HLSDataset: Open-Source Dataset for ML-Assisted
FPGA Design using High Level Synthesis

Abstract— Machine Learning (ML) has been widely adopted
in design exploration using high level synthesis (HLS) for faster
resource, timing and power estimation at very early stages for
FPGA-based design. To perform prediction accurately, high-
quality and large-volume datasets are required for training ML
models. However, the current datasets used in this domain
are proprietary or limited in use, and practitioners have to
generate their own dataset to train HLS-related ML models.
This paper presents a dataset for ML-assisted FPGA design
using HLS, called HLSDataset. The dataset is generated from
widely used HLS C benchmarks including Polybench, Machsuite,
CHStone and Rossetta. The Verilog samples are generated with
a variety of directives including loop unroll, loop pipeline, and
array partition to make sure optimized and realistic designs
are covered. The total number of generated Verilog samples is
nearly 9,000 per FPGA type. The dataset repository includes
CSV (comma separated values) files containing both HLS and
implementation metrics which can be easily consumed by ML
model. We also include original C source code with directives,
Verilog designs, post-HLS reports, post-implementation reports
for each sample in the dataset, so that any metrics not present in
the CSV can be easily extracted. In order to extend the dataset
for future benchmarks, generation and extraction scripts are also
provided. To demonstrate the effectiveness of our dataset, we
undertake case studies to perform power estimation and resource
usage estimation with ML models trained with our dataset.
All the code and dataset are public at link-hidden-for-double-
blinding. We believe that HLSDataset can save valuable time
for researchers by avoiding the tedious process of running tools,
scripting and parsing files to generate the dataset, and enable
them to spend more time where it counts, that is, in training ML
models.

I. INTRODUCTION

High-level synthesis (HLS) is able to convert software
applications into FPGA hardware designs with different op-
timization strategies. It can greatly improve the productivity
since hardware designers do not need to write low-level
hardware description language (HDL) from scratch given an
application written in a high-level language (HLL) like C, C++
or SystemC.

While HLS greatly helps to reduce the effort for the
software to FPGA implementation conversion, it is quite time-
consuming, especially when large design spaces need to be
explored using various pragma settings. This is a common
usecase when designing application-specific optimized designs
targeting FPGAs, for example, when designing FPGA based
accelerators for ML applications. Metrics such as resource
usage and achieved clock frequency reported after HLS are
estimates. To find the final metrics, the even slower imple-
mentation process (synthesis, place and route) is required.
Even more efforts are needed to estimate power consumption

accurately, since low-level simulation is required. For these
reasons, efficient design space exploration targeting optimiza-
tion of such metrics is hard. To address this challenge, machine
learning (ML) based techniques are widely adopted to provide
accurate resource usage and power estimation at early stage
in HLS. S. Dai et al. [1] uses Lasso linear model, XGB and
artificial neural network (ANN) to calibrate the resource usage
and timing results from HLS reports. Graph neural networks
(GNNs) and HLS reports are used to predict performance in
the work by N. Wu et al. [2]. HL-Pow [3] and PowerGear
[4] give solutions to predict power consumption using convo-
lutional neural networks (CNNs) and GNNs respectively. E.
Ustun et al. [5] builds graph samples using the IR (intermediate
representation) generated during HLS and use them as input
to GNNs to predict operation delay.
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Fig. 1: The flow of general ML-based methods in HLS

The flow of general ML-based methods in HLS domain
is shown in Fig 1. ML based methods can provide fast
and accurate metrics estimation with HLS reports, however,
extensive dataset is needed to train the models to produce
acceptable results. To generate task-specific dataset in HLS
domain requires lots of effort:

« Software source code should cover enough domains

« Source code should be well manipulated with HLS directives
so that HLS optimization can be applied

« Varieties of optimization strategies need to be applied to the
source code so that wide range of hardware designs can be



generated

« Implementation is needed if the post-implementation metrics
are the prediction goal

« Extensive scripting is required to extract the data from
reports and preprocess before it can be consumed directly
in ML models

« Significant computing resources may be needed for large
number of tool runs to collect enough data

Researchers have to generate their own dataset, which can
be extremely time-consuming because of the aforementioned
reasons. Due to the different prediction goal and ML models,
existing datasets are proprietary and not shareable or reusable.
However, there is an opportunity to reduce, and even eliminate,
the redundant work for various researchers by creating a
dataset that contains common usable information, allowing
them to focus on training the ML models instead of generating
the dataset. We observe that resource usage reports, Inter-
mediate Representation (IR) code, IR operator information,
Finite State Machine Data path (FSMD) model from HLS
are commonly used as the source of features. The resource
utilization, timing information and power consumption values
from post-implementation phase are the common metrics that
researchers are interested to predict.

With the above observation, we propose HLSDataset: a
well-curated open-source dataset for ML-assisted FPGA de-
sign using HLS. Our dataset can be used by a large subset of
problems in this domain. The dataset currently contains nearly
9,000 Verilog designs per FPGA type, and two FPGA types are
covered. To ensure diversity of designs, HLSDataset are gen-
erated from multiple applications across various benchmarks:
Polybench [6], Machsuite [7], CHStone [8] and Rosetta [9],
and each application is tuned to generate a variety of hardware
design samples. Our dataset contains all necessary files and
reports for every design (or, sample) so that features and target
metrics can be easily extracted. In this paper, we describe
the dataset, how it can be used, and showcase its utility by
conducting two case studies. We expect this dataset to be
widely usable and get even more useful with time through
contributions by the FPGA research community.

Our contributions in this paper are as follows:

« Introduce HLSDataset and describe both the properties and
usage of the dataset.

« Present the methodology how HLSDataset is generated. This
methodology can be easily replicated to extend the dataset.

o Two case studies are conducted to demonstrate the effec-
tiveness of HLSDataset.

Our dataset (including C code, Verilog code, CSV files,
reports, and scripts) is open-sourced at link-hidden-for-double-
blinding. The rest of this paper is organized as follows: Section
IT summarizes the existing datasets and compares our dataset
with them; Section III illustrates the methods we use to
generate HLSDataset; Section IV describes the contents of
HLSDataset; Section V gives a general overview of where
HLSDataset can be used; Section VI presents two case studies
that use the dataset to successfully accomplish the prediction

tasks, followed by a summary of this work and future work
in Section VII.

II. RELATED WORK

The success of ML-based models depends on well-curated
datasets. There are a few datasets for training ML models to
assist in chip design problems in the ASIC domain. OpenABC-
D [10] from NYU is a large-scale, labeled dataset produced by
synthesizing open source designs with an open-source ASIC
logic synthesis tool. This dataset can be used in developing,
evaluating and benchmarking ML-guided logic synthesis but is
applicable to a very small subset of problems i.e. prediction of
ASIC synthesis results. CircuitNet [11] is another open-source
dataset targeted for three prediction tasks in backend ASIC
flows - congestion prediction, DRC (Design Rule Check)
violation prediction, and IR drop prediction. It contains more
than 10000 samples (in form of 2D image-like data) obtained
by running open-source RISC-V designs through commercial
EDA tools. This dataset is applicable to only a few physical
design problems.

For FPGA HLS design flow, which is the focus of this paper,
there are a few open-source datasets as well. Dai et al. [1]
have open-sourced a dataset that is applicable to prediction
of resource usage and delay (or frequency) for FPGAs from
high-level applications written in C. The dataset is generated
by using applications from suites such as CHStone, Machsuite
and Rosetta, and the Vivado tool chain from Xilinx/AMD. This
dataset is restricted to use only in estimation of resource usage
and timing for FPGA, and contains only limited data. The data
provided is only for 1 FPGA device, implying that this dataset
can not be used for cross-FPGA predictions.

MLSBench [12] is an open-source dataset generated from
17 C/C++ and 13 SystemC benchmarks using Xilinx Vivado
HLS tool flow. The C sources to generate the designs are
from S2CBench [14], CHStone [8] and MachSuite [7]. The
dataset contains only log files and reports generated from
Xilinx Vivado HLS tool flow, but without directly consumable
features, labels and RTL codes. Also, this dataset is limited to
only one FPGA. Therefore, MLSBench is hard to extend and
quite limited in ML usage.

Spector [13] is a benchmark suite that contains applications
written in OpenCL. The authors run the benchmarks through
Intel OpenCL SDK to generate 8300 hardware designs targeted
for Intel FPGAs. In addition to just the benchmarks, several
metrics for each design sample (based on compilation using
Intel OpenCL SDK) are also provided. The focus is on HLS
tool flows and design space exploration.

Table I compares the various properties of these datasets.
We show the number of samples contained in the dataset
and number of sources used for generating the dataset. These
datasets generally cater to limited usecases (eg: physical
design prediction in [11], or RTL synthesis quality prediction
in OpenABC-D [10] or resource usage prediction in Dai
et al.[1]). Some need further expansion and curation to be
readily usable by others. Retargeting the few available datasets
for a new ML model requires significant manipulation and



Work # Samples  # Sources Platform & Tools Use Case in ML
Abstraction level
OpenABC-D [10] 870,000 29 ASIC RTL OpenROAD Estimation of quality of a synthesis recipe
L ASIC Physical . Congestion prediction, DRC violation
CircuitNet [11] 12,960 6 Design Synopsys DC Prediction, IR drop prediction
Dai [1] 1,300 65 FPGA HLS Xilinx Vivado Quality of Results Estimation on one FPGA
MLSBench [12] 6,000 30 FPGA HLS Xilinx Vivado NA
Spector [13] 8,300 9 FPGA HLS Altera OpenCL SDK NA
Power Estimates, resource and timing
Ours 18,876 34 FPGA HLS Xilinx Vivado estimation, operation delay estimate,
cross-FPGAs studies, and more

TABLE I: Comparing HLSDataset with prior open-source datasets for training ML models for chip design

augmentation. So, researchers often generate their own dataset
every time they want to solve a new problem. In this process,
they have to rerun tool flows to generate reports and then write
scripts to parse those reports repeatedly. This motivates us to
develop a dataset that is retargetable, versatile and robust, so
that researchers do not need to replicate the tedious process
of generating the dataset.

We focus on developing a dataset for predictions from appli-
cations written in high-level languages (HLLs) because high-
language models of applications are available in early stages
of development of customized designs such as application-
specific accelerators. In other words, we focus on prediction
at the HLS level. Predicting at the HLS level provides the most
benefit in design space exploration. We present HLSDataset,
an open-source dataset for ML-Assisted FPGA Design for
HLS.

III. HLSDATASET CONSTRUCTION

Table II gives a general overview of our HLSDataset. We
use HLL sources belonging to various application domains
such as multimedia, arithmetic, signal processing and machine
learning, from multiple popular benchmark suites such as
Polybench [6], Machsuite [7], CHStone [8] and Rosetta [9].
Xilinx Vivado/Vitis tool chains are used for HLS and imple-
mentation. Two FPGAs are used: ZU9EG and XC7V585T. We
plan to expand the dataset to include more FPGAs, including
Intel FPGAs. One target frequency of 100 MHz is used. We
are working on using more target frequencies as well.

Category Details
Num samples 18,876
Num applications 34

Application sources
FPGAs

Polybench, Machsuite, CHStone, Rosetta
ZU9EG, XC7V585T

Clock frequency 100MHz

Domains Multimedia, Arithmetic, Signal processing, ML
Size 50 GB

Machines 9 16-core Intel Xeon 5218 2.3GHz 384 GB RAM
Time More than 1,500 hours

Tools Xilinx Vivado/Vitis

TABLE 1II: General overview of HLSDataset

A. C source code manipulation

Verilog designs generated from C benchmarks are highly
dependent on HLS directives, pragmas and the target clock
frequency. For generating our dataset, we focus on the design
space of loop unroll, loop pipeline and array partition. Loops
in C code need to be labelled so that loop unroll and loop
pipeline can be applied to generate efficient designs. Machsuite
and Rosetta are already well-written with HLS directives, and
we directly use their code for our dataset generation. We
manipulate the Polybench and CHStone source code with HLS
directives.

B. Auto-generation of Tcl scripts

The scope of generated Verilog designs can be huge, since
the factors for array partition and loop unroll can vary greatly.
The number of generated designs is determined by the number
or the dimension of the factors we want to explore in our
dataset. However, manually writing every Tcl script (Xilinx
Vivado/Vitis tools use a Tcl script based interface), which
is used to tune HLS solution for the generation of Verilog
designs in our dataset, is time-consuming and unrealistic. In
order to generate designs more efficiently, we write a template
Tcl script for every C source code and a script to parse it. The
script will auto-generate Tcl files which can be directly used
by the HLS tool.

An example template.tcl is shown in Fig 2. It contains 4
blocks of lines which are classified into three types: static
lines, array partition lines and loop optimization lines.

o Static lines: The directive lines under static lines are not
subject to change, they should be the same and written into
every generated Tcl file.

o Array partition lines: The first line indicates the sets of
parameters applied for HLS. It contains a number denoting
the number of directive lines, a list of numbers denoting
the factor sets for array partition and a set of types for
array partition. The rest of lines are the directive lines with
placeholder that should be replaced with the parameters
defined by the first line. The placeholders inside the directive
lines are replaced with the combination of factor sets and
type sets, and every Tcl file will contain one combination
of directive parameter. The array partition lines 2 in the Fig
2 generates 8 combination directive parameters in this case



due to 4 factors and 2 types. Note that factor equalling to 1
means no array partition is applied.

« Loop optimization lines: The first line denotes the number
of nested loops and the number of directive lines for loop
optimization. It is followed by loop optimization parameter
lines, each of which indicates the depth of a loop, the name
of a loop, whether to apply pipeline to the loop, whether
to apply unroll to the loop and unroll factor sets. The rest
of the lines are directive lines with placeholders that should
be filled with settings from the loop optimization parameter
lines. Unroll and pipeline are applied to at most one layer of
nested loops, therefore, the number of generated directives
is equal to the sum of the number of unroll factors among all
the loops and the one without any loop optimization. The
loop optimization lines in Fig 2 generates 8 combination
directives for the loop optimization.

#static lines
set_directive_resource -core RAM_1P_BRAM "bfs" nodes
set_directive_resource -core RAM_1P_BRAM "bfs" edges

#array partition lines 1, factor dimension = 6
array_partition,2,[1 2 4 8 16 32],[cyclic]
set_directive_array_partition -factor [factor] -type [type] "bfs"
set_directive_array_partition -factor [factor] -type [type] "bfs"

nodes
edges

#array partition lines 2, factor dimension = 4*2 = 8
array_partition,2,[4 8 16 32],[cyclic block]
set_directive_array_partition -factor [factor] -type [type] "bfs"
set_directive_array_partition -factor [factor] -type [type] "bfs"

levels
level_counts

#loop optimization lines 1, factor dimension = 8
loop_opt, 2,2

0,loop_horizons, ,unroll,[2 5 18]
1,loop_nodes,pipeline,unroll,[2 4 8 16]
set_directive_pipeline bfs/[name]
set_directive_unroll -factor [factor] bfs/[name]

Fig. 2: Example template Tcl file to generate the optimization
strategy for the application bfs from Machsuite

The blocks of directive lines are independent of each other,
therefore the number of Tcl files is equal to the products of
the number of directive parameter combination among all the
blocks. In this example template, 384 Tcl files are generated,
and different optimization strategies are expected. The method
to generate multiple versions of Tcl files is summarized in
Algorithm 1, each block of lines will be parsed into an object.

C. Data collection

IR code, IR operator information, FSMD model files from
HLS and resource utilization reports from both HLS and
implementation are included in our dataset. In order to get the
high-confidence power estimation, we write testbench and run
post-implementation functional simulation for vector-based
power estimation.

We observe that there is a chance that the HLS tool
generates the same design even though different optimization
strategies are provided in the Tcl script. This can be caused
by aggressive optimization parameters, which are identified
as unachievable by the HLS tool. The tool then automat-
ically downgrades the optimization parameters, which can
match optimization parameters during another run. Therefore,

Algorithm 1: Method to generate multiple Tcl files

Input: template.tcl
Output: N different versions of Tcl files
s_lines,array_objs,loop_objs from template.tcl;
Generate N empty Tcl files
/* static lines for each Tcl file */
for i< 1 to N do

| Write s_lines to Tcl file
end
/* array partition directives */
foreach o € array_objs, f € o.factors,t € o.types do
array_partition with factor f and type ¢
Write array_partition to Tcl file
end
/* loop unroll and pipeline x/
foreach o € loop_objs, f € o.factors do
Get the loop from loop_list in o
Apply pipeline to loop if pipeline applies
Apply unroll to loop with factor f if unroll applies
Write pipeline and unroll to Tcl file

end

redundant designs can be generated. We identify redundant
designs by checking the hierarchical resource utilization from
HLS reports. If two or more designs have exactly the same
utilization, only one will be kept in our dataset.

IV. PROPERTIES OF HLSDATASET
A. The contents of HLSDataset

HLSDataset contains nearly 9,000 hardware design samples
for each FPGA type and we consider the features listed below
to sufficiently characterize each design sample:

1) Resource usage (the number of BRAM, DSP, FF and LUT)

2) Application domain (e.g., video/graph processing, linear
algebra etc)

3) The number of arithmetic operators (e.g., add, mul), the
number of logic operators (e.g., or, shift)

4) The number/size of primary inputs and outputs

5) The number of registers, memory and multiplexers

6) Clock period

Power consumption is also included, since it is crucial when
low-power hardware designs are the final target. We preprocess
the raw reports and files from both HLS and implementation
phases and generate two CSV files for each benchmark. Each
CSV file contains multiple entries depending on the number
of generated hardware designs for the benchmark. The user
can directly use the data in the CSV files to train their ML
models, thereby avoiding any effort in changing source code,
setting up and running tools, and parsing reports. The detailed
contents of the CSV files are listed in Table III.

It is possible that the features that other researchers are
interested in, are not present in the CSV files. Therefore, we
also create tar balls containing all the necessary files for feature
extraction to do ML training. These files are selected according
to how prior works generate their own dataset. Each tar ball
contains:

e Generated Verilog code (*.v)
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Fig. 3: Resource utilization of designs generated for ZU9EG, applications are from Rosetta, Polybench, Machsuite and CHStone

IR code (*.bc)

IR operator information (*.adb)

FSMD model (*.adb.xml)

Resource usage estimation from HLS (*.verbose.rpt and
*.verbose.rpt.xml)

Resource utilization reports (utilization.xls) and timing re-
ports (timing.xls) generated after implementation

Considering the reusability and ease-of-use of the dataset,
Tcl scripts and source code files are included in the dataset
so that researchers can easily extend the dataset with other
benchmarks. The detail of how the Tcl script templates can
be used is discussed in Section III. We also include Verilog
testbenches so that the generated designs can be easily evalu-

ated with simulation-based power estimation.
Overall, the contents of HLSDataset are summarized as:

1) The CSV files containing features for each hardware design
listed in Table III

2) Tcl templates and actual scripts to generate the dataset

3) C source code files manipulated with HLS pragmas

4) Testbenches in Verilog to test generated Verilog designs

5) Tar balls containing raw files and reports from HLS and
reports from implementation stage

Compared to the datasets used by prior works, HLSDataset
gives a wider coverage of information for each design, and
it gives higher chance for researchers to use or extract useful
features directly, meanwhile, no efforts are needed to run the



Category post_hls_info.csv description

Resource # Estimated usage and available number of BRAM, DSP,
FF and LUT

Clock Target, estimation and uncertainty of the clock period

Logic ops The number of C and RTL logic operators and associated
resource usage

Arith ops The number of C and RTL arithmetic operators and
associated resource usage

Data ports Width and the number of data input and output ports

Category post_implementation_info.csv description

Power Simulation-based dynamic power consumption

Resource # Actual usage of BRAM, DSP, FF and LUT

Clock Achieved clock frequency

TABLE III: Descriptions of features included in the CSV files
provided with HLSDataset

time-consuming HLS and implementation tool flows.

B. Statistical overview of HLSDataset

Fig 3 provides a view of the diversity of the HLSDataset,
through the resource usage metrics of the designs (or samples)
contained in the dataset. We use box and whisker plots to
show the distribution of LUTs (Look Up Tables), FFs (Flip
Flops), DSPs (Digital Signal Processing Blocks) and BRAMs
(Block RAMs) consumed by the designs generated from each
application. As mentioned earlier, we use 4 widely used
benchmark sets - Polybench, Machsuite, CHStone and Rosetta
- to generate our dataset. Machsuite and Polybench are mainly
composed of short programs and kernels, however, tuning
the directives aggressively can still lead to large resource
usage on FPGA. Rosetta, on the other hand, is composed of
applications from ML and image or video processing domains.
Each application of Rosetta contains multiple kernels, and it
leads to larger resource usage on FPGA. The secure hash
algorithm SHA and linear predictive coding analysis GSM
are picked from CHStone due to their representative in the
domain. We chose not to include arithmetic operation pro-
grams from CHStone due to the limited HLS design space in
those applications.

V. HLSDATASET APPLICATIONS

HLSDataset can be applied to a multitude of prediction
applications. Table IV summarizes the prior works in the
area of prediction at the HLS level. The data required for
training ML models for each of these prior works is included
in HLSDataset. Hence, HLSDataset can be effectively used
for these and similar works.

Resource utilization estimates: HLSDataset can be directly
used for post-implementation resource utilization estimates.
Dai et al. [1] use Lasso linear model, XGB and artificial neural
network (ANN) to improve the quality of HLS-generated
resource utilization values with features extracted from HLS
reports. Wu et al. [2] predict post-implementation resource
usage by using the graph structure obtained from the IR
codes generated by front-end of HLS tools. Fast estimation
of resource usage find application in design space exploration

while generating overlay architectures for FPGAs [15]. The
features and feature source used to conduct the studies can be
easily found and extracted from HLSDataset.

Timing and operation delay prediction: Wu et al. [2]
demonstrates prediction of post-implementation critical path
timing using IR codes and features from HLS reports. D-
SAGE [5] builds graph samples using the IR generated during
HLS and use them as input to GNNs to predict operation
delay. HLSDataset contains the IR code files as well as HLS
reports generated by Vivado HLS, and can be used to train
such models to predict timing related information.

Power estimates: HL-Pow [3] and PowerGear [4] train
ML models to predict power consumption using convolutional
neural networks (CNNs) and GNNs respectively. Predicting
power consumption needs data such as signal activities and
operators obtained from the IR. While those signal activities
are not directly included in HLSDataset, testbenches and
stimulus are provided so that both RTL-level simulation and
C-level simulation can be conducted. Necessary codes to run
the simulation: IR codes and RTL designs are included in
HLSDataset.

Beyond the above tasks, HLSDataset can be applied to many
more potential use cases. While the mentioned works target
single-FPGA prediction, HLSDataset includes samples from
multiple FPGAs. We believe HLSDataset has the potential
to be used for cross-FPGAs metric prediction, although no
existing work shows this usecase. In addition to prediction
of results, HLSDataset can be used to train models to opti-
mize EDA tools and help on faster design space exploration.
Moreover, HLSDataset can also be used to evaluate the ML
model efficiency in HLS domain with the advancing of ML
techniques.

The features and labels used by each ML models vary
widely depending on the task and ML algorithm used, as we
can see from table IV. By including information from different
levels in the CSV files and TAR balls in HLSDataset, we
ensure that all such ML models can be trained. Researchers
can extract information from TAR balls and apply HL.SDataset
to many other applications.

VI. CASE STUDIES

Our dataset covers large amount of features and metrics
from post-HLS and post-implementation reports which can be
used in machine learning models directly. Therefore, users can
simply extract the necessary information from our dataset to
train and test their models. In this section, we perform two case
studies by training and testing ML models with HLSDataset
to demonstrate the usage of it.

A. Case Study 1: Power Estimation in FPGA HLS via GNNs

In our first case study, we replicate the graph neural
networks (GNNs) in PowerGear [4] to predict the post-
implementation power using both post-HLS features and signal
information extracted from C-level simulation. We used sim-
ulation power as our ground truth power. The GNN models
are trained and tested with the subset of HLSDataset on the



H Work ML model Task C source Feature and source H
CHStone,
[ Lasso, XGB, Resource usage and Machsuite, Resource usage estimation for logic ops, arithmetic ops, memory and
ANN timing S2CBench, multiplexer; achieved clock period and uncertainty from HLS reports
Rosetta
CHStone,
Resource usage and . Graph samples based on IR code; operator type, used resource type and
[2] GNN L. Machsuite, L .
timing timing information from HLS reports
Polybench
Resource utilization and clock estimation by HLS reports; signal
[3] CNN Power estimates Polybench activities track and IR operator information from IR code; RTL operator
information from FSMD model
Signal activities track and IR operator information from IR code, Graph
[4] GNN Power estimates Polybench samples built with IR code and FSMD model, RTL operators
information in FSMD model
[5] GNN Operation delay Machsuite Graph structures, operation type and bitwidth from IR code

TABLE IV: Prior ML-based prediction via HLS work, the used ML model, prediction tasks, the used dataset for training and the availability

of the dataset.

Graph Samples
post_hls_info.csv Node Features
post_impl_info.csv Edge Features
IR
FSMD Stimulus
HLS Raw reports
Impl Raw reports
- L Simulation and (Ll
RTL codes N ) -

Fig. 4: Usage of HLSDataset to construct machine learning
based power model

same FPGA. IR code can be directly used to build graph
samples which serve as the inputs to the GNNs. The usage
of HLSDataset in this case study is shown in Fig 4.

The model is trained using the dataset from Polybench. We
leave one target application out of the nine application as the
test dataset and use all the rest for training. With the iteration
of the approach, we generate one model for every application.
We perform 10-fold cross-validation for model generation. All
the above steps are repeated for the dataset from the other
FPGA. All the training and testing run on Nvidia Ampere
A100 GPU. The results for two FPGA devices, ZU9EG and
XC7V585T, can be found in Table V. The test errors for
dynamic power range from 3.89% to 7.93% on ZU9EG and
from 5.25% to 9.43% on XC7V585T, and the average errors
are 5.08% and 6.40% respectively. The accuracy results are
better than what PowerGear presents since we use simulation-
based power as ground-truth value while they use on-board
measurement power. The results show that HLSDataset can be
used to perform ML-based power estimation tasks for FPGA.

B. Case Study 2: Estimation of Quality of Results in HLS with
ML

The resource usage estimation (LUTs, FFs, DSPs, BRAMs)
generated by HLS tools are fast but inaccurate compared to the
post-implementation reports because HLS tools simply sum
up the contributions of instantiated functional units during the
synthesis. This approach fails to capture the optimization ef-
fects and limitations imposed by resources on-chip. However,

L. Error of Dynamic Power (%)
Application
ZU9EG XC7V585T
atax 3.89 5.25
bicg 3.90 5.60
gemm 5.24 6.50
gesummy 7.93 9.43
k2mm 4.25 6.00
k3mm 4.15 6.47
mvt 4.64 5.62
syrk 5.31 6.22
syr2k 6.41 6.46
average 5.08 6.40

TABLE V: Dynamic power estimation errors - Training dataset and
testing dataset are from Polybench subset of HLSDataset. Results for
ZU9EG and XC7V585T.

Features
Resource #
Clock periods
[EESBEEETY A osicon
post_hls_info.csv Arithmetic ops »
post_impl_info.csv Memory
IR Multiplexer
HLS Raw reports Labels
Impl Raw reports #LUT
RTL codes #FF
#DSP
#BRAM

Fig. 5: Usage of HLSDataset to construct machine learning
model for estimation of resource utilization

as S. Dai et al. [1] indicates, ML can help to predict more-
accurate resource usage from estimates in the HLS reports.
We replicate the ML model but use our HLSDataset as
training and test set to evaluate the ML model on estima-
tion of post-implementation resource usage. The way to use
HLSDataset is illustrated in Fig 5. Machsuite, Polybench
subsets from HLSDataset are used to train the XGB and



Lasso linear model. The features are extracted from FSMD file
(.adb.xml) and resource estimates reports (.verbose.rpt.xml).
The ground-truth resource utilization is extracted from post-
implementation reports. All the files and reports are included
in our dataset, only a parser is needed to extract necessary
data to be used in the ML model. Single-task XGB and Lasso
model are used in our case. We randomly select 20% of
8735 samples from the subsets as the testing set and the rest
as the training/validation test set. 10-fold cross-validation is
performed during training, and 75% of the training/validation
set is selected for training and 25% for validation. The results
are shown in Table VI. The HLS tool fails to provide good
estimates for LUT and FF usage, while DSP and BRAM esti-
mates are accurate. XGB and Lasso demonstrate a significant
accuracy improvement in the estimation of LUT and FF usage.
The results shown in this table differ from those in the original
paper because there are differences in target FPGA, the dataset,
features used to train the model and the version of HLS tools
used for the dataset generation. Therefore, we do not show a
comparison with the original work here.

Resource LUT FF DSP BRAM
HLS Estimate 63.2% 34.1% 0.0% 1.8%
XGB 3.2% 2.3% NA 0.1%
Lasso 13.2% 15.4% NA NA

TABLE VI: Resource estimation errors - Training dataset and test-
ing dataset are from Machsuite and Polybench subsets of HLSDataset.
Results for ZUIEG.

VII. CONCLUSION

This work presents HLSDataset, a dataset for ML-assisted
FPGA design using HLS. HLSDataset covers a wider range of
data than other datasets in this domain, and is the first open-
source dataset of its kind that can be used for multiple studies.
We demonstrate that HLSDataset can be used in training
ML models targeting different applications such as resource
usage prediction, power prediction, etc. We also present the
methodology to generate the dataset so that HLSDataset can
be futher extended.

We are currently expanding HLSDataset by including data
for more target frequencies (e.g. clock period = 5ns, 2.5ns,
etc.). For future work, we plan to extend HLSDataset to
include more benchmarks (e.g., S2CBench). and more FPGAs
(including Intel FPGAs). While the design samples in HLS-
Dataset are generated from C benchmark so that ML-assisted
HLS based studies can be conducted, we plan to extend the
dataset to include data from native Verilog benchmarks so
that ML-assisted Verilog based studies are possible with our
dataset.
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