
CoMeFa: Compute-in-Memory Blocks for FPGAs

Aman Arora∗, Tanmay Anand, Aatman Borda, Rishabh Sehgal, Bagus Hanindhito, Jaydeep Kulkarni, Lizy K. John
The University of Texas at Austin

∗aman.kbm@utexas.edu

Abstract—Block RAMs (BRAMs) are the storage houses of
FPGAs, providing extensive on-chip memory bandwidth to the
compute units implemented using Logic Blocks (LBs) and Digital
Signal Processing (DSP) slices. We propose modifying BRAMs
to convert them to CoMeFa (Compute-In-Memory Blocks for
FPGAs) RAMs. These RAMs provide highly-parallel compute-
in-memory by combining computation and storage capabilities
in one block. CoMeFa RAMs utilize the true dual port nature
of FPGA BRAMs and contain multiple programmable single-
bit bit-serial processing elements. CoMeFa RAMs can be used
to compute in any precision, which is extremely important
for evolving applications like Deep Learning. Adding CoMeFa
RAMs to FPGAs significantly increases their compute density. We
explore and propose two architectures of these RAMs: CoMeFa-
D (optimized for delay) and CoMeFa-A (optimized for area).
Compared to existing proposals, CoMeFa RAMs do not require
changing the underlying SRAM technology like simultaneously
activating multiple rows on the same port, and are practical
to implement. CoMeFa RAMs are versatile blocks that find
applications in numerous diverse parallel applications like Deep
Learning, signal processing, databases, etc. By augmenting an
Intel Arria-10-like FPGA with CoMeFa-D (CoMeFa-A) RAMs at
the cost of 3.8% (1.2%) area, and with algorithmic improvements
and efficient mapping, we observe a geomean speedup of 2.55x
(1.85x), across several representative benchmarks. Replacing all
or some BRAMs with CoMeFa RAMs in FPGAs can make them
better accelerators of modern compute-intensive workloads.

I. INTRODUCTION

FPGAs are being used to accelerate workloads ranging from

internet search, to baseband processing, to the ubiquitous Deep

Learning (DL). FPGAs contain fine-grained programmable

logic blocks (LBs), fixed-function math units (DSP slices), and

distributed Block Random Access Memory (BRAM) structures

that are connected via a highly configurable interconnection

fabric. BRAMs play a vital role by storing operands and results

on-chip, feeding the compute units with data at a very high

bandwidth.
The current usage paradigms of BRAMs, LBs and DSPs

pose limitations to the acceleration that can be achieved us-

ing FPGAs. The separation of compute units (LBs and DSPs)

from storage units (BRAMs) implies data movement using the

routing/interconnect to feed the compute units with input data

and to store the outputs back to the storage units. This stresses

the routing resources significantly and leads to increased power

consumption.
FPGAs provide the ability to develop hardware for different

precisions. This is especially important for DL applications

because the precision requirements change rapidly. DSP slices,

however, support a limited set of precisions. FPGA program-

mers end up implementing low precision math units on LBs

instead of DSPs, reducing the number of LBs available for other

purposes and leaving DSPs unused.

In many large FPGAs deployed in cloud applications, hun-

dreds of MBytes of data can be stored on-chip in BRAMs, en-

abling fully-data-resident acceleration. However, in applications

where on-chip storage requirements are low (e.g. where data is

streamed to the FPGA), BRAMs may be left idle. Additionally,

BRAMs on FPGAs support a limited set of heights and widths.

This can limit the bandwidth available to the compute units

because the data needs to be read out from ports of the BRAM.

In this paper, we solve the limitations mentioned above by

proposing to convert BRAMs on an FPGA to CoMeFa RAMs. A

CoMeFa RAM block enables computation within the RAM ar-

ray, without transferring the data in or out of it. One-bit bit-serial

programmable processing elements are added at the output of

the sense amplifiers. This transforms the BRAM into a parallel

SIMD (Single Instruction Multiple Data) computation unit. The

availability of true dual port mode in FPGA BRAMs [1][2] is

exploited to read operands.

Computation in any precision can be easily performed in

CoMeFa RAMs without any explicit hardware because it uses

bit-serial compute [3]. CoMeFa RAMs reduce the dependence

on routing/interconnect and hence increases the routability of

the FPGA. Data movement is reduced because the computation

is done in the RAM itself, thereby saving power. Since the data

is not moved in/out of the RAM block, port limitations do not

restrict the available bandwidth. Instead, the internal physical

geometry of the RAM, which is typically higher than port width,

governs the effective bandwidth. The compute throughput of

the FPGA is increased significantly owing to the massive par-

allelism that is unlocked because of the existence of numerous

RAM blocks on an FPGA.

CoMeFa RAMs are not replacements of DSPs or LBs, but can

work together and complement them. In some ways, CoMeFa

RAMs can be thought of blocks that fuse together Logic Blocks

and BRAMs. They provide a more structured way of compu-

tation compared to Logic Blocks, along with storage capability

of BRAMs. They are more flexible than DSP Slices owing to

their precision agnosticism. They can be used in diverse parallel

applications like DL, signal and image processing, databases,

compression, encoding, decoding, etc. Because of the bit-serial

nature of the compute, CoMeFa RAMs are particularly suited

for throughput-oriented latency-tolerant workloads. Workloads

with low-precision compute and bit-wise operations are also

well accelerated using CoMeFa RAMs. Note that CoMeFa

RAMs can still store data and operate identically like a BRAM.

Unused BRAMs can be used as CoMeFa RAMs increasing

the available compute throughput and hence, achieving faster

acceleration.

978-1-6654-8332-2/22/$31.00 © 2022 IEEE

II. BACKGROUND

A. Bit Serial Computing

Bit serial computing is commonly used for digital signal

processing and has been used on FPGAs as well [4] [5]. The

main idea is to process one bit of multiple data elements every

cycle. This is different from bit-parallel computing, in which

multiple bits of one data element are processed every cycle.

As an example, a conventional bit-parallel processor will take

128 steps to perform element-wise sum of two arrays with 128

16-bit elements. A bit-serial processor with 128 processing ele-

ments would complete the operation in 16 steps as it processes

the arrays bit-by-bit instead of element-by-element. Since the

number of elements in arrays is typically greater than the bit-

precision of elements, bit-serial computing can provide much

higher throughput compared to bit-parallel computing, albeit at

higher latency for each result.

B. Compute-In-Memory

Compute-In-Memory or Processing-In-Memory (PIM) [6] is

the paradigm of bringing computation closer to the data, instead

of moving data to distant compute units. Many accelerators

using PIM have been proposed and deployed: ReRAM based

[7] [8] [9], DRAM based [10] [11] [12], and SRAM based

[13] [14] [15] [16]. Computational RAM (or C-RAM) [17] is

an architecture where a row of processing elements (PEs) is

added to a memory (DRAM or SRAM) to convert it into a

SIMD processor. Jeloka et. al. [18] created a logic-in-memory

SRAM prototype where multiple word lines are activated si-

multaneously and the shared bit-lines can be sensed, effectively

performing logical AND and NOR operations on the data stored

in the activated rows. In Neural Cache, Eckert et. al. apply this

technology to DL applications [3], adding processing elements

to the sense amplifiers and deploy bit-serial compute to perform

DL operations. Wang et. al. proposed integrating the technology

from Neural Cache into FPGA BRAMs to create Compute

Capable BRAMs (CCB) [19]. The complexity associated with

the reduction in voltage required to ensure robustness when

activating multiple wordlines makes this architecture not very

practical.

III. PROPOSED ARCHITECTURE: COMEFA RAMS

In this section, we describe the proposed changes to BRAMs

to convert them to CoMeFa RAMs. We consider a BRAM size

of 20 Kilobits as in the modern Intel FPGAs, with support for

single port, simple dual port and true dual port modes, with

the 512x40 being the shallowest and widest configuration. This

BRAM has a physical geometry of 128 rows x 160 columns with

a column multiplexing factor of 4 [20] [21].

A. Overview

Figure 1 shows a top-level diagram of an FPGA BRAM, with

blocks modified/added for CoMeFa shown with a red outline.

We explore two architectures at the ends of the area-delay design

space (evaluating other candidates in this space is future work).

CoMeFa-D: In this architecture, we add additional sense am-

plifiers and write drivers to enable reading and writing a row in

all columns (bitline pairs) together. A processing element (PE)

port_b_data_out

W
id

th
-

C
on

fi
gu

ra
b
le

D
ec

od
er

C
ol

u
m

n
D

ec
od

er
R

ow

D
ec

od
er

Memory Cell
Array

Precharge

S
eq

u
en

ci
n
g

L
og

ic

0x1ff

src1
_row

port_a
_addr

port_a_data
[:]

Output
Crossbar

W
id

th
-

C
o
n
fi
g
u
ra

b
le

D
ec

o
d
er

C
o
lu

m
n

D
ec

o
d
er

R
ow

D

ec
od

er

Precharge

port_b
_addr

S
eq

u
en

ci
n
g

L
og

ic

port_a_data_out

src2_row

port_b_data
[:]

Input
Crossbar

mode
(memory,
 hybrid)

Write Drivers and
Sense Amplifiers

=

dst
_row

dst_row

Write Drivers and
Sense Amplifiers

Port A

Port B

Fig. 1: Top-level logical diagram of an FPGA BRAM [22] with
added/modified blocks for CoMeFa RAM highlighted in red. Sense
amps of the two ports are far apart, but in physical layout, they are
adjacent to each other. This ensures practicality of adding a set of

PEs fed by both set of sense amps.

is added below each column. This is similar to the architecture

used in [3], [19] and [23]. During physical design/implemen-

tation, PEs should be laid out so that they pitch-match with

the SRAM cells (and sense amplifiers and write drivers) for a

bitline pair (BL and BLB). There are 160 sense amplifiers and

write drivers per port, and 160 PEs. This provides a parallelism

160 operations done in 1 clock cycle (slightly longer than the

baseline BRAM’s clock period) at cost of high area overhead.

This architecture is more practical than CCB because mul-

tiple wordlines are not activated simultaneously on a port

and voltage reduction is not required for robustness.

CoMeFa-A: In this architecture, the number of sense am-

plifiers and write drivers stays the same as the baseline. A PE

(different from the one in CoMeFa-D) is added below each

multiplexed column. An optimization technique called sense

amp cycling [24] is employed to sequentially sense column

multiplexed bits in an extended clock cycle. There are 40

sense amplifiers and write drivers per port, and 40 PEs in the

RAM. This provides a parallelism 160 operations done in 1

extended clock cycle, thereby trading off delay for area. This

architecture has the highest practicality among CCB and

CoMeFa variations because it retains column multiplexing.

The PEs use wires from the peripheral circuitry of both ports

of the RAM. Sequencing logic that sequences the events of

the read/write operations (wordline activation, precharge, sense

amp enable, etc) in the memory is modified. This is done to

support doing both read and write in one cycle. Some additional

logic (comparator, configuration bit, multiplexers in front of row

decoders) is also added, and will be explained in detail in this

section.

B. Modes and Phases

As shown in Figure 1, a new configuration SRAM cell is

added which decides the mode of operation of a CoMeFa

RAM block. A CoMeFa RAM can operate in two modes:

WD WD
SA SA

TR_0

TR_1

TR_2

TR_3

vdd

predicate

wps1wps2

c_en
c_rst

write_sel1

write_sel2

d_in1d_in2 d_out2 d_out1

from
right
PE

from
left
PE

Cin

S

M

m_en
m_rst

BA

C Cout

CGEN

X

P

Port#1Port#2Port#1Port#2

W1

W2

Fig. 2: Architecture of the processing element used in CoMeFa-D

• Memory Mode: In this mode, CoMeFa RAM behaves as

a conventional BRAM with no change in functionality. In

this mode, the FPGA programmer can flexibly configure

the number of ports and the width/depth of the BRAM.

• Hybrid Mode: If this mode is enabled at configuration

time, the CoMeFa RAM can be used for computation as

well as storage. In this mode, the RAM is automatically

configured to its maximum width (512x40) to maximize

the read/write throughput for populating the memory array

with input data and reading the results. A special address

(0x1FF) is reserved. A comparator is added to Port A’s

address signal to check for this address (Figure 1). Data

written to this address is treated as an instruction. Ac-

cessing other addresses is done normally; used for storing

operands and reading results.

A clock cycle during computation has 3 phases. In the first

phase, two rows containing operand bits are read by activating

the corresponding word lines, one from each port. In the second

phase, the logic gates in the PE compute the result. In the third

phase, the result is stored back by activating a wordline. This

leads to a longer clock period, compared to typical BRAM.

C. Processing element

Figure 2 shows the structure of PE added to each column of

the memory in CoMeFa-D. On the read path, A and B are the bits

of the two operands read from the memory at sense amplifiers

SA1 and SA2 of the two ports. Multiplexer TR evaluates a

logical function of A and B, depending on the inputs TR0, TR1,

TR2, TR3 (truth table) that come from the instruction. If a 2-bit

addition is required, the truth table bits will correspond to that

of an XOR gate. The output of TR goes through another XOR

gate (X) to generate the addition of the input bits including the

previous cycle’s carry (S). Gates to generate the carry (CGEN)

are also present. The carry is stored in the carry latch (C) and

can be used in the following cycle’s computation. If an addition

operation is not required, the carry latch is reset with C RST=1,

which enables X to pass the output of TR transparently to the S

wire. C EN=0 disables the latch so it keeps the old value. The

read outputs A and B are also sent to d out1 and d out2, which

is the normal read path.

WD WD
SA SA

TR_0

TR_1

TR_2

TR_3

vdd

from
sequencing
logic

from
sequencing

logic

predicate

wps1wps2

m_en
m_rst

c_en
c_rst

write_sel1

write_sel2

Port1
Read data

Port2
Read data

d_in1d_in2 d_out2 d_out1

from
right
PE

from
left
PE

Cin

S

Port#1Port#2Port#1Port#2

Col Mux Col Mux Col Mux Col Mux

CGEN

M1

M2

M3

M4

C1

C2

C3

C4

S1

S2

S3

S4

P

X

BA

W1

W2

Fig. 3: Architecture of the processing element used in CoMeFa-A

On the write path, 3-input multiplexers W1 and W2 are added

before the write drivers of the two ports. These multiplexers

determine the sources for the write operation. W1 can select

between the S, the input data port d in1 (normal write opera-

tion) and the value read from the right neighboring PE (used

during left shift operation). W2 can select between the carry,

the input data port d in2 (normal write operation) and the value

read from the left neighboring PE (used during the right shift

operation). The mux select signals for W1 and W2 come from

the instruction.

The output of multiplexer TR is also stored in a special

latch called M and is called mask. Predication logic allows

enabling/disabling the write drivers (WD1 and WD2). For this,

a multiplexer (P) is added to select the signal that will en-

able/disable the write drivers. The mask, carry, not-carry and

VDD (logic 1; default) can be selected. This helps CoMeFa

RAMs mask writing the results based on various conditions, like

the value of the mask or the carry bit, to support multiplications

and floating point operations. The wps1/2 signals decide which

port’s write path is activated for a given cycle.

Figure 3 shows the structure of PE added to each multiplexed

column of the memory in CoMeFa-A. All the labels have the

same meaning as the PE described above. The number of C and

M latches changes to 4, and there are 4 additional latches for S.

On each port, 4 column-multiplexed bits are read and two results

are written back in an extended clock cycle. In the read phase of

the cycle, the brown bitline pairs from each port are sensed first.

The resulting S bit is stored in latch S1, carry bit C is stored

in the latch C1, and mask bit M is stored in latch M1. This is

repeated for red, green, and purple bitline pairs successively. All

Sn, Cn and Mn latches get updated in this process. Then, in the

write phase of the cycle, results for the brown and red bitlines

are written using the write drivers of the two ports, followed by

the green and purple ones. This is shown in Figure 4. Clocks

in the PE are driven by signals derived from the sense amplifier

enable pulses. The paths in the PE do not add any additional

delay to the extended clock from sense amp cycling.

P
o
rt

 #
1

Baseline Clk

Clk

Precharge

RWL

Rd Mux Sel

SA enable

WWL

3210

20Wr Mux Sel

WD enable

Wr Mux Sel

WD enable

31

P
o
rt

 #
2

P
or

t
#

1
an

d
 #

2

Fig. 4: Sequence of operations in one clock cycle of CoMeFa-A

D. Instructions and Operation

An instruction is 40-bits and is only required to be written

to Port A’s data bus. The format is shown in Figure 5. The field

names in the instruction are self-explanatory. They directly drive

the corresponding signals in the PE (e.g. predicate bits are

applied to the select lines of the multiplexer P). The src1_row,

src2_row and dst_row bits are used for activating first

operand row on Port A, second operand row on Port B and the

row at which results will be stored, respectively. These addresses

are fed to the appropriate row decoders at the right time in the

clock cycle by the sequencing logic in the CoMeFa RAM using

the multiplexers shown in Figure 1. An FPGA programmer can

choose to generate instructions by finite state machines (FSM)

implemented in soft logic, or store them in another BRAM on-

chip and apply them to a CoMeFa RAM. Multiple CoMeFa

RAMs can share instruction generation logic to amortize its

cost.

src1_rowsrc2_rowdst_rowtruth_tablem_enwrite_selxpredicate m_rstc_enc_rst
06713142021242526272829343839

Fig. 5: Instruction format for CoMeFa RAMs

All computation is done in a bit-wise manner, using trans-

posed data layout. Figure 6 (a) shows 4-bit operands stored

along columns; 160 operands in 160 columns. They are read

bit-by-bit (1 bit/1 row in 1 cycle) inside the RAM and computed

upon based on the truth_table bits in the instruction. The

computed result is stored back bit-by-bit into different rows.

E. RAM-to-RAM chaining

CoMeFa RAMs provide the capability of performing left-

shift and right-shift operations efficiently. Shifts are single

operand operations. For a left (right) shift operation, the source

operand row is read into the PEs, each PE’s W1 (W2) mux

is configured to select the bit read from the right (left) neigh-

boring PE, and that bit is written into the destination row. For

CoMeFa-A, shifting values from a bitline pair to another bitline

pair within the same column multiplexer is also supported.

Direct links connecting top and bottom neighboring CoMeFa

RAMs are provided to allow for shifting data between the

corner PEs in each CoMeFa RAM (similar to carry chains in

LBs). These connections can provide a much easier way to

perform inter-CoMeFa RAM communication and obtain even

more parallelism. Figure 6 (b) shows these direct connections

op
er

an
d
 1

op
er

an
d
 2

..
.

..
.

i
i+1
i+2
i+3

j
j+1
j+2
j+3

...

...

...

...

...

...

...

...

re
su

lt

..
.

k
k+1
k+2
k+3

k←i j op

...

...

...

...

1 element,
4 bits

processing
elements

...

160 elements
160 columns

SA1
WD2 WD1

SA2

sum carry

Memory Cell
Array

lshift

rshift rshift

lshift

b
id

ir
ec

ti
o
n
al

w
ir

e

tri-state
switches

processing
elements

(a) (b)

Fig. 6: (a) Operation of CoMeFa RAM shown for 4-bit operands
and a 4-bit result. (b) CoMeFa RAM supports shifting within a

block and across blocks using chaining

between CoMeFa RAMs along with the details of the shift

operation support inside each PE.

F. Variable precision support

Hardware in CoMeFa RAM PEs is not specific to any nu-

merical precision. A different sequence of instructions is all that

is required to compute in a different precision. The sequences

for fixed-point addition, multiplication and in-RAM reduction

are the same as [3]. Addition for n-bit operands takes n + 1

cycles. Multiplication of n-bit operands takes n
2 + 3n − 2

cycles. CoMeFa RAMs can natively support floating point pre-

cisions as well, as opposed to CCB [19]. We adapt the floating

point algorithms for addition and multiplication from FloatPIM

[9]. The CoMeFa RAM PE can perform all the steps in the

sequences because: (1) carry and not-carry are used in the

predication logic, (2) mask is populated from the output of the

programmable multiplexer TR instead of just A or B, and (3)

operations like XOR can be performed easily using TR and

the truth_table fields in the instruction. The approximate

number of cycles consumed for floating point multiplication and

addition are M2 + 7M + 3E + 5 and 2ME + 9M + 7E + 12,

where M = number of mantissa bits and E = number of

exponent bits.

G. Data loading and unloading

As mentioned in Section III-D, data has to be stored in

a transposed layout in CoMeFa RAMs for computation. We

design a swizzle module (implemented in soft logic) that can

be used to read data from DRAM, transpose it and write it

a CoMeFa RAM on-the-fly. The architecture of the swizzle

logic is shown in Figure 7. The swizzle module employs a

ping-pong buffer FIFO. Untransposed data read from DRAM

is written in-order into the ping part of the FIFO (depth = 40

elements). When the ping part is full, a transposed word (a bit

slice from 40 elements) can be read and written into consecutive

bitlines on the same wordline in a CoMeFa RAM, and new data

from DRAM is written into the pong part. In a similar fashion,

transposed data can be read from CoMeFa RAMs and stored

into DRAM in untransposed form using swizzle logic.

N 12345... N 12345...

Logic to
select which
part of the
buffer to

write

Memory
controller
interface

Logic to read N bits
and write to

CoMeFa

ping-pong buffer
(flip-flops)untransposed

word from DRAM

transposed
word (bit-slice)
to CoMeFa

CoMeFa

Fig. 7: Swizzle logic to load non-transposed data from DRAM
directly into CoMeFa RAM in transposed layout (N=40)

H. One Operand Outside RAM (OOOR) operations

In Section III-D, two operands were stored inside the RAM.

However, in many cases, an optimization can be applied - one

of the operands can be outside the RAM. E.g. multiplying an

array of numbers (stored in the RAM) with a scalar operand

(outside the RAM). We call these OOOR operations. This

method saves space inside the RAM. Without OOOR, in the

multiplication example, we would need to replicate the scalar

operand in each column. This method allows easy inspection

of outside operand’s bits, thereby enabling efficient algorithms.

For example, in the normal shift-and-add based multiplication

explained in [3], if a bit in the scalar operand is 0, cycles are

still consumed, which can be avoided by using OOOR. In the

average case, half of the bits will be 0 and therefore, the number

of cycles can be reduced by 50%. Efficient algorithms like booth

multiplication can also be deployed. We apply OOOR to dot-

product where one of the vector’s elements are common to

all columns. Looking at corresponding pairs of bits across the

operands outside the RAM and adding partial sums inside the

RAM based on their values enables a 2x speedup compared to

the naive algorithm. Overall, OOOR operations make the PEs

more powerful by expressing 2 (or 3) operand operations as 1

(or 2) operand operations.
IV. EVALUATION

A. Tools and Methods Used

The Verilog-to-Routing (VTR) tool flow [25] is used to

evaluate and compare FPGA architectures. To obtain the area

and delay values for the various components of the FPGA,

including CoMeFa RAMs, we use COFFE [26]. COFFE

based SPICE simulations use 22nm libraries from Predic-

tive Technology Model [27]. We also perform SPICE simula-

tions using FreePDK45 [28] to get more confidence that the

read+compute+write operation of CoMeFa RAMs works and

to validate the numbers obtained from COFFE. We use an

analytical model to estimate the energy consumption. We add

transistor energy and wire energy. For transistor energy, we use

an activity factor of 0.1 and calculate the energy based on the

number of transistors in each block (obtained from the area

consumed by the block from VTR). For wire energy, we use

wire energy numbers (fJ/mm) from [29], scale them to 22nm

technology node using [30] and multiply that with the total

routing wirelength from VTR.

B. Baseline vs. Proposed Architectures

We use an Intel Arria 10-like FPGA architecture as baseline

with the same resources as Aria 10 GX900 [31] (Table I). Arria

TABLE I: Properties of the baseline FPGA architecture
(Intel Arria 10 GX 900 like)

Resource Count Percentage Area

Logic Blocks 33962 66

DSP Slices 2423 18

Block RAMs 1518 15

DRAM bandwidth 2048 bits/clock

Channel width 300

TABLE II: List of benchmarks used for evaluation (CB = Compute
bound, OMB = On-chip memory-bandwidth bound, DBB = DRAM

bandwidth bound)

Benchmark Domain
Scenario

Created
Storage Precision

GEMV DL CB DRAM 8-bit

FIR filter DSP CB DRAM 16-bit

Eltwise mult DL DBB DRAM HFP8

Bulk bitwise-Search Databases OMB BRAM 16-bit

Bulk bitwise-RAID Data Center OMB BRAM 20-bit

Reduction DL OMB BRAM Multiple

10 FPGAs [2] use a technology node (20nm) similar to our

setup (22nm). Arria 10 GX900 has 96 transceiver channels

that support upto 17.4 Gbps [32]. We assume that a 4-port

full-width soft HMC (Hybrid Memory Cube) controller [33] is

implemented on the FPGA to provide a DRAM bandwidth of

2048 bits/clock. Resources consumed by the controller are not

used to map the applications to the FPGA.

We use the VTR FPGA architecture used in [34] to make

a baseline architecture file. We run COFFE simulations on an

Arria-10 like DSP to identify its delay and area. We get delay

and areas of a 20 Kilobit BRAM from COFFE (by interpolating

between 16K and 32K). We scale these results based on the DSP

and BRAM delays specified in [35]. The DSP slice works at

630 MHz in fixed-point mode and 550 MHz in floating-point

mode. The BRAM works at 735 MHz in single port, simple dual

port and true dual port modes. The proposed architecture files

(CoMeFa-D and CoMeFa-A) differ from the baseline in having

CoMeFa RAMs instead of normal BRAMs.

C. Benchmarks

We create Verilog designs for several diverse applications to

use as benchmarks (Table II). We manually map the applications

to CoMeFa RAMs and instantiate the CoMeFa RAM blocks

in Verilog RTL. During functional verification, a simulation

model of CoMeFa RAM is used. We create different scenarios

(compute bound, DRAM bandwidth bound and on-chip memory

bound) in these applications.

General Matrix Vector Multiplication (GEMV): GEMV is

a fundamental operation in DL applications. It is used in CNNs,

LSTM cells and in MLPs. We consider two GEMV workloads

from DeepBench benchmarks [36] - LSTM,h=512,t=50 and

GRU,h=512,t=1. 8-bit integer precision with 27-bit accumu-

lation is used. On the baseline FPGA, compute units are im-

plemented using efficient chaining of DSPs. On the proposed

FPGA, compute units based on CoMeFa RAMs are addition-

ally deployed, because many RAM blocks are available after

mapping the baseline design on the proposed FPGA. Efficient

OOOR-based dot product algorithm is used. Partial sums are

read out from the CoMeFa blocks and accumulated using a

pipelined bit-serial tree [4]. No online data transpose is re-

quired - the weight matrix is transposed offline and pinned into

CoMeFa RAM blocks; the vector is streamed and does not need

to be transposed because it is outside the RAM. Since both DSP

based and CoMeFa based compute units are used, reduction in

data movement is not expected.
Finite Impulse Response (FIR) Filter: FIR filters are a

common DSP application. We consider an FIR filter with 128

taps (similar results were observed for 256 taps; not shown

here because of space constraints). Input operands are streamed

onto the FPGA through the DRAM interface. The baseline

FPGA uses an efficient implementation of FIR filter using

systolic DSP chaining [37]. The proposed FPGA uses CoMeFa

RAMs for computation along with DSP chains. Logic blocks

were used for control logic. Operands are transposed on-the-

fly and loaded into multiple CoMeFa RAMs in parallel. While

some CoMeFa RAMs are computing, other CoMeFa RAMs are

loaded in a pipelined manner to improve parallelism. When a

CoMeFa RAM finishes computing, its results are unloaded and

sent to DRAM, and the process starts again until all inputs

are processed. We call this the Load-Compute-Unload (LCU)

pipeline. In this application, the CoMeFa RAM-to-CoMeFa

RAM chaining (Section III-E) feature is used to share inputs

between neighboring blocks.
Elementwise multiplication: Elementwise multiplications

are commonly used in DL, for example, in normalization layers

and Winograd based convolution layers. We consider an applica-

tion involving elementwise multiplication of two arrays of 100K

elements. Floating point data with precision of HFP8 [38] is

used. We showcase here that CoMeFa RAMs are adaptable to

any custom precision. The operands are read from DRAM and

the results are written to DRAM. This is a DRAM bandwidth

bound application because of low arithmetic intensity. We ob-

served that the number of LBs used (16748) was significantly

higher than in the baseline FPGA (649). To saturate the DRAM

bandwidth available on the chip, many swizzle logic instances

are required. To reduce this impact, we plan to explore harden-

ing swizzle logic or adding Transpose Memory Units [3].
Bulk bitwise operations: Bulk bitwise operations (like

AND, OR, XOR, etc) are commonly used in databases, encryp-

tion, DNA sequence alignment, etc. CoMeFa RAMs are very

efficient at these massively parallel operations because of the

presence of mux-based fully configurable PEs. The operands

are assumed to be available in BRAMs in the right layout. The

speedup seen in these applications attributed to the effective

increase in on-chip memory bandwidth because 160 bits can be

operated upon in 1 cycle in a CoMeFa RAM, compared to only

40 bits from a BRAM in the baseline FPGA. We consider two

applications in this category.
Database search: In this application, records matching a key

are searched. If a record matches the key, it is replaced with a

special marker data (like constant 0). Each operand is bitwise

XOR’ed with the key. Bitwise OR reduction is performed on

the result. And then a bitwise ANDing operation is performed

to zero-out the operands that match the key. 256 RAM blocks

are used to store operands. In CoMeFa RAM, 7 data elements

TABLE III: Area breakdown of various RAM blocks

Component BRAM CoMeFa-D CoMeFa-A

Input and output crossbars 5.6 4.5 5.2

Decoders & wordline drivers 7.8 6.3 7.3

Write drivers & sense amps. 6.9 14.0 6.4

Memory cell array 53.4 43.0 49.6

Routing (conn. & switch) 26.0 20.9 24.1

Processing elements 0 11.1 7.1

Total (%) 100 100 100

are stored in each column and temporary results consume 16

rows. The key is outside the RAM.

RAID data recovery: In RAID (Redundancy Array of Inde-

pendent Disks) arrays, parity protection is used. If a drive in

an array fails, the remaining data on other drives is combined

with the parity data (using XOR) to reconstruct the missing data.

These numerous parallel XOR operations with the parity data

can be accelerated using an FPGA. Instead of storing operands

in a transposed format (bits of one operand in multiple rows),

we use an un-transposed data layout where we store bits of

one operand in one row and bits of the second operand are

in another row. This works for logical operations like bitwise

XOR where there is no dependency/communication between

consecutive bits, and avoids the overhead of transposing data.

Reduction: Reduction (or accumulation) is heavily used in

DL and DSP applications. We design this application to create a

scenario of an on-chip memory bandwidth limited application.

Data is available in transposed format (computed in RAM by

a prior kernel for example). The precision is varied from 4-bit

to 20-bit (accumulator size = 32-bit). In the baseline, operands

stored in BRAMs are read and successively accumulated using a

pipelined adder tree (in LBs). On the proposed FPGA, CoMeFa

RAMs store the operands. The reduction algorithm from [3] is

used to reduce the elements to 40 partial sums (1 partial sum

in each multiplexed column of the RAM). These intermediate

results from multiple CoMeFa RAMs are then read out and

accumulated using a pipelined bit-serial adder [4] to obtain

the result. A significantly smaller number of LBs (˜2x-3.5x) is

required on the proposed FPGA.

D. Implementation Details

Area: Table III shows the area breakdown of both archi-

tectures of CoMeFa RAM. For CoMeFa-D, the area overhead

is 1546.78 um
2. This represents an increase of 25.4% in the

BRAM tile area compared to the baseline. This overhead is

mainly attributed to the addition of 160 PEs and the additional

120 sense amplifiers and write drivers. With BRAMs occupy-

ing 15% of the die size in our baseline FPGA, this overhead

corresponds to only 3.8% increase in the FPGA chip area.

The overhead for CoMeFa-A is 493.5 um
2. Compared to the

baseline, this represents an increase of 8.1% in BRAM tile area

and only 1.2% increase in FPGA chip area. This overhead is

mainly attributed to the addition of 40 PEs.

Frequency: We use the COFFE to obtain the overhead in

frequency of operation of a CoMeFa RAM in Hybrid mode,

compared to a BRAM (735 MHz). For CoMeFa-D, the cycle

duration increases to 1.25x (588 MHz). This is mainly attributed

to performing read, compute (PE circuitry delay) and write in

TABLE IV: Differences between CCB and CoMeFa

Property CCB CoMeFa-D CoMeFa-A

Activate two wordlines at the
same time on one port

Yes No No

Additional voltage source required Yes No No

Additional row decoder required Yes No No

Changes in sense amplifiers Yes No No

Additional sense amplifiers Yes Yes No

Sense amp cycling No No Yes

Compute uses dual-port behavior No Yes Yes

Generic/Flexible PE No Yes Yes

Shift between RAM blocks No Yes Yes

Floating point support No Yes Yes

Flip-flops in PE to store operands No No Yes

Parallelism 128 160 160

Application(s) demonstrated DL Many Many

Clock duration overhead 60% 25% 125%

Area overhead (block) 16.8%* 25.4% 8.1%

Area overhead (chip) 2.5%* 3.8% 1.2%

Column multiplexing No No Yes

Practicality Low Medium High

*includes overhead of additional sense amplifiers and write drivers.

the same cycle. For CoMeFa-A, the cycle duration increases to

2.5x (294 MHz). This is because 4 reads and 2 writes are done

successively as described in Section III-C. A lower frequency

of the CoMeFa RAM is not a concern because realistic FPGA

designs typically are constrained by soft-logic and routing de-

lays, so designs do not achieve high frequencies like those of

individual BRAMs (735 MHz in this case). In Memory mode,

the delay overhead is negligible; there is only one additional

mux in the write path and the read path remains unchanged.

Routing: The interface of a CoMeFa RAM block to the

programmable routing is not changed compared to that of a

BRAM. The only change is the addition of two pins, which

are used for direct connections between neighboring BRAMs.

These do not impact the programmable interconnect directly, but

do increase the pin density.

CCB: The implementation of CCB [19] is based on a BRAM

with 128x128 geometry. The area overhead for the CCB block

evaluated in [19] does not include the area of the additional

sense amplifiers and write drivers. In our re-implementation of

CCB, the total area overhead comes out to be 872.64 um
2,

which is a 16.8% increase at the block level and 2.5% at the

chip level in the Arria-10-like FPGA used in this study. The

frequency of operation of the CCB evaluated in [19] is 1.6x

(469 MHz) compared to the baseline BRAM. Table IV shows

the differences between CCB and CoMeFa.

V. RESULTS

A. Throughput Comparison

To evaluate the peak throughput, we consider the MAC

(multiply-accumulate) operation, which is the most common

operation in DSP and DL applications. We use common fixed-

point precisions - 4-bit (accumulator=16-bit), 8-bit (acc=27-bit)

and 16-bit (acc=36-bit), as well as floating-point precisions -

HFP8 ({exp=4, frac=3} and acc={exp=6, frac=9}) [38] and

IEEE FP16 (acc=IEEE FP32). We compare the throughput

of CoMeFa RAMs to the traditional compute units (LBs and

DSPs). For LBs, we synthesize, place and route one MAC

onto the FPGA and determine the operating frequency and

0

2000

4000

6000

8000

10000

12000

int4 int8 int16 hfp8 fp16

T
h
ro
u
g
h
p
u
t

(G
ig
aM

A
C
s/
se
co
n
d
) CCB

CoMeFa-D

CoMeFa-A

DSP

LB

Practicality HighLow

CCB CoMeFa-D CoMeFa-A

Fig. 8: Peak throughput for MAC operations for the whole FPGA
for various precisions

0

2

3

4

5

6

7

GEMV-
GRU

GEMV-
LSTM

FIR Elementwise
Mult *

Bulk
Bitwise -
Search

Bulk
Bitwise -
RAID

Reduction GeoMean

S
p
ee

d
u
p Speedup (CCB)

Speedup (CoMeFa-D)

Speedup (CoMeFa-A)

1Base

Practicality HighLow

CCB CoMeFa-D CoMeFa-A

line

Fig. 9: Speedups obtained for different FPGA architectures for
various benchmarks. ∗ implies no DRAM bandwidth limitation.

resource utilization. We then calculate the throughput by op-

timistically assuming that we can fill the FPGA at the same

operating frequency. This serves the purpose for evaluating peak

throughput. For DSPs, MACs are created and taken through a

similar process. The DSPs do not natively support FP16 and

HFP8 precisions, so MACs for these precisions are designed

using soft logic and DSPs. For CoMeFa RAMs, 160 MACs are

implemented in parallel by instantiating one CoMeFa RAM and

an instruction generation FSM.

Figure 8 shows the peak throughput for each precision ob-

tained from each different computing resource in GigaMAC-

s/second. We observe that the throughput of the FPGA increases

by 2x, 1.7x, 1.3x, 1.7x and 1.3x for int4, int8, int16, hfp8 and

fp16 respectively by adding CoMeFa-D RAMs. Similarly, the

throughput of the FPGA increases by 1.5x, 1.36x, 1.16x, 1.36x

and 1.15x for int4, int8, int16, hfp8 and fp16 respectively by

adding CoMeFa-A RAMs. CoMeFa RAM throughput reduces

as the precision increases, due to the bit-serial nature of com-

putation in CoMeFa RAMs. CoMeFa RAMs can be used for

computing in any precision, unlike DSPs. The frequency of

operation of CoMeFa RAMs does not change significantly with

changing precision, unlike LBs.

B. Speedup and Energy Benefits

Figure 9 shows the maximum speedup obtained by us-

ing CoMeFa RAMs across benchmarks. We see significant

speedups by using CoMeFa RAMs in the compute bound appli-

cations because of the augmented compute throughput provided

by the FPGA. For GEMV benchmarks, speedups of upto 81%

are seen in CoMeFa-D and upto 59% in CoMeFa-A. With CCB,

the max speedup was 72%. We observed some erraticness in

results across seeds because the DSPs were ˜99% utilized, so

we considered the maximum frequency instead of averaging the

frequency across many seeds as we do in other applications. A

speedup of 22% is seen in the FIR benchmark for both CoMeFa-

D and CoMeFa-A. That is because the frequency of operation

0

1000

2000

3000

4000

5000

Bulk Bitwise - Search Bulk Bitwise - RAID Reduction

E
n
er

g
y
 (

n
J
)

Baseline
CCB

Comefa-D
Comefa-A

Practicality HighLow

CCB CoMeFa-D CoMeFa-A

Fig. 10: Energy savings by reduced data movement in on-chip
memory bandwidth limited benchmarks

of the overall design was ˜215MHz in both cases. The FIR

benchmark uses chaining of RAMs, which is not supported by

CCB. So, no speedup is considered compared to the baseline.

Since the Elementwise multiplication benchmark is limited

by DRAM bandwidth, no speedup is seen by using CoMeFa

RAMs. CoMeFa RAMs are targeted to improve the compute

throughput of the FPGA, not the DRAM bandwidth. If we

remove the restriction of DRAM bandwidth and assume that all

the compute units (CoMeFa RAMs as well as DSPs/LBs) can

be fed with data, then speedups of 65% and 50% can be seen

on CoMeFa-D and CoMeFa-A FPGAs respectively. Since CCB

does not support floating-point operations, the speedup for this

benchmark for CCB is shown as 0%.

The Search benchmark is sped up by 18% for CoMeFa-D.

The design on baseline FPGA had the highest frequency of

operation because of very simple operations done in soft logic.

No speedup is seen using CoMeFa-A RAMs because of the

low frequency of operation. This application is not sped up by

using CCB either. CCB takes ˜2x cycles compared to CoMeFa

RAM because of the inflexibility of the processing elements

that only support a few operations. E.g. AND operation can

be done in 2 cycles in CCB, compared to 1 cycle in CoMeFa

RAM. The RAID application is sped up by 6.7x in CoMeFa-D,

3.35x in CoMeFa-A and 5.2x in CCB. The baseline frequencies

were very high in this case also, but the difference in number

of cycles enabled the significant speedups. The speedups for the

Reduction benchmark (4-bit precision) were 5.3x in CoMeFa-D,

3.3x in CoMeFa-A and 5.1x in CCB.

In the on-chip memory bandwidth bound benchmarks

(Search, RAID, Reduction), upto 38% less LBs are used in

CoMeFa compared to baseline. That is because no external

LUTs are needed when CoMeFa RAMs are used. Routing WL

reduction of upto 68% is seen, which directly correlates to

reduction in data movement. Results from our energy model are

shown in Figure 10. We see an energy reduction of upto 56% in

CoMeFa-A and upto 52% in CoMeFa-D.

C. Application Co-mapping

CoMeFa RAMs supplement DSPs and LBs as compute units,

and enhance the FPGA’s compute throughput. Appropriately

dividing and mapping parts of an application to CoMeFa

RAMs and traditional compute units is key. For GEMV and

FIR applications, we analytically explore the effect of varying

work distribution between CoMeFa RAMs and DSPs/LBs on

the proposed FPGA. The results are shown in Figure 11. We see

that as more work is given to CoMeFa RAMs, more speedup

can be obtained upto a limit, after which the overheads (loading,

unloading, serial compute) associated with CoMeFa RAMs can

0.8

1

1.2

1.4

1.6

1.8

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

S
p
ee

d
u
p
 (

cy
cl

es
)

Work distribution

GEMV-GRU

GEMV-LSTM

FIR-128 taps

All work done
by traditional units

Fig. 11: Illustration of increase in speed-up (based on cycles) by
partitioning the application between DSPs and CoMeFa RAMs.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

100

200

300

400

500

600

T
im

e
(m

ic
ro

se
co

n
d
s)

C
y
cl

es

Time (Baseline)

Time (CCB)

Time (CoMeFa-D)

Time (CoMeFa-A)

Cycles (Baseline)

Cycles (CCB,CoMeFa)

4-bit 8-bit 12-bit 16-bit 20-bit

Practicality HighLow

CCB CoMeFa-D CoMeFa-A

Fig. 12: Sweeping precision in the Reduction benchmark

start dominating and reduce the overall speedup. This sweet spot

is different for each application.

D. Adaptability to Precision

CoMeFa RAMs can be used for efficiently computing in

any custom precision. Figure 12 shows the results of sweeping

the precision from 4-bit to 20-bit in the Reduction benchmark.

We see speedups ranging from 5.3x (3.3x) to 2.7x (1.7x) with

CoMeFa-D (CoMeFa-A) as precision increases. CoMeFa-D is

3% better than CCB owing to the improved frequency achieved

by the design. The baseline takes the same number of cycles

for each precision because of the bit-parallel nature of compute.

But the number of cycles taken increases as the precision

increases when CoMeFa RAMs are used. This is because of bit-

serial arithmetic and illustrates that applications using smaller

precisions are better suited for CoMeFa RAMs. Note that the

frequency of operation stays constant for CoMeFa RAMs be-

cause the hardware architecture stays the same. For the baseline,

the frequency decreases slightly as the precision increases.

VI. CONCLUSION

In this paper, we propose augmenting the compute density of

FPGAs by modifying BRAMs into new blocks called CoMeFa

RAMs, which are ideal for enhancing applications with inherent

parallelism like deep learning and signal processing. To the best

of our knowledge, this is the first work that (1) utilizes the

dual-port nature of BRAMs to achieve in-BRAM compute, (2)

deploys configurable 1-bit processing elements inside an FPGA

BRAM, and (3) applies in-BRAM compute to DL and non-DL

applications on FPGAs. With improvements to compute density

and reduction in power consumption, we believe that converting

some or all BRAMs on FPGAs to CoMeFa RAMs can be a

significant step towards closing the performance gap between

FPGAs and ASICs.

VII. ACKNOWLEDGMENT

This research was supported by National Science Foundation

(NSF) grant number 1763848 and the Intel Rising Star Faculty

award.

REFERENCES

[1] Xilinx. (2021) UltraScale Architecture Memory Resources. [Online].
Available: https://www.xilinx.com/support/documentation/user guides/
ug573-ultrascale-memory-resources.pdf

[2] Intel, “Intel Arria 10 Device Overview,” 2021. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/docs/programmable/
683332/current/device-overview.html

[3] C. Eckert et al., “Neural Cache: Bit-Serial in-Cache Acceleration
of Deep Neural Networks,” in Proceedings of the 45th Annual

International Symposium on Computer Architecture, ser. ISCA
’18. IEEE Press, 2018, p. 383–396. [Online]. Available: https:
//doi.org/10.1109/ISCA.2018.00040

[4] A. Landy and G. Stitt, “Serial Arithmetic Strategies for Improving
FPGA Throughput,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 3,
jul 2017. [Online]. Available: https://doi.org/10.1145/2996459

[5] ——, “Revisiting Serial Arithmetic: A Performance and Tradeoff Anal-
ysis for Parallel Applications on Modern FPGAs,” in 2015 IEEE

23rd Annual International Symposium on Field-Programmable Custom

Computing Machines, 2015, pp. 9–16.
[6] S. Ghose, A. Boroumand, J. S. Kim, J. Gómez-Luna, and O. Mutlu,

“Processing-In-Memory: A Workload-Driven Perspective,” IBM Journal

of Research and Development, vol. 63, no. 6, pp. 3:1–3:19, 2019.
[7] A. Shafiee et al., “ISAAC: A Convolutional Neural Network Accelerator

with In-Situ Analog Arithmetic in Crossbars,” in 2016 ACM/IEEE 43rd

Annual International Symposium on Computer Architecture (ISCA),
2016, pp. 14–26.

[8] P. Chi et al., “PRIME: A Novel Processing-in-Memory Architecture
for Neural Network Computation in ReRAM-Based Main Memory,” in
2016 ACM/IEEE 43rd Annual International Symposium on Computer

Architecture (ISCA), 2016, pp. 27–39.
[9] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “FloatPIM: In-Memory

Acceleration of Deep Neural Network Training with High Precision,”
in Proceedings of the 46th International Symposium on Computer

Architecture, 2019, p. 802–815.
[10] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie,

“DRISA: A DRAM-based Reconfigurable In-Situ Accelerator,” in 2017

50th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), 2017, pp. 288–301.
[11] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,

M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-
Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology,” in 2017 50th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 2017, pp. 273–287.
[12] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “ComputeDRAM: In-

Memory Compute Using Off-the-Shelf DRAMs,” in Proceedings of the

52nd Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO ’52. New York, NY, USA: Association for Computing
Machinery, 2019, p. 100–113. [Online]. Available: https://doi-org.
ezproxy.lib.utexas.edu/10.1145/3352460.3358260

[13] M. Kang, M.-S. Keel, N. R. Shanbhag, S. Eilert, and K. Curewitz,
“An energy-efficient VLSI architecture for pattern recognition via deep
embedding of computation in SRAM,” in 2014 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014,
pp. 8326–8330.

[14] A. Agrawal, A. Jaiswal, C. Lee, and K. Roy, “X-SRAM: Enabling
In-Memory Boolean Computations in CMOS Static Random Access
Memories,” IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 65, no. 12, pp. 4219–4232, 2018.
[15] M. Kang, S. K. Gonugondla, and N. R. Shanbhag, “Deep In-Memory

Architectures in SRAM: An Analog Approach to Approximate Comput-
ing,” Proceedings of the IEEE, vol. 108, no. 12, pp. 2251–2275, 2020.

[16] J. Wang, X. Wang, C. Eckert, A. Subramaniyan, R. Das, D. Blaauw, and
D. Sylvester, “A 28-nm Compute SRAM With Bit-Serial Logic/Arith-
metic Operations for Programmable In-Memory Vector Computing,”
IEEE Journal of Solid-State Circuits, vol. 55, no. 1, pp. 76–86, 2020.

[17] D. Elliott, M. Stumm, W. Snelgrove, C. Cojocaru, and R. Mckenzie,
“Computational RAM: implementing processors in memory,” IEEE

Design Test of Computers, vol. 16, no. 1, pp. 32–41, 1999.
[18] S. Jeloka et al., “A 28 nm Configurable Memory (TCAM/BCAM/S-

RAM) Using Push-Rule 6T Bit Cell Enabling Logic-in-Memory,” IEEE

Journal of Solid-State Circuits, vol. 51, no. 4, pp. 1009–1021, 2016.
[19] X. Wang, V. Goyal, J. Yu, V. Bertacco, A. Boutros, E. Nurvitadhi,

C. Augustine, R. Iyer, and R. Das, “Compute-Capable Block RAMs

for Efficient Deep Learning Acceleration on FPGAs,” in 2021 IEEE

29th Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM), 2021, pp. 88–96.
[20] D. Lewis, D. Cashman, M. Chan, J. Chromczak, G. Lai, A. Lee,

T. Vanderhoek, and H. Yu, “Architectural Enhancements in Stratix V,”
in Proceedings of the ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, ser. FPGA ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 147–156. [Online].
Available: https://doi.org/10.1145/2435264.2435292

[21] J. Tyhach et al., “Arria 10 Device Architecture,” in 2015 IEEE Custom

Integrated Circuits Conference (CICC), 2015, pp. 1–8.
[22] S. Yazdanshenas, K. Tatsumura, and V. Betz, “Don’t Forget the Memory:

Automatic Block RAM Modelling, Optimization, and Architecture
Exploration,” in Proceedings of the 2017 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, ser. FPGA ’17. New
York, NY, USA: Association for Computing Machinery, 2017, p.
115–124. [Online]. Available: https://doi.org/10.1145/3020078.3021731

[23] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das, “Compute Caches,” in 2017 IEEE International Symposium on

High Performance Computer Architecture (HPCA), 2017, pp. 481–492.
[24] A. Subramaniyan, J. Wang, E. R. M. Balasubramanian, D. Blaauw,

D. Sylvester, and R. Das, “Cache Automaton,” in Proceedings of the

50th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-50 ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 259–272. [Online]. Available: https:
//doi.org/10.1145/3123939.3123986

[25] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. ElDafrawy, J.-
P. Legault, E. Sha, A. G. Graham, J. Wu, M. J. P. Walker, H. Zeng,
P. Patros, J. Luu, K. B. Kent, and V. Betz, “VTR 8: High Performance
CAD and Customizable FPGA Architecture Modelling,” ACM Trans.

Reconfigurable Technol. Syst., 2020.
[26] S. Yazdanshenas and V. Betz, “COFFE2: Automatic Modelling and

Optimization of Complex and Heterogeneous FPGA Architectures,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 12, no. 1, pp. 3:1–3:27, January 2019.

[27] A. S. University. (2012) Predictive Technology Model. [Online].
Available: http://ptm.asu.edu/

[28] NCSU. (2018) FreePDK45. [Online]. Available: https://www.eda.ncsu.
edu/wiki/FreePDK45:Contents

[29] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the Future of Parallel Computing,” IEEE Micro, vol. 31,
no. 5, pp. 7–17, 2011.

[30] A. Stillmaker and B. Baas, “Scaling equations for the accurate prediction
of CMOS device performance from 180 nm to 7 nm,” Integration, the

VLSI Journal, vol. 58, pp. 74–81, 2017, http://vcl.ece.ucdavis.edu/pubs/
2017.02.VLSIintegration.TechScale/.

[31] Intel, “Intel Arria 10 Product Table,” 2021. [Online].
Available: https://www.intel.cn/content/dam/www/programmable/us/en/
pdfs/literature/pt/arria-10-product-table.pdf

[32] ——, “Intel Arria 10 Transceiver PHY User Guide,” 2021. [Online].
Available: https://www.intel.cn/content/dam/www/programmable/us/en/
pdfs/literature/hb/arria-10/ug arria10 xcvr phy.pdf

[33] ——, “Hybrid Memory Cube Controller IP Core User Guide v16.0,”
2016. [Online]. Available: https://www.intel.com/content/www/us/en/
docs/programmable/683854/16-0/introduction.html

[34] A. Arora, A. Boutros, D. Rauch, A. Rajen, A. Borda, S. A. Damghani,
S. Mehta, S. Kate, P. Patel, K. B. Kent, V. Betz, and L. K. John,
“Koios: A Deep Learning Benchmark Suite for FPGA Architecture
and CAD Research,” in 2021 31st International Conference on Field-

Programmable Logic and Applications (FPL), 2021.
[35] Intel, “Intel Arria 10 Device Datasheet,” 2020. [Online].

Available: https://www.intel.com.tw/content/dam/www/programmable/
us/en/pdfs/literature/hb/arria-10/a10 datasheet.pdf

[36] S. Narang. (2016) Baidu deepbench. [Online]. Available: https:
//svail.github.io/DeepBench/

[37] Altera, “Designing Filters for High Perfor-
mance,” 2015. [Online]. Available: https://www.intel.
cn/content/dam/www/programmable/us/en/pdfs/literature/wp/
wp-01260-stratix10-designing-filters-for-high-performance.pdf

[38] X. Sun et al., “Hybrid 8-bit Floating Point (HFP8) Training and
Inference for Deep Neural Networks,” in Advances in Neural

Information Processing Systems, vol. 32. Curran Associates, Inc.,
2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/
file/65fc9fb4897a89789352e211ca2d398f-Paper.pdf

