CoMeFa: Compute-in-Memory Blocks for FPGAs

Aman Arora*, Tanmay Anand, Aatman Borda, Rishabh Sehgal, Bagus Hanindhito, Jaydeep Kulkarni, Lizy K. John
The University of Texas at Austin
*aman.kbm @utexas.edu

Abstract—Block RAMs (BRAMs) are the storage houses of
FPGAs, providing extensive on-chip memory bandwidth to the
compute units implemented using Logic Blocks (LBs) and Digital
Signal Processing (DSP) slices. We propose modifying BRAMs
to convert them to CoMeFa (Compute-In-Memory Blocks for
FPGAs) RAMs. These RAMs provide highly-parallel compute-
in-memory by combining computation and storage capabilities
in one block. CoMeFa RAMs utilize the true dual port nature
of FPGA BRAMs and contain multiple programmable single-
bit bit-serial processing elements. CoMeFa RAMs can be used
to compute in any precision, which is extremely important
for evolving applications like Deep Learning. Adding CoMeFa
RAMs to FPGA s significantly increases their compute density. We
explore and propose two architectures of these RAMs: CoMeFa-
D (optimized for delay) and CoMeFa-A (optimized for area).
Compared to existing proposals, CoMeFa RAMs do not require
changing the underlying SRAM technology like simultaneously
activating multiple rows on the same port, and are practical
to implement. CoMeFa RAMs are versatile blocks that find
applications in numerous diverse parallel applications like Deep
Learning, signal processing, databases, etc. By augmenting an
Intel Arria-10-like FPGA with CoMeFa-D (CoMeFa-A) RAMs at
the cost of 3.8% (1.2%) area, and with algorithmic improvements
and efficient mapping, we observe a geomean speedup of 2.55x
(1.85x), across several representative benchmarks. Replacing all
or some BRAMs with CoMeFa RAMs in FPGAs can make them
better accelerators of modern compute-intensive workloads.

I. INTRODUCTION

FPGAs are being used to accelerate workloads ranging from
internet search, to baseband processing, to the ubiquitous Deep
Learning (DL). FPGAs contain fine-grained programmable
logic blocks (LBs), fixed-function math units (DSP slices), and
distributed Block Random Access Memory (BRAM) structures
that are connected via a highly configurable interconnection
fabric. BRAMs play a vital role by storing operands and results
on-chip, feeding the compute units with data at a very high
bandwidth.

The current usage paradigms of BRAMs, LBs and DSPs
pose limitations to the acceleration that can be achieved us-
ing FPGAs. The separation of compute units (LBs and DSPs)
from storage units (BRAMs) implies data movement using the
routing/interconnect to feed the compute units with input data
and to store the outputs back to the storage units. This stresses
the routing resources significantly and leads to increased power
consumption.

FPGAs provide the ability to develop hardware for different
precisions. This is especially important for DL applications
because the precision requirements change rapidly. DSP slices,
however, support a limited set of precisions. FPGA program-
mers end up implementing low precision math units on LBs
instead of DSPs, reducing the number of LBs available for other
purposes and leaving DSPs unused.

978-1-6654-8332-2/22/$31.00 © 2022 IEEE

In many large FPGAs deployed in cloud applications, hun-
dreds of MBytes of data can be stored on-chip in BRAMs, en-
abling fully-data-resident acceleration. However, in applications
where on-chip storage requirements are low (e.g. where data is
streamed to the FPGA), BRAMs may be left idle. Additionally,
BRAMs on FPGAs support a limited set of heights and widths.
This can limit the bandwidth available to the compute units
because the data needs to be read out from ports of the BRAM.

In this paper, we solve the limitations mentioned above by
proposing to convert BRAMSs on an FPGA to CoMeFa RAMs. A
CoMeFa RAM block enables computation within the RAM ar-
ray, without transferring the data in or out of it. One-bit bit-serial
programmable processing elements are added at the output of
the sense amplifiers. This transforms the BRAM into a parallel
SIMD (Single Instruction Multiple Data) computation unit. The
availability of true dual port mode in FPGA BRAMs [1][2] is
exploited to read operands.

Computation in any precision can be easily performed in
CoMeFa RAMs without any explicit hardware because it uses
bit-serial compute [3]. CoMeFa RAMs reduce the dependence
on routing/interconnect and hence increases the routability of
the FPGA. Data movement is reduced because the computation
is done in the RAM itself, thereby saving power. Since the data
is not moved in/out of the RAM block, port limitations do not
restrict the available bandwidth. Instead, the internal physical
geometry of the RAM, which is typically higher than port width,
governs the effective bandwidth. The compute throughput of
the FPGA is increased significantly owing to the massive par-
allelism that is unlocked because of the existence of numerous
RAM blocks on an FPGA.

CoMeFa RAMs are not replacements of DSPs or LBs, but can
work together and complement them. In some ways, CoMeFa
RAMs can be thought of blocks that fuse together Logic Blocks
and BRAMs. They provide a more structured way of compu-
tation compared to Logic Blocks, along with storage capability
of BRAMs. They are more flexible than DSP Slices owing to
their precision agnosticism. They can be used in diverse parallel
applications like DL, signal and image processing, databases,
compression, encoding, decoding, etc. Because of the bit-serial
nature of the compute, CoMeFa RAMs are particularly suited
for throughput-oriented latency-tolerant workloads. Workloads
with low-precision compute and bit-wise operations are also
well accelerated using CoMeFa RAMs. Note that CoMeFa
RAM s can still store data and operate identically like a BRAM.
Unused BRAMs can be used as CoMeFa RAMs increasing
the available compute throughput and hence, achieving faster
acceleration.

II. BACKGROUND
A. Bit Serial Computing

Bit serial computing is commonly used for digital signal
processing and has been used on FPGAs as well [4] [5]. The
main idea is to process one bit of multiple data elements every
cycle. This is different from bit-parallel computing, in which
multiple bits of one data element are processed every cycle.
As an example, a conventional bit-parallel processor will take
128 steps to perform element-wise sum of two arrays with 128
16-bit elements. A bit-serial processor with 128 processing ele-
ments would complete the operation in 16 steps as it processes
the arrays bit-by-bit instead of element-by-element. Since the
number of elements in arrays is typically greater than the bit-
precision of elements, bit-serial computing can provide much
higher throughput compared to bit-parallel computing, albeit at
higher latency for each result.

B. Compute-In-Memory

Compute-In-Memory or Processing-In-Memory (PIM) [6] is
the paradigm of bringing computation closer to the data, instead
of moving data to distant compute units. Many accelerators
using PIM have been proposed and deployed: ReRAM based
[7] [8] [9], DRAM based [10] [11] [12], and SRAM based
[13] [14] [15] [16]. Computational RAM (or C-RAM) [17] is
an architecture where a row of processing elements (PEs) is
added to a memory (DRAM or SRAM) to convert it into a
SIMD processor. Jeloka et. al. [18] created a logic-in-memory
SRAM prototype where multiple word lines are activated si-
multaneously and the shared bit-lines can be sensed, effectively
performing logical AND and NOR operations on the data stored
in the activated rows. In Neural Cache, Eckert et. al. apply this
technology to DL applications [3], adding processing elements
to the sense amplifiers and deploy bit-serial compute to perform
DL operations. Wang et. al. proposed integrating the technology
from Neural Cache into FPGA BRAMSs to create Compute
Capable BRAMs (CCB) [19]. The complexity associated with
the reduction in voltage required to ensure robustness when
activating multiple wordlines makes this architecture not very
practical.

III. PROPOSED ARCHITECTURE: COMEFA RAMSs

In this section, we describe the proposed changes to BRAMs
to convert them to CoMeFa RAMs. We consider a BRAM size
of 20 Kilobits as in the modern Intel FPGAs, with support for
single port, simple dual port and true dual port modes, with
the 512x40 being the shallowest and widest configuration. This
BRAM has a physical geometry of 128 rows x 160 columns with
a column multiplexing factor of 4 [20] [21].

A. Overview

Figure 1 shows a top-level diagram of an FPGA BRAM, with
blocks modified/added for CoMeFa shown with a red outline.
We explore two architectures at the ends of the area-delay design
space (evaluating other candidates in this space is future work).

CoMeFa-D: In this architecture, we add additional sense am-
plifiers and write drivers to enable reading and writing a row in
all columns (bitline pairs) together. A processing element (PE)

g
IR
| = = -
1253 -
t_a_dat : B.ES Write Drivers and b
port_a_data '
[:] j - l Sense Amplifiers | fgﬂ 1
| o
=z ' EE |
| 2 B |
S reww J4 S
& [2 |
' +E—
- || ,
. 9 .
- |
g | g
Tnput EE I Memory Cell o] BT k- | Output
Crossbar ég - Array | =3 Crossbar
v
=N | . =}
] v
] '
[—
—
b v EPNAS ool .-l 28
o)
A ——
ge I S 3
g I oA
—
§ d Write Drivers and - '
r Sense Amplifiers =.1
b V55
=59
........ =
.......... e 1 1
.................................. =
o
.J Port B ; o
port b port b datall i i L . ST
ddr [:]

port_b_data_out.

Fig. 1: Top-level logical diagram of an FPGA BRAM [22] with
added/modified blocks for CoMeFa RAM highlighted in red. Sense
amps of the two ports are far apart, but in physical layout, they are
adjacent to each other. This ensures practicality of adding a set of

PEs fed by both set of sense amps.

is added below each column. This is similar to the architecture
used in [3], [19] and [23]. During physical design/implemen-
tation, PEs should be laid out so that they pitch-match with
the SRAM cells (and sense amplifiers and write drivers) for a
bitline pair (BL and BLB). There are 160 sense amplifiers and
write drivers per port, and 160 PEs. This provides a parallelism
160 operations done in 1 clock cycle (slightly longer than the
baseline BRAM’s clock period) at cost of high area overhead.
This architecture is more practical than CCB because mul-
tiple wordlines are not activated simultaneously on a port
and voltage reduction is not required for robustness.

CoMeFa-A: In this architecture, the number of sense am-
plifiers and write drivers stays the same as the baseline. A PE
(different from the one in CoMeFa-D) is added below each
multiplexed column. An optimization technique called sense
amp cycling [24] is employed to sequentially sense column
multiplexed bits in an extended clock cycle. There are 40
sense amplifiers and write drivers per port, and 40 PEs in the
RAM. This provides a parallelism 160 operations done in 1
extended clock cycle, thereby trading off delay for area. This
architecture has the highest practicality among CCB and
CoMeFa variations because it retains column multiplexing.

The PEs use wires from the peripheral circuitry of both ports
of the RAM. Sequencing logic that sequences the events of
the read/write operations (wordline activation, precharge, sense
amp enable, etc) in the memory is modified. This is done to
support doing both read and write in one cycle. Some additional
logic (comparator, configuration bit, multiplexers in front of row
decoders) is also added, and will be explained in detail in this
section.

B. Modes and Phases

As shown in Figure 1, a new configuration SRAM cell is
added which decides the mode of operation of a CoMeFa
RAM block. A CoMeFa RAM can operate in two modes:

Port#2 Port#1 Pnri 2

Pnrtfl

wps2 Wp s1 SA
WD WD

B from

59

write_sell

-(-I

T
am

write_sel

from -
left .

PE c_en

c st

I
d_in2 d_inl d_out2 m_en d_outl

Fig. 2: Architecture of the processing element used in CoMeFa-D

e« Memory Mode: In this mode, CoMeFa RAM behaves as
a conventional BRAM with no change in functionality. In
this mode, the FPGA programmer can flexibly configure
the number of ports and the width/depth of the BRAM.

o Hybrid Mode: If this mode is enabled at configuration
time, the CoMeFa RAM can be used for computation as
well as storage. In this mode, the RAM is automatically
configured to its maximum width (512x40) to maximize
the read/write throughput for populating the memory array
with input data and reading the results. A special address
(0x1FF) is reserved. A comparator is added to Port A’s
address signal to check for this address (Figure 1). Data
written to this address is treated as an instruction. Ac-
cessing other addresses is done normally; used for storing
operands and reading results.

A clock cycle during computation has 3 phases. In the first
phase, two rows containing operand bits are read by activating
the corresponding word lines, one from each port. In the second
phase, the logic gates in the PE compute the result. In the third
phase, the result is stored back by activating a wordline. This
leads to a longer clock period, compared to typical BRAM.

C. Processing element

Figure 2 shows the structure of PE added to each column of
the memory in CoMeFa-D. On the read path, A and B are the bits
of the two operands read from the memory at sense amplifiers
SA1 and SA2 of the two ports. Multiplexer TR evaluates a
logical function of A and B, depending on the inputs TR0, TR1,
TR2, TR3 (truth table) that come from the instruction. If a 2-bit
addition is required, the truth table bits will correspond to that
of an XOR gate. The output of TR goes through another XOR
gate (X) to generate the addition of the input bits including the
previous cycle’s carry (S). Gates to generate the carry (CGEN)
are also present. The carry is stored in the carry latch (C) and
can be used in the following cycle’s computation. If an addition
operation is not required, the carry latch is reset with C_RST=1,
which enables X to pass the output of TR transparently to the S
wire. C_EN=0 disables the latch so it keeps the old value. The
read outputs A and B are also sent to d_out1 and d_out2, which
is the normal read path.

Port#2 Port#1 Port#2 Port#1

wps2) & & CE v SA SA
Port1 B
Read data [P from
from 7/_L\ /_I_\Tfmm G
sequencing. sequencing
fozte fogie

i

P
write_sel2

T T
B c_en
crst

d_out2

from
Toft

din2 d_nl

Fig. 3: Architecture of the processing element used in CoMeFa-A

On the write path, 3-input multiplexers W1 and W2 are added
before the write drivers of the two ports. These multiplexers
determine the sources for the write operation. W1 can select
between the S, the input data port d_inl (normal write opera-
tion) and the value read from the right neighboring PE (used
during left shift operation). W2 can select between the carry,
the input data port d_in2 (normal write operation) and the value
read from the left neighboring PE (used during the right shift
operation). The mux select signals for W1 and W2 come from
the instruction.

The output of multiplexer TR is also stored in a special
latch called M and is called mask. Predication logic allows
enabling/disabling the write drivers (WD1 and WD2). For this,
a multiplexer (P) is added to select the signal that will en-
able/disable the write drivers. The mask, carry, not-carry and
VDD (logic 1; default) can be selected. This helps CoMeFa
RAMs mask writing the results based on various conditions, like
the value of the mask or the carry bit, to support multiplications
and floating point operations. The wps1/2 signals decide which
port’s write path is activated for a given cycle.

Figure 3 shows the structure of PE added to each multiplexed
column of the memory in CoMeFa-A. All the labels have the
same meaning as the PE described above. The number of C and
M latches changes to 4, and there are 4 additional latches for S.
On each port, 4 column-multiplexed bits are read and two results
are written back in an extended clock cycle. In the read phase of
the cycle, the brown bitline pairs from each port are sensed first.
The resulting S bit is stored in latch S1, carry bit C is stored
in the latch C1, and mask bit M is stored in latch M1. This is
repeated for red, green, and purple bitline pairs successively. All
Sn, Cn and Mn latches get updated in this process. Then, in the
write phase of the cycle, results for the brown and red bitlines
are written using the write drivers of the two ports, followed by
the green and purple ones. This is shown in Figure 4. Clocks
in the PE are driven by signals derived from the sense amplifier
enable pulses. The paths in the PE do not add any additional
delay to the extended clock from sense amp cycling.

Baseline Clk J | | | | |

Clk

Precharge

RWL

Rd Mux Sel

Port #1 and #2

SA enable

WWL

{Wr Mux Sel

‘WD enable

ort #2 Port #1

{Wr Mux Sel

& WD enable o] |9

Fig. 4: Sequence of operations in one clock cycle of CoMeFa-A

D. Instructions and Operation

An instruction is 40-bits and is only required to be written
to Port A’s data bus. The format is shown in Figure 5. The field
names in the instruction are self-explanatory. They directly drive
the corresponding signals in the PE (e.g. predicate bits are
applied to the select lines of the multiplexer P). The src1_row,
src2_row and dst_row bits are used for activating first
operand row on Port A, second operand row on Port B and the
row at which results will be stored, respectively. These addresses
are fed to the appropriate row decoders at the right time in the
clock cycle by the sequencing logic in the CoMeFa RAM using
the multiplexers shown in Figure 1. An FPGA programmer can
choose to generate instructions by finite state machines (FSM)
implemented in soft logic, or store them in another BRAM on-
chip and apply them to a CoMeFa RAM. Multiple CoMeFa
RAMs can share instruction generation logic to amortize its
cost.

39 38 34 29 28 27 26 25 24 2120 1413 76 0
Exredicate | x Jwrite_sel] c_rst|c_en Jm_rstfm_enftruth_table|dst_row|src2_row|srcl_row|

Fig. 5: Instruction format for CoMeFa RAMs

All computation is done in a bit-wise manner, using trans-
posed data layout. Figure 6 (a) shows 4-bit operands stored
along columns; 160 operands in 160 columns. They are read
bit-by-bit (1 bit/1 row in 1 cycle) inside the RAM and computed
upon based on the truth_table bits in the instruction. The
computed result is stored back bit-by-bit into different rows.

E. RAM-to-RAM chaining

CoMeFa RAMs provide the capability of performing left-
shift and right-shift operations efficiently. Shifts are single
operand operations. For a left (right) shift operation, the source
operand row is read into the PEs, each PE’s W1 (W2) mux
is configured to select the bit read from the right (left) neigh-
boring PE, and that bit is written into the destination row. For
CoMeFa-A, shifting values from a bitline pair to another bitline
pair within the same column multiplexer is also supported.
Direct links connecting top and bottom neighboring CoMeFa
RAMs are provided to allow for shifting data between the
corner PEs in each CoMeFa RAM (similar to carry chains in
LBs). These connections can provide a much easier way to
perform inter-CoMeFa RAM communication and obtain even
more parallelism. Figure 6 (b) shows these direct connections

'
; VE
— . S
i (5=} Memory Cell
-‘% . i1 '_% . Array
g 160 elements ir2 5%
Q e —_.]
oD e e—
P H RLITTN X . '*.“ 4
[| H H ' 3)
~ s : .]
g ;| it g
5 1 element, H E j+2 ' processing ., gri-state
& 4 bits T | : j+3 elements gwitches
. g]
= d k+1
% processing Kk +2: W W
=1 elements k+3 0
.
* tD:D:D;‘E%J* ' S
k—10p j '
.

(a) (b)

Fig. 6: (a) Operation of CoMeFa RAM shown for 4-bit operands
and a 4-bit result. (b) CoMeFa RAM supports shifting within a
block and across blocks using chaining

between CoMeFa RAMs along with the details of the shift
operation support inside each PE.

F. Variable precision support

Hardware in CoMeFa RAM PEs is not specific to any nu-
merical precision. A different sequence of instructions is all that
is required to compute in a different precision. The sequences
for fixed-point addition, multiplication and in-RAM reduction
are the same as [3]. Addition for n-bit operands takes n + 1
cycles. Multiplication of n-bit operands takes n? + 3n — 2
cycles. CoMeFa RAMs can natively support floating point pre-
cisions as well, as opposed to CCB [19]. We adapt the floating
point algorithms for addition and multiplication from FloatPIM
[9]. The CoMeFa RAM PE can perform all the steps in the
sequences because: (1) carry and not-carry are used in the
predication logic, (2) mask is populated from the output of the
programmable multiplexer TR instead of just A or B, and (3)
operations like XOR can be performed easily using TR and
the truth_table fields in the instruction. The approximate
number of cycles consumed for floating point multiplication and
addition are M2 +7M +3E +5and 2ME +9M +7E + 12,
where M = number of mantissa bits and E = number of
exponent bits.

G. Data loading and unloading

As mentioned in Section III-D, data has to be stored in
a transposed layout in CoMeFa RAMs for computation. We
design a swizzle module (implemented in soft logic) that can
be used to read data from DRAM, transpose it and write it
a CoMeFa RAM on-the-fly. The architecture of the swizzle
logic is shown in Figure 7. The swizzle module employs a
ping-pong buffer FIFO. Untransposed data read from DRAM
is written in-order into the ping part of the FIFO (depth = 40
elements). When the ping part is full, a transposed word (a bit
slice from 40 elements) can be read and written into consecutive
bitlines on the same wordline in a CoMeFa RAM, and new data
from DRAM is written into the pong part. In a similar fashion,
transposed data can be read from CoMeFa RAMs and stored
into DRAM in untransposed form using swizzle logic.

ping-pong buffer

(flip-flops)
{ y

Logic to
select which
part of the
buffer to
write

7 .
- ~~

‘_I

Memory

controller Logic to read N bits
interface and write to CoMeFa
CoMeFa

Fig. 7: Swizzle logic to load non-transposed data from DRAM
directly into CoMeFa RAM in transposed layout (N=40)

H. One Operand Outside RAM (OOOR) operations

In Section III-D, two operands were stored inside the RAM.
However, in many cases, an optimization can be applied - one
of the operands can be outside the RAM. E.g. multiplying an
array of numbers (stored in the RAM) with a scalar operand
(outside the RAM). We call these OOOR operations. This
method saves space inside the RAM. Without OOOR, in the
multiplication example, we would need to replicate the scalar
operand in each column. This method allows easy inspection
of outside operand’s bits, thereby enabling efficient algorithms.
For example, in the normal shift-and-add based multiplication
explained in [3], if a bit in the scalar operand is 0, cycles are
still consumed, which can be avoided by using OOOR. In the
average case, half of the bits will be 0 and therefore, the number
of cycles can be reduced by 50%. Efficient algorithms like booth
multiplication can also be deployed. We apply OOOR to dot-
product where one of the vector’s elements are common to
all columns. Looking at corresponding pairs of bits across the
operands outside the RAM and adding partial sums inside the
RAM based on their values enables a 2x speedup compared to
the naive algorithm. Overall, OOOR operations make the PEs
more powerful by expressing 2 (or 3) operand operations as 1
(or 2) operand operations.

IV. EVALUATION
A. Tools and Methods Used

The Verilog-to-Routing (VTR) tool flow [25] is used to
evaluate and compare FPGA architectures. To obtain the area
and delay values for the various components of the FPGA,
including CoMeFa RAMs, we use COFFE [26]. COFFE
based SPICE simulations use 22nm libraries from Predic-
tive Technology Model [27]. We also perform SPICE simula-
tions using FreePDK45 [28] to get more confidence that the
read+compute+write operation of CoMeFa RAMs works and
to validate the numbers obtained from COFFE. We use an
analytical model to estimate the energy consumption. We add
transistor energy and wire energy. For transistor energy, we use
an activity factor of 0.1 and calculate the energy based on the
number of transistors in each block (obtained from the area
consumed by the block from VTR). For wire energy, we use
wire energy numbers (fJ/mm) from [29], scale them to 22nm
technology node using [30] and multiply that with the total
routing wirelength from VTR.

B. Baseline vs. Proposed Architectures

We use an Intel Arria 10-like FPGA architecture as baseline
with the same resources as Aria 10 GX900 [31] (Table I). Arria

TABLE I: Properties of the baseline FPGA architecture
(Intel Arria 10 GX 900 like)

Resource Count Percentage Area
Logic Blocks 33962 66
DSP Slices 2423 18
Block RAMs 1518 15
DRAM bandwidth 2048 bits/clock
Channel width 300

TABLE II: List of benchmarks used for evaluation (CB = Compute
bound, OMB = On-chip memory-bandwidth bound, DBB = DRAM
bandwidth bound)

Scenario

Benchmark Domain Storage | Precision
Created
GEMV DL CB DRAM 8-bit
FIR filter DSP CB DRAM 16-bit
Eltwise mult DL DBB DRAM HFPS8
Bulk bitwise-Search Databases OMB BRAM 16-bit
Bulk bitwise-RAID Data Center OMB BRAM 20-bit
Reduction DL OMB BRAM Multiple

10 FPGAs [2] use a technology node (20nm) similar to our
setup (22nm). Arria 10 GX900 has 96 transceiver channels
that support upto 17.4 Gbps [32]. We assume that a 4-port
full-width soft HMC (Hybrid Memory Cube) controller [33] is
implemented on the FPGA to provide a DRAM bandwidth of
2048 bits/clock. Resources consumed by the controller are not
used to map the applications to the FPGA.

We use the VTR FPGA architecture used in [34] to make
a baseline architecture file. We run COFFE simulations on an
Arria-10 like DSP to identify its delay and area. We get delay
and areas of a 20 Kilobit BRAM from COFFE (by interpolating
between 16K and 32K). We scale these results based on the DSP
and BRAM delays specified in [35]. The DSP slice works at
630 MHz in fixed-point mode and 550 MHz in floating-point
mode. The BRAM works at 735 MHz in single port, simple dual
port and true dual port modes. The proposed architecture files
(CoMeFa-D and CoMeFa-A) differ from the baseline in having
CoMeFa RAMs instead of normal BRAMs.

C. Benchmarks

We create Verilog designs for several diverse applications to
use as benchmarks (Table IT). We manually map the applications
to CoMeFa RAMs and instantiate the CoMeFa RAM blocks
in Verilog RTL. During functional verification, a simulation
model of CoMeFa RAM is used. We create different scenarios
(compute bound, DRAM bandwidth bound and on-chip memory
bound) in these applications.

General Matrix Vector Multiplication (GEMYV): GEMYV is
a fundamental operation in DL applications. It is used in CNNss,
LSTM cells and in MLPs. We consider two GEMV workloads
from DeepBench benchmarks [36] - LSTM,h=512,t=50 and
GRU,h=512,t=1. 8-bit integer precision with 27-bit accumu-
lation is used. On the baseline FPGA, compute units are im-
plemented using efficient chaining of DSPs. On the proposed
FPGA, compute units based on CoMeFa RAMs are addition-
ally deployed, because many RAM blocks are available after
mapping the baseline design on the proposed FPGA. Efficient
OOOR-based dot product algorithm is used. Partial sums are

read out from the CoMeFa blocks and accumulated using a
pipelined bit-serial tree [4]. No online data transpose is re-
quired - the weight matrix is transposed offline and pinned into
CoMeFa RAM blocks; the vector is streamed and does not need
to be transposed because it is outside the RAM. Since both DSP
based and CoMeFa based compute units are used, reduction in
data movement is not expected.

Finite Impulse Response (FIR) Filter: FIR filters are a
common DSP application. We consider an FIR filter with 128
taps (similar results were observed for 256 taps; not shown
here because of space constraints). Input operands are streamed
onto the FPGA through the DRAM interface. The baseline
FPGA uses an efficient implementation of FIR filter using
systolic DSP chaining [37]. The proposed FPGA uses CoMeFa
RAMs for computation along with DSP chains. Logic blocks
were used for control logic. Operands are transposed on-the-
fly and loaded into multiple CoMeFa RAMs in parallel. While
some CoMeFa RAMs are computing, other CoMeFa RAMs are
loaded in a pipelined manner to improve parallelism. When a
CoMeFa RAM finishes computing, its results are unloaded and
sent to DRAM, and the process starts again until all inputs
are processed. We call this the Load-Compute-Unload (LCU)
pipeline. In this application, the CoMeFa RAM-to-CoMeFa
RAM chaining (Section III-E) feature is used to share inputs
between neighboring blocks.

Elementwise multiplication: Elementwise multiplications
are commonly used in DL, for example, in normalization layers
and Winograd based convolution layers. We consider an applica-
tion involving elementwise multiplication of two arrays of 100K
elements. Floating point data with precision of HFP8 [38] is
used. We showcase here that CoMeFa RAMs are adaptable to
any custom precision. The operands are read from DRAM and
the results are written to DRAM. This is a DRAM bandwidth
bound application because of low arithmetic intensity. We ob-
served that the number of LBs used (16748) was significantly
higher than in the baseline FPGA (649). To saturate the DRAM
bandwidth available on the chip, many swizzle logic instances
are required. To reduce this impact, we plan to explore harden-
ing swizzle logic or adding Transpose Memory Units [3].

Bulk bitwise operations: Bulk bitwise operations (like
AND, OR, XOR, etc) are commonly used in databases, encryp-
tion, DNA sequence alignment, etc. CoMeFa RAMs are very
efficient at these massively parallel operations because of the
presence of mux-based fully configurable PEs. The operands
are assumed to be available in BRAMs in the right layout. The
speedup seen in these applications attributed to the effective
increase in on-chip memory bandwidth because 160 bits can be
operated upon in 1 cycle in a CoMeFa RAM, compared to only
40 bits from a BRAM in the baseline FPGA. We consider two
applications in this category.

Database search: In this application, records matching a key
are searched. If a record matches the key, it is replaced with a
special marker data (like constant 0). Each operand is bitwise
XOR’ed with the key. Bitwise OR reduction is performed on
the result. And then a bitwise ANDing operation is performed
to zero-out the operands that match the key. 256 RAM blocks
are used to store operands. In CoMeFa RAM, 7 data elements

TABLE III: Area breakdown of various RAM blocks

Component BRAM | CoMeFa-D | CoMeFa-A
Input and output crossbars 5.6 4.5 52
Decoders & wordline drivers 7.8 6.3 7.3
Write drivers & sense amps. 6.9 14.0 6.4
Memory cell array 53.4 43.0 49.6
Routing (conn. & switch) 26.0 20.9 24.1
Processing elements 0 11.1 7.1
Total (%) 100 100 100

are stored in each column and temporary results consume 16
rows. The key is outside the RAM.

RAID data recovery: In RAID (Redundancy Array of Inde-
pendent Disks) arrays, parity protection is used. If a drive in
an array fails, the remaining data on other drives is combined
with the parity data (using XOR) to reconstruct the missing data.
These numerous parallel XOR operations with the parity data
can be accelerated using an FPGA. Instead of storing operands
in a transposed format (bits of one operand in multiple rows),
we use an un-transposed data layout where we store bits of
one operand in one row and bits of the second operand are
in another row. This works for logical operations like bitwise
XOR where there is no dependency/communication between
consecutive bits, and avoids the overhead of transposing data.

Reduction: Reduction (or accumulation) is heavily used in
DL and DSP applications. We design this application to create a
scenario of an on-chip memory bandwidth limited application.
Data is available in transposed format (computed in RAM by
a prior kernel for example). The precision is varied from 4-bit
to 20-bit (accumulator size = 32-bit). In the baseline, operands
stored in BRAMs are read and successively accumulated using a
pipelined adder tree (in LBs). On the proposed FPGA, CoMeFa
RAMs store the operands. The reduction algorithm from [3] is
used to reduce the elements to 40 partial sums (1 partial sum
in each multiplexed column of the RAM). These intermediate
results from multiple CoMeFa RAMs are then read out and
accumulated using a pipelined bit-serial adder [4] to obtain
the result. A significantly smaller number of LBs ("2x-3.5x) is
required on the proposed FPGA.

D. Implementation Details

Area: Table IIT shows the area breakdown of both archi-
tectures of CoMeFa RAM. For CoMeFa-D, the area overhead
is 1546.78 um?. This represents an increase of 25.4% in the
BRAM tile area compared to the baseline. This overhead is
mainly attributed to the addition of 160 PEs and the additional
120 sense amplifiers and write drivers. With BRAMSs occupy-
ing 15% of the die size in our baseline FPGA, this overhead
corresponds to only 3.8% increase in the FPGA chip area.
The overhead for CoMeFa-A is 493.5 um?2. Compared to the
baseline, this represents an increase of 8.1% in BRAM tile area
and only 1.2% increase in FPGA chip area. This overhead is
mainly attributed to the addition of 40 PEs.

Frequency: We use the COFFE to obtain the overhead in
frequency of operation of a CoMeFa RAM in Hybrid mode,
compared to a BRAM (735 MHz). For CoMeFa-D, the cycle
duration increases to 1.25x (588 MHz). This is mainly attributed
to performing read, compute (PE circuitry delay) and write in

TABLE 1V: Differences between CCB and CoMeFa

Property CCB CoMeFa-D CoMeFa-A

Activate two wordlines at the

same time on one port Yes No No
Additional voltage source required Yes No No
Additional row decoder required Yes No No
Changes in sense amplifiers Yes No No
Additional sense amplifiers Yes Yes No
Sense amp cycling No No Yes
Compute uses dual-port behavior No Yes Yes
Generic/Flexible PE No Yes Yes
Shift between RAM blocks No Yes Yes
Floating point support No Yes Yes
Flip-flops in PE to store operands No No Yes
Parallelism 128 160 160
Application(s) demonstrated DL Many Many
Clock duration overhead 60% 25% 125%
Area overhead (block) 16.8%* 25.4% 8.1%
Area overhead (chip) 2.5%* 3.8% 1.2%
Column multiplexing No No Yes
Practicality Low Medium High

*includes overhead of additional sense amplifiers and write drivers.

the same cycle. For CoMeFa-A, the cycle duration increases to
2.5x (294 MHz). This is because 4 reads and 2 writes are done
successively as described in Section III-C. A lower frequency
of the CoMeFa RAM is not a concern because realistic FPGA
designs typically are constrained by soft-logic and routing de-
lays, so designs do not achieve high frequencies like those of
individual BRAMs (735 MHz in this case). In Memory mode,
the delay overhead is negligible; there is only one additional
mux in the write path and the read path remains unchanged.

Routing: The interface of a CoMeFa RAM block to the
programmable routing is not changed compared to that of a
BRAM. The only change is the addition of two pins, which
are used for direct connections between neighboring BRAMs.
These do not impact the programmable interconnect directly, but
do increase the pin density.

CCB: The implementation of CCB [19] is based on a BRAM
with 128x128 geometry. The area overhead for the CCB block
evaluated in [19] does not include the area of the additional
sense amplifiers and write drivers. In our re-implementation of
CCB, the total area overhead comes out to be 872.64 um2,
which is a 16.8% increase at the block level and 2.5% at the
chip level in the Arria-10-like FPGA used in this study. The
frequency of operation of the CCB evaluated in [19] is 1.6x
(469 MHz) compared to the baseline BRAM. Table IV shows
the differences between CCB and CoMeFa.

V. RESULTS
A. Throughput Comparison

To evaluate the peak throughput, we consider the MAC
(multiply-accumulate) operation, which is the most common
operation in DSP and DL applications. We use common fixed-
point precisions - 4-bit (accumulator=16-bit), 8-bit (acc=27-bit)
and 16-bit (acc=36-bit), as well as floating-point precisions -
HFP8 ({exp=4, frac=3} and acc={exp=6, frac=9}) [38] and
IEEE FP16 (acc=IEEE FP32). We compare the throughput
of CoMeFa RAMs to the traditional compute units (LBs and
DSPs). For LBs, we synthesize, place and route one MAC
onto the FPGA and determine the operating frequency and

12000

=10000 Low Practicality High CCB

g = CoMeFa-D
= 8 B i
E‘i 8000 CCB CoMeFa-D CoMeFa-A = CoMeFa-A
%EQ 6000 DSp
Ei 4000 l = LB

o -

2 2000 . — —

int4 int8 int16 hip8 fpl6

Fig. 8: Peak throughput for MAC operations for the whole FPGA
for various precisions

7
6. Low Practlcahty
5 CCB CoMeFa-D CoMeFa-A
£« 4_|m Speedup (CCB)
E m Speedup (CoMeFa-D)
& 3 m Speedup (CoMeFa-A)
2
Basey
lme II
GEMV- GEMV- FIR Elementwise Bulk Bulk Reduction GeoMean
GRU LSTM Mult * Bitwise - Bitwise -

Search RAID
Fig. 9: Speedups obtained for different FPGA architectures for
various benchmarks. * implies no DRAM bandwidth limitation.

resource utilization. We then calculate the throughput by op-
timistically assuming that we can fill the FPGA at the same
operating frequency. This serves the purpose for evaluating peak
throughput. For DSPs, MACs are created and taken through a
similar process. The DSPs do not natively support FP16 and
HFP8 precisions, so MACs for these precisions are designed
using soft logic and DSPs. For CoMeFa RAMs, 160 MACs are
implemented in parallel by instantiating one CoMeFa RAM and
an instruction generation FSM.

Figure 8 shows the peak throughput for each precision ob-
tained from each different computing resource in GigaMAC-
s/second. We observe that the throughput of the FPGA increases
by 2x, 1.7x, 1.3x, 1.7x and 1.3x for int4, int8, int16, hfp8 and
fp16 respectively by adding CoMeFa-D RAMs. Similarly, the
throughput of the FPGA increases by 1.5x, 1.36x, 1.16x, 1.36x
and 1.15x for int4, int8, int16, hfp8 and fpl6 respectively by
adding CoMeFa-A RAMs. CoMeFa RAM throughput reduces
as the precision increases, due to the bit-serial nature of com-
putation in CoMeFa RAMs. CoMeFa RAMs can be used for
computing in any precision, unlike DSPs. The frequency of
operation of CoMeFa RAMs does not change significantly with
changing precision, unlike LBs.

B. Speedup and Energy Benefits

Figure 9 shows the maximum speedup obtained by us-
ing CoMeFa RAMs across benchmarks. We see significant
speedups by using CoMeFa RAMs in the compute bound appli-
cations because of the augmented compute throughput provided
by the FPGA. For GEMV benchmarks, speedups of upto 81%
are seen in CoMeFa-D and upto 59% in CoMeFa-A. With CCB,
the max speedup was 72%. We observed some erraticness in
results across seeds because the DSPs were "99% utilized, so
we considered the maximum frequency instead of averaging the
frequency across many seeds as we do in other applications. A
speedup of 22% is seen in the FIR benchmark for both CoMeFa-
D and CoMeFa-A. That is because the frequency of operation

Practicalit; i

4000 Low y High o
B 3000 CCB CoMeFa-D CoMeFa-A |
9, ‘ = Baseline ® Comefa-D
& 2000 CCB ® Comefa-A -
g !
= 1000

0

Bulk Bitwise - Search Bulk Bitwise - RAID

Reduction

Fig. 10: Energy savings by reduced data movement in on-chip
memory bandwidth limited benchmarks

of the overall design was "215MHz in both cases. The FIR
benchmark uses chaining of RAMs, which is not supported by
CCB. So, no speedup is considered compared to the baseline.

Since the Elementwise multiplication benchmark is limited
by DRAM bandwidth, no speedup is seen by using CoMeFa
RAMs. CoMeFa RAMs are targeted to improve the compute
throughput of the FPGA, not the DRAM bandwidth. If we
remove the restriction of DRAM bandwidth and assume that all
the compute units (CoMeFa RAMs as well as DSPs/LBs) can
be fed with data, then speedups of 65% and 50% can be seen
on CoMeFa-D and CoMeFa-A FPGAs respectively. Since CCB
does not support floating-point operations, the speedup for this
benchmark for CCB is shown as 0%.

The Search benchmark is sped up by 18% for CoMeFa-D.
The design on baseline FPGA had the highest frequency of
operation because of very simple operations done in soft logic.
No speedup is seen using CoMeFa-A RAMs because of the
low frequency of operation. This application is not sped up by
using CCB either. CCB takes "2x cycles compared to CoMeFa
RAM because of the inflexibility of the processing elements
that only support a few operations. E.g. AND operation can
be done in 2 cycles in CCB, compared to 1 cycle in CoMeFa
RAM. The RAID application is sped up by 6.7x in CoMeFa-D,
3.35x in CoMeFa-A and 5.2x in CCB. The baseline frequencies
were very high in this case also, but the difference in number
of cycles enabled the significant speedups. The speedups for the
Reduction benchmark (4-bit precision) were 5.3x in CoMeFa-D,
3.3x in CoMeFa-A and 5.1x in CCB.

In the on-chip memory bandwidth bound benchmarks
(Search, RAID, Reduction), upto 38% less LBs are used in
CoMeFa compared to baseline. That is because no external
LUTs are needed when CoMeFa RAMs are used. Routing WL
reduction of upto 68% is seen, which directly correlates to
reduction in data movement. Results from our energy model are
shown in Figure 10. We see an energy reduction of upto 56% in
CoMeFa-A and upto 52% in CoMeFa-D.

C. Application Co-mapping

CoMeFa RAMs supplement DSPs and LBs as compute units,
and enhance the FPGA’s compute throughput. Appropriately
dividing and mapping parts of an application to CoMeFa
RAMs and traditional compute units is key. For GEMV and
FIR applications, we analytically explore the effect of varying
work distribution between CoMeFa RAMs and DSPs/LBs on
the proposed FPGA. The results are shown in Figure 11. We see
that as more work is given to CoMeFa RAMs, more speedup
can be obtained upto a limit, after which the overheads (loading,
unloading, serial compute) associated with CoMeFa RAMs can

1.8
4] 1.6 —8— GEMV-GRU
o : —
B4 i e e X X
g1.2 S N N\
= N h)
g 1 —
=% \“
9.8

8 0.7 0.6 0.5 0.4 0.3

1 0.9 0.
1 All work done

by traditional units Work distribution

Fig. 11: Illustration of increase in speed-up (based on cycles) by
partitioning the application between DSPs and CoMeFa RAMs.

1.4 -
1.2 'g s Time (Baseline)
o8 Time (CCB)
1 & & mmmm Time (CoMeFa-D)
0.8F 2w Time (CoMeFa-A)
0.6 g —e— Cycles (Baseline)
E Cycles (CCB,CoMeFa)

0.2 | Low Practicality High

CCB CoMeFa-D CoMeFa-A

=0
20-bit

4-bit
Fig. 12: Sweeping precision in the Reduction benchmark

8-bit 12-bit 16-bit

start dominating and reduce the overall speedup. This sweet spot
is different for each application.

D. Adaptability to Precision

CoMeFa RAMs can be used for efficiently computing in
any custom precision. Figure 12 shows the results of sweeping
the precision from 4-bit to 20-bit in the Reduction benchmark.
We see speedups ranging from 5.3x (3.3x) to 2.7x (1.7x) with
CoMeFa-D (CoMeFa-A) as precision increases. CoMeFa-D is
3% better than CCB owing to the improved frequency achieved
by the design. The baseline takes the same number of cycles
for each precision because of the bit-parallel nature of compute.
But the number of cycles taken increases as the precision
increases when CoMeFa RAMs are used. This is because of bit-
serial arithmetic and illustrates that applications using smaller
precisions are better suited for CoMeFa RAMs. Note that the
frequency of operation stays constant for CoMeFa RAMs be-
cause the hardware architecture stays the same. For the baseline,
the frequency decreases slightly as the precision increases.

VI. CONCLUSION

In this paper, we propose augmenting the compute density of
FPGAs by modifying BRAMs into new blocks called CoMeFa
RAMs, which are ideal for enhancing applications with inherent
parallelism like deep learning and signal processing. To the best
of our knowledge, this is the first work that (1) utilizes the
dual-port nature of BRAMs to achieve in-BRAM compute, (2)
deploys configurable 1-bit processing elements inside an FPGA
BRAM, and (3) applies in-BRAM compute to DL and non-DL
applications on FPGAs. With improvements to compute density
and reduction in power consumption, we believe that converting
some or all BRAMs on FPGAs to CoMeFa RAMs can be a
significant step towards closing the performance gap between
FPGAs and ASICs.

VII. ACKNOWLEDGMENT

This research was supported by National Science Foundation
(NSF) grant number 1763848 and the Intel Rising Star Faculty
award.

[1

—

[2

—

[4

=

[5]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

Xilinx. (2021) UltraScale Architecture Memory Resources. [Online].
Available: https://www.xilinx.com/support/documentation/user_guides/
ug573-ultrascale-memory-resources.pdf

Intel, “Intel Arria 10 Device Overview,” 2021. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/docs/programmable/
683332/current/device-overview.html

C. Eckert et al., “Neural Cache: Bit-Serial in-Cache Acceleration
of Deep Neural Networks,” in Proceedings of the 45th Annual
International Symposium on Computer Architecture, ser. ISCA
’18. IEEE Press, 2018, p. 383-396. [Online]. Available: https:
//doi.org/10.1109/ISCA.2018.00040

A. Landy and G. Stitt, “Serial Arithmetic Strategies for Improving
FPGA Throughput,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 3,
jul 2017. [Online]. Available: https://doi.org/10.1145/2996459

——, “Revisiting Serial Arithmetic: A Performance and Tradeoff Anal-
ysis for Parallel Applications on Modern FPGAs,” in 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom
Computing Machines, 2015, pp. 9-16.

S. Ghose, A. Boroumand, J. S. Kim, J. Gémez-Luna, and O. Mutlu,
“Processing-In-Memory: A Workload-Driven Perspective,” IBM Journal
of Research and Development, vol. 63, no. 6, pp. 3:1-3:19, 2019.

A. Shafiee et al., “ISAAC: A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars,” in 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA),
2016, pp. 14-26.

P. Chi et al., “PRIME: A Novel Processing-in-Memory Architecture
for Neural Network Computation in ReRAM-Based Main Memory,” in
2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), 2016, pp. 27-39.

M. Imani, S. Gupta, Y. Kim, and T. Rosing, “FloatPIM: In-Memory
Acceleration of Deep Neural Network Training with High Precision,”
in Proceedings of the 46th International Symposium on Computer
Architecture, 2019, p. 802-815.

S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie,
“DRISA: A DRAM-based Reconfigurable In-Situ Accelerator,” in 2017
50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2017, pp. 288-301.

V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-
Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology,” in 2017 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2017, pp. 273-287.

F. Gao, G. Tziantzioulis, and D. Wentzlaff, “ComputeDRAM: In-
Memory Compute Using Off-the-Shelf DRAMSs,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO ’52. New York, NY, USA: Association for Computing
Machinery, 2019, p. 100-113. [Online]. Available: https://doi-org.
ezproxy.lib.utexas.edu/10.1145/3352460.3358260

M. Kang, M.-S. Keel, N. R. Shanbhag, S. Eilert, and K. Curewitz,
“An energy-efficient VLSI architecture for pattern recognition via deep
embedding of computation in SRAM,” in 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014,
pp. 8326-8330.

A. Agrawal, A. Jaiswal, C. Lee, and K. Roy, “X-SRAM: Enabling
In-Memory Boolean Computations in CMOS Static Random Access
Memories,” [EEE Transactions on Circuits and Systems 1: Regular
Papers, vol. 65, no. 12, pp. 4219-4232, 2018.

M. Kang, S. K. Gonugondla, and N. R. Shanbhag, “Deep In-Memory
Architectures in SRAM: An Analog Approach to Approximate Comput-
ing,” Proceedings of the IEEE, vol. 108, no. 12, pp. 2251-2275, 2020.
J. Wang, X. Wang, C. Eckert, A. Subramaniyan, R. Das, D. Blaauw, and
D. Sylvester, “A 28-nm Compute SRAM With Bit-Serial Logic/Arith-
metic Operations for Programmable In-Memory Vector Computing,”
IEEE Journal of Solid-State Circuits, vol. 55, no. 1, pp. 76-86, 2020.
D. Elliott, M. Stumm, W. Snelgrove, C. Cojocaru, and R. Mckenzie,
“Computational RAM: implementing processors in memory,” [EEE
Design Test of Computers, vol. 16, no. 1, pp. 32—41, 1999.

S. Jeloka et al., “A 28 nm Configurable Memory (TCAM/BCAM/S-
RAM) Using Push-Rule 6T Bit Cell Enabling Logic-in-Memory,” I[EEE
Journal of Solid-State Circuits, vol. 51, no. 4, pp. 1009-1021, 2016.
X. Wang, V. Goyal, J. Yu, V. Bertacco, A. Boutros, E. Nurvitadhi,
C. Augustine, R. Iyer, and R. Das, “Compute-Capable Block RAMs

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

for Efficient Deep Learning Acceleration on FPGAs,” in 2021 IEEE
29th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2021, pp. 88-96.

D. Lewis, D. Cashman, M. Chan, J. Chromczak, G. Lai, A. Lee,
T. Vanderhoek, and H. Yu, “Architectural Enhancements in Stratix V,”
in Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, ser. FPGA *13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 147-156. [Online].
Available: https://doi.org/10.1145/2435264.2435292

J. Tyhach et al., “Arria 10 Device Architecture,” in 2015 IEEE Custom
Integrated Circuits Conference (CICC), 2015, pp. 1-8.

S. Yazdanshenas, K. Tatsumura, and V. Betz, “Don’t Forget the Memory:
Automatic Block RAM Modelling, Optimization, and Architecture
Exploration,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA *17. New
York, NY, USA: Association for Computing Machinery, 2017, p.
115-124. [Online]. Available: https://doi.org/10.1145/3020078.3021731
S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das, “Compute Caches,” in 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2017, pp. 481-492.
A. Subramaniyan, J. Wang, E. R. M. Balasubramanian, D. Blaauw,
D. Sylvester, and R. Das, “Cache Automaton,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-50 ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 259-272. [Online]. Available: https:
//doi.org/10.1145/3123939.3123986

K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. ElDafrawy, J.-
P. Legault, E. Sha, A. G. Graham, J. Wu, M. J. P. Walker, H. Zeng,
P. Patros, J. Luu, K. B. Kent, and V. Betz, “VTR 8: High Performance
CAD and Customizable FPGA Architecture Modelling,” ACM Trans.
Reconfigurable Technol. Syst., 2020.

S. Yazdanshenas and V. Betz, “COFFE2: Automatic Modelling and
Optimization of Complex and Heterogeneous FPGA Architectures,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 12, no. 1, pp. 3:1-3:27, January 2019.

A. S. University. (2012) Predictive Technology Model. [Online].
Available: http://ptm.asu.edu/

NCSU. (2018) FreePDK45. [Online]. Available: https://www.eda.ncsu.
edu/wiki/FreePDK45:Contents

S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the Future of Parallel Computing,” IEEE Micro, vol. 31,
no. 5, pp. 7-17, 2011.

A. Stillmaker and B. Baas, “Scaling equations for the accurate prediction
of CMOS device performance from 180 nm to 7 nm,” Integration, the
VLSI Journal, vol. 58, pp. 74-81, 2017, http://vcl.ece.ucdavis.edu/pubs/
2017.02.VLSlintegration. TechScale/.

Intel, “Intel Arria 10 Product Table,” 2021. [Online].
Available: https://www.intel.cn/content/dam/www/programmable/us/en/
pdfs/literature/pt/arria- 10-product-table.pdf

——, “Intel Arria 10 Transceiver PHY User Guide,” 2021. [Online].
Available: https://www.intel.cn/content/dam/www/programmable/us/en/
pdfs/literature/hb/arria- 10/ug_arrialO_xcvr_phy.pdf

——, “Hybrid Memory Cube Controller IP Core User Guide v16.0,”
2016. [Online]. Available: https://www.intel.com/content/www/us/en/
docs/programmable/683854/16-0/introduction.html

A. Arora, A. Boutros, D. Rauch, A. Rajen, A. Borda, S. A. Damghani,
S. Mehta, S. Kate, P. Patel, K. B. Kent, V. Betz, and L. K. John,
“Koios: A Deep Learning Benchmark Suite for FPGA Architecture
and CAD Research,” in 2021 31st International Conference on Field-
Programmable Logic and Applications (FPL), 2021.

Intel, “Intel Arria 10 Device Datasheet,” 2020. [Online].
Available: https://www.intel.com.tw/content/dam/www/programmable/
us/en/pdfs/literature/hb/arria- 10/a10_datasheet.pdf

S. Narang. (2016) Baidu deepbench. [Online]. Available: https:
/Isvail.github.io/DeepBench/

Altera, “Designing Filters for High Perfor-
mance,” 2015. [Online]. Available: https://www.intel.

cn/content/dam/www/programmable/us/en/pdfs/literature/wp/
wp-01260-stratix 10-designing-filters-for-high- performance.pdf

X. Sun et al., “Hybrid 8-bit Floating Point (HFP8) Training and
Inference for Deep Neural Networks,” in Advances in Neural
Information Processing Systems, vol. 32. Curran Associates, Inc.,
2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/
file/65fc9fb4897a89789352¢211ca2d398f-Paper.pdf

