexity, we assume ∆l “ 1
without any loss of generality, as any change in ∆l can be
absorbed into the value of ki after plugging (9) into (8).

We also specify the dependence on i owing to the fact that
ω{c and diplq determine each other. For the factorization to
satisfy the wave equation, we desire that (8) is satisfied for
some value of ki, which we promote with the regularizer

min
ki

}Ldi ` k2i di}
2
F . (10)

Note that for the above regularizer it is easily shown that the
optimal value for k2i must lie in the range r0, 4

∆l s, where 4
∆l

is the smallest eigenvalue of ´L [43]. Since we specifically
chose ∆l “ 1 (without loss of generality), we have that the
optimal value of k2i must lie in the range r0, 4s.

In addition to requiring that the columns of D satisfy the
wave equation, we also would like to constrain the number
of modes to be minimal. We accomplish this by adding the
squared Frobenius norms to both D and X, which is known
to induce low-rank solutions in the product DXJ due to

connections with the variational form of the nuclear norm [37],
[38], [44]. Hence, our complete regularization is defined by

ΘpD,X,kq “ 1
2

N
ÿ

i“1

θ̄pdi,xi, kiq (11)

θ̄pdi,xi, kiq “
`

}xi}
2
F ` }di}

2
F

˘

`γmin
ki

}Ldi`k2i di}
2
F

“ }xi}
2
F ` min

ki

dJ
i

`

I ` γpL ` Ik2i q2
˘

di

“ }xi}
2
F ` min

ki

dJ
i Apkiqdi (12)

where Apkiq “ I ` γpL ` Ik2i q2. (13)

With this regularization function, the complete cost function
is defined by

min
D,X,k,N

1
2}Y ´ DXJ}2F ` λ

2}X}2F ` λ
2

N
ÿ

i“1

dJ
i Apkiqdi (14)

where note that we are also optimizing over the number of
modes pNq and the wavenumber k “ rk1, ¨ ¨ ¨ , kN s

J for each
mode in the data.

B. Model Optimization

Our model in (14) is inherently non-convex in pD,X,kq

due to the matrix factorization model and further complicated
by the fact that we are additionally searching over the number
of columns/modes N . However, despite the challenge of
non-convex optimization, we can solve (14) by leveraging
prior results from optimization theory for structured matrix
factorization [37], [39]. Note that, for the remainder of this
subsection we reiterate the concepts and framework described
in [37], [38] leading to adapting the algorithm mentioned
therein to our specific model and finally obtaining an optimal
solution of the objective function (14). For a matrix factoriza-
tion problem of the form

min
N

min
D,X

LpDXJq ` λ
N
ÿ

i“1

θ̄pdi,xiq (15)

where Lp pYq is any function which is convex and once
differentiable in pY and sθpd,xq is any function that satisfies
the following three conditions

1) sθpαd, αxq “ α2
sθpd,xq, @pd,xq, @α ě 0.

2) sθpd,xq ě 0, @pd,xq.
3) For all sequences pdpnq,xpnqq such that

}dpnqpxpnqqJ} Ñ 8 then sθpdpnq,xpnqq Ñ 8 ,
an algorithm exists that can obtain the global minimum solu-
tion. In supplementary material VII-A, we show that the wave-
informed cost function satisfies all three conditions, where the
optimization over the ki parameters is done inside θ as in (12).

Moreover, in [38] it is shown that a given point p rD, rXq

is a globally optimal solution of (15) iff the following two
conditions are satisfied:

1) x´∇Lp rDrXJq, rDrXJy “ λ
řN

i“1 θ̄prdi, rxiq

2) Ω˝
θ̄
p´ 1

λ∇Lp rDrXJqq ď 1

where in our scenario

´ 1
λ∇pLpDXJqq “ 1

λ

`

Y ´ DXJ
˘
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denotes the gradient w.r.t. the matrix product and Ω˝
θ̄
p¨q is

referred to as the polar problem, which is defined as

Ω˝
θ̄pZq ” sup

d,x
dJZx s.t. θ̄pd,xq ď 1. (16)

It is further shown in [38] (Proposition 3) that the first
condition above will always be satisfied for any first-order
stationary point p rD, rXq, and that if a given point is not
globally optimal then the objective function (15) can always
be decreased by augmenting the current factorization by a
solution to the polar problem as a new column:

pD,Xq Ð

´”

rD, τd˚
ı

,
”

rD, τx˚
ı¯

(17)

d˚,x˚ P argmax
d,x

1
λd

J
`

Y ´ DXJ
˘

x s.t. θ̄pd,xq ď 1

for an appropriate choice of step size τ ą 0.
Despite the fact that [38] gives a meta-algorithm that is

guaranteed to solve (15) to global optimality, one needs
to solve the polar problem in (16) to both verify global
optimality and escape non-optimal stationary points, which is
itself another optimization problem. This presents a potentially
significant computational challenge in practice, as for many
choices of regularization function, solving the polar problem is
NP-hard [39]. For example, if the regularization on the matrix
columns is simply the sum of the ℓ2 norms of the columns,
then the polar problem is easily solved as a maximum eigen-
value problem, but if we either replace one of the ℓ2 norms by
the ℓ8 norm, the problem becomes NP-hard [39]. Fortunately,
however, in the next section we show that the polar problem
that results from our wave-informed factorization model is
tractable and leads to polynomial time global optimality.

C. Solving the Polar Problem

Specifically, for our regularization function (11), we show
the following result which allows the polar problem to be
solved efficiently, enabling efficient and guaranteed optimiza-
tion (14).

Theorem 1. For (14), the polar problem in (16) is

Ω˝
θpZq “max

d,x,k
dJZx

s.t. dJApkqd ď 1, }x}2F ď 1, 0 ď k ď 2.

where Apkq is as defined in (13). Further, if we define k˚ as

k˚ “ argmax
kPr0,2s

}Apkq´1{2Z}2 . (18)

Then the optimal values of d,x, k are given as d˚ “

Apk˚q´1{2
sd, x˚ “ sx, and k˚. Where sd and sx are the left and

right singular vectors, respectively, associated with the largest
singular value of Apk˚q´1{2Z.

The proof of Theorem 1 is detailed in supplementary
material VII-B. The result implies that we can solve the polar
by performing a one-dimensional line search over k. Due to
the fact that the largest singular value of a matrix is a Lipschitz
continuous function, this line search can be solved efficiently
by a variety of global optimization algorithms. In particular,
the above line search over k is Lipschitz continuous (with

respect to k2) with a Lipschitz constant, Lk, which is bounded
by

Lk ď

#

2
3

?
3

?
γ}Y ´ DXJ}2 γ ě 1

32

4γp1 ` 16γq
´

3
2 }Y ´ DXJ}2 γ ă 1

32

+

ď 2
3

?
3

?
γ}Y ´ DXJ}2 (19)

This is formally stated and proven proven in supplementary
material VII-C as Theorem 2, where we also give a formal
result, in Corollary 1, which guarantees that the line search
over k (and hence the overall polar problem) can be solved
in polynomial time. Building from this key result, next we
discuss an algorithm to provably solve our wave-informed
factorization model in polynomial time.

D. Wave-Informed Factorization Algorithm

Algorithm 1 defines our wave-informed matrix factoriza-
tion algorithm. The algorithm has three components that are
iterated: (1) perform gradient descent with a fixed number of
modes/columns, N , to reach a first order stationary point for
D, X, and k, (2) solve the polar problem via Theorem 1 to
obtain d˚, x˚, and k˚, and (3) if the stopping condition is
not met, update D, X, and k by appending the polar solution
pd˚,x˚, k˚q to the solution (scaled by an optimal step size
τ ); otherwise, terminate the algorithm.

Algorithm 1 Wave-Informed Matrix Factorization
1: Input Dinit, Xinit, kinit, stopping tolerance: ϵ
2: Initialize pD,X,kq Ð pDinit,Xinit,kinitq

3: Initialize
´

D̃, X̃, k̃
¯

Ð pDinit,Xinit,kinitq

4: while
ˇ

ˇ

ˇ
Ω˝

θp 1
λ pY ´ rDrXJqq ´ 1

ˇ

ˇ

ˇ
ě ϵ do

5: Perform gradient descent on (14) to obtain p rD, rX, rkq

6: Calculate Ω˝
θp 1

λ pY ´ rDrXJqq and obtain d˚,x˚, k˚

7: if Ω˝
θp 1

λ pY ´ rDrXJqq ´ 1 ą ϵ then

8: pD,X,kqÐ

ˆ

”

rD, τd˚

ı

,
”

rX, τx˚

ı

,
”

rkJ, k˚

ıJ
˙

9: end if
10: end while

1) Gradient Descent Update: We begin our algorithm by
performing block coordinate descent with respect to D and X
along with a block minimization step with respect to k on the
objective in (4), which we note is guaranteed to reach a first-
order stationary point [45]. The number of columns of D and
X (denoted by N in (14)) is fixed and does not change during
this step. Specifically, we use the following update equations
(for a step size α)

d`
i “ di ´ α

``

DXJ ´ Y
˘

xi ` λdi

`2γλ
`

L ` k2i I
˘2

di

¯

(20)

x`
i “ xi ´ α

´

`

D`XJ ´ Y
˘J

d`
i ` λxi

¯

(21)

k`
i “

d

´
pd`

i qJLd`
i

}d`
i }22

for each i “ 1, . . . , N (22)
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where D`, X`, and k`
i are the updated values and the i

subscript denotes a column of the respective matrix.
2) Solve Polar Problem: After finding a first order station-

ary point p rD, rX, rk, we next solve the polar problem according
to Theorem 1 with Z “ 1

λ pY ´ rDrXJq. In particular, we first
solve the one-dimensional line search for the optimal value of
k in (18), where this line search can be solved using many
approaches. For example, the LIPO algorithm given in [46]
can provably solve the line search in polynomial time. Once
the optimal k˚ is obtained, the values of d˚ and x˚ are then
computed directly from the eigen-decomposition of Apk˚q as
described in Theorem 1.

3) Stopping Condition and Growing the Factorization:
After solving the polar problem as described above, the value
of the polar gives a test for checking global optimality, and if
this test is not met then we can escape the first order stationary
point by appending the polar solution to our factorization.
Specifically, once we evaluate the polar Ω˝

θp 1
λ pY ´ rDrXJqq,

then in [38] (Prop. 4) it is shown that the distance to the
global optimum (in objective value) is directly proportional to
the value of the polar value minus 1 (and that the value of
the polar is always ě 1), so choosing to stop the algorithm
when the value of polar takes a value ď 1` ϵ also guarantees
optimality to within Opϵq. If the value of the polar does not
meet our stopping condition, then we continue the optimization
by appending the polar solution to our factorization after an
optimal scaling. Specifically, let

pDτ ,Xτ ,kτ q“

ˆ

”

rD, τd˚
ı

,
”

rX, τx˚
ı

,
”

rkJ, k˚
ıJ

˙

(23)

be our optimization variables with the new polar solution
appended to the factorization scaled by τ , then we find the
optimal value of τ to minimize the original objective function:

min
τ

1
2}Y ´ DτX

J
τ }2F ` λ

2}Xτ }2F ` λ
2

N
ÿ

i“1

DJ
τ Apki,τ qDτ (24)

It is shown in supplementary material VII-D that the optimal
τ is given by

τ “

c

pd˚qJ

´

Y ´ rDrXJ

¯

x˚ ´ λ

}d˚}2}x˚}2
(25)

After updating the variables as in (24) with the optimal choice
of τ , we then return to gradient descent updates until reaching
a first order stationary point.

Taken together, our proposed algorithm results in a
polynomial-time algorithm for solving our main objective (14).
We do not give a formal result as the algorithm given in
Algorithm 1 is simply one choice of optimization algorithm
which is possible due to the polynomial time solution for the
polar problem that we give in Theorem 1 and the overall
convergence of the algorithm is largely known from prior
work, provided the polar problem can be solved. For example,
the authors of [45] prove that the block coordinate gradient
descent portion of the algorithm will converge to a stationary
point at a rate of Op1{tq (with t being the number of
iterations), which can be improved to Op1{t2q with Nesterov

acceleration. Likewise, the authors of [39] show that a Frank-
Wolfe/conjugate-gradient step (i.e., when we escape poor
stationary points by solving the polar problem) will reduce
the objective with a linear convergence rate. From this it is
straight-forward to combine these arguments to give an overall
guarantee of convergence, but we do not do so here to limit
the scope and length of the manuscript.

E. Signal Processing Interpretation of the Regularizer

We now discuss an interesting interpretation of the above
algorithm from a signal processing perspective. Specifically,
if we let L “ ΓΛΓJ denote a singular value decomposition
of L, then note that when identifying the optimal k value in
the polar program, we solve for

argmax
kPr0,2s

}ΓpI ` γpk2I ` Λq2q´1{2ΓJZ}2 . (26)

This optimization has an intuitive interpretation from sig-
nal processing. Given that Γ contains the eigenvectors of
a Toeplitz matrix, those eigenvectors have spectral qualities
similar to the discrete Fourier transform (the eigenvectors of
the related circulant matrix would be the discrete Fourier
transform [47], [48]). As a result, ΓJ transforms the data Z
into a spectral-like domain and Γ returns the data back to
the original domain. Since the other terms are all diagonal
matrices, they represent element-wise multiplication across the
data in the spectral domain. This is equivalent to a filtering op-
eration, with filter coefficients given by the diagonal entries of
pI`γpk̄I`Λq2q´1{2. Figure 1 shows two such filter responses
at k2 “ 2.5, γ “ 1000 and k2 “ 1.5, γ “ 10000. Observe that,
an increased value of γ has reduced the bandwidth of the filter.

Fig. 1: Butterworth Filter on the spectral-like domain

Furthermore, recall that the transfer function of a 1st-order
Butterworth filter is given by:

T pωq “
1

a

1 ` γpω0 ` ωq2
(27)

where ω0 is the center frequency of the passband of the filter
and 1{

?
γ corresponds to the filter’s ´3dB cut-off frequency.

Comparing this to the filter coefficients from (26), we note
that the filter coefficients are identical to those of the 1st-
order band-pass Butterworth filter, where Λ corresponds to
the angular frequencies.

As a result, we can consider this optimization as deter-
mining the optimal filter center frequency ω0 “ k2 with
fixed bandwidth p1{

?
γq that retains the maximum amount

of signal power from Z. Likewise, the choice of the γ
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(a) (b) (c) (d)

Fig. 2: (a) Homogeneously vibrating medium marked with different colors at three different time instances for a short spatial
interval at the start. (b) Non-Homogeneously (exponentially decaying over space) vibration data marked with different colors
at three different time instances for a short spatial interval at the start. (c) Traveling wave data marked with different colors at
three different time instances for a short spatial interval at the start. (d) Data of two mediums joined end-to-end and vibrating
together marked with different colors at different time instances for a short spatio-temporal interval around the joint.

hyperparameter sets the bandwidth of the filter. As γ Ñ 8,
the filter bandwidth approaches 0 and thereby restricts us to
a single-frequency (i.e., Fourier) solution. Furthermore, we
can provide a recommended lower bound for γ according to
γ ą 1{k2bw, where kbw is the bandwidth of the signal within
this spectral-like domain. We would like to emphasize that this
work introduces a unique theme within the works of scientific
machine learning. Through means of wave-informed learning,
we obtain a new method to mathematically derive the well-
known digital Butterworth filter.

III. EXPERIMENTAL EVALUATION

We demonstrate the results from wave-informed matrix
factorization on four simulated vibration datasets, each charac-
terized by increasing complexity: (1) a homogeneous vibration
with fixed boundary conditions, (2) an non-homogeneous
vibration with fixed boundary conditions and spatial amplitude
decay, (3) a plane wave traveling with temporal decay, and
(4) a vibration in a segmented medium, where each segment
has an independent wavenumbers and amplitude. In all four
datasets, one dimension of the matrix represents space and
the other dimension represents time, as is common in modal
analysis [49], [50]. Multiple modes share the same spatial
locations. Fig. 2 illustrates these four datasets.

For each method and dataset, we study five different signal-
to-noise ratio (SNR) levels. Each signal is defined by

pypℓ, tq “ ypℓ, tq ` ηpℓ, tq , (28)

where ypℓ, tq represents our data and ηpℓ, tq represents our
noise. The noise is assumed to be additive white Gaussian
noise across both space and time. The SNR is defined by

SNR “

ř

ℓ,t |ypℓ, tq|2

ř

ℓ,t |ηpℓ, tq|2
. (29)

The SNR is assumed to be unknown to each of the algorithms.
The following subsections describe how each of our datasets

are computed. Table I lists the parameters for each of these

scenarios. Note that each case can have potentially an infi-
nite number of modes N . In practice, these modes usually
attenuate as the associated frequency / wavenumber increases.
To simplify this, we simulate a finite number of modes for
each dataset. For the segmented data, kn represents the first 8
theoretical modes (four in each segment) for vibration across
two connected segments.

To solve the polar problem and estimate k˚ in Algorithm 1,
many approaches can be taken. In this paper, we solve for k˚

by first coarsely searching for a maximum among coarsely uni-
formly placed points. For a predetermined region around the
maximum, we perform a fine search by taking the maximum
over finely uniformly placed points in that region

A. Homogeneous Vibration Data with Fixed Boundaries

Our first dataset emulates vibrations in a medium with
fixed (Dirichlet) boundary conditions such that yp0, tq “ 0
and ypL, tq “ 0, where L is the length of the medium. The
sinusoids reflect from each end and create a standing wave in
space. Such data is defined by

ypℓ, tq“

N
ÿ

n“1

e´αnt sinpnkℓq pan sinpnωtq`bn cospnωtqq . (30)

This type of data is commonly found in vibrations and
modal analysis problems [51], [52]. For example, the modes
and their parameters can be used to determine material or
structural characteristics [8]–[10]. Apart from the added noise,
we assume a damping over time to introduce a non-ideality.
For this illustration we choose L “ 1.

B. Inhomogeneous Vibration Data With Spatial Decay

The previous dataset assumed spatial homogeneity. That
is, the behavior of the medium (i.e., the wavenumber and
amplitude) did not vary across space ℓ. This assumption may
not always be true. As a result, we would like to extract modes
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TABLE I: Table of parameters used to generate data, with additive noise ηn „ N p0, 1q and un „ Ur0, 1s. The random
variables are independently sampled for each parameter and 1 ď n ď N .

Data p∆ℓ, Lq p∆t, T q αn βn kn ωn N δ
Homogeneous Vibration p0.0901, 1q p0.0005, 2q n

2
0 nπ 106kn 6 100

Non-homogeneous Vibration p0.901, 10q p0.0005, 2q 0 4`n
10

` un nπ 106kn 6 1
Travelling Plane Wave p0.901, 10q p0.0005, 2q n

2
0 nπ 106kn 6 1

Segmented Vibration p0.01, 2q p0.02, 10q - - 2π ˘ arctan
´

b

1
3

`

13 ˘ 4
?
10

˘

¯

3kn 8 1

(a) (b)

Fig. 3: Spectra (with respect to Eigen-basis of L) of decaying exponentials e´β1ℓ sinpπℓq, e´β2ℓ sinp2πℓq and e´β3 sinp3πℓq
(indicated using blue, red and yellow colors respectively) for (a) ℓ P r0, 1s, since here L=1 (b) ℓ P r0, 10s, since here L=10

with inhomogenieties. We consider the same fixed boundary
data but with a spatial decay such that

ypℓ, tq “

N
ÿ

n“1

e´βnℓ sinpknℓq pan sinpnωtq ` bn cospnωtqq . (31)

In this expression, we have introduced a new parameter βn that
causes the amplitude to decay over space, similar to an evanes-
cent wave in electro-magnetics and is usually meant to persist
over longer regions of space. This example is meant to explore
if each algorithm addresses amplitude non-homogeneities. In
contrast to the previous case, where we considered measuring
vibrations along a string of length 1, we consider a scenario
of measuring waves for a longer length. In this illustration, we
fix a length of 10 for measuring waves decaying exponentially
over space. As an illustration for the advantage of length, the
spectrum (computed by multiplying data with the transpose of
the eigenvectors Γ) of three exponentially decaying sinusoids
(for length 1 and length 10) corresponding to k1 “ π, k2 “ 2π,
and k3 “ 3π are shown in Figure 3(a) and Figure 3(b),
respectively. In each plot, the peaks correspond to the same
three values of k, but due to the 10 times increases in length,
Figure 3(b) exhibits a 10 times improvement in resolution in
the wavenumber domain. In the presence of spectral spread
(e.g., caused by a spatial decay), this can improve our ability
to distinguish each mode. The parameters generating the data
are given in Table I.

C. Travelling Plane Wave Data

We previously considered vibration-like modes with fixed
boundaries. This dataset considers sinusoids of uniformly

spaced wavenumbers travelling in time and space without
explicit boundary conditions, defined by

ypℓ, tq “

N
ÿ

n“1

e´αnt sinpknℓ ` ωntq . (32)

This expression resembles a travelling plane wave rather than
a vibrational wave. These types of data are commonly found
in beamforming problems for RADAR [11], [53], ultrasound
[13], [54], audio processing [55] and other fields using spatial
signal processing. In beamforming, the parameter kn is usually
proportional to the direction of arrival. In ultrasound and
geophysics, kn may represent a transverse or longitudinal
modes of vibration [56]. We also have the same assumption
of measuring the traveling wave data for a longer length (here
10 times the homogeneous case). Note that time and space are
not immediately separable in this equation, as observed in the
other datasets. However, (32) can be expressed as

ypℓ, tq “

N
ÿ

n“1

e´αnt sinpknℓ ´ ϕn ` ϕn ` ωntq

“

N
ÿ

n“1

e´αnt rsinpknℓ ´ ϕnq cospωnt ` ϕnq

` cospknℓ ´ ϕnq sinpωnt ` ϕnqs (33)

for an any arbitrarily chosen ϕn. Hence, a travelling plane
wave mode can be expressed as the sum of two standing wave
modes, similar to our second dataset, with 90 degree phase
differences. In our results, we assume ϕn “ 0 so that errors in
Table II will be small when the extracted components match
ϕn “ 0 while errors in Table III will be invariant to ϕn since
the magnitude of the Fourier transform ignores phase delay.
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D. Multi-Segment Data
Our final dataset considers a problem with both amplitude

and wavenumber spatial inhomogeneities. This occurs when
there are media adjacent to each other. As a signal travels
from one medium to the next, the amplitude varies according
the the interface’s reflection and transmission coefficients and
the wavenumber varies according to Snell’s law. We generate
vibration data in two media connected end-to-end that is
continuous and once differentiable at the point where the two
different they connect (see [56] for related theory). We assume
the two mediums to have a density ratio of 9 to 1, respectively.
The velocity of the wave traveling in the string is inversely
proportional to the square root of density, thus the velocities
must be in the ratio 3 to 1. The mathematical expression
generating the data is:

ypℓ, tq “

#

řN
i“1 sinp3kiℓq sinpωipt{cqq, 0 ď ℓ ă 1

řN
i“1 sinpkiℓqpℓq sinpωipt{3cqq, 1 ă ℓ ď 2 .

(34)

where c is the velocity of propagation in the first medium.
The wavenumbers for this problem take a specific solution
based on the condition, shown in the Table I, assuming fixed,
zero-valued boundaries at ℓ “ 0 and ℓ “ 2 and the continuity
condition at ℓ “ 1.

E. Choice of Regularization Parameters
To provide a fair and informative comparison between each

method,we assume oracle knowledge of N throughout our
results. As previously mentioned, deviation from 1 in the polar
problem in wave informed wave factorization can be used as a
metric for monitoring convergence and as a stopping condition
for the algorithm (and by extension the final choice of N ),
but the appropriate threshold is unclear in the presence of
noise and a similar convergence property does not exist for
all of our comparison methods. While there are a number of
statistical methods for estimating N based on singular value
decomposition that could be applied to every method [57],
[58], we want our performance to reflect choice of algorithms
rather than errors in the estimation of N . Hence using oracle
knowledge of N to stop the algorithm as appropriate.

For wave-informed matrix factorization, we select λ to be
3{4σpNq, where σpNq is the N-th singular value of our data
matrix Y. This choice of λ is intuitively chosen based on the
interpretation of low rank factorization as a soft thresholding
operation over the singular values [37], [38]. The 3{4 factor
was obtained empirically based on our examples. However,
reducing the factor is reasonable given the additional constraint
provided by the Helmholtz equation.

We select γ in wave-informed matrix factorization based on
our intuition of 1{

?
γ being bandwidth of a filter. In general,

the bandwidth of exponentially decaying sinusoids discussed
here is small, so γ is expected to be relatively large. Since our
modes are constrained to a finite length in space, we know the
bandwidth of a pure sinusoid will be one sample of the discrete
Fourier transform. Therefore, we choose our bandwidth based
on this assumption so that

γ “ δ

ˆ

M

π

˙2

, (35)

where M is the number of samples in the spatial domain.
While this bandwidth is slightly smaller than some of the data
due to spatial variations, this difference should be corrected
for in the gradient descent step of wave-informed matrix
factorization. An analytical way to motivate the same would
be to observe the filter coefficients.

1
a

1 ` γpk2 ` Λiiq
2

is the i-th filter coefficient. Assuming pure Dirichlet boundary
conditions, we have from [43] that,

Λii “ ´4 sin2

˜

πi

2pM ` 1q

¸

For M large enough compared to i, we have that,

Λii “ ´4 sin2

˜

πi

2pM ` 1q

¸

« ´
π2i2

pM ` 1q2

Again, for large enough M , we can approximate the filter
coefficients as below by substituting γ from (35),

1
g

f

f

e1 ` δ
M2

π2

˜

k2 ´
π2i2

pM ` 1q2

¸2
«

1
g

f

f

e1 ` δ

˜

M2k2

π2
´ i2

¸2

where i represents the actual (not angular) wavenumber scale.
For instance, when δ “ 1, the bandpass Butterworth filter
has a -3 dB cut-off wavenumber of 1 m´1 in the actual
wavenumber scale. For larger values of δ, the -3dB cut-off
wavenumber reduces to 1{δ m´1 and is useful to pick isolated
wavenumbers. The value of δ used for each case is mentioned
in Table I. Observe that homogeneous vibrations requires
a larger value of δp“ 100q to pick isolated wavenumbers
whereas others still work with a value of δ “ 1.

IV. RESULTS & DISCUSSIONS

For each dataset, we compare our approach with five other
non-parametric matrix factorization / blind source separation
methods. The algorithms we compare with include indepen-
dent component analysis (ICA) [59], dynamic mode decom-
position (DMD) [60], multidimensional empirical mode de-
composition (EMD) [61]–[63], principal component analysis
(PCA) [64], and wave-informed K-singular value decomposi-
tion (WIKSVD) [31]. We choose these method because they
are widely used in modal analysis throughout the literature
or represent a precursor to wave-informed matrix factorization
(WIMF). Each method places different assumptions on the ex-
tracted modes. Briefly, ICA extracts components components
that are statistically independent, PCA extracts components
that are orthogonal to each other, DMD extracts components
with a set frequency and decay based on estimating a state
transition matrix, EMD extracts components by iteratively
interpolating between maxima and minima, and WIKSVD
extracts components that assume spatial components satisfy
the wave equation and are sparse in the frequency domain. By
comparison, WIMF extracts spatial components that satisfy the
wave equation and minimizes the number of extracted modes.
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Based on the filter interpretation of WIMF, it has character-
istics similar to DMD since the filter’s center frequency and
bandwidth identifies the frequency and possibly decay of the
extracted modes.

A. General Performance

In Table II, we show the mean squared errors for each of
the recovered modes obtained by each method,

MSE “
1

N

N
ÿ

n“1

›

›

›

›

›

dn

}dn}2
´

cnd
ptrueq
n

}d
ptrueq
n }2

›

›

›

›

›

2

2

(36)

where dn is extracted mode and d
ptrueq
n is the true mode. In

our analysis, dptrueq
n is chosen (without replacement) to be the

mode with the maximal correlation (in absolute value) with dn

and cn “ signpdJ
nd

(true)
n q. When computing the mean squared

error, we normalize each mode since the amplitude is not
uniquely determined in matrix decompositions.

Table III shows the mean squared error between the Fourier
magnitudes true and extracted modes, using the same defini-
tion of (36) but replacing dn and d

ptrueq
n with the magnitude

of their Fourier transforms, respectively. These results provide
a different perspective, identifying if the methods obtain the
correct frequencies ignoring the effect of phase shifts.

Fig. 4 further illustrates examples of two modes extracted
by each method for each dataset at an SNR of 8. Across
all of the datasets, ICA has the overall poorest performance,
followed by EMD, PCA, DMD, WIKSVD, and WIMF. We
hypothesize ICA performs poorly since wave modes are not
random signals, and while the modes are orthogonal, they
are not statistically independent. EMD performs poorly since
mixtures of sinusoids where the amplitudes and/or frequencies
are too similar cannot be recovered by the algorithm [65].
DMD and WIKSVD performs most poorly in high noise
scenarios and with spatially segmented wavenumbers. DMD
performs poorly at high noise because the estimation of the
state transition matrices does not consider noise. Though a
similar wave-informed regularizer is introduced for WIKSVD,
it does not extract the basis as well as WIMF we believe due to
the lack of filtering behavior in WIKSVD. This filtering effect
particularly improves WIMF over WIKSVD for high noise
regimes. The following subsections study the performance
with each dataset in greater detail.

B. Homogeneous Vibration Data With Fixed Boundaries

Table II and III show that this relatively simple dataset
achieves the overall best performance among the datasets.
Wave-informed matrix factorization, wave-informed K-SVD,
and dynamic mode decomposition perform best, albeit under
different conditions. Wave-informed K-SVD and dynamic
mode decomposition perform the best in no-noise conditions.
Yet, dynamic mode decomposition is more sensitive to noise.
This is evident in Tables II,III as with increasing noise the
errors indicated in the tables increase. Wave-informed K-SVD
performs best in low to mild noise (ď ´3 dB SNR) whilst
wave-informed matrix factorization performs best in heavy
noise (ą ´3 dB SNR).

C. Inhomogeneous Vibration Data With Spatial Decay

These results follow a similar trend as the homogeneous
vibration data. In the inhomogeneous data, the spatial decay
spreads the signal across the wavenumber domain, resulting
in generally less compressible data that is more sensitive to
noise. As a result, we see a reduction in performance for
WIMF, WIKSVD, DMD in Table II and III. In case of infinite
SNR, DMD performs best as it is designed to extract damped
sinusoids [66]. However, it remains sensitive to noise.

PCA and EMD appear unstable with this dataset. This
occurs because the parameter βn varies across each method
and SNR. This randomness in conjunction with the incorrect
extraction of multiple wavenumbers in a single component, as
previously described for the homogeneous data, is the source
for this error. As a result, EMD and PCA are to be sensitive
to the variation in spatial decay.

D. Traveling Plane Wave Data

Due to the expression derived in (33), we extract 2N modes
rather than N modes. This is seen in Fig. 4(c), where the two
most dominant modes have the same frequencies. It is also
important to note that the decomposition is not unique due
to the arbitrary phase term ϕn. This discrepancy seen in the
difference in PCA’s relatively poor performance in Table II
(where ϕn is assumed to be 0) and the excellent performance
in Table III, which ignores the phase in its computation. We
further observe in Fig. 4(c) that PCA does not have precise
phases of 0 and 90 degrees. Similarly, DMD incorrectly
extracts modes with equal phases. This is because DMD
extracts a complex-valued factorization. This reconstructs the
data correctly but creates a large error when compared with
the true real-valued modes. Note that the Fig. 4(c) shows the
real part of the DMD result but the result in Table II and
III compute the error with the complex values. In no other
datasets does DMD produce a strong imaginary component.

In addition, WIKSVD appears to have difficulty extracting
a mode with a 90 degree phase based on the errors in
Table II and that the second most prominent mode in Fig. 4(c)
has the wrong frequency. This can be explained due to our
choice of Laplacian matrix L, which inherently assumes fixed,
zero-valued boundary conditions. Similarly, we observe that
WIMF in Fig. 4(c) forces zero-valued boundaries, but the
second mode immediately adjusts to have an effective 90
degree phase. This shows that WIMF is more adaptable than
WIKSVD. As a result, WIMF overall achieves the best results,
but has a larger error relative to the previous two datasets.

E. Multi-Segment Data

Tables II and III show that this dataset is the most difficult
of the four. Under low noise conditions, WIMF achieves the
best performance. From Fig. 4(d), we observe the relatively
large error is due to wavenumbers information ”leaking”
from one segment to the other. In particular, WIKSVD and
DMD include the the modal bevhavior both regions in their
components. Hence, these solution incorrectly include two
different wavenumbers in their components.
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(a) Homogeneous Vibration

(b) In-homogeneous Vibration

(c) Traveling Plane Waves

(d) Multiple Segments

Fig. 4: Two recovered modes (rows) obtained from (WIMF), (WIKSVD), (PCA), (ICA), (DMD), (EMD) for SNR = 8.
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TABLE II: Mean squared errors (times 103) between actual basis generating the data for each case (averaged over 20 Monte-
Carlo experiments) and the matrix D obtained from the algorithms (WIMF), (WIKSVD), (ICA), (DMD), (EMD) and (PCA).
Highlight values show the best performance.

Data SNR [dB] WIKSVD ICA DMD EMD PCA WIMF
Homogeneous −11.8 ±0.4 0.8 ±0.1 1827.0 ±14.2 233.9 ±18.1 1173.4 ±159.5 61.8 ±8.2 0.7 ±0.5
Homogeneous −5.9 ±0.6 0.2 ±0.1 1823.3 ±11.2 63.9 ±8.0 1132.6 ±130.5 13.2 ±2.1 0.2 ±0.1
Homogeneous −1.9 ±0.3 0.1 ±0.0 1825.9 ±11.9 26.9 ±2.2 1207.0 ±151.3 5.3 ±0.7 0.1 ±0.1
Homogeneous 2.3 ±0.4 0.0 ±0.0 1824.6 ±10.1 10.5 ±1.1 1243 ±133.4 2.0 ±0.3 0.1 ±0.1
Homogeneous 8 0.0 ±0.0 1155.1 ±96.9 0.2 ±0.0 1443.9 ±160.8 0.1 ±0.0 0.1 ±0.0
Non-homogeneous −13.1 ±0.6 7.6 ±1.1 1917.6 ±12.4 252.9 ±27.0 1403.0 ±181.8 94.8 ±60.7 3.9 ±0.6
Non-homogeneous −9.4 ±0.7 3.0 ±0.4 1920.1 ±6.4 133.4 ±17.5 1414.4 ±189.5 48.1 ±48.9 3.4 ±0.5
Non-homogeneous −3.4 ±0.7 0.8 ±0.1 1922.3 ±7.2 38.6 ±5.6 1390.9 ±139.0 12.5 ±19 3.1 ±0.4
Non-homogeneous 2.7 ±0.6 0.2 ±0.0 1922.9 ±5.0 10.4 ±1.8 1381.2 ±137.6 12.6 ±16.2 3.1 ±0.5
Non-homogeneous 8 0.0 ±0.0 1956.6 ±67.1 0.0 ±0.0 1257.6 ±162.3 25.1 ±34.0 3.0 ±0.4
Travelling Wave −11.7 ±0.6 320.1 ±106.2 1913.0 ±13.5 1170.2 ±57.8 1415.6 ±129.8 334.2 ±82.3 1129.0 ±235.4
Travelling Wave −5.9 ±0.5 225.5 ±78.9 1927.6 ±9.6 1108.1 ±32.7 1346.6 ±115.3 212.2 ±89.4 40.2 ±1.5
Travelling Wave −1.8 ±0.6 199.9 ±50.0 1930.4 ±13.7 1084.1 ±38.3 1267.8 ±110.2 241.6 ±67.7 38.3 ±0.6
Travelling Wave 1.8 ±0.8 235.9 ±52.0 1932.8 ±18.8 1094.9 ±29.4 1390.5 ±163.5 280.8 ±62.8 36.7 ±0.4
Travelling Wave 8 409.5 ±13.5 1189.0 ±43.3 1115.9 ±1.3 1548.1 ±75.4 342.5 ±5.6 35.8 ±0.3
Segmented −11.6 ±0.0 1589.0 ±38.2 1792.1 ±25.2 1515.1 ±84.4 1264.2 ±116.8 1526.5 ±77.4 891.8 ±117.3
Segmented −9.1 ±0.0 1594.1 ±36.0 1794.9 ±29.3 1532.5 ±78.8 1261.0 ±131.1 1491.6 ±60.2 913.2 ±117.5
Segmented −3.1 ±0.0 1638.1 ±16.3 1792.5 ±27.3 1520.5 ±68.8 1191.5 ±127.6 1480.8 ±35.0 767.3 ±20.3
Segmented 5.5 ±0.0 1664.0 ±46.2 1786.2 ±28.7 1483.3 ±25.0 1158.0 ±134.0 1470.5 ±40.8 616.3 ±4.7
Segmented 8 889.9 ±0.0 1840 ±12.8 1006.1 ±0.0 1019.1 ±0.0 1516.1 ±0.0 852.0 ±0.1

TABLE III: Mean squared errors (times 103) between absolute value of Fourier transform of actual basis generating the
data for each case (averaged over 20 Monte-Carlo experiments) and the matrix D obtained from the algorithms (WIMF),
(WIKSVD), (ICA), (DMD), (EMD) and (PCA). Highlighted values show the best performance.

Data SNR [dB] WIKSVD ICA DMD EMD PCA WIMF
Homogeneous −11.8 ±0.4 0.5 ±0.1 1732.0 ±23.9 229.5 ±18.2 891.3 ±151.2 59.9 ±7.9 0.2 ±0.1
Homogeneous −5.9 ±0.6 0.1 ±0.1 1719.3 ±21.3 62.5 ±7.8 838.2 ±150.2 12.6 ±2.1 0.1 ±0.0
Homogeneous −1.9 ±0.3 0.0 ±0.0 1725.7 ±24.9 26.1 ±2.2 733.0 ±104.9 4.9 ±0.6 0.0 ±0.0
Homogeneous 2.3 ±0.4 0.0 ±0.0 1723.9 ±25.3 10.1 ±1.0 768.8 ±86.2 1.8 ±0.2 0.0 ±0.0
Homogeneous 8 0.0 ±0.0 782.7 ±110.2 0.2 ±0.0 1020.5 ±111.3 0.0 ±0.0 0.0 ±0.0
Non-homogeneous −13.1 ±0.6 4.3 ±0.6 1767.4 ±20.5 238.7 ±25.0 958.8 ±122.0 78.9 ±52.5 1.8 ±0.4
Non-homogeneous −9.4 ±0.7 1.5 ±0.2 1772.0 ±15.6 126.0 ±16.5 944.4 ±135.7 38.4 ±40.0 1.5 ±0.3
Non-homogeneous −3.4 ±0.7 0.3 ±0.0 1779.4 ±15.4 36.0 ±5.4 918.6 ±158.6 8.7 ±14.2 1.3 ±0.3
Non-homogeneous 2.7 ±0.6 0.1 ±0.0 1771.7 ±15.3 9.5 ±1.7 869.4 ±151.3 8.4 ±12.7 1.3 ±0.3
Non-homogeneous 8 0.0 ±0.0 1753.3 ±79.8 0.0 ±0.0 948.3 ±116.4 1.3 ±0.3 18.9 ±28.3
Travelling Wave −11.7 ±0.6 102.6 ±62.5 1878.9 ±14.6 668.1 ±23.1 1113.0 ±74.4 147.8 ±38.9 628.3 ±187.2
Travelling Wave −5.9 ±0.5 8.9 ±1.4 1893.0 ±8.3 597.0 ±2.7 1040.7 ±64.7 26.0 ±4.5 34.0 ±0.8
Travelling Wave −1.8 ±0.6 5.1 ±0.8 1899.5 ±12.0 588.0 ±1.6 970.5 ±63.8 10.1 ±2.3 32.9 ±0.6
Travelling Wave 1.8 ±0.8 4.0 ±1.1 1902.7 ±16.4 585.5 ±0.5 1088.8 ±150.5 4.1 ±1.0 31.6 ±0.3
Travelling Wave 8 1.5 ±0.2 1081.0 ±40.1 585 0 1446.5 ±60.8 0.1 ±0.1 31.3 ±0.3
Segmented −11.6 ±0.0 1037.5 ±36.0 1373.8 ±24.3 949.2 ±33.3 724.3 ±80.7 957.9 ±35.3 536.7 ±71.4
Segmented −9.1 ±0.0 1067.2 ±47.9 1383.5 ±25.9 907.1 ±27.8 626.9 ±88.2 938.5 ±34.9 502.7 ±98.8
Segmented −3.1 ±0.0 1249.5 ±79.9 1382.9 ±25.1 863.7 ±45.3 496.2 ±39.5 923.7 ±26.5 397.7 ±128.4
Segmented 5.5 ±0.0 1175.7 ±18.7 1372.1 ±24.5 973.5 ±38.0 448.5 ±63.8 908.8 ±21.7 428.5 ±6.6
Segmented 8 623.5 ±0.0 1337.8 ±25.0 348.7 ±0.0 426.6 ±0.0 887.2 ±0.0 357.9 ±0.1

PCA and EMD achieve decent localization of the modes
but fail to extract the correct frequency content, as evident
in Table III. WIMF, EMD, and PCA all demonstrate some
degree of separation and localization, but are not tightly bound
to their spatial region. In particular, WIMF does not achieve
stronger localization because the wave equation constraints are
placed on each mode rather than the complete solution, and
the discontinuity between segments does not satisfy the wave
equation for each individual mode.

F. General discussion on wave-informed matrix factorization

In the performance analysis of this method, we observe that
wave-informed matrix factorization successfully recovers pure
sinusoids with zero phase in the homogeneous vibrations case
in Section IV-B and recovers decaying sinusoids in the inho-
mogenous vibrations case in Section IV-C. In Section IV-D, it

recovers approximate cosines that start at zero and eventually
converge to the sinusoid shape, when the true result has a
phase shift. For the multi-segment case in Section IV-E, it
recovers sinusoidal vibrations that locally to each region.

We would like to emphasize here that hard constraining the
wave equation, i.e. solving an optimization similar to

argmin
D,X,N,k

1

2
}Y ´ DXJ}2F `

λ

2

`

}D}2F ` }X}2F

˘

s.t. LDi “ ´k2iDi, @i P rN s

would be equivalent to solving, for D, the eigenvectors of L
that closely span (in the ℓ2 sense) the column space of Y.
These are pure sinusoids with zero phase. In contrast to this,
we observe that the columns of D are dictated by both data
and the soft constraint introduced by the wave equation. In
particular, we note that the columns extracted in most of the
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Fig. 5: (a) Two columns from the basis obtained from PCA and the absolute value in the transformed domain (transformed
to the eigenbasis of L) (b) Two columns from the basis obtained from wave-informed matrix factorization and the absolute
value in the transformed domain

cases only approximately satisfy the wave-constraint and do
not satisfy the wave equation. This property distinguishes our
algorithm from traditional factorization methods that are either
data dependent or are entirely parameterized by the assumed
physics. We attribute this to the recovery of components such
as exponentially decaying sinusoids (which do not satisfy the
wave equation).

V. CONCLUSIONS

We have introduced wave-informed matrix factorization and
developed a framework and an algorithm with provable, global
optimally guarantees for the same. More generally, this work
introduced a methodology to enforce linear homogeneous
partial differential equation to influence a matrix factorization
algorithm, and demonstrated this for the case of the time-
independent version of the Helmholtz wave equation. The
output from the algorithm was compared with that of state-
of-the-art algorithms for modal and component analysis. We
demonstrated that the wave-informed approach learns repre-
sentations that are more physically relevant and practical for
the purpose of modal analysis.

Future work will include generalizing this approach to a
variety of linear PDEs beyond the wave equation (especially
to adapt the works [49], [52] to our framework) as well as wave
propagation along more than one dimension and extension to
applications in baseline-free anomaly detection for structural
health monitoring [27], [29].
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sive dynamic mode decomposition of transient and post-transient wake
flows,” Journal of Fluid Mechanics, vol. 809, pp. 843–872, 2016.

Harsha Vardhan Tetali has a PhD in Electrical and
Computer Engineering from University of Florida,
Gainesville. Prior to this, he received his B.Tech in
Electronics and Communication Engineering from
SVNIT, Surat and M.Tech in Electrical Engineering
from IIT Gandhinagar. His research spans signal pro-
cessing, machine learning, and optimization theory.
He currently works as a staff engineer at Marvell
Technology.

Joel B. Harley (S’05-M’14) received his B.S. degree
in Electrical Engineering from Tufts University in
Medford, MA, USA. He received his M.S. and
Ph.D. degrees in Electrical and Computer Engineer-
ing from Carnegie Mellon University in Pittsburgh,
PA, USA in 2011 and 2014, respectively. In 2018,
he joined the University of Florida, where he is
currently an associate professor in the Department of
Electrical and Computer Engineering. Previously, he
was an assistant professor in the Department of Elec-
trical and Computer Engineering at the University

of Utah. His research interests include integrating novel signal processingbd,
machine learning, and data science methods for the analysis of waves and
time-series data. Dr. Harley’s awards and honors include the 2021 Achenbach
Medal from the International Workshop on Structural Health Monitoring, a
2020 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society Star
Ambassador Award, a 2020 and 2018 Air Force Summer Faculty Fellowship,
a 2017 Air Force Young Investigator Award, a 2014 Carnegie Mellon A.
G. Jordan Award (for academic excellence and exceptional service to the
community). He has published more than 90 technical journal and conference
papers, including four best student papers. He is a member of the Ultrasonics,
Ferroelectrics, and Frequency Control Society, a member of the IEEE Signal
Processing Society, and a member of the Acoustical Society of America.

Benjamin D. Haeffele is an Associate Research
Scientist in the Mathematical Institute for Data Sci-
ence and the Center for Imaging Science at Johns
Hopkins University. His research interests involve
developing theory and algorithms for processing
high-dimensional data at the intersection of machine
learning, optimization, and computer vision. In addi-
tion to basic research in data science he also works
on a variety of applications in medicine, microscopy,
and computational imaging. He received his Ph.D.
in Biomedical Engineering at Johns Hopkins Univer-

sity in 2015 and his B.S. in Electrical Engineering from the Georgia Institute
of Technology in 2006.

This paper has supplementary downloadable material avail-
able at https://arxiv.org/pdf/2312.13584.pdf provided by the
author. The material includes some additional proofs which
have been left out in the main body of the paper. This material
is 370 KB in size.

https://arxiv.org/pdf/2312.13584.pdf

	Introduction
	Related Work
	Contributions

	Wave-Informed Matrix Factorization
	Problem Formulation
	Model Optimization
	Solving the Polar Problem
	Wave-Informed Factorization Algorithm
	Gradient Descent Update
	Solve Polar Problem
	Stopping Condition and Growing the Factorization

	Signal Processing Interpretation of the Regularizer

	Experimental Evaluation
	Homogeneous Vibration Data with Fixed Boundaries
	Inhomogeneous Vibration Data With Spatial Decay
	Travelling Plane Wave Data
	Multi-Segment Data
	Choice of Regularization Parameters

	Results & Discussions
	General Performance
	Homogeneous Vibration Data With Fixed Boundaries
	Inhomogeneous Vibration Data With Spatial Decay
	Traveling Plane Wave Data
	Multi-Segment Data
	General discussion on wave-informed matrix factorization

	Conclusions
	Acknowledgements
	References
	Biographies
	Harsha Vardhan Tetali
	Joel B. Harley
	Benjamin D. Haeffele


