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Abstract
The speed limit of quantum state transfer (QST) in a system of interacting particles is not only
important for quantum information processing, but also directly linked to Lieb–Robinson-type
bounds that are crucial for understanding various aspects of quantum many-body physics. For
strongly long-range interacting systems such as a fully-connected quantum computer, such a speed
limit is still unknown. Here we develop a new quantum brachistochrone method that can
incorporate inequality constraints on the Hamiltonian. This method allows us to prove an exactly
tight bound on the speed of QST on a subclass of Hamiltonians experimentally realizable by a
fully-connected quantum computer.

As investment into quantum computing platforms continues to grow and the scale of such platforms rapidly
expands [1], transferring a quantum state between two distant qubits becomes an important problem. If the
physical interactions among the qubits are short-ranged, then the speed of information propagation is always
finite according to the Lieb–Robinson bound [2]. As a result, the time for performing quantum state transfer
(QST) within such systems has to be at least proportional to the distance between the two qubits. Recently
however, long-range interacting quantum systems have become increasingly popular for both quantum
computing and quantum simulation, with these systems including trapped ions [3], Rydberg atoms [4],
polar molecules [5], defect centers in solids [6], atoms coupled to cavities and photonic crystals [7]. The
physical interactions in these systems typically decay as a power law 1/rα with r being the inter-particle
distance. For sufficiently small α, these long-range interactions can be utilized to provide speedups for
quantum information processing [8–11] or realize novel quantummany-body dynamics and phases [12–18].
However, the exact degree of possible speedup for performing QST or other important quantum
information processing tasks is unknown [10].

More concretely, with the recent development of optimal Lieb–Robinson-type bounds for a wide-range
of long-range interacting systems [19–25], it has been shown that the speed of QST remains finite as long as
α > 2D+ 1, where D is the dimension of the system. However, for systems where the interaction decays with
α < D, no such optimal Lieb–Robinson-type bound has been found. Nonetheless, these systems are
important as they could provide a dramatic speedup in quantum information processing. For example, a
fully-connected quantum computer [8] (where α= 0) could allow exponentially faster creation of
topologically ordered states when compared to quantum computers with short-range interacting qubits [9].
With respect to the QST, the best known Lieb–Robinson-type bound [26] predicts a time of at least
O(log(N)/N) for α= 0, but the fastest known QST protocol in this case requires a minimum time of
O(1/

√
N) [26].

While it remains challenging to find an optimal Lieb–Robinson-type bound for generic strongly
long-range interacting systems, here we take a different but novel approach to bound the speed limit of QST,
using the framework of the quantum brachistochrone (QB) [27–32]. This approach requires us to study only
a subclass of Hamiltonians relevant for a fully-connected quantum computer but allows us to obtain an
exactly tight bound for the speed of QST. To the best of our knowledge, no such bound has been previously
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obtained for long-range interacting many-body systems. Our work, therefore, bridges an important gap
between the pursuit of optimal Lieb-Robinson-type bounds and the study of quantum speed limits, as the
former often only predicts the correct scaling in the large system size limit [2, 22–25] while the latter is
precise but is usually only obtained for small quantum systems [27–35]. In addition, our work extends the
existing study of QST in spin systems [36–42] that is largely limited to time-independent Hamiltonians and
thus does not predict a speed limit for general, time-dependent Hamiltonians studied here. Our work is also
complementary to other optimal control methods for speeding up quantum information processing tasks
such as the shortcut to adiabaticity [43–47], which seeks to speedup adiabatic processes while preserving
robustness, but does not guarantee a time optimal path in general.

The QB method is an important tool in quantum optimal control theory that aims to find the fastest
Hamiltonian to achieve a certain unitary or a particular state evolution. While the method can provide an
exact speed limit for quantum information processing tasks, it is typically only used for small and simple
quantum systems (such as one or two qubits) [29–32]. More importantly, the application of QB typically
requires the control parameters of the Hamiltonian to satisfy equality constraints. This is not suitable for
studying the speed limit of QST or Lieb–Robinson-type bounds, which usually involves only an upper bound
on the strengths of two-body interactions in the Hamiltonian. Therefore, a major contribution of this work is
to generalize the standard QB method to incorporate inequality constraints. While there exist other methods
in optimal control theory, such as those using Pontryagin’s maximum principle [48], that can also deal with
inequality constraints [49], our QB based method is technically simpler and more intuitive.

The remaining content of this paper is organized as follows: In section 1, we introduce the particular
problem we are trying to solve, i.e. finding the speed limit of QST for a subclass of Hamiltonians realizable by
a fully-connected quantum computer. In section 2, we introduce the standard QB method and our extension
of it to incorporate inequality constraints. In section 3, we analytically solve the equations from our
generalized QB method and obtain an exact speed limit for the QST defined in section 1. The details of the
solution are presented in the appendix A. Finally, in section 4, we discuss the implications of our results
along with future directions our work can point toward.

1. The quantum state transfer problem

In this paper, we consider the problem of (perfect) QST between two qubits in an N-qubit system [36].
Specifically, the goal of QST is to transfer an arbitrary unknown state c0|0⟩+ c1|1⟩ from one qubit to another
qubit. Without loss of generality, we may label the source qubit as our qubit 1 and the target qubit as our
qubit N. We may further assume that the target qubit is initially in state |0⟩ before the QST and the source
qubit is in state |0⟩ after the QST. This assumption can be easily made true via single-qubit gates. Finally, we
will always assume all remaining qubits {2,3, . . . ,N− 1} ≡ A to be in some state |ψA⟩ before and after the
QST. With these assumptions in place, the process of QST can be expressed as:

(c0|0⟩+ c1|1⟩)⊗ |ψA⟩⊗ |0⟩ → |0⟩⊗ |ψA⟩⊗ (c0|0⟩+ c1|1⟩) . (1)

Next, we define the class of Hamiltonians considered to achieve the QST described above. For most
controllable quantum systems, the interactions among the qubits are two-body, and we can write a general
form of the Hamiltonian as:

H=
∑
i̸=j

hij (t)+
∑
i

hi (t) (2)

Due to the allowed time dependence, this Hamiltonian can represent any quantum circuit made of
single-qubit and two-qubit gates, and can thus achieve universal quantum information processing. For most
experimental systems, the two-qubit interaction strength, quantified by ∥hij∥ where ∥·∥ denotes the operator
norm of hij, is limited by the hardware design, while the strength of single-qubit terms {∥hi∥} can usually be
made much larger via strong applied drives or fields. As a result, it is reasonable to assume that {∥hi∥} are
not constrained while ∥hij∥ is upper bounded by J0/rαij , where J0 denotes the maximum interaction strength
and α⩾ 0 captures how fast interactions decay in the inter-particle distance rij between qubits i and j. This
assumption is made in most studies of Lieb–Robinson-type bounds [19–25].

In the Heisenberg picture, a Lieb–Robinson-type bound is typically written

∥
[
Ai (t) ,Bj (0)

]
∥⩽ f

(
t, rij
)

(3)

where the operators Ai and Bj act on qubits i and j, respectively, at t= 0. The function f(t, rij) depends on the
exact form of the bound and typically increases monotonically as t increases.
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To see why equation (3) can lower bound the time it takes to perform the QST defined in equation (1),
we set Bj = σx1 and Ai = σ

y
N at t= 0, and assume qubit 1 is initially in the state |0⟩. Then it is simple to see

⟨[Ai(t),Bj(0)]⟩= 2i for a QST assumed to occur in time t. As a result, we must have
f(t, r1N)⩾ ||[Ai(t),Bj(0)]||⩾ 2, which can only be satisfied if t> tLR where tLR depends on f(t, rij) and r1N. If
the globally minimum time to perform QST is denoted by tmin, we call the bound equation (3) (qualitatively)
optimal when tLR ⩾ ctmin where the constant c is independent of r1N and N. In other words, the speed limit
predicted by the Lieb–Robinson-type bound is only loose by a constant factor.

Optimal Lieb–Robinson-type bounds have recently been found for a wide-range of quantum
information processing tasks [22, 23, 25] when α > D, but remain largely undiscovered for the case where
α < D. For α < D, we often call interactions ‘strongly long-ranged’ [26] since the total interaction energy per
qubit diverges in N. In particular, the case of α= 0 corresponds to a fully-connected universal quantum
computer where any two qubits can interact at equal strength. Such a quantum computer can be
experimentally realized by trapped ions [8], superconducting qubits [50], atoms coupled to cavities or
waveguides [7, 51], etc. In a fully-connected quantum computer, the physical distance between any two
qubits is irrelevant, and the QST time should only depend onN. The best known Lieb–Robinson-type bound
[26] predicts a minimum QST time tmin ⩾ O(log(N)/N). However, this bound is believed to be non-optimal
as the fastest QST protocol known for α= 0 takes time t= O(1/

√
N).

It is worth mentioning that the fastest QST protocols known for long-range interacting systems so far are
conditioned on the intermediate qubits {2,3, . . . ,N− 1} being in some specific state, usually the state
|ψA⟩= |0⟩⊗N−2 [9, 10, 24–26]. An unconditional QST, which is similar to a remote two-qubit gate, does not
have this requirement of the intermediate qubits being in some specific state, but appears to take a much
longer time than a conditional QST [10]. We therefore only focus on conditional QST in this paper as our
goal is to find the fastest QST protocol for a fully-connected quantum computer. In particular, we will
assume from this point that all intermediate qubits are in the |0⟩ state before and after the QST. This
condition can be easily realized via initial state preparation on a quantum computer.

In order to find an exact speed limit of QST, we need to further constrain the general Hamiltonian
expressed in equation (2). A reasonable constraint is to require the Hamiltonian to conserve the total
σz ≡

∑N
i=1σ

z
i . This constraint is compatible with the QST process defined in equation (1), and leads the

Hamiltonian in equation (2) to simplify to

H(t) =
∑
i̸=j

(
Jij (t)σ

+
i σ

−
j + h.c.+Uij (t)σ

z
i σ

z
j

)
+
∑
j

Bj (t)σ
z
j . (4)

We emphasize that this constraint is in fact natural for most quantum computing or simulation
platforms where the physical interactions among qubits are flip–flop, Heisenberg, or XXZ interactions. Such
a constraint is also assumed in most previous studies on QST in spin systems [37–42]. For platforms with
Ising interactions, this constraint can also be approximately achieved by applying a large transverse field in
the z direction, effectively reducing the Ising interactions to flip-flop interactions [12, 17]. We also note that
the ZZ-interaction terms {Uij(t)σzi σ

z
j } are not important as they play the same role as the field terms

{Bj(t)σzj } for our QST process because we only ever have one qubit in state |1⟩. Thus we will only need to
constrain the flip–flop interaction strength. For a fully-connected quantum computer, the constraint we
apply to equation (4) will simply be

|Jij (t) |⩽ J0. (5)

A bound on the speed of QST in this case has been derived by mapping equation (4) to non-interacting
bosons/fermions, which predicts tmin ⩾ 1/(J0

√
N− 1) [26]. This bound is qualitatively optimal as [26]

includes a QST protocol with t= π/(J0
√
N− 2) (N⩾ 3 assumed).

The main results of this paper are:

1. For any N⩾ 2, we find a family of spin Hamiltonians of the form in equation (4) that achieves perfect
QST in time

t=
π

J0
√
2N

. (6)

2. We prove rigorously that this is the globally minimum QST time assuming the Hamiltonian in
equation (4) is invariant under the permutations of the qubits 2,3, . . . ,N.

The additional assumption on permutation symmetry is natural due to the constraint in equation (5)
and the setup of our QST. We do not believe a faster QST protocol could exist without this assumption and
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will provide justifications and possible ways to prove them in section 4. This assumption is also not needed
for N = 3.

The permutation symmetry allows us to restrict the QST to within a subspace spanned by the following
four basis states:

|ϕ0⟩ ≡ |0⟩⊗ |0⟩⊗(N−2) ⊗ |0⟩, (7)

|ϕ1⟩ ≡ |1⟩⊗ |0⟩⊗(N−2) ⊗ |0⟩, (8)

|ϕ2⟩ ≡ |0⟩⊗ |WN−2⟩⊗ |0⟩, (9)

|ϕ3⟩ ≡ |0⟩⊗ |0⟩⊗(N−2) ⊗ |1⟩, (10)

where |WN−2⟩ ≡ 1√
N−2

(|10 · · ·0⟩+ · · ·+ |0 · · ·1⟩) is the W-state for qubits 2,3, . . . ,N− 1. Since |ϕ0⟩ is an
eigenstate of the Hamiltonian in equation (4), the non-trivial dynamics of the Hamiltonian can be captured
by an effective 3-level Hamiltonian in the subspace spanned by {|ϕ1⟩, |ϕ2⟩, |ϕ3⟩}:

Heff (t) =

 δ1 (t) J1A (t) J1N (t)
J∗1A (t) δA (t) JAN (t)
J∗1N (t) J∗AN (t) δN (t)

 , (11)

where the constraint given by equation (5) now becomes

|J1N (t) |⩽ J0, |J1A (t) |, |JAN (t) |⩽
√
N− 2J0. (12)

while δ1(t), δA(t), δN(t) are unconstrained. Now our goal is to find the optimal Heff satisfying the constraints
in equation (12) that takes the state |ϕ1⟩ to |ϕ3⟩ in minimal time. This is a much simpler problem but still
highly non-trivial due to the time dependence of all matrix elements inHeff, such that we are optimizing over
infinitely many possible 3-level Hamiltonians. As it is impossible to find the analytical solution to the
evolution operator of equation (11), one cannot obtain the time optimal Hamiltonian directly.

The QB method [27–32] offers us a way to deal with this type of problem, but it does not permit
inequality constraints as given in equation (12). As a result, we will need to first generalize the QB method to
handle our constraints, as detailed in the next section.

2. A quantum brachistochrone method for inequality constraints

We introduce here an extension to the QB method first developed in [27] that allows for the consideration of
problems containing both inequality and equality constraints on the Hamiltonian. This extension is not only
necessary to find the time optimal Hamiltonian of the form equation (11) under the constraints in
equation (12), but may also be helpful in dealing with more general Hamiltonians in equation (2) with
bounded interaction strengths.

We note that [49] has also developed an extension to the standard QB method that allows for inequality
constraints, but it uses Pontraygin’s maximum principle [48] and the formalism is quite involved. Moreover,
it does not intuitively demonstrate the physical difference between a QB problem with equality and
inequality constraints. Here we utilize a distinct approach based on the method of slack variables, which
intuitively speaking, divides the optimization problem into two scenarios: one where the inequality
constraint is simply removed and the other where the inequality constraint becomes an equality constraint.

Formally, the method of slack variables allows us to change all inequality constraints on the Hamiltonian
to equality constraints in the form of fj(H, sj) = 0 for the jth constraint, where sj is a slack variable. For
example, the constraint |J1N(t)|⩽ J0 can be rewritten as |J1N(t)|2 + |s(t)|2 = |J0|2 with a slack variable s(t)
added.

We can now introduce our generalized QB method, which also includes a brief review of the standard QB
method. Suppose we want to find the minimal evolution time T for a particular Hamiltonian H(t) to
generate a target unitary operator U0. We can formulate this problem as an optimization problem for

minimizing the functional T=
´ T
0 dt over the Hamiltonian H(t) and the corresponding evolution operator

U(t) under the constraints of the Hamiltonian specified by {fj(H, sj)} and the Schrodinger’s equation
dU(t)/dt=−iH(t)U(t). We can then define an action integral [27, 29, 49]

S≡
ˆ T

0
dt [1+ LS + LC] (13)

LS ≡ Tr

[
F(t)

(
i
dU(t)

dt
U(t)† −H(t)

)]
(14)

4
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LC ≡
∑
j

λj (t) fj
(
H, sj

)
(15)

where both F(t) (which is a matrix/operator) and {λj(t)} (which are scalars) are Lagrange multipliers. Since
H(t) is Hermitian, we can assume F(t) is Hermitian and {λj(t)} are real without loss of generality.

If T is minimized by a time optimal Hamiltonian H(t), according to the variational principle, the
variations of S with respect to H(t), U(t), F(t), {λj(t)}, {sj(t)}, and T should all vanish. In particular, the
variation of S with respect to H(t) leads to the equation that defines F(t):

F(t) =
∑
j

λj (t)
∂fj
(
H, sj

)
∂H

. (16)

The variation of S with respect to U(t) leads to the so-called QB equation:

i
dF(t)

dt
= [F(t) ,H(t)] . (17)

The variation of S with respect to T and U(T) leads to a normalization condition:

Tr [F(t)H(t)] = 1. (18)

The variation of S with respect to λj(t) gives the constraint equation:

fj
(
H, sj

)
= 0. (19)

And finally, the variation of S with respect to the slack variables sj(t) leads to:

λj (t)
∂fj
(
H, sj

)
∂sj

= 0. (20)

This last equation is our key addition to the standard QB method. Let us try to understand intuitively

what it means. According to equation (20), we need to have either λj(t) = 0 or
∂f j(H,sj)

∂sj
= 0. Notably, the case

where λj(t) = 0 is equivalent to removing the constraint fj(H, sj) from the action, while the other possible

case where
∂f j(H,sj)

∂sj
= 0 leads to sj(t) = 0. As an example, we consider the inequality constraint |J1N(t)|⩽ J0,

which is captured by f(H, s)≡ |J1N(t)|2 + |s(t)|2 − |J0|2 = 0. It is easy to see that ∂f(H,s)
∂s = 0 leads to s(t) = 0,

and we end up with an equality constraint given by |J1N|= J0. On the other hand, when the slack variable
s(t) ̸= 0, we end up with |J1N(t)|< J0, and we treat |J1N(t)| as effectively unconstrained while solving the QB
equation and enforce the inequality only after finding the relevant solution.

However, because both λj(t) and sj(t) are time-dependent, it appears that we have to consider the above
two cases for every value of time t for equation (20). Fortunately, we can avoid this complication by
exploiting the fact that all variables in the action S are smooth functions of t as long as the Hamiltonian H(t)
is a smooth function of t, which is indeed true for any physical (experimentally realizable) Hamiltonian. As a
result, at least one of the following two conditions will always hold: (1) λj(t) = 0 for all t, and (2) sj(t) = 0 for
all t. It is easy to check if neither of the conditions hold, at least one of λj(t) and sj(t) has to be discontinuous
at some value of t. To avoid double counting the case where λj(t) = sj(t) = 0 for all t, we will implicitly
assume that sj(t) is not always zero for case (1). As we show below for our concrete QB problem defined in
section I, this continuity analysis is crucial to making the inequality constraints manageable.

3. Finding the fastest QSTHamiltonian

With the aforementioned recipe for treating inequality constraints in place, our next step is to solve
equations (16)–(20) together with the boundary condition that U(T) fulfills the QST. The solution obtained
will form the necessary conditions for H(t) to be time optimal. We note that this will lead us to obtain a
familyH of H(t) that are all at least locally time optimal Hamiltonians, and we need to compare all members
ofH to find the globally time optimal Hamiltonian among them in order to identify the speed limit of QST.

To do so, let us further simplify our effective Hamiltonian Heff by going into an interaction picture of its
diagonal part (which only add phases to the basis states)

HI
eff (t) =

 0 J̃1A (t) J̃1N (t)
J̃∗1A (t) 0 J̃AN (t)
J̃∗1N (t) J̃∗AN (t) 0

 , (21)

5
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with the constraints:

|̃J1A (t) |= |J1A (t) |⩽
√
N− 2J0 (22)

|̃JAN (t) |= |JAN (t) |⩽
√
N− 2J0 (23)

|̃J1N (t) |= |J1N (t) |⩽ J0. (24)

Since HI
eff(t) has zero diagonals, we need to add two more constraints

Tr

H(t)

1 0 0
0 0 0
0 0 −1

= 0 (25)

Tr

H(t)

1 0 0
0 −2 0
0 0 1

= 0 (26)

while a third constraint of Tr[H(t)] = 0 is not needed as removing the constraint only contributes to a global
phase [27].

Our goal now is to find the time optimal Hamiltonian HI
eff(t) that fulfills the QST, which requires

evolving the state |ϕ1⟩ to |ϕ3⟩ (defined in equation (7)) up to a phase. The evolution operator in the
interaction picture thus needs to take the following form at time T (end of the state transfer):

U(T) =

 0 0 eiϕ

cosθe−iα − sinθe−iβ 0
sinθeiβ cosθeiα 0

 (27)

where θ,α,β are arbitrary angles. The phase ϕ is not important as one can apply a single-qubit gate (which is
assumed to take negligible time) on qubit N at the end of the evolution to make sure the phase acquired by
|ϕ0⟩matches the phase acquired by |ϕ1⟩ (which evolves to |ϕ3⟩).

Introducing five Lagrange multipliers λ1A, λAN, λ1N, λ1, and λ2 for the above five constraint equations
(equations (22)–(26)), respectively, the F(t) operator in equation (16) takes the form:

F(t) =

λ1 +λ2 λ1AJ1A λ1NJ1N
λ1AJ∗1A −2λ2 λANJAN

λ1NJ∗1N λANJ∗AN −λ1 +λ2

 (28)

where to simplify the notation we suppress the time-dependence of all terms in equation (28) and exchange
J̃1N, J̃1A, and J̃AN for J1N, J1A, and JAN as they obey the same constraints.

The normalization condition equation (18) now reduces to:

λ1A|J1A|2 +λAN|JAN|2 +λ1N|J1N|2 = 1. (29)

And to deal with the inequality constraints, we require from equation (20) that

λ1A (t) s1A (t) = 0 (30)

λAN (t) sAN (t) = 0 (31)

λ1N (t) s1N (t) = 0. (32)

As we discussed towards the end of section 2, each equation above requires us to investigate two different
cases, resulting in the eight different cases listed in table 1. For each case, we shall solve the QB equation
(equation (17)) together with the above equations (27)–(29). We defer the detailed solutions of each case to
appendix A, and provide a summary of them in table 1.

In each case of table 1, whenever a member of the set of slack variables {s1A(t), sAN(t), s1N(t)} is set to
zero for all time, the corresponding interaction strength {J1A(t), JAN(t), J1N(t)} is maximized for all time. On
the other hand, if a member of the set of Lagrange multipliers {λ1A(t),λAN(t),λ1N(t)} is set to zero for all
time, then the corresponding interaction strength cannot be maximized at all time (otherwise it reduces to
the previous case). And since each interaction strength must vary smoothly in time, the interaction strength
can only be maximized at a finite number (including zero) of specific time points in this case.

We provide some intuitive explanations of the results in table 1: case 1 will not have a minimum in the
QST time because all interaction strengths {J1A(t), JAN(t), J1N(t)} are not maximized for at least some finite
period of time. It is therefore always possible to speed up the QST by maximizing at least one of

6
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Table 1. Summary of the solutions to the QB equation (equation (17)) and accompanying equations (27)–(29) for eight different cases
resulting from the three inequality constraints equation (30)–(32) The cases where no minimum time exists is due to an empty set of
solutions to these equations. If the solution set is non-empty, we analytically solve the Hamiltonians obeying such solutions and find the

minimum QST time. In case 7, J1N ≡ 1
T

´ T
0 J1N(t)dt.

# Case Minimum QST Time T

1 λ1A = λAN = λ1N = 0 No minimum
2 s1A = λAN = λ1N = 0 No minimum
3 sAN = λ1A = λ1N = 0 No minimum
4 s1A = s1N = λAN = 0 No minimum
5 sAN = s1N = λ1A = 0 No minimum
6 s1N = λ1A = λAN = 0 π/(2J0)

7 s1A = sAN = λ1N = 0 π/
√

2(N− 2)J20 + 4|J1N|2

8 s1A = sAN = s1N = 0 π/(J0
√
2N)

{J1A(t), JAN(t), J1N(t)} while increasing the other two proportionally for a finite period of time. Cases 2–5
share a common structure that the interaction strengths are not mirror symmetric, i.e. J1A(t) ̸= JAN (t) for
some finite period of time. It makes intuitive sense that a non-mirror-symmetric Hamiltonian is likely not
time optimal, although the actual proof of this is much more involved (see appendix A). Case 6 in fact
requires J1A = JAN = 0 after solving the QB equation and therefore the effective Hamiltonian reduces to a
two-level Hamiltonian with a direct coupling strength of |J1N(t)|= J0 between basis states |ϕ1⟩ and |ϕ3⟩,
where it is easy to show that the minimum QST time is simply given by π/(2J0). The optimal Hamiltonians
in case 7 and case 8 are similar, with the only difference being in case 7 that one cannot maximize |J1N(t)| for
all time. Case 7 reduces to case 8 upon setting |J1N(t)|= J0.

Case 8 offers the fastest QST protocol of all cases, and we can in fact construct a simple time-independent
Hamiltonian Hopt

eff in the Schrodinger picture that satisfies case 8:

Hopt
eff =

 0
√
N− 2J0 J0√

N− 2J0 −3J0
√
N− 2J0

J0
√
N− 2J0 0

 . (33)

Note that there are other equivalently time optimal Hamiltonians satisfying case 8, such as−Hopt
eff . A

family of spin Hamiltonians in the form of equation (4) can be mapped to Hopt
eff . One simple example is:

Hopt = J0

∑
i̸=j

(
σ+
i σ

−
j + h.c.

)
− N

2
(σz1 +σzN)

 . (34)

This Hamiltonian can be readily implemented in many experimental platforms with uniform, all-to-all
interactions, such as trapped ions [3], neutral atoms in an optical lattice coupled to a cavity [51], circuit QED
systems [50], or atoms trapped near a photonic waveguide [7]. Individual addressing of the qubits is required
as one needs to apply a different field along z on the source and target qubits. This Hamiltonian was also
previously found in the study of perfect QST in fully-connected graphs [52].

For experimental realization of the time-optimal QST Hamiltonian in equation (34), one potential
concern is that the experimental Hamiltonian is usually subject to noise or imperfect control. If the fidelity of
the QST deteriorates with an increasing number of qubits, then the speedup of the QST brought by
additional qubits may not be useful in practice. Fortunately, as shown in appendix B, we find that noise on
the interaction and/or the field strengths in equation (34) actually have vanishing effects on the fidelity of
QST as N increases, assuming that the noise has a finite amplitude. This means high-fidelity, time-optimal
QST can be practically achieved for a large number of qubits.

A drawback of the above optimal spin Hamiltonian Hopt is that the field strength diverges in N, which
makes it harder to control the field strength accurately for a larger N. Here we also construct an alternative
spin Hamiltonian that maps to the same optimal effective Hamiltonian Hopt

eff but has a constant field strength
applied to the source and target qubits:

H ′
opt =J0

[
σ+
1 σ

−
N +

(
N−1∑
i=2

σ+
i

)(
σ−
1 +σ−

N

)
+ h.c.

]
− 3

2
J0 (σ

z
1 +σzN) . (35)

The main drawback of this equally optimal Hamiltonian is that one needs to remove the uniform couplings
among the qubits 2,3, . . . ,N− 1, which is more challenging to achieve experimentally. Nonetheless, we
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anticipate that noise on the interaction and/or the field strengths in equation (35) will have vanishing effects
on the fidelity of QST as N increases similarly to in the case of noise in equation (B2) due to the similarity
between the two protocols. To our best knowledge, this Hamiltonian has not been previously found.

At T= π/(J0
√
2N), one can verify that e−iHoptT|ϕ0⟩ ∝ |ϕ0⟩ and e−iHoptT|ϕ1⟩ ∝ |ϕ3⟩, with some phases

that only depend on N. The same applies to H ′
opt. The desired QST described by equation (1) with

|ψA⟩= |0⟩⊗N−2 can then be achieved after performing a single-qubit gate (assumed to take negligible time)
on the target qubit to cancel the unwanted phases.

4. Conclusion and outlook

In this paper, we aimed to find the globally time optimal Hamiltonian for realizing QST in a subclass of
Hamiltonians relevant for a fully-connected computer. By developing a new QB method that can deal with
inequality constraints, we have been able to find the exact minimum time needed for QST to be
implemented, with an additional assumption on the permutation symmetry of the Hamiltonian over the
intermediate qubits. The QB method also allows us to construct a family of explicit, time-independent
Hamiltonians that can be experimentally realized to achieve the exact speed limit of QST. This is in contrast
to existing QST protocols for long-range interacting systems [9, 10, 24, 26] that are only qualitatively optimal.

Concretely, we recall that for spin-systems where the physical interactions decay as 1/rα with r being the
inter-particle distance, qualitatively optimal bounds on the time to perform QST have only been discovered
for the case of α > D with protocols existing that perform QST in a time that scales as O(log r) for
D< α < 2D [10]. However, in the cases of 0< α < D, the best known lower bound on the time to perform
QST scales as O(log(N)/N1−α

D ) and is conjectured to be loose. Our work demonstrates that this best known
Lieb–Robinson bound is certainly loose with respect to the important subclass of Hamiltonians considered
here, and we conjecture that a qualitatively optimal bound for 0< α < D should scale as 1/N

1
2−

α
D . Our

results also improve the speed of the fastest known QST protocols [26] for 0< α < D by a factor of at least√
2. For noisy intermediate scale quantum computers, even a constant factor of speedup can noticeably

improve the overall fidelity of the quantum circuit [1]. Important to this point, we have also shown that our
time-optimal QST Hamiltonian is very robust to control noises. In fact, noises of finite amplitude have
vanishing effects on the fidelity of QST as the number of qubit increases.

In the future, we expect the QB method we develop here, with its ability to intuitively deal with inequality
constraints, to be helpful in many other quantum optimal control problems where the interaction/drive
strengths are only upper bounded. For a Hamiltonian withM inequality constraints, we need to deal with 2M

cases. But as in the problem we studied, if certain symmetries are enforced, the number of independent
constraints can be drastically reduced.

An immediate open question following this work is whether one can relax the permutation symmetry
assumption we enforced on the Hamiltonian. We expect a positive answer based on how the spatial inversion
(mirror) symmetry naturally emerges in the time optimal Hamiltonian from our solutions to the relevant
QB equations (i.e. the cases in table 1 violating the mirror symmetry all lead to no time optimal
Hamiltonians). The permutation symmetry would likely require a much more cumbersome calculation. One
possible way we are currently investigating to carry out such a calculation is to develop a software algorithm
that can solve the QB equations automatically. Such an algorithm will also allow solutions to a variety of
quantum optimal control problems for much larger systems.

Another future direction related to the current work is to find the speed limit of unconditional QST
protocols or two-qubit gates for a fully-connected quantum computer or more generally, strongly long-range
interacting systems. We expect our generalized QB method to be useful in this endeavor at least for small
system sizes, and finding time optimal two-qubit gates is important for NISQ quantum computers even if
only a small number of qubits are interacting with each other [53]. The alternative approach to finding such
a speed limit is through the derivations of optimal Lieb-Robinson-type bounds using the Frobenius norm
instead of the operator norm, and such bounds can also be used to determine the speed limit of quantum
information scrambling [54, 55]. This approach is likely capable of providing the correct scaling of the speed
limits and can be complemented by the QB method-based approach we develop here to find more accurate
speed limits.

Finally, it is interesting to see whether QB or other methods in quantum optimal theory can be applied to
bound the speed limits for multi-qubit gates or the generation of many-body entangled states. Alternatively,
it is also worth exploring whether the lack of scalability in most quantum optimal control methods could be
compensated by the recently developed Lieb–Robinson-type bounds which often apply to thermodynamic
systems but lack the precision needed for finite quantum systems.
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Appendix A. Detailed solutions for all cases in table 1

In this appendix, we provide the details of how we solve the QB equation (equation (17)) together with the
equations (27)–(29) for all cases listed in table 1.

Defining NA ≡ N− 2 and taking |J1A(t)|⩽ J0 and |JAN(t)|⩽ J0, we note that equation (17) reduces to:

dλ1
dt

=
dλ2
dt

= 0

i
d(λ1AJ1A)

dt
= (−λ1 + 3λ2) J1A +(−λ1N +λAN) J1NJ

∗
AN

i
d(λANJAN)

dt
= (−λ1 + 3λ2) JAN +(−λ1A +λ1N) J1NJ

∗
1A

i
d(λ1NJ1N)

dt
=−2λ1J1N −NA (λ1A −λAN) J1AJAN. (A1)

The boundary condition equation (27) becomes:

λ1 = 0

6λ2 cos
2 θ =

√
NA|λANJAN| sin2θ cos(α+β− arg [JAN])

λ1AJ1A = λAN

(
JAN cos

2 θei2α − J∗AN sin
2 θe−i2β

)
+ 3

λ2√
NA

sinθ cosθei(α−β)

λANJAN = e−iϕ

(
λ1N√
NA

J∗1N cosθe
−iα −λ1AJ

∗
1A sinθeiβ

)
λ1N√
NA

J1N = e−iϕ

(
λ1N√
NA

J∗1N sinθe
−iβ +λ1AJ

∗
1A cosθeiα

)
. (A2)

To proceed, we will look at each of the eight cases listed in table 1 one after the other.

A.1.λ1A = λAN = λ1N = 0
This case directly contradicts with equation (29) and thus will not lead to any locally time optimal
Hamiltonian.

A.2. s1A(t) = λAN(t) = λ1N(t) = 0
In this case, we replace J1A(t) with J0e−iϕ1A(t). The equations (A1) and (A2) now become:

1= 2NAλ1AJ0

λ2 cos
2 θ = 0

λ1AJ0e
−iϕ1A =

3λ2 sin2θei(α−β)

2
√
NA

0=
√
NAλ1AJ0 sinθe

−i(ϕ−β−ϕ1A)

0=
√
NAλ1AJ0 cosθe

−i(ϕ−α−ϕ1A). (A3)

These equations are self-contradictory and again indicate that there is no locally time optimal Hamiltonian
in this case.
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A.3. sAN(t) = λ1A(t) = λ1N(t) = 0
This case is very similar to case 2. Replacing JAN(t) with J0e−iϕAN(t), equations (A1) and (A2) become:

1= 2NAλANJ0

λ2 cos
2 θ =

√
NAλANJ0 sin2θ cos(α+β−ϕAN)

0= λANJ0
(
cos2 θei(2α−ϕAN) − sin2 θe−i(2β−ϕAN)

)
+

3λ2 sinθ cosθei(α−β)

√
NA

0=
√
NAλANJ0e

−iϕAN . (A4)

These equations are again self-contradictory and indicate that there is no locally time optimal Hamiltonian
in this case.

A.4. s1A(t) = s1N(t) = λAN(t) = 0
Replacing J1A(t) with J0e−iϕ1A(t) and J1N(t) with J0e−iϕ1N(t) in equation (A1), the equation reduces to:

dλ1A
dt

= λ1N|JAN| sin(ϕ1N −ϕ1A − arg(JAN))

λ1A
dϕ1A
dt

=−3λ2 −λ1N|JAN|cos(ϕ1N −ϕ1A − arg(JAN))

dλ1N
dt

=−NAλ1A|JAN| sin(ϕ1N −ϕ1A − arg(JAN))

λ1N
dϕ1N
dt

=−NAλ1A|JAN|cos(ϕ1N −ϕ1A − arg(JAN))

0= 3JANλ2 − (λ1A −λ1N) J
2
0e

−i(ϕ1N−ϕ1A). (A5)

The same replacements in equation (A2) lead to:

1= 2(NAλ1A +λ1N) J
2
0

λ2 cos
2 θ = 0

λ1AJ0e
−iϕ1A =

3λ2 sin2θei(α−β)

2
√
NA

0= λ1N cosθe
i(ϕ1N−α) −

√
NAλ1A sinθei(ϕ1A+β)

λ1Ne
−i(ϕ1N−ϕ) =

√
NAλ1A cosθei(α+ϕ1A) +λ1N sinθe

i(ϕ1N−β) (A6)

implying that either λ2 = 0 or cosθ = 0 such that we will always have λ1A(T) = 0.
The first case implies (from equation (A5)) that λ1A = λ1N which leads to a contradiction in

equation (A6). Therefore, any generated unitary of the form in equation (27) for this case must have
cosθ = 0 such that equation (A6) further reduces to:

1= 2(NAλ1A +λ1N) J
2
0

0= λ1A (T) = λ1A (0)

λ1Ne
−iϕ1N =±λ1Nei(ϕ1N−ϕ−β). (A7)

By taking the derivative with respect to t of the first equality of equation (A7), we find:

dλ1N
dt

=−NA
dλ1A
dt

. (A8)

Combining equations (A5) and (A8):

dλ1A
dt

= λ1A|JAN| sin(ϕ1N −ϕ1A − arg(JAN))

= λ1N|JAN| sin(ϕ1N −ϕ1A − arg(JAN)) (A9)

such that equation (A9) can be satisfied only if λ1A = λ1N, |JAN(t)|= 0, or sin(ϕ1N −ϕ1A − arg(JAN)) = 0,
which implies dλ1A

dt = dλ1N
dt = 0. Combined with equation (A7), this requires λ1A = 0, λ1N ̸= 0 such that

equation (A5) further reduces to:

10
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0=
dϕ1N
dt

= sin(ϕ1N −ϕ1A − arg(JAN))

dϕ1A
dt

=− d

dt
arg(JAN)

cos(nπ) = cos(ϕ1N −ϕ1A − arg(JAN)) , n ∈ Z
3λ2 =−λ1N|JAN|cos(nπ)

|JAN|2 = J20. (A10)

Thus, equation (A10) requires us to replace JAN with±J0e−iϕAN such that we can transform the Hamiltonian
of the form in equation (21) to a basis where it is real-valued

H ′ (t) = e−i
´ t
0 dτHϕ(τ) (H+Hϕ)e

i
´ t
0 dτHϕ(τ)

=

 c1A
√
NAJ0 J0√

NAJ0 0 ±
√
NAJ0

J0 ±
√
NAJ0 c1A

 (A11)

where c1A =− dϕ1A
dt is potentially time-dependent and Hϕ is given by:

Hϕ =

c1A 0 0
0 0 0
0 0 c1A

 . (A12)

Note that the above basis transformation does not affect the universality class of equation (27). Then, a
second iteration of the QB method can be performed on equation (A11) with respect to

F ′ (t) =

 λ ′
1

√
NAλ

′
1A λ ′

1N√
NAλ

′
1A 0 ±

√
NAλ

′
1A

λ ′
1N ±

√
NAλ

′
1A −λ ′

1

 (A13)

such that equations (17) and (18) lead to:

1= 2(2NAλ
′
1A +λ ′

1N) J0

0= λ ′
1 =

dλ ′
1A
dt

=
dλ ′

1N

dt
0= λ ′

1A (c1A ∓ J0)±λ ′
1NJ0. (A14)

Equation (A14) can only be satisfied when c1A is a constant such that the unitary operator generated by
equation (A11) can be expressed as:

U± (t) =

u±11 u±12 u±13
u±12 u±22 ±u±12
u±13 ±u±12 u±11


u±11 =

eit(c1A±J0)

2
+

ei
t
2 (c1A∓J0)

2

(
cos

tω±

2
+ i

c1A ∓ J0
ω±

sin
tω±

2

)
u±12 =−iei

t
2 (c1A∓J0) 2Ω1

ω±
sin

tω±

2

u±13 =±
(
u11 − eit(c1A±J0)

)
u±22 = ei

t
2 (c1A∓J0)

(
cos

tω±

2
− i

c1A ∓ J0
ω±

sin
tω±

2

)
ω± =

√
8NAJ20 +(c1A ∓ J0)

2
. (A15)

In order for equation (A15) to be equivalent to a state transfer unitary operator of the form in equation (27),
we require that u±12 = 0 such that t= 2mπ

ω±
wherem ∈ N in order to respect the ambiguity of the phase

associated with evolving with respect to t. Further, we must require that u±11 = 0, such that m(c1A±3J0)
ω = η

where η = 2n whenm= odd and η = (2n+ 1) whenm= even with n ∈ Z. Now, to determine what value of
c1A ± 3J0 andm will minimize t, we will solve the related problem

11
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minimize g(x,y) =
x√

q2 + y2

given
y− r√
q2 + y2

= γ =
z

x
, |z± x|⩾ 1 and x⩾ 1 (A16)

where q and r are some constants. Then, we will find that

y=
r± |γ|

√
r2 +(1− γ)

2 q2

1− γ2
(A17)

such that equation (A17) is clearly maximal when γ→ 1 which is nearest met when γ = x±1
x . Further,

without loss of generality, we can take γ ⩾ 0 and r⩾ 0 such that

y=

− rx2+(x+1)
√

r2x2−(2x+1)q2

2x+1 , γ = x+1
x

− rx2+(x−1)
√

r2x2+(2x−1)q2

2x−1 , γ = x−1
x .

(A18)

We now take the derivative of g(x,y) from equation (A16) with respect to x after substituting in the
expressions of equation (A18)

dg(x)

dx
=


−(r3x+rs2(x+2)(2x+1)−(r2−s2(2x+1))̃r+)
(2x+1)(r2(x+1)2+r̃2++2rx(1+x)̃r+)̃r+ s̃+

, γ = x+1
x

−(r3x−rs2(x−2)(2x−1)−(r2+s2(2x−1))̃r−)
(2x−1)(r2(x−1)2−r̃2−+2rx(1+x)̃r−)̃r− s̃−

, γ = x−1
x

r̃+ =
√
r2x2 − s2 (2x+ 1)

s̃+ =

√
s2 +

x2

(2x+ 1)2
(rx+(x+ 1) r̃+)

2

r̃− =
√
r2x2 + s2 (2x− 1)

s̃− =

√
s2 +

x2

(2x− 1)2
(rx+(x− 1)̃r−)2. (A19)

By inspection, equation (A19) is a decreasing function of x> 0 when γ = x+1
x and an increasing function of

x> 0 when γ = x−1
x . Given that both of these cases have g(x) asymptotically approach the same value, the

smallest possible value of g(x) occurs for x= 1.
Applying the result of equation (A16), in order for equation (A15) to be equivalent to a state transfer

unitary operator of the form in equation (27), we require that c1A ± 3J0 = 0 andm= 1 such that the target
unitary is generated in a minimum time Tmin =

π√
2NAJ0

. However, in this case we require |J1A(t)|= J0 for all

time, which requires s1A = 0, and hence this case reduces to case 8.

A.5. sAN(t) = s1N(t) = λ1A(t) = 0
This case is very similar to case 4. We can perform the same analysis as case 4 by swapping the qubit labels ‘1’
and ‘N’, and we will find that a locally time optimal QST can only be achieved here if |JAN(t)|= J0 for all
time. This requires sAN = 0 and again reduces to case 8.

A.6. s1N(t) = λ1A(t) = λAN(t) = 0
Replacing J1N(t) with J0e−iϕ1N(t), equations (A1) and (A2) become:

1= 2λ1NJ
2
0

0=
dϕ1N
dt

=
dλ2
dt

0= 3J1Aλ2 + J∗ANλ1NJ0e
−iϕ1N

0= 3JANλ2 + J∗1Aλ1NJ0e
−iϕ1N . (A20)

Given λ1NJ0 ̸= 0, equation (A20) can be satisfied if J1A = JAN = 0 such that ϕ1N is an arbitrary constant, or if
ϕ1N =mπ,m ∈ Z, |J1A(t)|= |JAN(t)|, and arg(J1A) = arg(JAN)+ nπ, n ∈ Z.

In the case where J1A(t) = JAN(t) = 0, the unitary generated by equation (21) can be expressed as:

U(t) =

 cos J0t 0 −ie−iϕ1N sin J0t
0 1 0

−ie−iϕ1N sin J0t 0 cos J0t

 (A21)
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which is equivalent to a state transfer unitary operator of the form in equation (27) in a minimum time of
Tmin =

π
2J0
.

In the case where ϕ1N =mπ,m ∈ Z, |J1A(t)|= |JAN(t)|, and arg(J1A) = arg(JAN)+ nπ, n ∈ Z, the
Hamiltonian operator of the form in equation (21) can be transformed to a basis where it is real-valued

H ′ (t) = e−i
´ t
0 dτHϕ(τ) (H+Hϕ)e

i
´ t
0 dτHϕ(τ)

=

− d
dtarg(J1A)

√
NA|J1A (t) | ±J0√

NA|J1A (t) | 0
√
NA|J1A (t) |

±J0
√
NA|J1A (t) | − d

dtarg(J1A)


Hϕ =

− d
dtarg(J1A) 0 0

0 0 0
0 0 − d

dtarg(J1A)

 (A22)

where this basis transformation does not affect the constraints on the Hamiltonian. Therefore, a second
iteration of the QB method can be performed on equation (A22) with respect to an F ′(t) operator

F ′ (t) =

 λ ′
1 λ ′

3 λ ′
1N

λ ′
3 0 −λ ′

3

λ ′
1N −λ ′

3 −λ ′
1

 (A23)

where equations (17) and (18) become:

1=±2λ ′
1NJ0

0=
dλ ′

1

dt
=

dλ ′
3

dt
=

dλ ′
1N

dt

0=
√
NA|J1A|(λ ′

1 +λ ′
1N)−

(
d

dt
arg(J1A)± J0

)
λ ′
3

0=
√
NA|J1A|(λ ′

1 −λ ′
1N)−

(
d

dt
arg(J1A)± J0

)
λ ′
3

0=
√
NA|J1A|λ ′

3 ± J0λ
′
1. (A24)

In order to satisfy equation (A24), we must require that |J1A|= λ ′
1 = 0. Given the phase term arg(J1A) will

have no physical source, we must further require that d
dtarg(J1A) = 0. Then, the unitary generated by

equation (A22) can be expressed by equation (A21), which is equivalent to a state transfer unitary operator of
the form in equation (27) in a minimum time of Tmin =

π
2J0
.

A.7. s1A(t) = sAN(t) = λ1N(t) = 0
Replacing J1A(t) with J0e−iϕ1A(t) and JAN(t) with J0e−iϕAN(t), equations (A1) and (A2) reduce to:

0= NA (λ1A −λAN) J
2
0

1= 2NA (λ1A +λAN) J
2
0

dλ1A
dt

=−λAN|J1N| sin(arg(J1N)−ϕ1A −ϕAN)

λ1A
dϕ1A
dt

=−3λ2 +λAN|J1N|cos(arg(J1N)−ϕ1A −ϕAN)

dλAN

dt
= λ1A|J1N| sin(arg(J1N)−ϕ1A −ϕAN)

λAN
dϕAN

dt
= 3λ2 −λ1A|J1N|cos(arg(J1N)−ϕ1A −ϕAN) . (A25)

In order to satisfy equation (A25), we must require that λ1A(t) = λAN(t) and
dϕ1A
dt =− dϕAN

dt , such that it can
only be satisfied if |J1N|= 0 or if sin(arg(J1N)−ϕ1A −ϕAN) = 0

In the case where |J1N(t)|= 0, we can transform the Hamiltonian of the form in equation (21) to a basis
where it is constant, real-valued

H ′ (t) = e−i tHϕ (H+Hϕ)e
i tHϕ

=

 c1A
√
NAJ0 0√

NAJ0 0
√
NAJ0

0
√
NAJ0 c1A

 (A26)
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where c1A =− dϕ1A
dt = 12NAλ2J20 and Hϕ is given in equation (A12). Given that c1A is proportional to λ2 it

can be taken as a free parameter. Now, the unitary operator generated by equation (A26) can be expressed

U(t) =

u11 u12 u13
u12 u22 u12
u13 u12 u11


u11 =

e−itc1A

2
+

e−i t2 c1A

2

(
cos

tω

2
− i

c1A
ω

sin
tω

2

)
u12 =−ie−i t2 c1A

√
NAJ0
ω

sin
tω

2
u13 = u11 − e−itc1A

u22 = e−i t2 c1A
(
cos

tω

2
+ i

c1A
ω

sin
tω

2

)
ω =

√
8NAJ20 + c21A. (A27)

In order for equation (A27) to be equivalent to a state transfer unitary operator of the form in equation (27),
we require that u12 = 0 such that t= 2mπ

ω wherem ∈ N in order to respect the ambiguity of the phase
associated with evolving with respect to t. Further, we must require that u11 = 0, such that mc1A

ω = 0 where
η = 2n whenm= odd and η = (2n+ 1) whenm= even with n ∈ Z.

Applying the result of equation (A16), we find that in order for equation (A27) to be equivalent to a state
transfer unitary operator of the form in equation (27), we require that c1A = 0 andm= 1 such that the target
unitary is generated in a minimum time Tmin =

π√
2(N−2)J20

.

In the case where sin(arg(J1N)−ϕ1A −ϕAN) = 0, we can transform the Hamiltonian of the form in
equation (21) to a basis where it is real-valued

H ′ (t) = e−i tHϕ (H+Hϕ)e
i tHϕ

=

c1A − |J1N|
√
NAJ0 |J1N|√

NAJ0 0
√
NAJ0

|J1N|
√
NAJ0 c1A − |J1N|


Hϕ =

c1A − |J1N| 0 0
0 0 0
0 0 c1A − |J1N|

 (A28)

where c1A =− dϕ1A
dt = 12NAλ2J20. Given that c1A is proportional to λ2 it can be taken as a free-parameter,

and because the terms dependent on |J1N(t)| commute with the rest of the Hamiltonian, the unitary operator
generated by equation (A28) can be expressed

U(t) =

u11 u12 u13
u12 u22 u12
u13 u12 u11


u11 =

e−it(c1A−2|J1N|)

2
+

e−i t2 c1A

2

(
cos

tω

2
+ i

c1A
ω

sin
tω

2

)
u12 =−ie−i t2 c1A

√
NAJ0
ω

sin
tω

2

u13 = u11 − eit(c1A−2|J1N|)

u22 = e−i t2 c1A
(
cos

tω

2
+ i

c1A
ω

sin
tω

2

)
ω =

√
8NAJ20 + c21A. (A29)

In order for equation (A29) to be equivalent to a state transfer unitary operator of the form in equation (27),
we require that u12 = 0 such that t= 2mπ

ω wherem ∈ N in order to respect the ambiguity of the phase

associated with evolving with respect to t. Further, we must require that u11 = 0, such that m(c1A−4|J1N|)
ω = 0

where η = 2n whenm= odd and η = (2n+ 1) whenm= even with n ∈ Z.
Applying the result of equation (A16), we find that in order for equation (A29) to be equivalent to a state

transfer unitary operator of the form in equation (27), we require that c1A = 4|J1N|⩽ 4J0 andm= 1 such
that the target unitary is generated in a minimum time Tmin =

π√
2
√

NAJ20+2J
2
1N

⩾ π√
2NJ0

which saturates only

when |J1N(t)|= J0. Hence, at its saturation limit, this case reduces to case 8.
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A.8. s1A(t) = sAN(t) = s1N(t) = 0
This case can be reached by taking |J1N(t)|= J0 in the above case 7, which results in Tmin =

π√
2NJ0

directly.

Alternatively, we can arrive at this case from case 4 or case 5, which results in the same minimal QST time.

Appendix B. Noise analysis for time optimal QSTHamiltonians

In equations (34) and (35), two experimentally realizable Hamiltonians that can implement QST in the
minimal time are presented. In practice, these Hamiltonians will experience some noise in their
implementation. Here we provide an analysis of the performance of QST using equation (34) when the
control on the interaction strengths and single-qubit fields is assumed to be noisy. We expect similar results
for the QST Hamiltonian in equation (35).

We add noise terms to the Hamiltonian in equation (34) as:

Hnoisy =Hopt +
∑
i̸=j

ϵij

(
σ+
i σ

−
j + h.c.

)
+ ϵ1σ

z
1 + ϵNσ

z
N (B1)

where {ϵij} are noisy coefficients sampled from a normal distribution of zero mean and standard deviation
σc, while {ϵ1, ϵN} are sampled from a normal distribution of zero mean and standard deviation σf .

Since this noisy Hamiltonian does not change the state of the system if all qubits are in |0⟩, the fidelity of
the QST for an arbitrary state of the source qubit is lower bounded by the fidelity of performing QST when
the source qubit is in |1⟩. We can express this latter fidelity as

F= ⟨ϕ1|eiHoptte−iHnoisyt|ϕ1⟩ (B2)

where |ϕ1⟩ is defined in equation (7) and t= π√
2N
.

In the following, we will show that the infidelity 1− F should scale linearly in σc and σf , and more
importantly, as 1/

√
N. As a result, as long as the noise amplitudes σc and σf are finite, the infidelity should

vanish in the large N limit. Alternatively, we can argue that the infidelity can remain finite and small as long
as σc,σf ≪

√
N. Therefore, we believe our time optimal QST protocol is robust against control noises.

We first provide some intuitive analysis to explain the above mentioned scaling. If only the noise terms
ϵ1σ

z
1 + ϵNσ

z
N are present in equation (B1), a simple first-order perturbation theory shows that

1− F≈ |⟨ϕ1|(ϵ1 − ϵN) t|ϕ1⟩|. (B3)

Since t= O(1/
√
N), we have 1− F= O(σf/

√
N).

Next, we consider the case where only the noise on the interactions
∑

i̸=j ϵij(σ
+
i σ

−
j + h.c.) are present in

equation (B1). Intuitively, these additional interactions are disordered and should have little effect on the
QST. The time optimal QST achieved by equation (34) is through the collective couplings between the qubits
1,N and the qubits 2,3, . . . ,N. We therefore expect the noise on the interactions to mainly perturb the
collective coupling strength J1A and JAN in equation (11), with an amplitude of σc. Since
J1A = JAN = O(

√
N) for equation (34), as long as σc ≪

√
N, the effective Hamiltonian in equation (11) is

only weakly perturbed and a small infidelity is therefore expected.
We have also performed exact numerical calculations to support the above intuitive analysis. By

averaging 1− F calculated using equation (B2) over 1000 different random realizations of the noisy
Hamiltonian in equation (B1), we show the dependence of this statistically averaged infidelity as a function
of N in figure 1 and as a function of σc or σf in figure 2. We clearly see that the dependence of the infidelity
on N is approximately given by O(1/

√
N), while the infidelity scales linearly with either σc or σf . For a

system of N = 500 qubits, the QST fidelity is above 99.5% even for a fairly large noise amplitude of σc,f = 0.1,
i.e. 10% of the interaction strength.
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Figure 1. Dependence of the QST infidelity on the number of qubits N for fixed noise amplitudes. The blue dots represent 1− F
calculated using equation (B2) for σc = 0.1 and σf = 0, while the red dots correspond to the case of σf = 0.1 and σc = 0. The
blue (red) solid line is a power-law fit to the blue (red) dots.

Figure 2. Dependence of the QST infidelity on the noise amplitudes σc and σf for N= 100 qubits. The blue dots represent 1− F
calculated using equation (B2) for σf = 0 and varying σc , while the red dots have σc = 0 and varying σf . The blue (red) solid line
is a linear fit to the blue (red) dots.
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