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Nonlinear Acoustic Holography With
Adaptive Sampling

Ahmed Sallam and Shima Shahab

AbstractÐAccurate and efficient numerical simulation
of highly nonlinear ultrasound propagation is essential
for a wide range of therapeutic and physical ultrasound
applications. However, due to large domain sizes and
the generation of higher harmonics, such simulations are
computationally challenging, particularly in 3-D problems
with shock waves. Current numerical methods are
based on computationally inefficient uniform meshes
that resolve the highest harmonics across the entire
spatial domain. To address this challenge, we present an
adaptive numerical algorithm for computationally efficient
nonlinear acoustic holography. At each propagation step,
the algorithm monitors the harmonic content of the
acoustic signal and adjusts its discretization parameters
accordingly. This enables efficient local resolution of
higher harmonics in areas of high nonlinearity while
avoiding unnecessary resolution elsewhere. Furthermore,
the algorithm actively adapts to the signal’s nonlinearity
level, eliminating the need for prior reference simulations
or information about the spatial distribution of the
harmonic content of the acoustic field. The proposed
algorithm incorporates an upsampling process in the
frequency domain to accommodate the generation of
higher harmonics in forward propagation and a down-
sampling process when higher harmonics are decimated
in backward propagation. The efficiency of the algorithm
was evaluated for highly nonlinear 3-D problems, demon-
strating a significant reduction in computational cost with
a nearly 50-fold speedup over a uniform mesh implementation. Our findings enable a more rapid and efficient
approach to modeling nonlinear high-intensity focused ultrasound (HIFU) wave propagation.

Index TermsÐ Acoustic holograms, acoustic holography, high-intensity focused ultrasound (HIFU), nonlinear
ultrasound.

I. INTRODUCTION

A
COUSTIC holography is a technique that enables the

reconstruction of 3-D acoustic fields by projecting

measured or simulated 2-D data from the hologram plane

to the rest of the volume. Accurate and efficient nonlinear

acoustic holography of high-intensity ultrasound is an essential

tool for a wide range of applications in the fields of
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medical and physical acoustics [1], [2], [3], [4], [5], [6].

In high-intensity focused ultrasound (HIFU) therapy, it is

critical to characterize and model the nonlinear pressure field

to establish therapeutic protocols and to predict the ultrasound-

induced biological effects [7], [8], [9].

Acoustic holography is also widely used in source synthesis

and identification due to its exceptional ability to visualize and

analyze complex 3-D sound fields. Holographic techniques are

used to compute the necessary phase and/or amplitude maps

to create desired sound-field structures. These structures are

then physically realized using either phased array transducers

or passive acoustic devices such as holographic lenses or

metasurfaces, which enable arbitrary sound beam shaping and

patterning [10], [11], [12], [13], [14], [15], [16], [17]. Such

techniques have been used in various applications, including
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Highlights

• Simulating high-intensity ultrasound is computationally expensive. We introduce an adaptive algorithm that

significantly reduces the computation time by using more efficient sampling techniques.

• The algorithm monitors the harmonic content of the signal and adjusts the discretization parameters. A speed-up

of up to 50-fold was achieved compared to uniform mesh implementation.

• The algorithm has numerous applications in nonlinear medical and physical acoustics. It allows for rapid and

accurate source characterization and prediction of sonication dosage and thermal effects.

particle levitation and lithotripsy [18], [19], in which nonlinear

effects such as acoustic streaming and harmonic generation are

present. Nonlinear acoustic holography is also used for source

identification, allowing for the examination of the locations

and characteristics of radiating surfaces for high-level noise

diagnostics and shock-wave control [20]. In addition, nonlinear

acoustic holography is used for computing the propagation

of higher harmonics, which is essential in nonlinear imaging

applications, such as harmonic imaging and diagnostics [21].

However, simulating the propagation of nonlinear acoustic

fields is a computationally challenging problem [1], [7],

[22]. Often the computational domain is much larger than

the smallest wavelength present. Moreover, the nonlinear

problem requires the use of extremely fine spatial and

temporal discretization to accurately capture the generated

harmonics. As a result, the computational cost quickly

escalates, especially for 3-D problems. A large number of

harmonics should be considered when steep shock-wave fronts

are present. Resolving up to several hundred harmonics is

required if the propagating medium is highly nonlinear with

low frequency-dependent attenuation, such as water. However,

in media such as soft tissue, where higher harmonics are

more strongly attenuated, the requirements for the number

of harmonics are less stringent [22]. Significant efforts

have been made to reduce the computational cost of such

simulations.

Tavakkoli et al. [23], [24] introduced computationally

efficient models based on a second-order operator splitting

approach, with a fractional step-marching scheme, capable

of simulating finite-amplitude ultrasound beam propagation

in water and tissue. Wherein linear and nonlinear effects

are propagated separately over incremental steps, and

the computation of the diffractive substeps is based on

an angular spectrum technique for accurate and efficient

implementation of diffractive propagation from nonaxially

symmetric sources. However, modeling of the shock fronts

often requires a very dense temporal sampling [25].

Adaptive meshes and nonuniform step sizes may further

reduce computational cost [26], especially when considering

full 4-D (three dimensions of space and time) field

simulations.

Since nonlinear effects are highly localized around the

focal point [27], very fine discretization is only required

locally in the computational domain at the regions that

exhibit the highest nonlinearity and harmonic content. Recent

techniques used computationally efficient nonuniform spatial

meshes with more refined numerical discretization in regions

with the highest nonlinearity [7], [28], [29]. Overall, this

can result in a significant reduction in the total number of

grid points, and thus memory and execution time without

compromising accuracy. However, current techniques for

designing nonuniform meshes require prior knowledge of the

spatial distribution of the harmonics in the ultrasound field.

Because the ultimate goal of such techniques is to eliminate

the need to carry out reference simulations on computationally

inefficient uniform meshes, a reference simulation on a priori

basis is assumed to be unavailable. In addition, such

simulations would require mesh convergence investigations

since the actual harmonic content of the signal cannot be

predicted accurately, adding to the computational burden.

Furthermore, when patterns with complex focal zones are

considered, or when backward propagation is used to identify

sources of unknown locations or characteristics, the problem of

designing a nonuniform mesh becomes increasingly difficult.

The adaptive nonlinear acoustic holography (ANAH)

algorithm is introduced in this article as a novel approach to

nonlinear acoustic holography simulations. At each propaga-

tion step, the ANAH algorithm actively monitors the harmonic

content of the wavefront and adjusts the discretization

parameters as needed. Other than basic parameters such as

propagation medium and fundamental excitation frequency,

such implementation eliminates the need for reference

simulations or prior knowledge of the ultrasound field. We will

demonstrate ANAH for capturing shock-wave fronts in three

dimensions, which is a significant challenge in nonlinear

acoustics. In addition, we will show how ANAH can be used

for backward propagation in source identification applications.

This article is structured as follows: Section II-A outlines

the mathematical model used for the nonlinear forward

and backward propagations, and Section II-B introduces the

proposed adaptive algorithm. In Section III, we validated

and investigated the performance of the ANAH algorithm for

forward and backward propagations. We also discuss the most

important parameters in the algorithm and their effects on

the computation speed and accuracy. Finally, in Section IV,

we summarize, conclude the present work, and discuss future

directions.

II. THEORY

A. Forward and Backward Projection

The wave-vector frequency-domain method [30], [31], [32]

is implemented to carry out the nonlinear forward and
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backward propagations. This approach is based on the

generalized Westervelt equation and can be considered an

extended version of the angular spectrum method. The acoustic

field is computed by marching in the spatial domain along the

axis normal to the source plane.

Starting with the generalized Westervelt equation

ρ∇ ·
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ρ
∇ p

)

− 1

c2

∂2 p
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+ δ
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where p is the acoustic pressure, ρ is the ambient density,

c is the speed of sound, δ is the sound diffusivity, and

β is the nonlinearity coefficient. The frequency-independent

absorption term γ ∂p/∂t accounts for the absorption layer close

to the computational boundary [33]. Applying the normalized

wavefield f = p/
√

ρ and performing the Fourier transform

with respect to X , Y , and t yields
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where F̃ is the Fourier transform of f, FXY is the Fourier

transform operator in the X - and Y -dimensions, Ft is the

Fourier transform operator in the time domain, c0 is the

background sound speed, and K 2 = ω2/c2
0 − k2

X − k2
Y , where

kX and kY are the wavenumbers in the X - and Y -dimensions,

respectively. An implicit, one-way propagation can be derived

from 1-D Green’s function in the form of an integral equation

[32], such that
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Equation (3) is solved using a Simpson-like rule [30], [34].

The pressure distribution on the source plane or any

arbitrary plane is reconstructed using the backward projection.

By changing Z in (3) to −Z , the backward projection is

obtained as

F̃(−Z) = F̃(0)e−i K Z − e−i K Z

2i K

∫ −Z

0

ei K Z ′
M

(

f
(

−Z ′))d Z ′.

(5)

Using this model, wave effects such as full-wave diffraction,

attenuation, dispersion, and nonlinearity are considered,

including nonlinearity in arbitrary directions, making it

particularly accurate for highly focused transducers [32].

The present formulation only includes one-way propagation

with no reflections making it only accurate for modeling

wave propagation in weakly heterogeneous media [34]. Phase

correction, amplitude compensation, and multiple reflections

were later incorporated with the one-way model to improve the

accuracy for strongly heterogeneous media such as transcranial

ultrasound propagation [35].

The Kramers±Kronig dispersion relationship is applied

directly by replacing the speed of sound c with cp and

cp = (1/ĉ + α0 tan(πy/2)ωy−1)−1, where ĉ is the sound

speed at zero frequency, y is the power-law exponent, α0

is the absorption in nepers per megahertz−y per meter, and

αo = αN Pω−y .

B. Adaptive Algorithm

The acoustic field calculations are performed in both the

temporal and frequency domains by numerically propagating

the field onto parallel projection planes along the propagation

axis. The axial distance between each projection plane,

i.e., the step size 1Z , should be small enough to ensure

the stability and accuracy of the numerical scheme [31].

In the temporal domain, the time resolution 1t should

adhere to the Nyquist±Shannon sampling theorem, which

states that under perfect conditions, a harmonic signal can

be perfectly reconstructed when sampled at a rate of two

points per period of its highest frequency 1t = 1/2 fmax.

In this case, fmax is the frequency of the highest generated

harmonic. In the case of highly nonlinear fields with shock

waves, a large number of harmonics must be considered

(up to hundreds of harmonics for shock-wave modeling)

as such an extremely small step size 1Z and temporal

resolution 1t is necessary, which could lead to unfeasible long

computation time, especially in 3-D problems. In addition,

the Gibbs effect occurs when insufficient harmonics represent

shock waves. The errors are typically manifested as high-

frequency oscillations near the shock discontinuity. This

causes instability in the numerical scheme along with

amplification and accumulation of errors along the planar

projection [36].

To this end, we present an adaptive algorithm that adjusts

the discretization parameters 1Z and 1t according to the

highest harmonic detected in the acoustic signal. The adaptive

algorithm implements a monitoring function that tracks the

frequency of the highest harmonic fmax in the signal at each

propagation step. This maximum is extracted by finding the

frequency of the highest harmonic with an amplitude larger

than a threshold value. The threshold value ATh is directly

related to the amplitude of the fundamental and can be

expressed as ATh = AF Rh , where AF is the amplitude of the

fundamental, and Rh is a chosen fraction value. A smaller Rh

means a lower threshold value which leads to more harmonics

being included.

To avoid aliasing errors and minimize the Gibbs effect, the

algorithm maintains a spectral buffer b between the frequency

of the highest harmonic fmax and the Nyquist frequency fNyq,

such that fNyq > fmax + b. As the wave propagates and

more harmonics are generated, fmax increases and oversteps

into the buffer region such that fNyq > fmax ≥ fNyq − b.

To accommodate the newly generated harmonics and maintain

the accuracy of the simulation, the original time signal is
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Fig. 1. Schematic representation of focused ultrasound nonlinear acoustic wave propagation of an initially linear wave (bottom left) to a highly
distorted waveform at the focal point (bottom right). The upsampling of the signal in the frequency domain is also illustrated (top). As the higher
harmonics overstep into the spectral buffer zone (top left), the signal is interpolated by zero-padding the spectrum (top middle). The wave is then
nonlinearly propagated forward from the projection plane to the destination plane, and the newly generated higher harmonics can be resolved due
to the upsampling process.

interpolated to increase the original sampling rate and Nyquist

frequency such that 1t ′ = 1/(2( fmax + nh f0)) and f ′
Nyq =

fmax + nh f0. Where 1t ′ and f ′
Nyq are, respectively, the

sampling rate and Nyquist frequency of the interpolated signal,

and f0 is the fundamental frequency. The size of the spectral

padding nh f0 is a function of the fundamental frequency

f0 and the positive integer nh , such that at each adaptive

step, the Nyquist frequency is increased by nh harmonics. For

computational efficiency, the interpolation is carried out in the

frequency domain by zero-padding the original spectrum of

the signal [37], [38]. Let us consider an initial wave signal

p[n], n = 0, 2, . . . , L − 1 where n is the time index, and L

is the sample length. The discrete Fourier transform (DFT) of

p[n] is defined as

P[k] =
L−1
∑

n=0

p[n]e−2π jkn/L (6)

where P[k] is the complex frequency-domain representation

of the signal, k is the frequency index, and j is the

imaginary unit. In addition, the inverse DFT (IDFT) is

defined as

p[n] = 1

L

L−1
∑

n=0

P[k]e2π jkn/L . (7)

Note that the scaling by 1/L is included in the IDFT,

which is the same choice as in MATLAB’s FFT and IFFT

implementations.

When the spectrum of a signal is appended with zeros,

the IDFT effectively applies the aliased sinc function for

time-domain interpolation [37]. The original spectrum is zero-

padded, as illustrated in Fig. 1. The modified spectrum P ′[k]
has length N ′ = N (1t/1t ′) where N is the number of

samples in the original spectrum. The modified spectrum P ′

retains all the information of the original spectrum P and

is padded with exactly N ′ − N − 1 zeros filling the high-

frequency part of the spectrum.
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Fig. 2. Schematic illustration of the computational domain, the
simulated focused ultrasound transducer, and the input plane used to
initialize the ANAH algorithm.

The construction of the modified spectrum is described in

the following equations [37], [38]:
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Such construction retains Hermitian symmetry; thus, the

result of the IDFT is a real-valued signal.

In backward propagation, the initially nonlinear signal is

propagated back to the source plane, causing higher harmonics

to be decimated. As a result, the signal is downsampled

by the adaptive algorithm to account for the reduction in

harmonic content. This downsampling approach improves

computational efficiency while maintaining accuracy in

nonlinear acoustic holography simulations. The downsampling

is also accomplished in the frequency domain by truncating

part of the spectrum. Only the spectral information up to the

new Nyquist frequency is retained. The monitoring function

triggers the downsampling process when the relationship

G < fNyq − fmax is true. G represents the maximum allowed

spectral gap between the Nyquist frequency fNyq and the

frequency of the highest harmonic fmax before the signal is

truncated. The new sample rate and Nyquist frequency of the

truncated signal are expressed as 1t ′ = 1/(2( fNyq − G)) and

f ′
Nyq = fNyq − G. The spectral truncation process is described

in the following equation [37], [38]:
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Finally, in both the back and front propagations, the value

of the step size 1Z is also updated according to the new

Nyquist frequency such that 1Z ′ = c/2 f ′
Nyq. The spatial

resolutions 1X and 1Y are fixed throughout the propagation

process since the discretization requirements are not as strict

when the propagation direction is mainly along the axis of the

transducer. [31], [32].

III. RESULTS AND DISCUSSION

A. Validation

To verify our approach, we simulated a single-element

spherically focused ultrasound transducer. The simulation

results of the ANAH algorithm were examined by comparing

the obtained data with full-wave numerical simulations

based on the k-space pseudospectral method [39]. The

numerical model solves a set of coupled partial differential

equations equivalent to a generalized Westervelt equation.

The accuracy and validity of this numerical model have been

previously verified with analytical solutions and experimental

measurements [40], [41]. The pseudospectral method was

implemented using the open-source MATLAB Toolbox k-

wave, which is available online [42] (the performance of

the C++ version when running axisymmetric simulations

with nonsquare domains is orders of magnitude slower due

to peculiarities with the discrete trigonometric transforms

in Intel MKL [43]). The pseudospectral method was used

to perform homogeneous axisymmetric nonlinear acoustic

simulations with power-law absorption [44]. The numerical

computations were carried out at an excitation frequency of

1 MHz, and the propagation medium was modeled using

the following physical parameters: ρ0 = 1000 kg/m3, c0 =
1500 m/s, β = 3.6, α0 = 0.05 dB/MHz, and γ = 2.

Here ρ0, c0, and β are the density, ambient speed of sound,

and nonlinearity coefficient, respectively. While α0 and γ ,

respectively, are the absorption coefficient and the power-

law exponent. The medium parameters are close to those

of water. Highly attenuating media, such as soft tissue, are

considered later in this article. The spatial dimensions of the

computational domain are 20 × 20 mm, corresponding to

the radial and axial directions with a spatial discretization of

500 grid points per wavelength (dx = 3 µm) and a Courant±

Friedrichs±Lewy (CFL) number of 0.25. In addition, perfectly

matched layers (PMLs) were added to prevent any reflections

at the boundaries. The modeled focused transducer has a focal

length and outer diameter of 18 mm (F# = 1). The pressure

data at a plane with an axial offset of z = 4 mm away from the

source are obtained from k-wave simulations and were used

as the input to the ANAH algorithm, as shown in Fig. 2.

For computational efficiency, k-wave simulations were

computed in axisymmetric coordinates. However, all the

ANAH simulations were carried out in the full spatial domain

with the 3-D coordinates (i.e., X , Y , and Z ) with nh = 20

and Rh = 0.002. Here, we note that the axisymmetric

cases are considered to enable efficient validation study, and

ANAH is not limited to axisymmetric acoustic fields or

geometries. Hence, ANAH allows the computation of more

complex nonlinear ultrasound propagation and the inclusion
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Fig. 3. Comparison of the ANAH algorithm with k-wave results. (a) Axial cross section of the obtained peak positive pressure using ANAH for
a source pressure of P0 = 3.2 MPa. Comparison of (b) pressure time waveforms, (c) axial peak positive pressure, and (d) axial peak negative
pressure for source pressures of P0 = 2 and 3.2 MPa.

of elaborate geometries in the computational domain. Two

simulations were carried out for the cases of a moderately

nonlinear field at a source pressure of P0 = 2 MPa

and a highly nonlinear field with shock fronts at a source

pressure of P0 = 3.2. Planar sources with these amplitudes

correspond to Gol’dberg numbers [45] (z̄/ℓα , where z̄ is the

shock formation distance and ℓα is the absorption length) of

380 and 606, respectively. Fig. 3(a) shows the axial cross

section of the simulated field using the ANAH algorithm

for P0 = 3.2 MPa. The steady-state time waveforms at the

point of maximum peak positive pressure are compared in

Fig. 3(b). Good agreement is observed between the k-wave

simulations and ANAH for the case of moderate and high

nonlinearity. Furthermore, the peak positive and peak negative

axial pressures are compared in Fig. 3(c) and (d), respectively.

To compare the axial pressures quantitatively, the L2-norm

errors of the peak positive and peak negative axial pressures

were calculated. Here, the relative error norm L2 is defined

as L2 = ∥pref (zi ) − p(zi )∥2/∥pref (zi )∥2. For P0 = 2 MPa,

the error norms calculated were L2 = 1.6% and 2.3% for the

axial peak positive and peak negative pressures, respectively.

When the source pressure is increased to P0 = 3.2 MPa, the

error norms calculated were L2 = 3.8% and 2.59% for the

axial peak positive and peak negative pressures, respectively.

It is noted that for the highly nonlinear case, the k-wave results

show approximately 4% higher peak positive pressure around

the focal region, as shown in Fig. 3(b) and (c). We attribute

this error to the observed Gibbs oscillations and overshoot

at the shock front in the k-wave simulations. Including more

harmonics in the k-wave simulations would minimize such

effects. However, it is computationally prohibitive to include

more harmonics. In the current study, 250 harmonics were

considered in the k-wave simulations with a total simulation

time of 92 h. Nevertheless, the simulation results of the ANAH

and k-wave are in overall good agreement for the moderately

and highly nonlinear cases.

B. ANAH Performance

To showcase the effectiveness of the proposed ANAH

in enhancing the computational efficiency of nonlinear

simulations, a comparison is made between its performance

and that of equivalent simulations carried out on uniform

meshes. To examine the effect of nonlinearity level on the

performance of the algorithm, the simulations were carried

out for source pressures that range from P0 = 0.2 to 3.2 MPa.

Fig. 4(a) illustrates the maximum harmonic detected within

the computational domain via the monitoring function as the

source pressure increases. As expected, the rise in acoustic

intensity results in an increase in nonlinearity level and the

generation of more harmonics. Fig. 4(b) shows the evolution

of the detected harmonic content in the acoustic field as the

wave propagates to the focal point. The ANAH algorithm

progressively adjusts the Nyquist frequency to resolve higher

harmonics only when they are detected by the monitoring

function. This is in contrast to a uniform mesh where the

highest harmonic (illustrated dotted red line) must be resolved

throughout the entire computational domain. In Fig. 4(b),

it can also be observed that when approaching shock, a large

number of harmonics are generated with much smaller

amplitudes compared with the fundamental. This could lead to

erroneous detection of the highest harmonics in a single spatial

step. As we will show later, this behavior is not observed when

highly attenuating media are considered. Furthermore, since

the harmonic content decreases post-shock, implementing a

two-way resampling scheme to reduce sampling beyond the

focal region is possible and could improve computational

performance. This is, however, more challenging to apply for

more complex fields with multifocal regions. In addition, the

stability of the adaptive algorithm is essential for applying

such a scheme appropriately. The effectiveness of the ANAH

algorithm, in comparison to a uniform mesh implementation,

is directly related to the degree of localization of the nonlinear

effects. To evaluate the degree of localization, we implement

the frequency reduction measure (FRM), which is defined as:

FRM = 1

z

∫ z

0

1 − fnyq

(

z′)/ fmax dz′ (10)

where fnyq(z
′) is the Nyquist frequency at each propagation

step. FRM varies between 0 for the linear case where the local

Nyquist frequency equals the maximum overall frequency

in the whole domain (i.e., the adaptive algorithm was not

active) and 1 in the case where the local Nyquist frequency

was infinitely smaller than the maximum frequency; in this

case, the adaptive algorithm will have the highest performance

improvement.
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Fig. 4. Evaluation of the ANAH performance compared with a uniform mesh implementation. (a) Frequency of the highest detected harmonic
as the source pressure increases. (b) Harmonic content and the adjusted Nyquist frequency as the acoustic field is propagated toward the focal
point for P0 = 3.2 MPa. (c) FRM as the source pressure increases. (d) Comparison between the simulation times of the ANAH and uniform
mesh implementations as the source pressure increases. (c) Speedup of the simulation time when ANAH is implemented as the source pressure
increases.

Fig. 4(c) shows the calculated FRM as the source pressure

increases. Initially, when the acoustic field is linear, the FRM

equals zero since the local nonlinear effects are not present.

However, as the source pressure is increased, nonlinearities

and their localization increase, and an FRM of 0.82 is

calculated at P0 = 3.2 MPa.

As expected, the simulation times shown in Fig. 4(d)

illustrate how using uniform meshes scales unfavorably as

nonlinearities grow compared with ANAH implementation.

Furthermore, Fig. 4(e) shows the speedup in the simulation

time when using the ANAH versus the uniform mesh. This

speedup follows a similar trend to the FRM, revealing the

ANAH’s effectiveness, particularly at high nonlinearities,

where the ANAH simulation executes nearly 50 times faster

than the equivalent uniform mesh implementation at a source

pressure of P0 = 3.2 MPa. Furthermore, the results also

show that the monitoring function has minimal computational

overhead, as both the implementations exhibit almost identical

execution times when the field is linear for P0 = 0.2 MPa.

We should point out that the uniform mesh simulations were

only run for the first ten propagation steps. By taking into

account the total number of propagation steps in the entire

simulation, the total simulation time using a uniform mesh

can be predicted. The computation time required to run the

full simulations with a uniform mesh is prohibitively long

(up to 1500 h).

To gain a better understanding of the adaptive behavior

of the algorithm, we investigate the influence of its primary

parameters, namely, nh and Rh , on the simulation time and

accuracy. This investigation focuses on the highest nonlinearity

level, with P0 = 3.2 MPa. As depicted in Fig. 5(a) and (b),

the maximum Nyquist frequency and the simulation time are

mainly influenced by the selection of Rh . However, when the

convergence of the maximum peak positive in the simulation

is considered, Fig. 5(c) clearly shows that the value of nh has

a significant impact on the simulation accuracy.

When nh = 20 is considered, the maximum convergence

error is calculated to be 2.3% for the largest value of Rh =
0.005. However, for nh = 5, the convergence error increases

significantly and ranges from 18.5% to 5% for Rh = 0.005 and

0.002, respectively. As such, convergence was not achieved

for nh = 5 even when Rh is minimized. For nh = 10 and

15, the large convergence error is diminished when Rh is

minimized to a value of Rh = 0.002. When nh is set to a

value that is too low, the adaptive algorithm fails to match

the actual generation rate of the harmonics in the domain,

leading to significant inaccuracies in the simulation and a

large convergence error. Furthermore, it should be noted that

increasing the value of nh may be a more advantageous

approach in achieving accurate simulation results, as opposed

to solely minimizing Rh . This is due to the fact that as

we showed, an increase in nh does not significantly affect

the computational time, yet has a significant impact on the

accuracy of the simulation results. This investigation highlights

that using a larger spectral buffer (represented by a larger

value of nh) offers the potential to achieve accurate simulations
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Fig. 5. Effects of the adaptive parameters on the simulation time and accuracy of ANAH at P0 = 3.2 MPa. (a) Maximum Nyquist frequency, (b) total
execution time, and (c) convergence of the maximum peak positive as a function of the adaptive parameters.

Fig. 6. Evaluation of ANAH for weakly heterogeneous propagation media. (a) Geometry of the multi-layercase, the blue part is the water-like
medium, and the orange part represents the liver tissue. (b) Axial peak positive pressure and (c) harmonic content of the simulated multilayer
medium. (d) Geometry of the cylindrical tumor, the blue part is the water-like medium, and the red part represents the tumor. (e) Axial peak positive
pressure and (f) harmonic content of the simulated water±tumor medium.

without the need for overly sensitive detection (indicated by a

smaller value of Rh). This approach allows for better accuracy

while maintaining manageable simulation time. Therefore,

choosing the appropriate values for nh and Rh is crucial for

achieving accurate and efficient simulations.

C. Weakly Heterogeneous Media

To validate and demonstrate the performance of the

proposed ANAH algorithm for more realistic heterogeneous

media and highly attenuating soft tissue, two cases are

considered. In the first case, we consider a multilayer geometry

with a water-like medium in the first layer and liver tissue

in the second layer, as shown in Fig. 6(a). In the second

case, a water-like background medium is considered with

a cylindrically shaped tumor tissue, as shown in Fig. 6(d).

The corresponding acoustic properties of each medium are

summarized in Table I [46]. A power-law exponent of 2 is

assumed for all the media due to the limitations of the

k-wave axisymmetric formulation [44]. For source pressure of
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Fig. 7. Illustrating ANAH for backward propagation of nonlinear acoustic fields. (a) ªANAHº-shaped amplitude structure at the image plane
constructed by time reversal. (b) and (c) Peak positive pressure and phase at the source plane obtained using time reversal. (d) and (e) Comparison
of the peak positive pressures and phases along the dashed line of the initial source pressure and the backward projected field using ANAH.
(f) Harmonic content and the adjusted Nyquist frequency as the acoustic field is back propagated to the source plane.

P0 = 3.2 MPa, the peak axial positive pressures obtained using

ANAH and k-wave are compared in Fig. 6(b) and (e). A good

agreement is observed with a norm error of L2 = 6.2% for

the multilayer domain and an error of L2 = 4.1% for the

tumor case. Fig. 6(c) and (f) shows the detected harmonics at

each propagation step. Due to the significant attenuation of

soft tissue, the harmonic content is approximately an order of

magnitude lower compared with the homogeneous water-like

domain in Fig. 4(b). For the multilayer domain, a speed-up of

7.7 was achieved using the ANAH compared with the uniform

mesh implementation with a calculated FRM value of 0.53. For

the tumor domain, the speed-up was 9.5 with an FRM of 0.56.

This investigation highlights the performance enhancement

achieved using ANAH even when highly attenuating media

are considered, and as a result, a relatively lower number

of harmonics are generated. The implemented mixed-domain

formulation is only accurate for weak heterogeneity and

only considers the forward wave with no reflections [34].

For strongly heterogeneous media such as bone, reflection,

phase, and amplitude corrections should be implemented to

achieve accurate results [35]. Strongly heterogeneous media

are going to be considered in the context of ANAH in future

work.

D. Backward Propagation

In this section, we demonstrate ANAH for backward prop-

agation. Here, the signal is downsampled as higher harmonics

TABLE I

TISSUE ACOUSTICAL PROPERTIES

are decimated, and the field is propagated back to the source

plane. This technique has potential applications in efficient

nonlinear near-field acoustic holography [20], sound focusing

and aberration correction [47], and cavitation mapping [48].

A desired field could also be generated synthetically and then

projected backward to provide information on the source.

Forward and backward iterations are used to obtain the

geometry of acoustic holographic lenses or metasurfaces [10].

Implementing ANAH in this context can significantly reduce

the computation time required to generate the necessary

geometry for generating complex high-intensity nonlinear

ultrasound fields.

Time reversal techniques are first used to obtain an image

amplitude pressure distribution with an ªANAHº shape at

a plane 25 mm away from the source plane, as shown

in Fig. 7(a). The distributions of the peak positive pressure
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and phase of the source are shown in Fig. 7(b) and (c),

respectively. ANAH is then implemented to back propagate

the field from the image plane back to the source plane.

The pressure and phase values along the dashed line are

compared in Fig. 7(d) and (e), respectively. The dashed line

intersects the image plane’s maximum peak positive pressure.

The back propagation using ANAH produces good agreement

with the initial source pressure, with a calculated norm error

of L2 = 6.45%. The phases at the source plane are also

in good agreement. To investigate the harmonic levels of

the back propagated signal at the source plane, the total

harmonic distortion [5] at each point was calculated. The

signal exhibits low harmonic level with an average total

harmonic distortion of 0.93%, showing accurate decimation

of the harmonics in the back propagation. This indicates that

ANAH is an effective tool for efficiently projecting a desired

nonlinear field backward to provide information on the source.

Finally, Fig. 7(f) illustrates the downsampling process where

the Nyquist frequency gradually decreases as harmonics are

decimated and the signal is propagated back to the source

plane.

IV. CONCLUSION

An adaptive numerical algorithm for computationally

efficient nonlinear acoustic holography is presented in this

article. At each propagation step, the algorithm implements

a monitoring function that tracks the harmonic content of the

acoustic signal. The algorithm then adjusts the discretization

parameters, namely, the step size and the temporal sampling

rate, according to the frequency of the highest detected

harmonic. The signal is upsampled in the frequency domain

to accommodate the generated harmonics by maintaining a

spectral buffer and zero-padding the spectrum of the signal.

This ensures that the discretization parameters are gradually

refined and that the higher harmonics are only resolved

locally in regions of high nonlinearity. Our results demonstrate

that the proposed implementation can significantly reduce

the computational cost for highly nonlinear 3-D problems,

achieving a speedup of up to nearly 50 times compared

with a uniform mesh. Furthermore, the proposed adaptive

algorithm was also used for backward propagation, which

involves projecting the signal back to the source while

gradually downsampling the signal as higher harmonics

are decimated. To perform downsampling, the spectrum of

the acoustic signal was truncated based on its harmonic

content at each propagation step. The developed algorithm

has numerous practical applications in nonlinear medical

and physical acoustics. It allows for accurate HIFU source

characterization and identification, as well as the prediction

of sonication dosage and ultrasound-induced thermal effects.

It can also be used to efficiently generate acoustic holographic

lenses or metasurfaces for use in nonlinear applications.

The adaptive algorithm for strongly heterogeneous media

will be implemented in the future to allow accurate

modeling of therapeutic procedures through aberrating

layers.

The algorithm can be readily integrated with the MATLAB

open-source toolbox mSOUND. The current implementation

for 2-D and 3-D problems as well as the instructions for

integrating it with mSOUND are freely available [49].
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