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Figure 1: Our method Text2Video-Zero enables zero-shot video generation using (i) a textual prompt (see rows 1, 2), (ii)
a prompt combined with guidance from poses or edges (see lower right), and (iii) Video Instruct-Pix2Pix, i.e., instruction-
guided video editing (see lower left). Results are temporally consistent and follow closely the guidance and textual prompts.
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Abstract

Recent text-to-video generation approaches rely on com-
putationally heavy training and require large-scale video
datasets. In this paper, we introduce a new task, zero-
shot text-to-video generation, and propose a low-cost ap-
proach (without any training or optimization) by leveraging
the power of existing text-to-image synthesis methods (e.g.
Stable Diffusion), making them suitable for the video do-
main. Our key modifications include (i) enriching the la-
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tent codes of the generated frames with motion dynamics
to keep the global scene and the background time consis-
tent; and (ii) reprogramming frame-level self-attention us-
ing a new cross-frame attention of each frame on the first
frame, to preserve the context, appearance, and identity of
the foreground object. Experiments show that this leads to
low overhead, yet high-quality and remarkably consistent
video generation. Moreover, our approach is not limited to
text-to-video synthesis but is also applicable to other tasks
such as conditional and content-specialized video gener-
ation, and Video Instruct-Pix2Pix, i.e., instruction-guided
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video editing. As experiments show, our method performs
comparably or sometimes better than recent approaches,
despite not being trained on additional video data. Our
code is publicly available at: https://github.com/Picsart-Al-
Research/Text2Video-Zero.

1. Introduction

In recent years, generative Al has attracted enormous at-
tention in the computer vision community. With the advent
of diffusion models [34, 12, 35, 36], it has become tremen-
dously popular and successful to generate high-quality im-
ages from textual prompts, also called fext-to-image synthe-
sis [26, 29, 32,7, 44]. Recent works [14, 33, 11,42, 5, 21]
attempt to extend the success to text-to-video generation
and editing tasks, by reusing text-to-image diffusion models
in the video domain. While such approaches yield promis-
ing outcomes, most of them require substantial training with
a massive amount of labeled data which can be costly and
unaffordable for many users. With the aim of making video
generation cheaper, Tune-A-Video [42] introduces a mech-
anism that can adopt Stable Diffusion (SD) model [29] for
the video domain. The training effort is drastically reduced
to tuning one video. While that is much more efficient than
previous approaches, it still requires an optimization pro-
cess. In addition, the generation abilities of Tune-A-Video
are limited to text-guided video editing applications; video
synthesis from scratch, however, remains out of its reach.

In this paper, we take one step forward in studying the
novel problem of zero-shot, “training-free” text-to-video
synthesis, which is the task of generating videos from tex-
tual prompts without requiring any optimization or fine-
tuning. A key concept of our approach is to modify a
pre-trained text-to-image model (e.g., Stable Diffusion), en-
riching it with temporally consistent generation. By build-
ing upon already trained text-to-image models, our method
takes advantage of their excellent image generation qual-
ity and enhances their applicability to the video domain
without performing additional training. To enforce tempo-
ral consistency, we present two innovative and lightweight
modifications: (1) we first enrich the latent codes of gen-
erated frames with motion information to keep the global
scene and the background time consistent; (2) we then use
cross-frame attention of each frame on the first frame to
preserve the context, appearance, and identity of the fore-
ground object throughout the entire sequence. Our exper-
iments show that these simple modifications lead to high-
quality and time-consistent video generations (see Fig. 1
and further results in the appendix). Despite the fact that
other works train on large-scale video data, our method
achieves similar or sometimes even better performance (see
Figures 8, 9 and appendix Figures 18, 25, 26). Furthermore,
our method is not limited to text-to-video synthesis but is

also applicable to conditional (see Figures 5,6 and appendix

Figures 19, 21, 22, 23) and specialized video generation

(see Fig. 7), and instruction-guided video editing, which

we refer as Video Instruct-Pix2Pix motivated by Instruct-

Pix2Pix [2] (see Fig. 9 and appendix Figures 24, 25, 26).
Our contributions are summarized as three-folds:

* A new problem setting of zero-shot text-to-video syn-
thesis, aiming at making text-guided video generation
and editing “freely affordable”. We use only a pre-
trained text-to-image diffusion model without any fur-
ther fine-tuning or optimization.

* Two novel post-hoc techniques to enforce temporally
consistent generation, via encoding motion dynamics
in the latent codes, and reprogramming each frame’s
self-attention using a new cross-frame attention.

* A broad variety of applications that demonstrate our
method’s effectiveness, including conditional and spe-
cialized video generation, and Video Instruct-Pix2Pix
i.e., video editing by textual instructions.

2. Related Work
2.1. Text-to-Image Generation

Early approaches to text-to-image synthesis relied on
methods such as template-based generation [19] and fea-
ture matching [28]. However, these methods were limited
in their ability to generate realistic and diverse images.

Following the success of GANSs [&], several other deep
learning-based methods were proposed for text-to-image
synthesis. These include StackGAN [46], AttnGAN [43],
and MirrorGAN [24], which further improve image quality
and diversity by introducing novel architectures and atten-
tion mechanisms.

Later, with the advancement of transformers [38], new
approaches emerged for text-to-image synthesis. Being a
12-billion-parameter transformer model, Dall-E [27] intro-
duces a two-stage training process: First, it generates image
tokens, which later are combined with text tokens for joint
training of an autoregressive model. Later Parti [45] pro-
posed a method to generate content-rich images with multi-
ple objects. Make-a-Scene [7] enables a control mechanism
by segmentation masks for text-to-image generation.

Current approaches build upon diffusion models, thereby
taking text-to-image synthesis quality to the next level.
GLIDE [23] improved Dall-E by adding classifier-free
guidance [13]. Later, Dall-E 2 [26] utilizes the contrastive
model CLIP [25]. By means of diffusion processes, (i) a
mapping from CLIP text encodings to image encodings,
and (i) a CLIP decoder is obtained. LDM / SD [29] ap-
plies a diffusion model on lower-resolution encoded signals
of VQ-GAN [6], showing competitive quality with a sig-
nificant gain in speed and efficiency. Imagen [32] shows
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incredible performance in text-to-image synthesis by uti-
lizing large language models for text processing. Versatile
Diffusion [44] further unifies text-to-image, image-to-text
and variations in a single multi-flow diffusion model. Spe-
cialisation of text-to-image models to desired styles can be
obtained efficiently via few-shot tuning, e.g. using Dream-
Both [31] or Specialist Diffusion [ 18], which employs text-
to-image customized data augmentations.

Because of their great image quality, it is desired to
exploit text-to-image models for video generation. How-
ever, applying diffusion models in the video domain is not
straightforward, especially due to their probabilistic gener-
ation procedure, making it difficult to ensure temporal con-
sistency. As we show in our ablation experiments in the ap-
pendix (see Fig. 14), our modifications are crucial for tem-
poral consistency in terms of both global scene and back-
ground motion, and for the preservation of the foreground
object identity.

2.2. Text-to-Video Generation

Text-to-video synthesis is a relatively new research di-
rection. Existing approaches try to leverage autoregres-
sive transformers and diffusion processes for the genera-
tion. NUWA [41] introduces a 3D transformer encoder-
decoder framework and supports both text-to-image and
text-to-video generation. Phenaki [39] introduces a bidi-
rectional masked transformer with a causal attention mech-
anism that allows the generation of arbitrary-long videos
from text prompt sequences. CogVideo [15] extends the
text-to-image model CogView 2 [4] by tuning it using
a multi-frame-rate hierarchical training strategy to better
align text and video clips. Video Diffusion Models (VDM)
[14] naturally extend text-to-image diffusion models and
train jointly on image and video data. Imagen Video [11]
constructs a cascade of video diffusion models and utilizes
spatial and temporal super-resolution models to generate
high-resolution time-consistent videos. Make-A-Video [33]
builds upon a text-to-image synthesis model and leverages
video data in an unsupervised manner. Gen-1 [5] extends
SD and proposes a structure and content-guided video edit-
ing method based on visual or textual descriptions of de-
sired outputs. Tune-A-Video [42] proposes a new task of
one-shot video generation by extending and tuning SD on a
single reference video.

Unlike the methods mentioned above, our approach is
completely training-free, does not require massive comput-
ing power or dozens of GPUs, which makes the video gener-
ation process affordable for everyone. In this respect, Tune-
a-Video [42] comes closest to our work, as it reduces the
necessary computations to tuning on only one video. How-
ever, it still requires an optimization process and its gener-
ating ability is heavily restricted by the reference video.

3. Method

We start this section with a brief introduction of diffu-
sion models, particularly Stable Diffusion (SD) [29]. Then
we introduce the problem formulation of zero-shot text-to-
video synthesis, followed by a subsection presenting our ap-
proach. After that, to show the universality of our method,
we use it in combination with ControlNet [47] and Dream-
Booth [31] diffusion models for generating conditional and
specialized videos. Later we demonstrate the power of our
approach with the application of instruction-guided video
editing, namely, Video Instruct-Pix2Pix.

3.1. Stable Diffusion

SD is a diffusion model operating in the latent space of
an autoencoder D(E(+)), namely VQ-GAN [6] or VQ-VAE
[37], where £ and D are the corresponding encoder and de-
coder, respectively. More precisely, if 2o € R?**%*¢ is the
latent tensor of an input image Im given by the autoencoder,
i.e. g = £(Im), diffusion forward process iteratively adds
Gaussian noise to the signal x:

Q<$t|$t—1) :N(mh V 1- ﬁtxtflaﬁtl)a t= 17"7T (1)

where q(z¢|z;—1) is the conditional density of x; given
241, and {B;}1_, are hyperparameters. 7 is chosen to be
as large that the forward process completely destroys the
initial signal x¢ resulting in z7 ~ N(0, I). The goal of SD
is then to learn a backward process

po(@i—1|ze) = N (xe—1; po(ze,t), Xo(2e, 1))  (2)

fort =1T,...,1, which allows to generate a valid signal x
from the standard Gaussian noise zp. To get the final image
generated from x7 it remains to pass g to the decoder of
the initially chosen autoencoder: Im = D(xg).

After learning the abovementioned backward diffusion
process (see DDPM [12]) one can apply a deterministic
sampling process, called DDIM [35]:

_ zr — /1 — avel(xy)
fer Ve ( NG ) BTG

V1= ai_1eh(xy),
where a; = [['_,(1 — ;) and

eha = VIO, (=00 )
Bt Bt

t="T,...,1,

Me(xtat)' (4)

To get a text-to-image synthesis framework, SD guides
the diffusion processes with a textual prompt 7. Particularly
for DDIM sampling, we get:

B xr — /1 — apely(xe, 7)
He Ve ( N >+ )

V1—aii€eh(x, 1),

t=T,...,1.
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It is worth noting that in SD, the function €} (z;, 7) is mod-
eled as a neural network with a UNet-like [30] architecture
composed of convolutional and (self- and cross-) attentional
blocks. zr is called the latent code of the signal x¢ and
there is a method [3] to apply a deterministic forward pro-
cess to reconstruct the latent code x given a signal xg. This
method is known as DDIM inversion. Sometimes for sim-
plicity, we will call z;,t = 1, ..., T also the latent codes of
the initial signal z.

3.2. Zero-Shot Text-to-Video Problem Formulation

Existing text-to-video synthesis methods require either
costly training on a large-scale (ranging from 1M to 15M
data-points) text-video paired data [41, 15,39, 11, 14, 5] or
tuning on a reference video [42]. To make video generation
cheaper and easier, we propose a new problem: zero-shot
text-to-video synthesis. Formally, given a text description
7 and a positive integer m € N, the goal is to design a
function F that outputs video frames V € Rm>*HxWx3
(for predefined resolution H x W) that exhibit temporal
consistency. To determine the function F, no training or
fine-tuning must be performed on a video dataset.

Our problem formulation provides a new paradigm for
text-to-video. Noticeably, a zero-shot text-to-video method
naturally benefits from quality improvements of text-to-
image models.

3.3. Method

In this paper, we approach the zero-shot text-to-video
task by exploiting the text-to-image synthesis power of
Stable Diffusion (SD). As we need to generate videos in-
stead of images, SD should operate on sequences of la-
tent codes. The naive approach is to independently sam-
ple m latent codes from standard Gaussian distribution
xh, ... 2 ~ N(0,1) and apply DDIM sampling to ob-
tain the corresponding tensors zf for k = 1,...,m, fol-
lowed by decoding to obtain the generated video sequence
{D(zk)}m, € Rm>*HXWX3_ However, this leads to com-
pletely random generation of images sharing only the se-
mantics described by 7 but neither object appearance nor
motion coherence (see appendix Fig. 14, first row).

To address this issue, we propose to (i) introduce motion
dynamics between the latent codes x4, ..., 27 to keep the
global scene time consistent and (ii) use cross-frame atten-
tion mechanism to preserve the appearance and the identity
of the foreground object. Each of the components of our
method are described below in detail. The overview of our
method can be found in Fig. 2.

Note, to simplify notation, we will denote the entire se-
quence of latent codes by zX™ = [z ... 2m].

Algorithm 1 Motion dynamics in latent codes

Require: At>0,m e N, A > 0,6 =(d;,6y) €
R?, Stable Diffusion (SD)
1: 23 ~ N(0,I) > random sample the first latent code
2: zk, < DDIM _Backward(zk., At, SD) & perform At
backward steps by SD
3: forallk =2,3,...,mdo
4: 5F — - (k — 1)6 > computing global translation
vectors
5: W), < Warping by 6% & defining warping functions
i‘l%/ — Wy (x%«,)
z% « DDPM Forward (7%, At) > DDPM forward
for more motion freedom
return 2™

3.3.1 Motion Dynamics in Latent Codes

Instead of sampling the latent codes %™ randomly and
independently from the standard Gaussian distribution, we
construct them by performing the following steps (see also
Alg. 1 and Fig. 2).

1. Randomly sample the latent code of the first frame:
zh ~ N(0,1).

2. Perform At > 0 DDIM backward steps on the latent
code z+ by using the SD model and get the corre-
sponding latent z1.,, where 77 = T' — At.

3. Define a direction § = (d,,d,) € R? for the global
scene and camera motion. By default § can be the main
diagonal direction , = ¢, = 1.

4. For each frame k = 1,2,...,m we want to generate,
compute the global translation vector 6¥ = X-(k—1)d,
where ) is a hyperparameter controlling the amount of
the global motion.

5. Apply the constructed motion (translation) flow 6

to 24, denote the resulting sequence by Z1:™:
ik, = Wi(zh) fork=1,2,...,m, (6)

where Wy, (z}) is the warping operation for transla-
tion by the vector 6¥.

6. Perform At DDPM forward steps on each of the la-
tents 2™ and get the corresponding latent codes z%™.

Then we take the sequence z1™ as the starting point of
the backward (video) diffusion process. As a result, the
latent codes generated with our proposed motion dynam-
ics lead to better temporal consistency of the global scene
as well as the background, see in the appendix, Sect. 8.1.
Yet, the initial latent codes are not constraining enough
to describe particular colors, identities or shapes, thus still
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Figure 2: Method overview: Starting from a randomly sampled latent code z., we apply At DDIM backward steps to obtain
xk, using a pre-trained Stable Diffusion model (SD). A specified motion field results for each frame k in a warping function
W that turns z1,, to a:’%,. By enhancing the latent codes with motion dynamics, we determine the global scene and camera
motion and achieve temporal consistency in the background and the global scene. A subsequent DDPM forward application
delivers latent codes z%. for k = 1,...,m. By using the (probabilisticy DDPM method, a greater degree of freedom is
achieved with respect to the motion of objects (see appendix Sec. 8.1). Finally, the latent codes are passed to our modified
SD model using the proposed cross-frame attention, which uses keys and values from the first frame to generate the image of
frame k = 1,..., m. By using cross-frame attention, the appearance and the identity of the foreground object are preserved
throughout the sequence. Optionally, we apply background smoothing. To this end, we employ salient object detection to
obtain for each frame k a mask M* indicating the foreground pixels. Finally, for the background (using the mask M*), a
convex combination between the latent code x} of frame one warped to frame k and the latent code x¥ is used to further
improve the temporal consistency of the background.

leading to temporal inconsistencies, especially for the fore- follows:

round object.
g J Cross-Frame-Attn(Q*, K1 V1m) =
k Kl T
Softmax M V!
Ve

for kK = 1,...,m. By using cross frame attention, the ap-
pearance and structure of the objects and background as
well as identities are carried over from the first frame to sub-
sequent frames, which significantly increases the temporal
consistency of the generated frames (see in the appendix the
Figures 14, 16, 22, 23).

®)

3.3.2 Reprogramming Cross-Frame Attention

To address the issue mentioned above, we use a cross-frame
attention mechanism to preserve the information about (in
particular) the foreground object’s appearance, shape, and
identity throughout the generated video.

To leverage the power of cross-frame attention and at the
same time exploit a pretrained SD without retraining, we
replace each of its self-attention layers with a cross-frame
attention, with the attention for each frame being on the first
frame. More precisely in the original SD UNet architecture
ep(xy, T), each self-attention layer takes a feature map z €
RPXwXe linearly projects it into query, key, value features

3.3.3 Background smoothing (Optional)

We further improve temporal consistency of the background

Q, K,V € R"wxc and computes the layer output by the
following formula (for simplicity described here for only
one attention head) [38]:

QK"
Ve
In our case, each attention layer receives m inputs:
ptm = [z} ... 2™ € Rm*hxwxe  Hence, the lin-
ear projection layers produce m queries, keys, and values

QY™ K™ V5Im respectively.
Therefore, we replace each self-attention layer with a
cross-frame attention of each frame on the first frame as

Self-Attn(Q, K, V) = Softmax ( ) V. @)

using a convex combination of background-masked latent
codes between the first frame and frame k. This helps espe-
cially to generate videos from textual prompts when one or
no initial image and no further guidance are provided.

In more detail, given the generated sequence of our video
generator, ™, we apply (an in-house solution for) salient
object detection [40] to the decoded images to obtain a cor-
responding foreground mask M* for each frame k. Then
we warp z; according to the employed motion dynamics
defined by W}, and denote the result by ¥ := W, (z}).

Background smoothing is achieved by a convex combi-
nation between the actual latent code z¥ and the warped
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Figure 3: Text-to-Video results of our method. Depicted frames show that identities and appearances are temporally consis-
tent and fitting to the textual prompt. For more results, see Appendix Sec. 8.

Tim Text2Video-Zero

Text prompt: "A
horse is galloping
on the street"
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etc.

zero_conv
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Figure 4: The overview of Text2Video-Zero + ControlNet

latent code if on the background, i.e.,
=Mool + (1 - MY e (ail + (1 —a)2l), 9

for kK = 1,...,m, where « is a hyperparameter, which
we empirically choose av = 0.6. Finally, DDIM sampling
is employed on Z¥, which delivers video generation with
background smoothing. We use background smoothing in
our video generation from text when no guidance is pro-
vided. For an ablation study on background smoothing, see
the appendix, Sec. 8.1.

3.4. Conditional and Specialized Text-to-Video

Recently powerful controlling mechanisms [47, 22, 17]
emerged to guide the diffusion process for text-to-image
generation. Particularly, ControlNet [47] enables to con-
dition the generation process using edges, pose, semantic
masks, image depths, etc. However, a direct application of
ControlNet in the video domain leads to temporal inconsis-
tencies and to severe changes of object appearance, identity,
and the background (see in the appendix Figures 14, 16, 22,
23). It turns out that our modifications on the basic dif-
fusion process for videos result in more consistent videos
guided by ControlNet conditions. We would like to point
out again that our method does not require any fine-tuning
or optimization processes.

More specifically, ControlNet creates a trainable copy
of the encoder (including the middle blocks) of the UNet
ey (21, 7) while additionally taking the input z; and a con-
dition ¢, and adds the outputs of each layer to the skip-
connections of the original UNet. Here ¢ can be any type
of condition, such as edge map, scribbles, pose (body land-
marks), depth map, segmentation map, etc. The trainable
branch is being trained on a specific domain for each type
of the condition c resulting in an effective conditional text-
to-image generation mechanism.

To guide our video generation process with ControlNet
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Figure 5: Conditional generation with pose control. For
more results see appendix, Sec. 10.

|

(a) oil painting of a girl dancing close-up

(b) Cyberpunk boy with a hat dancing close-up

Figure 6: Conditional generation with edge control. For
more results see appendix, Sec. 9.

we apply our method to the basic diffusion process, i.e.
enrich the latent codes 2™ with motion information and
change the self-attentions into cross-frame attentions in the
main UNet. While adopting the main UNet for video gener-
ation task, we apply the ControlNet pretrained copy branch
per-frame on each x¥ for k = 1,...,m in each diffusion
time-stept = 7, ...,1 and add the ControlNet branch out-
puts to the skip-connections of the main UNet.

Furthermore, for our conditional generation task, we
adopted the weights of specialized DreamBooth (DB) [31]
models'. This gives us specialized time-consistent video
generations (see Fig. 7).

TAvatar model: https://civitai.com/models/9968/
avatar-style. GTA-5 model: https://civitai.com/
models/1309/gta5-artwork-diffusion.

Figure 7: Conditional generation with edge control and DB
models.

3.5. Video Instruct-Pix2Pix

With the rise of text-guided image editing methods
such as Prompt2Prompt [9], Instruct-Pix2Pix [2], SDEdit
[20], etc., text-guided video editing approaches emerged
[1, 16, 42]. While these methods require complex optimiza-
tion processes, our approach enables the adoption of any
SD-based text-guided image editing algorithm to the video
domain without any training or fine-tuning. Here we take
the text-guided image editing method Instruct-Pix2Pix and
combine it with our approach. More precisely, we change
the self-attention mechanisms in Instruct-Pix2Pix to cross-
frame attentions according to Eq. 8. Our experiments show
that this adaptation significantly improves the consistency
of the edited videos (see Fig. 9) over the naive per-frame
usage of Instruct-Pix2Pix.

4. Experiments
4.1. Implementation Details

We take the Stable Diffusion [29] code? with its pre-
trained weights from version 1.5 as basis and implement our
modifications.For each video, we generate m = 8 frames
with 512 x 512 resolution. However, our framework al-
lows generating any number of frames, either by increas-
ing m, or by employing our method in an auto-regressive
fashion where the last generated frame m becomes the first
frame in computing the next m frames. For all text-to-
video generation experiments, we take 7/ = 881, T = 941
without specific tuning, while for conditional and special-
ized generation, and for Video Instruct-Pix2Pix, we take
T =T = 1000.

For a conditional generation, we use the codebase® of
ControlNet [47]. For specialized models, we take DB [31]
models from publicly available sources. For Video Instruct-

Zhttps://github.com/huggingface/diffusers. We also
benefit from the codebase of Tune-A-Video https://github.com/
showlab/Tune-A-Video.

3https://github.com/1lllyasviel/ControlNet.
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Pix2Pix, we use the codebase” of Instruct Pix2Pix [2].

4.2. Qualitative Results

All applications of Text2Video-Zero show that it suc-
cessfully generates videos where the global scene and the
background are time consistent and the context, appear-
ance, and identity of the foreground object are maintained
throughout the entire sequence.

In the case of text-to-video, we observe that it generates
high-quality videos that are well-aligned to the text prompt
(see Fig. 3 and the appendix). For instance, the depicted
panda shows a naturally walking on the street. Likewise,
using additional guidance from edges or poses (see Fig. 5,
Fig, 6 and Fig. 7 and the appendix), high quality videos are
generated matching the prompt and the guidance that show
great temporal consistency and identity preservation.

Videos generated by Video Instruct-Pix2Pix (see Fig. 1
and the appendix) possess high-fidelity with respect to the
input video, while following closely the instruction.

4.3. Comparison with Baselines

We compare our method with two publicly available
baselines: CogVideo [15] and Tune-A-Video [42]. Since
CogVideo is a text-to-video method we compare with it in
pure text-guided video synthesis settings. With Tune-A-
Video we compare in our Video Instruct-Pix2Pix setting.

4.3.1 Quantitative Comparison

To show quantitative results, we evaluate the CLIP score
[10], which indicates video-text alignment. We randomly
take 25 videos generated by CogVideo and synthesize cor-
responding videos using the same prompts according to our
method. The CLIP scores for our method and CogVideo
are 31.19 and 29.63, respectively. Our method thus slightly
outperforms CogVideo, even though the latter has 9.4 bil-
lion parameters and requires large-scale training on videos.

4.3.2 Qualitative Comparison

We present several results of our method in Fig. 8 and
provide a qualitative comparison to CogVideo [15]. Both
methods show good temporal consistency throughout the
sequence, preserving the identity of the object and back-
ground. However, our method shows better text-video
alignment. For instance, while our method correctly gen-
erates a video of a man riding a bicycle in the sunshine
in Fig. 8(b), CogVideo sets the background to moon light.
Also in Fig. 8(a), our method correctly shows a man run-
ning in the snow, while neither the snow nor a man running
are clearly visible in the video generated by CogVideo.

“https://github.com/timothybrooks/
instruct-pix2pix.

Qualitative results of Video Instruct-Pix2Pix and a visual
comparison with per-frame Instruct-Pix2Pix and Tune-A-
Video are shown in Fig. 9. While Instruct-Pix2Pix shows
a good editing performance per frame, it lacks temporal
consistency. This becomes evident especially in the video
depicting a skiing person, where the snow and the sky are
drawn using different styles and colors. Using our Video
Instruct-Pix2Pix method, these issues are solved resulting in
temporally consistent video edits throughout the sequence.

While Tune-A-Video creates temporally consistent video
generations, it is less aligned to the instruction guidance
than our method, struggles creating local edits and losses
details of the input sequence. This becomes apparent when
looking at the edit of the dancer video depicted in Fig. 9 (left
side). In contrast to Tune-A-Video, our method draws the
entire dress brighter and at the same time better preserves
the background, e.g. the wall behind the dancer is almost
kept the same. Tune-A-Video draws a severely modified
wall. Moreover, our method is more faithful to the input
details, e.g., Video Instruct-Pix2Pix draws the dancer us-
ing the pose exactly as provided (Fig. 9 left), and shows all
skiing persons appearing in the input video (compare last
frame of Fig. 9(right)), in constrast to Tune-A-Video. All
the above-mentioned weaknesses of Tune-A-Video can also
be observed in our additional evaluations that are provided
in the appendix, Figures 25, 26.

4.4. Ablation Study

We perform several ablation studies and provide the re-
sults in the appendix, Sect. 8.1. Namely, we analyse back-
ground smoothing, At, and two main components of our
method: making the initial latent codes coherent to a mo-
tion, and using cross-frame attention on the first frame in-
stead of self-attention.

5. Limitations and Future Work

The main limitation of this work is the inability to gener-
ate longer videos with sequences of actions. Future research
may target enriching our method with techniques such as
autoregressive scene action generation, while keeping the
training-free spirit. Overall, our method is focused on gen-
erating video key-frames as in the first stage of Imagen
Video [ 1 1] and Make-A-Video [33], and can thus be consid-
ered as good basis for longer and smoother video generation
by integrating temporal upsampling.

6. Conclusion

In this paper, we addressed the problem of zero-shot text-
to-video synthesis and proposed a novel method for time-
consistent video generation. Our approach does not require
any optimization or fine-tuning, making text-to-video gen-
eration and its applications affordable for everyone. We
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Figure 8: Comparison of our method vs CogVideo on text-to-video generation task (left is ours, right is CogVideo [15]). For

more comparisons, see appendix Fig. 18.

Original

Video
Instruct-
Pix2Pix
(Ours)

Instruct-Pix2Pix

Tune-A-Video

Figure 9: Comparison of Video Instruct-Pix2Pix(ours) with Tune-A-Video and per-frame Instruct-Pix2Pix. For more com-

parisons see our appendix.

demonstrated the effectiveness of our method for various
applications, including conditional and specialized video
generation, and Video Instruct-Pix2Pix, i.e., instruction-
guided video editing. Our contributions to the field include
presenting a new problem of zero-shot text-to-video syn-
thesis, showing the utilization of text-to-image diffusion
models for generating time-consistent videos, and provid-
ing evidence of the effectiveness of our method for various
video synthesis applications. We believe that our proposed
method will open up new possibilities for video generation
and editing, making it accessible and affordable for every-
one.
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