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Nonlinear Acoustic Holography With
Adaptive Sampling

Ahmed Sallam™ and Shima Shahab

Abstraci—Accurate and efficient numerical simulation
of highly nonlinear ultrasound propagation is essential
for a wide range of therapeutic and physical ultrasound
applications. However, due to large domain sizes and
the generation of higher harmonics, such simulations are
computationally challenging, particularly in 3-D problems
with shock waves. Current numerical methods are
based on computationally inefficient uniform meshes
that resolve the highest harmonics across the entire
spatial domain. To address this challenge, we present an
adaptive numerical algorithm for computationally efficient
nonlinear acoustic holography. At each propagation step,
the algorithm monitors the harmonic content of the
acoustic signal and adjusts its discretization parameters
accordingly. This enables efficient local resolution of
higher harmonics in areas of high nonlinearity while
avoiding unnecessary resolution elsewhere. Furthermore, HIFU Trahsducer
the algorithm actively adapts to the signal’s nonlinearity 500 50
level, eliminating the need for prior reference simulations
or information about the spatial distribution of the
harmonic content of the acoustic field. The proposed
algorithm incorporates an upsampling process in the
frequency domain to accommodate the generation of 100
higher harmonics in forward propagation and a down-
sampling process when higher harmonics are decimated 2 4 & 8 10 12 02 08 14 2 25 32
in backward propagation. The efficiency of the algorithm Source Pressure (WPl
was evaluated for highly nonlinear 3-D problems, demon-
strating a significant reduction in computational cost with
a nearly 50-fold speedup over a uniform mesh implementation. Our findings enable a more rapid and efficient
approach to modeling nonlinear high-intensity focused ultrasound (HIFU) wave propagation.
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Index Terms— Acoustic holograms, acoustic holography, high-intensity focused ultrasound (HIFU), nonlinear
ultrasound.

. INTRODUCTION medical and physical acoustics [1], [2], [3], [4], [5], [6].
In high-intensity focused ultrasound (HIFU) therapy, it is
critical to characterize and model the nonlinear pressure field
to establish therapeutic protocols and to predict the ultrasound-
induced biological effects [7], [8], [9].

Acoustic holography is also widely used in source synthesis
and identification due to its exceptional ability to visualize and

analyze complex 3-D sound fields. Holographic techniques are

COUSTIC holography is a technique that enables the
reconstruction of 3-D acoustic fields by projecting
measured or simulated 2-D data from the hologram plane
to the rest of the volume. Accurate and efficient nonlinear
acoustic holography of high-intensity ultrasound is an essential
tool for a wide range of applications in the fields of
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used to compute the necessary phase and/or amplitude maps
to create desired sound-field structures. These structures are
then physically realized using either phased array transducers
or passive acoustic devices such as holographic lenses or
metasurfaces, which enable arbitrary sound beam shaping and
patterning [10], [11], [12], [13], [14], [15], [16], [17]. Such
techniques have been used in various applications, including
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Highlights

« Simulating high-intensity ultrasound is computationally expensive. We introduce an adaptive algorithm that
significantly reduces the computation time by using more efficient sampling techniques.

« The algorithm monitors the harmonic content of the signal and adjusts the discretization parameters. A speed-up
of up to 50-fold was achieved compared to uniform mesh implementation.

« The algorithm has numerous applications in nonlinear medical and physical acoustics. It allows for rapid and
accurate source characterization and prediction of sonication dosage and thermal effects.

particle levitation and lithotripsy [18], [19], in which nonlinear
effects such as acoustic streaming and harmonic generation are
present. Nonlinear acoustic holography is also used for source
identification, allowing for the examination of the locations
and characteristics of radiating surfaces for high-level noise
diagnostics and shock-wave control [20]. In addition, nonlinear
acoustic holography is used for computing the propagation
of higher harmonics, which is essential in nonlinear imaging
applications, such as harmonic imaging and diagnostics [21].

However, simulating the propagation of nonlinear acoustic
fields is a computationally challenging problem [1], [7],
[22]. Often the computational domain is much larger than
the smallest wavelength present. Moreover, the nonlinear
problem requires the use of extremely fine spatial and
temporal discretization to accurately capture the generated
harmonics. As a result, the computational cost quickly
escalates, especially for 3-D problems. A large number of
harmonics should be considered when steep shock-wave fronts
are present. Resolving up to several hundred harmonics is
required if the propagating medium is highly nonlinear with
low frequency-dependent attenuation, such as water. However,
in media such as soft tissue, where higher harmonics are
more strongly attenuated, the requirements for the number
of harmonics are less stringent [22]. Significant efforts
have been made to reduce the computational cost of such
simulations.

Tavakkoli et al. [23], [24] introduced computationally
efficient models based on a second-order operator splitting
approach, with a fractional step-marching scheme, capable
of simulating finite-amplitude ultrasound beam propagation
in water and tissue. Wherein linear and nonlinear effects
are propagated separately over incremental steps, and
the computation of the diffractive substeps is based on
an angular spectrum technique for accurate and efficient
implementation of diffractive propagation from nonaxially
symmetric sources. However, modeling of the shock fronts
often requires a very dense temporal sampling [25].
Adaptive meshes and nonuniform step sizes may further
reduce computational cost [26], especially when considering
full 4-D (three dimensions of space and time) field
simulations.

Since nonlinear effects are highly localized around the
focal point [27], very fine discretization is only required
locally in the computational domain at the regions that
exhibit the highest nonlinearity and harmonic content. Recent
techniques used computationally efficient nonuniform spatial

meshes with more refined numerical discretization in regions
with the highest nonlinearity [7], [28], [29]. Overall, this
can result in a significant reduction in the total number of
grid points, and thus memory and execution time without
compromising accuracy. However, current techniques for
designing nonuniform meshes require prior knowledge of the
spatial distribution of the harmonics in the ultrasound field.
Because the ultimate goal of such techniques is to eliminate
the need to carry out reference simulations on computationally
inefficient uniform meshes, a reference simulation on a priori
basis is assumed to be unavailable. In addition, such
simulations would require mesh convergence investigations
since the actual harmonic content of the signal cannot be
predicted accurately, adding to the computational burden.
Furthermore, when patterns with complex focal zones are
considered, or when backward propagation is used to identify
sources of unknown locations or characteristics, the problem of
designing a nonuniform mesh becomes increasingly difficult.

The adaptive nonlinear acoustic holography (ANAH)
algorithm is introduced in this article as a novel approach to
nonlinear acoustic holography simulations. At each propaga-
tion step, the ANAH algorithm actively monitors the harmonic
content of the wavefront and adjusts the discretization
parameters as needed. Other than basic parameters such as
propagation medium and fundamental excitation frequency,
such implementation eliminates the need for reference
simulations or prior knowledge of the ultrasound field. We will
demonstrate ANAH for capturing shock-wave fronts in three
dimensions, which is a significant challenge in nonlinear
acoustics. In addition, we will show how ANAH can be used
for backward propagation in source identification applications.

This article is structured as follows: Section II-A outlines
the mathematical model used for the nonlinear forward
and backward propagations, and Section II-B introduces the
proposed adaptive algorithm. In Section III, we validated
and investigated the performance of the ANAH algorithm for
forward and backward propagations. We also discuss the most
important parameters in the algorithm and their effects on
the computation speed and accuracy. Finally, in Section IV,
we summarize, conclude the present work, and discuss future
directions.

Il. THEORY

A. Forward and Backward Projection

The wave-vector frequency-domain method [30], [31], [32]
is implemented to carry out the nonlinear forward and
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backward propagations. This approach is based on the
generalized Westervelt equation and can be considered an
extended version of the angular spectrum method. The acoustic
field is computed by marching in the spatial domain along the
axis normal to the source plane.

Starting with the generalized Westervelt equation

1 1 sz 1) 83p B 82172 ap

a (pr) ¢z 92t a3 pct o2 BRAFT M
where p is the acoustic pressure, p is the ambient density,
c is the speed of sound, § is the sound diffusivity, and
B is the nonlinearity coefficient. The frequency-independent
absorption term y dp/dt accounts for the absorption layer close
to the computational boundary [33]. Applying the normalized
wavefield f = p/./p and performing the Fourier transform
with respect to X, Y, and ¢ yields

K + K°F
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where F is the Fourier transform of f, Fxy is the Fourier
transform operator in the X- and Y-dimensions, F; is the
Fourier transform operator in the time domain, ¢y is the
background sound speed, and K? = w?/c} — k% — k3, where
kx and ky are the wavenumbers in the X- and Y-dimensions,
respectively. An implicit, one-way propagation can be derived
from 1-D Green’s function in the form of an integral equation
[32], such that

F(Z) = F(0)e'*% + % / Tty (f(z))dz" 3
where 0
M(f)
= FXY{[\/BVZ% - ‘z—g(z—é - 1) + li—ff +ia)y]F,(f)]
+ny(5_7‘”;m (f2)>. @)

Equation (3) is solved using a Simpson-like rule [30], [34].
The pressure distribution on the source plane or any
arbitrary plane is reconstructed using the backward projection.
By changing Z in (3) to —Z, the backward projection is
obtained as
-iKZ p-Z

F(—7)= Fo)e k7 =&

iKZ' 7 ’
s | M z)az

®)

Using this model, wave effects such as full-wave diffraction,
attenuation, dispersion, and nonlinearity are considered,
including nonlinearity in arbitrary directions, making it
particularly accurate for highly focused transducers [32].
The present formulation only includes one-way propagation
with no reflections making it only accurate for modeling
wave propagation in weakly heterogeneous media [34]. Phase

correction, amplitude compensation, and multiple reflections
were later incorporated with the one-way model to improve the
accuracy for strongly heterogeneous media such as transcranial
ultrasound propagation [35].

The Kramers—Kronig dispersion relationship is applied
directly by replacing the speed of sound ¢ with ¢, and
¢, = (1/¢ + aptan(wry/2)w’~1)~!, where ¢ is the sound
speed at zero frequency, y is the power-law exponent, o
is the absorption in nepers per megahertz™> per meter, and
o, =oypw 7.

B. Adaptive Algorithm

The acoustic field calculations are performed in both the
temporal and frequency domains by numerically propagating
the field onto parallel projection planes along the propagation
axis. The axial distance between each projection plane,
i.e., the step size AZ, should be small enough to ensure
the stability and accuracy of the numerical scheme [31].
In the temporal domain, the time resolution Af¢ should
adhere to the Nyquist-Shannon sampling theorem, which
states that under perfect conditions, a harmonic signal can
be perfectly reconstructed when sampled at a rate of two
points per period of its highest frequency Ar = 1/2 fiax-
In this case, fmax is the frequency of the highest generated
harmonic. In the case of highly nonlinear fields with shock
waves, a large number of harmonics must be considered
(up to hundreds of harmonics for shock-wave modeling)
as such an extremely small step size AZ and temporal
resolution At is necessary, which could lead to unfeasible long
computation time, especially in 3-D problems. In addition,
the Gibbs effect occurs when insufficient harmonics represent
shock waves. The errors are typically manifested as high-
frequency oscillations near the shock discontinuity. This
causes instability in the numerical scheme along with
amplification and accumulation of errors along the planar
projection [36].

To this end, we present an adaptive algorithm that adjusts
the discretization parameters AZ and At according to the
highest harmonic detected in the acoustic signal. The adaptive
algorithm implements a monitoring function that tracks the
frequency of the highest harmonic fi,x in the signal at each
propagation step. This maximum is extracted by finding the
frequency of the highest harmonic with an amplitude larger
than a threshold value. The threshold value Aty is directly
related to the amplitude of the fundamental and can be
expressed as A, = Ap R, where Ap is the amplitude of the
fundamental, and R;, is a chosen fraction value. A smaller R},
means a lower threshold value which leads to more harmonics
being included.

To avoid aliasing errors and minimize the Gibbs effect, the
algorithm maintains a spectral buffer b between the frequency
of the highest harmonic fn.x and the Nyquist frequency fnyq.
such that fxyq > fmax + b. As the wave propagates and
more harmonics are generated, fnax increases and oversteps
into the buffer region such that fnyq > fmax = fnyg — b
To accommodate the newly generated harmonics and maintain
the accuracy of the simulation, the original time signal is
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Schematic representation of focused ultrasound nonlinear acoustic wave propagation of an initially linear wave (bottom left) to a highly

distorted waveform at the focal point (bottom right). The upsampling of the signal in the frequency domain is also illustrated (top). As the higher
harmonics overstep into the spectral buffer zone (top left), the signal is interpolated by zero-padding the spectrum (top middle). The wave is then
nonlinearly propagated forward from the projection plane to the destination plane, and the newly generated higher harmonics can be resolved due

to the upsampling process.

interpolated to increase the original sampling rate and Nyquist
frequency such that At" = 1/Q2(fmax + 11 fo)) and fI:Iyq =
Smax + npfo. Where Ar’ and fI(Iyq are, respectively, the
sampling rate and Nyquist frequency of the interpolated signal,
and fp is the fundamental frequency. The size of the spectral
padding nj, fo is a function of the fundamental frequency
fo and the positive integer n;, such that at each adaptive
step, the Nyquist frequency is increased by n;, harmonics. For
computational efficiency, the interpolation is carried out in the
frequency domain by zero-padding the original spectrum of
the signal [37], [38]. Let us consider an initial wave signal
plnl,n =0,2,..., L — 1 where n is the time index, and L
is the sample length. The discrete Fourier transform (DFT) of
pln] is defined as

L—1

Pkl = )" plnle~>*/t ©6)

n=0

where P[k] is the complex frequency-domain representation
of the signal, k is the frequency index, and j is the

imaginary unit. In addition, the inverse DFT (IDFT) is
defined as

L-1

pm=%ZmeWa @
n=0

Note that the scaling by 1/L is included in the IDFT,
which is the same choice as in MATLAB’s FFT and IFFT
implementations.

When the spectrum of a signal is appended with zeros,
the IDFT effectively applies the aliased sinc function for
time-domain interpolation [37]. The original spectrum is zero-
padded, as illustrated in Fig. 1. The modified spectrum P’[k]
has length N' = N(At/At’) where N is the number of
samples in the original spectrum. The modified spectrum P’
retains all the information of the original spectrum P and
is padded with exactly N’ — N — 1 zeros filling the high-
frequency part of the spectrum.
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Fig. 2. Schematic illustration of the computational domain, the

simulated focused ultrasound transducer, and the input plane used to
initialize the ANAH algorithm.

The construction of the modified spectrum is described in
the following equations [37], [38]:

' (AL /AL) P (k), 0<k< %
%(At’/At)P(%), k= %
P'(k)y= 10, g<k<N/—%
l(At’/At)P(ﬁ), k=n -2
2 2 2
(At'/At)P(k— N'+ N), N/—%<k <N
®)

Such construction retains Hermitian symmetry; thus, the
result of the IDFT is a real-valued signal.

In backward propagation, the initially nonlinear signal is
propagated back to the source plane, causing higher harmonics
to be decimated. As a result, the signal is downsampled
by the adaptive algorithm to account for the reduction in
harmonic content. This downsampling approach improves
computational efficiency while maintaining accuracy in
nonlinear acoustic holography simulations. The downsampling
is also accomplished in the frequency domain by truncating
part of the spectrum. Only the spectral information up to the
new Nyquist frequency is retained. The monitoring function
triggers the downsampling process when the relationship
G < fNyq — fmax is true. G represents the maximum allowed
spectral gap between the Nyquist frequency fnyq and the
frequency of the highest harmonic fi,,x before the signal is
truncated. The new sample rate and Nyquist frequency of the
truncated signal are expressed as At' = 1/(2(fnyq — G)) and
fl(qu = fxnyq — G. The spectral truncation process is described
in the following equation [37], [38]:

/

(A /At) P (k), for 0 <k < —

/

N
P'(k)y= 10, for k = —

!

N
for > <k <N -1.
©

(AL'/At)P(N=N'+k),

Finally, in both the back and front propagations, the value
of the step size AZ is also updated according to the new
Nyquist frequency such that AZ" = ¢/2 fI(Iyq. The spatial
resolutions AX and AY are fixed throughout the propagation
process since the discretization requirements are not as strict
when the propagation direction is mainly along the axis of the
transducer. [31], [32].

II1. RESULTS AND DISCUSSION
A. Validation

To verify our approach, we simulated a single-element
spherically focused ultrasound transducer. The simulation
results of the ANAH algorithm were examined by comparing
the obtained data with full-wave numerical simulations
based on the k-space pseudospectral method [39]. The
numerical model solves a set of coupled partial differential
equations equivalent to a generalized Westervelt equation.
The accuracy and validity of this numerical model have been
previously verified with analytical solutions and experimental
measurements [40], [41]. The pseudospectral method was
implemented using the open-source MATLAB Toolbox k-
wave, which is available online [42] (the performance of
the C4++ version when running axisymmetric simulations
with nonsquare domains is orders of magnitude slower due
to peculiarities with the discrete trigonometric transforms
in Intel MKL [43]). The pseudospectral method was used
to perform homogeneous axisymmetric nonlinear acoustic
simulations with power-law absorption [44]. The numerical
computations were carried out at an excitation frequency of
1 MHz, and the propagation medium was modeled using
the following physical parameters: pg = 1000 kg/m?, ¢y =
1500 m/s, B = 3.6, ap = 0.05 dB/MHz, and y = 2.
Here py, cp, and B are the density, ambient speed of sound,
and nonlinearity coefficient, respectively. While oy and y,
respectively, are the absorption coefficient and the power-
law exponent. The medium parameters are close to those
of water. Highly attenuating media, such as soft tissue, are
considered later in this article. The spatial dimensions of the
computational domain are 20 x 20 mm, corresponding to
the radial and axial directions with a spatial discretization of
500 grid points per wavelength (dx = 3 um) and a Courant—
Friedrichs—Lewy (CFL) number of 0.25. In addition, perfectly
matched layers (PMLs) were added to prevent any reflections
at the boundaries. The modeled focused transducer has a focal
length and outer diameter of 18 mm (F3 = 1). The pressure
data at a plane with an axial offset of z = 4 mm away from the
source are obtained from k-wave simulations and were used
as the input to the ANAH algorithm, as shown in Fig. 2.

For computational efficiency, k-wave simulations were
computed in axisymmetric coordinates. However, all the
ANAH simulations were carried out in the full spatial domain
with the 3-D coordinates (i.e., X, Y, and Z) with n, = 20
and R, = 0.002. Here, we note that the axisymmetric
cases are considered to enable efficient validation study, and
ANAH is not limited to axisymmetric acoustic fields or
geometries. Hence, ANAH allows the computation of more
complex nonlinear ultrasound propagation and the inclusion
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Comparison of the ANAH algorithm with k-wave results. (a) Axial cross section of the obtained peak positive pressure using ANAH for

a source pressure of Py = 3.2 MPa. Comparison of (b) pressure time waveforms, (c) axial peak positive pressure, and (d) axial peak negative

pressure for source pressures of Py = 2 and 3.2 MPa.

of elaborate geometries in the computational domain. Two
simulations were carried out for the cases of a moderately
nonlinear field at a source pressure of P 2 MPa
and a highly nonlinear field with shock fronts at a source
pressure of Py = 3.2. Planar sources with these amplitudes
correspond to Gol’dberg numbers [45] (z/£,, where 7 is the
shock formation distance and ¢, is the absorption length) of
380 and 606, respectively. Fig. 3(a) shows the axial cross
section of the simulated field using the ANAH algorithm
for Py = 3.2 MPa. The steady-state time waveforms at the
point of maximum peak positive pressure are compared in
Fig. 3(b). Good agreement is observed between the k-wave
simulations and ANAH for the case of moderate and high
nonlinearity. Furthermore, the peak positive and peak negative
axial pressures are compared in Fig. 3(c) and (d), respectively.
To compare the axial pressures quantitatively, the L,-norm
errors of the peak positive and peak negative axial pressures
were calculated. Here, the relative error norm L, is defined
as Ly = || prer (zi) — p@)ll2/ | Pret (zi)|l2- For Py = 2 MPa,
the error norms calculated were L, = 1.6% and 2.3% for the
axial peak positive and peak negative pressures, respectively.
When the source pressure is increased to Py = 3.2 MPa, the
error norms calculated were L, = 3.8% and 2.59% for the
axial peak positive and peak negative pressures, respectively.
It is noted that for the highly nonlinear case, the k-wave results
show approximately 4% higher peak positive pressure around
the focal region, as shown in Fig. 3(b) and (c). We attribute
this error to the observed Gibbs oscillations and overshoot
at the shock front in the k-wave simulations. Including more
harmonics in the k-wave simulations would minimize such
effects. However, it is computationally prohibitive to include
more harmonics. In the current study, 250 harmonics were
considered in the k-wave simulations with a total simulation
time of 92 h. Nevertheless, the simulation results of the ANAH
and k-wave are in overall good agreement for the moderately
and highly nonlinear cases.

B. ANAH Performance

To showcase the effectiveness of the proposed ANAH
in enhancing the computational efficiency of nonlinear
simulations, a comparison is made between its performance
and that of equivalent simulations carried out on uniform
meshes. To examine the effect of nonlinearity level on the

performance of the algorithm, the simulations were carried
out for source pressures that range from Py = 0.2 to 3.2 MPa.
Fig. 4(a) illustrates the maximum harmonic detected within
the computational domain via the monitoring function as the
source pressure increases. As expected, the rise in acoustic
intensity results in an increase in nonlinearity level and the
generation of more harmonics. Fig. 4(b) shows the evolution
of the detected harmonic content in the acoustic field as the
wave propagates to the focal point. The ANAH algorithm
progressively adjusts the Nyquist frequency to resolve higher
harmonics only when they are detected by the monitoring
function. This is in contrast to a uniform mesh where the
highest harmonic (illustrated dotted red line) must be resolved
throughout the entire computational domain. In Fig. 4(b),
it can also be observed that when approaching shock, a large
number of harmonics are generated with much smaller
amplitudes compared with the fundamental. This could lead to
erroneous detection of the highest harmonics in a single spatial
step. As we will show later, this behavior is not observed when
highly attenuating media are considered. Furthermore, since
the harmonic content decreases post-shock, implementing a
two-way resampling scheme to reduce sampling beyond the
focal region is possible and could improve computational
performance. This is, however, more challenging to apply for
more complex fields with multifocal regions. In addition, the
stability of the adaptive algorithm is essential for applying
such a scheme appropriately. The effectiveness of the ANAH
algorithm, in comparison to a uniform mesh implementation,
is directly related to the degree of localization of the nonlinear
effects. To evaluate the degree of localization, we implement
the frequency reduction measure (FRM), which is defined as:

1
FRM = -
Z

/Ov 1- fnYQ(Z,)/fmax dz’ (10)

where fnyq(z) is the Nyquist frequency at each propagation
step. FRM varies between O for the linear case where the local
Nyquist frequency equals the maximum overall frequency
in the whole domain (i.e., the adaptive algorithm was not
active) and 1 in the case where the local Nyquist frequency
was infinitely smaller than the maximum frequency; in this
case, the adaptive algorithm will have the highest performance
improvement.
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Evaluation of the ANAH performance compared with a uniform mesh implementation. (a) Frequency of the highest detected harmonic
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point for Py = 3.2 MPa. (c) FRM as the source pressure increases. (d) Comparison between the simulation times of the ANAH and uniform
mesh implementations as the source pressure increases. (c) Speedup of the simulation time when ANAH is implemented as the source pressure

increases.

Fig. 4(c) shows the calculated FRM as the source pressure
increases. Initially, when the acoustic field is linear, the FRM
equals zero since the local nonlinear effects are not present.
However, as the source pressure is increased, nonlinearities
and their localization increase, and an FRM of 0.82 is
calculated at Py = 3.2 MPa.

As expected, the simulation times shown in Fig. 4(d)
illustrate how using uniform meshes scales unfavorably as
nonlinearities grow compared with ANAH implementation.
Furthermore, Fig. 4(e) shows the speedup in the simulation
time when using the ANAH versus the uniform mesh. This
speedup follows a similar trend to the FRM, revealing the
ANAH’s effectiveness, particularly at high nonlinearities,
where the ANAH simulation executes nearly 50 times faster
than the equivalent uniform mesh implementation at a source
pressure of Py = 3.2 MPa. Furthermore, the results also
show that the monitoring function has minimal computational
overhead, as both the implementations exhibit almost identical
execution times when the field is linear for Py = 0.2 MPa.
We should point out that the uniform mesh simulations were
only run for the first ten propagation steps. By taking into
account the total number of propagation steps in the entire
simulation, the total simulation time using a uniform mesh
can be predicted. The computation time required to run the
full simulations with a uniform mesh is prohibitively long
(up to 1500 h).

To gain a better understanding of the adaptive behavior
of the algorithm, we investigate the influence of its primary

parameters, namely, n, and R,, on the simulation time and
accuracy. This investigation focuses on the highest nonlinearity
level, with Py = 3.2 MPa. As depicted in Fig. 5(a) and (b),
the maximum Nyquist frequency and the simulation time are
mainly influenced by the selection of R;,. However, when the
convergence of the maximum peak positive in the simulation
is considered, Fig. 5(c) clearly shows that the value of n, has
a significant impact on the simulation accuracy.

When n;, = 20 is considered, the maximum convergence
error is calculated to be 2.3% for the largest value of R, =
0.005. However, for n;, = 5, the convergence error increases
significantly and ranges from 18.5% to 5% for R, = 0.005 and
0.002, respectively. As such, convergence was not achieved
for n, = 5 even when Rj is minimized. For n, = 10 and
15, the large convergence error is diminished when R; is
minimized to a value of R, = 0.002. When n;, is set to a
value that is too low, the adaptive algorithm fails to match
the actual generation rate of the harmonics in the domain,
leading to significant inaccuracies in the simulation and a
large convergence error. Furthermore, it should be noted that
increasing the value of n, may be a more advantageous
approach in achieving accurate simulation results, as opposed
to solely minimizing Rj. This is due to the fact that as
we showed, an increase in n; does not significantly affect
the computational time, yet has a significant impact on the
accuracy of the simulation results. This investigation highlights
that using a larger spectral buffer (represented by a larger
value of n,) offers the potential to achieve accurate simulations

Authorized licensed use limited to: Lib4RI. Downloaded on November 05,2023 at 21:00:53 UTC from IEEE Xplore. Restrictions apply.



SALLAM AND SHAHAB: NONLINEAR ACOUSTIC HOLOGRAPHY WITH ADAPTIVE SAMPLING

1523

450 40 = 105
9&, —e—nh=5 E
~ R -a--n, =10 =35 >
= caen =15 @ g 100
= 400 b E % z
oy ....Q..“.nh—Z() = 2
2 = 2 95
g 225 ot
350 =2 g
L=
= 5 20 E 90 .
F b
300 =
0.002 0.003 0.004 0.005 0.002 0.003 0.004 0.005 0.002  0.003  0.004  0.005
R, R, By
(a) (b) (©)
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Evaluation of ANAH for weakly heterogeneous propagation media. (a) Geometry of the multi-layercase, the blue part is the water-like

medium, and the orange part represents the liver tissue. (b) Axial peak positive pressure and (c) harmonic content of the simulated multilayer
medium. (d) Geometry of the cylindrical tumor, the blue part is the water-like medium, and the red part represents the tumor. (e) Axial peak positive

pressure and (f) harmonic content of the simulated water—tumor medium.

without the need for overly sensitive detection (indicated by a
smaller value of Ry,). This approach allows for better accuracy
while maintaining manageable simulation time. Therefore,
choosing the appropriate values for n;, and R is crucial for
achieving accurate and efficient simulations.

C. Weakly Heterogeneous Media

To validate and demonstrate the performance of the
proposed ANAH algorithm for more realistic heterogeneous

media and highly attenuating soft tissue, two cases are
considered. In the first case, we consider a multilayer geometry
with a water-like medium in the first layer and liver tissue
in the second layer, as shown in Fig. 6(a). In the second
case, a water-like background medium is considered with
a cylindrically shaped tumor tissue, as shown in Fig. 6(d).
The corresponding acoustic properties of each medium are
summarized in Table I [46]. A power-law exponent of 2 is
assumed for all the media due to the limitations of the
k-wave axisymmetric formulation [44]. For source pressure of
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of the peak positive pressures and phases along the dashed line of the initial source pressure and the backward projected field using ANAH.
(f) Harmonic content and the adjusted Nyquist frequency as the acoustic field is back propagated to the source plane.

Py = 3.2 MPa, the peak axial positive pressures obtained using
ANAH and k-wave are compared in Fig. 6(b) and (e). A good
agreement is observed with a norm error of L, = 6.2% for
the multilayer domain and an error of L, = 4.1% for the
tumor case. Fig. 6(c) and (f) shows the detected harmonics at
each propagation step. Due to the significant attenuation of
soft tissue, the harmonic content is approximately an order of
magnitude lower compared with the homogeneous water-like
domain in Fig. 4(b). For the multilayer domain, a speed-up of
7.7 was achieved using the ANAH compared with the uniform
mesh implementation with a calculated FRM value of 0.53. For
the tumor domain, the speed-up was 9.5 with an FRM of 0.56.
This investigation highlights the performance enhancement
achieved using ANAH even when highly attenuating media
are considered, and as a result, a relatively lower number
of harmonics are generated. The implemented mixed-domain
formulation is only accurate for weak heterogeneity and
only considers the forward wave with no reflections [34].
For strongly heterogeneous media such as bone, reflection,
phase, and amplitude corrections should be implemented to
achieve accurate results [35]. Strongly heterogeneous media
are going to be considered in the context of ANAH in future
work.

D. Backward Propagation

In this section, we demonstrate ANAH for backward prop-
agation. Here, the signal is downsampled as higher harmonics

TABLE |
TISSUE ACOUSTICAL PROPERTIES

Nonlin. Speed of Density Atten. Power
coeffi- sound kg/m? coef.@ law
cient m/s 1MHz exponent
(dB/cm)
Water 5.8 1500 1000 0.05 2
Liver 43 1595 1060 0.5 2
Tumor 45 1563 1070 0.57 2

are decimated, and the field is propagated back to the source
plane. This technique has potential applications in efficient
nonlinear near-field acoustic holography [20], sound focusing
and aberration correction [47], and cavitation mapping [48].
A desired field could also be generated synthetically and then
projected backward to provide information on the source.
Forward and backward iterations are used to obtain the
geometry of acoustic holographic lenses or metasurfaces [10].
Implementing ANAH in this context can significantly reduce
the computation time required to generate the necessary
geometry for generating complex high-intensity nonlinear
ultrasound fields.

Time reversal techniques are first used to obtain an image
amplitude pressure distribution with an “ANAH” shape at
a plane 25 mm away from the source plane, as shown
in Fig. 7(a). The distributions of the peak positive pressure
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and phase of the source are shown in Fig. 7(b) and (c),
respectively. ANAH is then implemented to back propagate
the field from the image plane back to the source plane.
The pressure and phase values along the dashed line are
compared in Fig. 7(d) and (e), respectively. The dashed line
intersects the image plane’s maximum peak positive pressure.
The back propagation using ANAH produces good agreement
with the initial source pressure, with a calculated norm error
of L, = 6.45%. The phases at the source plane are also
in good agreement. To investigate the harmonic levels of
the back propagated signal at the source plane, the total
harmonic distortion [5] at each point was calculated. The
signal exhibits low harmonic level with an average total
harmonic distortion of 0.93%, showing accurate decimation
of the harmonics in the back propagation. This indicates that
ANAH is an effective tool for efficiently projecting a desired
nonlinear field backward to provide information on the source.
Finally, Fig. 7(f) illustrates the downsampling process where
the Nyquist frequency gradually decreases as harmonics are
decimated and the signal is propagated back to the source
plane.

V. CONCLUSION

An adaptive numerical algorithm for computationally
efficient nonlinear acoustic holography is presented in this
article. At each propagation step, the algorithm implements
a monitoring function that tracks the harmonic content of the
acoustic signal. The algorithm then adjusts the discretization
parameters, namely, the step size and the temporal sampling
rate, according to the frequency of the highest detected
harmonic. The signal is upsampled in the frequency domain
to accommodate the generated harmonics by maintaining a
spectral buffer and zero-padding the spectrum of the signal.
This ensures that the discretization parameters are gradually
refined and that the higher harmonics are only resolved
locally in regions of high nonlinearity. Our results demonstrate
that the proposed implementation can significantly reduce
the computational cost for highly nonlinear 3-D problems,
achieving a speedup of up to nearly 50 times compared
with a uniform mesh. Furthermore, the proposed adaptive
algorithm was also used for backward propagation, which
involves projecting the signal back to the source while
gradually downsampling the signal as higher harmonics
are decimated. To perform downsampling, the spectrum of
the acoustic signal was truncated based on its harmonic
content at each propagation step. The developed algorithm
has numerous practical applications in nonlinear medical
and physical acoustics. It allows for accurate HIFU source
characterization and identification, as well as the prediction
of sonication dosage and ultrasound-induced thermal effects.
It can also be used to efficiently generate acoustic holographic
lenses or metasurfaces for use in nonlinear applications.
The adaptive algorithm for strongly heterogeneous media
will be implemented in the future to allow accurate
modeling of therapeutic procedures through aberrating
layers.

The algorithm can be readily integrated with the MATLAB
open-source toolbox mSOUND. The current implementation

for 2-D and 3-D problems as well as the instructions for
integrating it with mSOUND are freely available [49].
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