

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 00, MONTH 0000 2

The Koios benchmarks are representative of modern DL

workloads; many of them are re-created from prior works

and some are replicas of industrial benchmarks. In addition to

being more pipelined and heavily using FPGA hard blocks2,

these benchmarks have higher usage of structures like wide

buses, large reduction trees, hard block dedicated cascade

routing and large fanouts. This makes the Koios benchmarks

better suited for DL-targeted FPGA architecture exploration

than other non-DL benchmark suites.

In this paper, we introduce Koios 2.0, an enhanced version

of the Koios suite [9], and make the following contributions:

• Extending the Koios suite, which originally contained 19

benchmarks, with 13 new DL application circuits.

• Introducing a framework for generating synthetic/proxy

benchmarks with specific circuit characteristics, and

extending the Koios suite with 8 proxy benchmarks.

• Showcasing a new synthesis frontend (Yosys+Odin) in

the VTR flow that significantly expands the Verilog and

SystemVerilog syntax coverage of VTR.

• Presenting the results of running our benchmarks through

VTR using an FPGA architecture model that we develop to

capture complex hard blocks typical of recent FPGAs.

• Comparing circuit statistics to the VTR and Titan

benchmarks to highlight the added value of Koios.

• Performing a QoR comparison of VTR with a commercial

tool chain (Intel Quartus) for the Koios benchmarks on the

Stratix-IV FPGA architecture.

• Describing example case studies that use these benchmarks

to explore architecture and CAD optimizations for DL.

II. RELATED WORK

A. FPGA Benchmark Suites

Several benchmark suites have been curated and used by

FPGA architecture and CAD researchers over the past three

decades. Table I provides an overview of the features of

the different suites. The classic MCNC20 (the twenty largest

MCNC) benchmarks [10] are extremely small (less than 10K

LUTs) and simple designs that do not use any FPGA hard

blocks. While these designs were used in many early CAD

and architecture studies such as [11], they are no longer very

representative of modern FPGA use-cases. The UMass RCG

HDL Benchmark Collection [12] has somewhat larger designs

of up to 14, 000 look-up tables (LUTs) mostly representing

digital signal processing (DSP) applications. However, this

suite does not target an open-source FPGA framework, which

limits its use in architecture and CAD studies as they

generally need modifiable and retargetable CAD tools. The

Groundhog benchmarks [13] are intended to be architecture

independent; they work with academic tool flows and are

targeted towards evaluation of power consumption of FPGAs

for mobile computing applications. However, only two of the

benchmarks have HDL realizations (and hence can be run

through an implementation CAD flow) and both are very

2A hard block on an FPGA is a fixed function block that is embedded
into the silicon. It provides higher level functionality and performance than
building those functions from logic blocks. Examples of hard blocks are
multipliers (DSP blocks) and memory (Block RAMs).

TABLE I: Comparing FPGA benchmark suites

Benchmark Suite

Max.

primitives

per design

Use of

Hard

Blocks

Open

Source

CAD

Captures

DL

Domain

MCNC20 [10] 10K × ✓ ×
UMass RCG [12] 14K ✓ × ×
Groundhog [13] 1K ✓ ✓ ×
ERCBench [14] 65K ✓ × ×
VTR [8] 165K ✓ ✓ ×
Titan [15] 1.8M ✓ × ×
Koios 2.0 (This work) 1.6M ✓ ✓ ✓

small (under 1, 000 primitives). ERCBench [14] consists of

hybrid hardware/software applications. The designs in this

suite are from the multimedia, wireless communications and

cryptography domains and it contains some medium size

designs (up to 65, 000 LUTs). They do not contain DL

benchmarks, and do not readily work with academic (open

source) FPGA tools.

VTR [8] has a suite of Verilog benchmarks as well. These

VTR benchmarks vary from small (321 netlist primitives) to

medium-sized designs (165, 809 primitives) and they include

applications from several domains including image processing,

soft processors and arithmetic. The Titan benchmark suite [15]

contains modern heterogeneous large designs (90K to 1.8M

netlist primitives); these are HDL benchmarks (some of which

were generated from high-level synthesis) that are provided as

both as the source HDL and BLIF [16] format netlists that

can be input to VPR [8], [11] (VPR is the tool that performs

packing, placement and routing in the VTR flow). However,

they target a hybrid CAD flow that is architecture-specific as

logic synthesis is performed using the Intel Quartus tool only

for the Stratix-IV architecture. In contrast to all existing suites,

Koios is the only one that provides large, heterogeneous,

architecture-agnostic benchmarks that work with a completely

open-source flow, and focuses on the increasingly important

DL domain.

The Koios suite contains only Verilog benchmarks. The

focus of these benchmarks is the exploration of new FPGA

architectures and CAD algorithms (i.e. HDL to physical

design). There are other FPGA benchmarks written in C or

OpenCL such as the Rosetta [17] and Spector [18] suites. The

focus of these benchmarks is the FPGA HLS flow (i.e. high-

level language to HDL).

B. DL-Optimized FPGAs

Recently, FPGA vendors have released products with new

DL-targeted features to cater to the ever-growing demands

of this domain. For example, the Xilinx Versal ACAP

[5] added a 2D mesh of specialized vector processors

connected by streaming interconnect, and Intel’s Stratix 10

NX devices integrated in-fabric AI tensor blocks [3]. In

addition, the Achronix Speedster7t FPGA [19] has embedded

machine learning processor blocks that tightly couple memory

and compute for DL. For architecture exploration, FPGA

vendors typically use proprietary customer designs or internal

benchmarks that are not accessible to the research community.

There have also been a number of academic research

proposals to optimize FPGA architectures for DL. Eldafrawy

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 00, MONTH 0000 3

et al. [20] proposed several enhancements to logic blocks

to increase the density of multiply-accumulate (MAC)

operations implemented in the FPGA’s soft logic. They

used simple multiplier/MAC and 4×4 matrix multiplication

microbenchmarks to evaluate their proposed ideas. In [21],

[22], the authors explored enhancing DSP blocks by efficiently

supporting low precision multiplications and adding register

files inside DSPs for storage. For these studies, the authors

designed their own benchmarks to evaluate their ideas. Arora

et al. [23] also proposed adding Tensor slices in FPGAs.

Again, they use their own designs – a TPU-like overlay and

several microbenchmarks – for their evaluation. The authors of

[24] and [25], propose adding compute capabilities into block

RAMs (BRAMs) to increase the computational throughput

of FPGAs and reduce interconnect usage. They use custom

benchmarks to illustrate how these enhancements improve the

performance of DL applications.

All these investigations evaluate architecture ideas primarily

on microbenchmarks, with some also including a small number

of larger designs. The exact microbenchmarks and applications

used also vary between studies, making comparisons of the

gains achieved by different works difficult. An open-source DL

benchmark suite is needed to enable evaluation of architecture

enhancements across a wider range of use cases and to

facilitate comparisons across research works.

III. THE KOIOS 2.0 BENCHMARK SUITE

A. Overview

The Koios 2.0 benchmark suite is a DL-specific benchmark

suite for FPGA research. It consists of 40 benchmarks

covering a diverse representative space, coming from various

applications within the DL domain. Table II provides an

overview of the benchmarks and their properties. These

benchmarks are completely open-source, and we provide them

as both Verilog HDL source codes and BLIF netlists.

B. Diversity and Representativeness

The Koios benchmarks cover a wide variety of design sizes,

implementation styles, target neural networks, acceleration

paradigms, numerical precisions, and circuit properties.

• Design Size: The smallest design has 12, 097 netlist

primitives while the largest has 1, 608, 867. Any latch,

gate or hard block resulting from logic synthesis counts

as a netlist primitive. Some benchmarks, such as

clstm_like, dla_like, tpu_like, have multiple

size variants (i.e. small, medium, large). In these cases,

the size indicates the parallelism factor used in the design.

Bigger designs create a more challenging optimization

problem for the CAD tools, while smaller ones have faster

compilation time suitable for early-stage experiments.

• Implementation Style: Although all the designs in the

benchmark suite are provided to users in the form

of Verilog HDL implementations, some were originally

implemented in RTL while others were automatically

generated from higher-level language descriptions using

high-level synthesis (HLS) tools. HLS-generated designs

typically have specific design characteristics that are not

very common in hand-coded RTL designs, such as widely

distributed control signals and complex state machines.

• Target Neural Network: Our benchmarks cover all major

classes of neural networks. These include: multi-layer

perceptrons (MLPs), convolutional neural networks (CNNs),

recurrent neural networks (RNNs), and reinforcement

learning (RL). These different classes have different

compute and memory requirements, which reflects on

the resource breakdown and routing patterns of their

corresponding benchmark circuits. Some designs are also

generic and can be used to accelerate any type of network.

• Acceleration Paradigm: FPGAs are used for acceleration

of DL workloads in different ways. One way is to design

a flexible software-programmable overlay architecture that

can execute different DL models without the need to

reprogram the FPGA with a new bitstream similar to the

Microsoft Brainwave [31] architecture. These designs tend

to have instruction decoders and more complicated control

logic to enable this level of flexibility. In other cases, a

custom network-specific dataflow architecture is mapped

to an FPGA to maximize efficiency similar to [1]. The

control logic of these circuits is usually hard-coded and

implemented as relatively simple state machines. Another

approach is to implement layer-specific accelerators that are

invoked by software running on a host or an embedded

CPU. These circuits are mostly streaming-style datapaths

with simple or even no control paths. Our benchmark suite

contains designs from all three acceleration paradigms.

• Numerical Precisions: One of the main advantages of

using FPGAs to accelerate DL workloads is the ability

to design hardware for custom numerical precisions,

which is a commonly used technique in accelerating

DL workloads [42]. The designs in our suite use

various precisions, including: binary (bin), different

fixed point types int4/8/16/18/32, brain floating

point (bfloat16 [43]), IEEE half-precision floating

point (fp16), and block floating point (bfp11 [31]).

This diversity is useful for exploring new DSP block

architectures and different hard arithmetic circuitry.

• Circuit Properties: Our benchmarks have varying circuit

styles that can exercise different components of the

CAD tools in different ways. For example, regular

structures like systolic arrays can be used for optimizing

placement algorithms, large reduction trees can form

local routing congestion that stress the routing algorithms,

long cascades (or chains) of hard blocks impose harder

placement constraints, etc. The benchmarks are also highly

heterogeneous (i.e. use different types of FPGA resources)

with varying degrees. They utilize a large number of DSP

blocks and BRAMs. DSPs are often used to form dot

product units and memory structures like double-buffered

RAMs and FIFOs are commonly used to store on-chip

weights and activations.

C. Curating the benchmark suite

The designs in the benchmark suite are chosen keeping

representativeness and diversity in mind. These designs are

implemented (either handcoded or script generated or using

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 00, MONTH 0000 4

TABLE II: The Koios 2.0 Benchmarks (in decreasing order of number of netlist primitives)

Benchmark Description Im
ple

m
en

ta
tio

n

N
et

w
or

k

Pre
ci

si
on

A
cc

. Par
ad

ig
m

2D
Sys

to
lic

W
in

og
ra

d/F
FT

R
ed

uct
io

n

B
uff

er
s

D
SP

usa
ge

C
en

t.
buff

er
s

B
as

ed
on

Other Properties

dla_like (S/M/L) Intel-DLA-like accelerator RTL CNN2 int8/16 Overlay ✓ ✓3 ✓4 ✓ [26] [27] Daisy chain

clstm_like (S/M/L) CLSTM-like accelerator RTL RNN int18 Overlay ✓ ✓3 ✓ [28] Circular compression
deepfreeze ARM FixyNN design RTL CNN int4 Layer ✓ ✓ ✓ [29] Hardcoded weights

tdarknet_like (S/L) Accelerator for Tiny Darknet HLS CNN12 fp16 Custom ✓3 ✓ [30] Fused layer pairs

bwave_like Microsoft-Brainwave-like design RTL Any int8, bfp11 Overlay ✓ ✓ ✓4 [31] Mat-vec mult unit
lstm LSTM engine RTL RNN int16 Layer ✓ ✓ ✓ Streaming dataflow

bnn 4-layer binary neural network HLS MLP1 binary Custom ✓ [32] int16 act/norm
lenet Accelerator for LeNet-5 HLS CNN int8 Custom ✓ ✓ [33] 5x5 conv layers

dnnweaver DNNWeaver accelerator RTL Any int8 Overlay ✓ ✓3 ✓ ✓ [34] DDR and PCIe intf

tpu_like.ws (S/L) Google-TPU-v1-like accelerator RTL Any12 int8 Overlay ✓ ✓ ✓ ✓ [35] Weight stationary MMU

tpu_like.os (S/L) Google-TPU-v1-like accelerator RTL Any12 int8 Overlay ✓ ✓ ✓ ✓ [35] Output stationary MMU
gemm_layer Matrix multiplication engine RTL MLP bfloat16 Layer ✓ ✓ ✓ AXI interface

attention_layer Transformer self-attention layer RTL RNN int16 Layer ✓ ✓3 ✓ [36] GEMV based
conv_layer GEMM based convolution RTL CNN int16 Layer ✓ ✓ ✓ ✓ 3x3 filters
robot_rl Robot+maze application RTL RL int8/16/32 Custom ✓ ✓ ✓ [37] [38] Q-learning algo
reduction_layer Add/max/min reduction tree RTL Any int16 Layer ✓ ✓ ✓ Reduces 128 inputs
spmv Sparse matrix vector multiplication RTL MLP int8 Layer ✓ ✓ ✓ [39] [40] COO sparsity enc.
eltwise_layer Matrix elementwise add/sub/mult RTL Any bfloat16 Layer ✓ ✓ ✓ Broadcast heavy
softmax Softmax classification layer RTL Any fp16 Layer ✓ ✓ [41] LUT based exp/log
conv_layer_hls Sliding window convolution HLS CNN fp16 Layer ✓ ✓ 1x1 filters
proxy Proxy benchmarks RTL - - - - - - - - - Sec III-D -

1 Has Normalization layer 2 Has pooling layer 3 Uses double buffering 4 Has DSP cascade chains

HLS) and tested using commercial FPGA tools for ease

of development and debugging. Then, we performed many

modifications to these designs to ensure their compatibility

with the VTR flow. Vendor-specific and architecture-specific

IP cores (e.g. floating point adders and multipliers, RAM

macros) were replaced with ones that are compatible with VTR

and the FPGA architecture file used for our experiments. This

process was especially challenging for the designs generated

from HLS tools, which tend to be non-human-readable in

many cases. After that, various experiments (described later

in this paper) were run to ensure the suitability of these

benchmarks.

D. Proxy benchmarks

In the first version of Koios [9], there were 19 benchmarks

and in this work, we added 13 more designs. However, having

a larger set of benchmark circuits is desirable for most FPGA

architecture and CAD research. Obtaining real world designs

and curating them to be used as FPGA benchmarks is a

tedious process as it requires re-creating designs that are not

publicly available or modifying existing ones to be compatible

with open source CAD tools. Hence, deriving inspiration from

other fields [44], [45], we create a framework for generating

synthetic DL benchmark circuits. The synthetic benchmarks

generated by this framework have similar properties and circuit

compositions to real DL benchmarks as described in the

previous section. Since these benchmarks can be used as

proxies of real DL designs for FPGA architecture and CAD

research, we refer to them as proxy benchmarks. Unlike the

other benchmarks in Koios, the generated proxy benchmarks

are not functional DL accelerators – they instead mimic

the composition of key components of DL accelerators. We

perform statistical analysis on the properties of real designs

and synthetic designs generated from this framework, and

compare them in Section IV-D.

Proxy benchmarks are generated using design components

that are commonly present in real DL designs. We extracted

and parameterized different components from the existing

benchmarks and designed new ones to create a library

of modules that can be used in the generation of proxy

benchmarks, as listed in Table III. This library can be easily

extended to increase the diversity of the generated proxy

benchmarks. In addition to the Verilog implementation of

these components, the library also contains a Python dictionary

of the various components along with their properties (e.g.

size, precision, width) and the resource usage of each module

for the FPGA architecture we use for evaluation. Fig. 2a

shows how the proxy benchmark generation framework works.

The benchmark generator takes as input a YAML file which

specifies the graph structure the user desires (i.e. the specific

hardware components and the connections between them). A

snippet from a sample YAML file is shown in Fig. 2b. For each

component, its specific parameters (e.g. type, size, precision)

are also specified in the YAML file. The generator goes

through the graph structure described by the user, instantiates

the corresponding components in the top-level module, and

automatically generates the interconnections between them to

generate the Verilog file of the proxy benchmark.

Since the YAML input file specifies components connected

to each other regardless of the number of output and input

bits of each component, the generator inserts interfacing logic

between the component instances. For example, if the YAML

file specifies that component A with 40 output bits feeds

component B that has 20 input bits, some interface logic needs

to be generated that can enable connecting 40 signals to 20

signals. There are three cases that can arise:

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 00, MONTH 0000 7

1) Floorplan: The FPGA contains columns of logic blocks,

DSPs and BRAMs. Both DSP and BRAM columns repeat

every 16 columns and are interleaved such that every 8th

column is a DSP or a BRAM. The DSP and BRAM tiles are

4 and 2 rows high respectively, and the IO pads are arranged

along the perimeter of the FPGA.

2) Routing Architecture: The architecture uses

unidirectional routing with wire segments of length 4

(260 out of 300 wires) and length 16 (40 out of 300 wires).

The length 16 wires do not directly connect to block pins

and are only accessible from the length 4 wires. Switches

appear after every 4 blocks on the length 16 wires. The

switch blocks use a custom switching pattern based on the

Stratix-IV-like architecture used in the Titan flow [15]. The

input and output flexibility of connection blocks are set to

0.15 and 0.1, respectively.

3) Logic Blocks: Each logic block (LB) contains 10 basic

logic elements (BLEs) similar to that in the Intel Stratix-10-

like architecture from [20]. Each block has 60 input pins, 40

output pins, and a 50% sparsely populated local input crossbar.

Each BLE has a 6-input LUT which can be fractured into

two 5-input LUTs. The BLE also has 2 flip-flops and 2 bits

of arithmetic with dedicated carry chains between LBs. Each

BLE has 8 inputs and 4 optionally registered outputs.

4) DSP Slices: This architecture has a complex DSP block

that supports most of the operating modes in the state-of-

the-art Intel Agilex DSP block [54]. Multiple fixed point

(9x9, 18x19, 27x27) and floating point (IEEE 32-bit (fp32),

IEEE 16-bit (fp16) and Brain floating point (bfloat16))

precisions are supported. In addition, the DSP block has

dedicated output chains for cascading several DSP blocks in

the same column for efficient dot product structures.

5) BRAMs: BRAM blocks have a capacity of 20 Kb and

have registered inputs and outputs. True and simple dual port

modes are supported. In the simple dual port mode, a BRAM

can be configured as: 512×40b, 1024×20b and 2048×10b,

while the widest mode is not supported in true dual port

mode. The delays and areas of a BRAM block are obtained

by interpolation between the values obtained from COFFE for

16 Kb and 32 Kb BRAMs.

Some benchmarks in Koios use advanced DSP features that

are available in the FPGA architecture described above. This is

done by instantiating DSP hard macros directly into the RTL

when implementing natively-supported fp16 multiplications

or DSP cascaded structures for example. Similarly, BRAMs

are also instantiated as hard macros in the RTL. Although

these hard macros are architecture-specific, users can still

use the Koios benchmarks with other FPGA architectures

by replacing these RTL instantiations with their alternatives.

To improve the usability of the Koios benchmarks, we

also implement the same functionality of the architecture-

specific hard macros using behavioral Verilog, and allow

users to switch between the hard macro and behavioral

implementations using pre-processor directives (i.e. ifdefs).

By disabling the complex_dsp and hard_mem directives,

the benchmarks become completely architecture-agnostic and

can be used with any FPGA architecture description file. In this

case, the synthesis tool infers the hard blocks to be used and

generates a netlist containing hard macro instances available in

the user’s FPGA architecture. If no hard blocks are available

in the FPGA, the code will just be mapped to FPGA soft

logic. We have verified running the benchmarks without these

directives for the FPGA architecture described in this section

and the VTR flagship architecture.

This makes the Koios benchmarks also suitable for

evaluating the addition of new hard blocks to an FPGA

architecture, similar to some recent DL-optimized FPGAs [3],

[23]. To perform such studies, users can either: (1) modify

the synthesis engine to automatically extract specific patterns

from the Verilog designs and map them to the new blocks, or

(2) modify the benchmarks to instantiate these new blocks as

hard macros (defined in the VTR architecture file).

C. Results of the Koios 2.0 Benchmarks

Table IV shows the VTR results for the Koios 2.0

benchmarks when running them with the FPGA architecture

described in Section IV-B. The results show that these

designs, with sizes ranging from 12K to 1.6M netlist

primitives, are deeply pipelined with 27 out of the 40

benchmarks having critical paths with 6 or less logic

levels on them. The benchmarks are also highly diverse in

heterogeneity, with varying circuit compositions between soft

logic, DSPs, and BRAMs. For example, some designs do

not utilize any BRAMs since they either implement only

the workload datapath (e.g. gemm_layer and softmax)

or use distributed registers for storage (e.g. bnn). On

the other hand, there are other BRAM-intensive designs

such as tdarknet_like.large with 4, 400 BRAMs

utilized. Similarly, with DSPs, there are some designs that

use very few or no DSPs (e.g. conv_layer_hls and

reduction_layer) as they mostly implement other non-

multiplication operations in DL workloads such as pop-count

or max/min/add reduction. Other designs are DSP-intensive

(e.g. deepfreeze.style2) with over 1, 700 DSP blocks.

Table IV also shows that different types of resources are the

grid size limiting factor for different benchmarks in our suite.

The majority of the designs are bound by hard blocks, as

indicated by the bold entries in the table, which emphasizes

that these benchmarks can be useful for exploring new DSP

and BRAM architectures.

Most of the designs in the Koios 2.0 suite can achieve

reasonably high operating frequencies up to 249 MHz and

an average of 124 MHz. The FPGA architecture used for our

experiments is not very fast. The delays in the architecture are

based on area-delay-optimized PTM models (with raw delays

similar to 40 nm Stratix-IV). Changing the delays of FPGA

resources to those typical of a high-speed (≤14 nm) device

would increase the frequency by >2×. The lenet design is

a clear outlier with a frequency of 53.9 MHz. This design is

generated by HLS and has a very high logic depth of 34.

The total routed wirelength of the benchmarks are largely

correlated with the circuit size and ranges from 102K up to

11.4M units of length 1 wire segments.

The top graph in Fig. 5 plots the VTR flow runtime for each

benchmark. The trendline shows that the runtime grows almost

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 00, MONTH 0000 8

TABLE IV: VTR results of the Koios 2.0 benchmarks

Benchmark
Netlist

Primitives

Logic

Depth

Used

IOs

Used

LBs

Used

DSPs

Used

BRAMs

Max.

Freq.

Routed

Wirelength

Elapsed

Time

Peak

Memory

dla_like.large 1608867 5 819 28201 1376 864 107.4 11445 1140.0 15733.5
clstm_like.large 1083855 3 1518 26341 961 739 105.6 5785 842.7 12901.0
deepfreeze.style3 759656 3 540 18499 340 3489 116.3 5380 289.3 16131.7
clstm_like.medium 743071 3 1230 17854 661 498 113.9 3767 400.4 8805.7
deepfreeze.style1 687669 3 540 15115 700 1999 135.2 4673 243.0 10172.1
dla_like.medium 600492 5 411 10656 400 312 140.6 2920 209.0 5408.4
deepfreeze.style2 470421 3 540 12896 1762 1387 62.6 3466 246.3 15574.3
proxy.2 439725 8 574 8921 330 1099 130.9 3293 228.9 5796.2
clstm_like.small 402331 3 942 9396 361 257 131.3 1821 100.8 4739.3
tdarknet_like.large 391291 5 46 13574 367 4400 72.7 4173 775.4 18456.7
proxy.4 391195 7 2392 7768 757 1189 101.3 4510 401.9 7439.1
proxy.1 358143 7 1113 5989 1037 619 125.3 4325 206.8 9503.0
bwave_like.float.large 310527 6 1093 9699 640 1182 93.9 4440 114.5 6522.4
proxy.3 304125 10 1036 9585 107 847 96.8 2491 124.7 4569.3
dla_like.small 260199 5 207 4799 128 132 160.7 998 59.3 2143.0
proxy.7 248950 7 498 4937 302 492 114.2 2167 135.9 3214.4
lstm 247060 7 2677 5060 610 305 121.8 2129 272.2 5767.3
proxy.6 206539 3 1025 3403 300 406 134.7 1720 174.3 3053.7
bnn 204601 3 382 5694 63 0 131.0 1184 17.2 2171.0
lenet 190809 34 140 7417 497 820 53.9 3250 671.4 5850.0
dnnweaver 189706 6 3531 5552 288 1139 82.4 2921 49.7 5258.4
tdarknet_like.small 157431 6 46 6974 90 3978 63.8 2657 217.4 16043.7
proxy.8 150264 7 1002 3047 367 378 110.9 1266 67.2 3325.1
proxy.5 147618 7 785 3199 283 236 108.1 1227 70.2 2768.5
bwave_like.float.small 84893 6 200 2625 144 358 129.1 936 14.2 1802.7
tpu_like.large.ws 78335 8 1190 3011 1066 116 100.2 961 87.9 8848.8
tpu_like.large.os 70946 5 1188 1596 1064 64 120.4 2028 95.4 8826.8
gemm_layer 64765 4 1779 2001 200 0 173.9 789 17.6 1897.6
bwave_like.fixed.large 54871 6 328 1299 562 511 104.2 1816 32.4 5938.8
attention_layer 54865 7 1089 1455 137 194 124.5 480 18.6 1328.6
conv_layer 37268 4 156 938 42 56 218.6 245 6.5 562.0
robot_rl 30529 6 387 1285 18 96 148.8 232 6.0 522.9
tpu_like.small.ws 27097 7 646 1034 278 58 118.8 288 15.1 2407.2
tpu_like.small.os 21962 5 644 538 276 32 156.7 416 13.9 2381.5
reduction_layer 18323 6 54 805 0 52 147.4 183 1.9 340.2
spmv 17734 6 99 503 32 232 178.4 221 4.0 946.1
bwave_like.fixed.small 16632 5 198 404 139 170 132.7 397 5.2 1293.1
eltwise_layer 16187 4 249 355 50 72 249.1 193 2.6 472.8
softmax 13177 10 552 512 53 0 114.6 126 2.3 492.1
conv_layer_hls 12097 3 3299 1717 12 21 151.1 102 12.2 3983.8

Frequency is in MHz, Routed Wirelength is 1000 length-1 segments, Elapsed Time is in minutes, and Peak Memory is in MBs.

0 0.2M 0.4M 0.6M 0.8M 1M 1.2M 1.4M 1.6M

0

20k

40k

60k
tdarknet.large
tdarknet.small
bnn
conv_layer_hls
dla_like.large
lenet
reduction_layer
Rest
Trendline

Netlist Primitives

VT
R

Ru
nt

im
e

(s
ec

on
ds

)

0 0.2M 0.4M 0.6M 0.8M 1M 1.2M 1.4M 1.6M

0

10M

20M

30M

40M

50M

tdarknet.large
tdarknet.small
bnn
conv_layer_hls
dla_like.large
lenet
reduction_layer
Rest
Trendline

Netlist Primitives

VT
R

Pe
ak

 M
em

or
y

(K
ilo

by
te

s)

Fig. 5: VTR runtime (top) and peak memory usage (bottom) for the
Koios benchmarks

linearly with the number of netlist primitives in the circuits.

There are some notable exceptions; lenet and tdarknet

designs have very high runtime for their number of netlist

primitives. Looking at the components of runtime, we see

that in most benchmarks, ABC (the tool that performs logic

optimization and techmapping in the VTR flow) takes more

time compared to Odin/Yosys and VPR. The bottom graph

in Fig. 5 plots the VTR flow peak memory usage for the

Koios benchmarks. The trendline shows a sub-linear growth in

peak memory requirement as the number of netlist primitives

increases. The lenet and tdarknet designs again have

very high memory usage for their size, and we observe that

VPR consumes the majority of used memory compared to

Odin/Yosys and ABC.

The routing heat maps for some Koios benchmarks are

shown in Fig. 6, where the lighter color correspond to higher

routing congestion. The routing heat maps look very different

for different designs, highlighting the diversity in routing

requirements and patterns of the benchmarks, which exercises

the placement and routing algorithms in different ways. Some

benchmarks have a very regular pattern (e.g. bnn), which

implies heavy usage of LBs (soft logic). In other benchmarks,

we see high routing congestion along columns of hard blocks

(e.g. dnnweaver).

