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In this paper, we study the corresponding problem in a vastly more general setting, whose study was

initiated in 2015 by Bollobás, Smith and Uzzell [5].

Definition 1.1. Let  = {X1, … ,Xm} be an arbitrary finite collection of finite,

non-empty subsets of Z� ⧵ {0}. Now, given a set A ⊂ Z� of initially infected sites, set

A0 = A, and define for each t ∈ N the set At of sites infected at time t by

At = At−1 ∪
{

x ∈ Z
� ∶ x + X ⊂ At−1 for some X ∈ 

}
.

The  -closure of A is the set [A] ∶=
⋃

t≥0 At of all eventually-infected sites, and we say

that A percolates if all sites are eventually infected; that is, if [A] = Z� .

We call  the update family of the process, each X ∈  an update rule, and the process itself

 -bootstrap percolation. Thus, according to the definition, a site x becomes infected in a given step

if the translate by x of one of the sets of the update family is already entirely infected, and infected

sites remain infected forever. For example, the classical r-neighbor model on Z� , mentioned above, is

defined as the process in which a site becomes infected if at least r of its neighbors is infected, and its

update family  �
r consists of all

(
2�

r

)
subsets of size r of the 2� nearest neighbors of the origin.

We are interested in the behavior of the  -bootstrap process when the initial set of infected sites

A is chosen randomly. Let us say that a set A ⊂ Z� is p-random if each of the sites of Z� is included

in A independently with probability p, write Pp for the corresponding probability measure, and define

the critical probability to be2

pc(Z
� , ) ∶= inf

{
p ∶ Pp

(
[A] = Z

�
)
≥ 1∕2

}
. (1)

One of the key insights from [5] was that, at least in two dimensions, the rough global behavior of

the  -bootstrap process depends only on the action of the process on discrete half-spaces. In order to

make this statement precise, let S�−1 be the unit sphere in R� , and for each u ∈ S�−1 let us write

H
�
u ∶=

{
x ∈ Z

� ∶ ⟨x, u⟩ < 0
}

for the discrete half-space in Z� with normal u ∈ S�−1. Now, given a �-dimensional update family  ,

define

 = ( ) ∶=
{

u ∈ S�−1 ∶ [H�
u ] = H

�
u

}

to be the set of stable directions, and note that u is unstable if and only if X ⊂ H�
u for some X ∈  . It

is moreover easy to show that if u is unstable then [H�
u ] = Z� .

The following definition was introduced by Bollobás, Smith and Uzzell [5] (when � = 2) and by

Balister, Bollobás, Przykucki and Smith [3] (for � > 2). Given a set  ⊂ S�−1, let int( ) denote the

interior of  in the usual topology on the sphere S�−1.

Definition 1.2. A �-dimensional update family is subcritical if

int(H ∩ ) ≠ ∅

for every hemisphere H ⊂ S�−1.

2One can show using the 0–1 law for translation-invariant events that the probability A percolates is either 0 or 1, so the constant

1∕2 in the definition is not important.
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40 BALISTER ET AL.

For example, the stable set of the r-neighbor model on Z� has empty interior if r ≤ �, and is

equal to S�−1 otherwise, and the r-neighbor model is therefore subcritical if and only if r > �. The

following theorem was conjectured by Bollobás, Smith and Uzzell [5], and was proved by Bollobás,

Smith and Uzzell [5] (for non-subcritical families) and by Balister, Bollobás, Przykucki and Smith [3]

(for subcritical families).

Theorem 1.3. Let  be a two-dimensional update family. Then

pc(Z
2, ) > 0 ⇔  is subcritical.

Balister, Bollobás, Przykucki and Smith [3] moreover conjectured that the corresponding statement

also holds for all � > 2. The main aim of this paper is to prove the following theorem, which confirms

one direction of this conjecture. We remark that an alternative (very different) proof of this theorem

has been given by Hartarsky and Szabó [14], using a method that was developed recently by Swart,

Szabó and Toninelli [16].

Theorem 1.4. Let  be a subcritical �-dimensional update family. Then

pc(Z
� , ) > 0.

For �-dimensional update families that are not subcritical, the behaviour of the  -bootstrap pro-

cess is quite different, and controlling the growth of the infected set requires an essentially disjoint set

of tools and techniques. For these models, the following much more precise ‘universality’ conjecture

was proposed by Bollobás, Duminil-Copin, Morris and Smith [4], and proved in [1,2] (the special case

� = 2 was proved earlier by Bollobás, Smith and Uzzell [5]). Let log(r) denote the r-times iterated

logarithm, so log(0) n = n and log(r) n = log log(r−1) n for each r ≥ 1.

Theorem 1.5. Let  be a �-dimensional update family. If  is not subcritical, then3

pc(Z
�
n , ) =

(
1

log(r−1) n

)Θ(1)

(2)

for some r ∈ {1, … , �}. Moreover, pc(Z
� , ) = 0.

Combining Theorems 1.4 and 1.5, we obtain the first part of the following theorem, which confirms

the conjecture of Balister, Bollobás, Przykucki and Smith [3]. The characterization of update families

with pc(Z
� , ) = 1 is proved in Section 7, using a technical lemma from [1].

Theorem 1.6. Let  be a �-dimensional update family. Then

pc(Z
� , ) > 0 ⇔  is subcritical.

Moreover, pc(Z
� , ) = 1 if and only if ( ) = S�−1.

The non-triviality of pc(Z
� , ) for subcritical update families  means that one can ask of such

models questions that would more typically be associated with (classical) percolation, including those

3Here pc(Z
�
n , ) is defined as in (1), replacing Z� by Z�

n . The upper bound in (2) is proved in Theorem 3.1 of [1], the lower

bound is proved in Theorem 3.1 of [2], and the consequence for Z� is Theorem 12.23 of [1].
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BALISTER ET AL. 41

concerning behavior at criticality, the probabilities of one-arm events below criticality, and noise

sensitivity. A number of such questions were asked of two-dimensional models in [3], and solutions

to several of them were subsequently obtained by Hartarsky [13]. In dimensions � ≥ 3, all such ques-

tions remain open. Since the questions are essentially the same in all dimensions, we do not repeat

them here, but instead refer the reader to [3,13].

The proof of Theorem 1.4, like the proof in [3], uses multi-scale analysis, and our main challenge

will be to define suitable high-dimensional surfaces that ‘cover’ our (random) set of infected sites. In

order to handle the additional complexities of high-dimensional geometry, we found it necessary to

develop a new method that is somewhat simpler than the one used in [3], and which we call ‘pinching

a hyperplane’. We remark that various techniques for constructing random Lipschitz surfaces have

previously been developed in the literature (see, e.g., [7,9–12]); interestingly, our method appears to

be different from these earlier approaches.

2 AN OUTLINE OF THE PROOF

In this section, we give a high-level overview of the strategy we shall use to prove Theorem 1.4. We

shall in fact prove the theorem in the following quantitative form.

Theorem 2.1. Let  be a subcritical �-dimensional update family. Then4

Pp (0 ∈ [A] ) = O
(
p2∕3

)
.

In particular, pc(Z
� , ) > 0.

We shall prove Theorem 2.1 using a multi-scale argument. Hypercubes in R� , at increasing scales,

are deemed either ‘good’ or ‘bad’ (see Definition 3.1). At the smallest scale, a hypercube is ‘good’

if its intersection with the p-random set A is empty. Thereafter, a hypercube at the kth scale is ‘good’

(roughly speaking) if it does not contain two ‘independent’ bad hypercubes at the (k − 1)th scale.

The idea is that we can find a set of initially uninfected sites (or ‘barrier’), looking somewhat like a

polytope whose sides have been perturbed to avoid nearby infected sites, around each ‘bad’ hypercube

at the (k − 1)th scale that is contained in a ‘good’ hypercube at the kth scale. Moreover, and crucially,

the finite set of sites of Z� bounded by that barrier (including the ‘bad’ hypercube itself) is  -closed5

(see Proposition 3.3).

In this way, we build up a sequence of barriers with the following properties: each barrier bounds

a finite  -closed set of sites; any pair of barriers (together with the sites bounded by them) are

either disjoint or nested; and the union of all barriers and their interiors contains A, but is (almost

surely) not all of Z� . We emphasize that all of the technical difficulties in the proof will occur dur-

ing the (deterministic) construction of the barriers (i.e., during the proof of Proposition 3.3), which

is carried out in Sections 4–6. Our only probabilistic argument is quite straightforward, and is given

in Section 3.

We shall use the fact that  is subcritical in order to construct approximately-polytopal  -closed

sets whose faces are perturbed locally so that they avoid nearby infected sites. Such sets exist because

the normals to the faces are in ‘strongly stable’ directions.

4Given functions f (p) and g(p), we write f (p) = O(g(p)) to indicate the existence of a constant such that f (p) ≤ Cg(p) for all

p ∈ [0, 1]. We emphasize that the implicit constant in Theorem 2.1 is allowed to depend on the update family  .
5We say that a set Q ⊂ Z� is  -closed if [Q] = Q.
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42 BALISTER ET AL.

Definition 2.2. The interior int() of the set  = ( ) of stable directions of  is called

the strongly stable set of  . Directions u ∈ int() are called strongly stable.

Recall that a direction u is stable if the half-space H�
u is  -closed; the advantage of strongly stable

directions is that ‘small perturbations’ of H�
u are also  -closed (see Lemma 4.3). More precisely, this

is true if  does not contain any rule X with 0 in its convex hull; note that such rules could cause local

infections in ‘valleys’ on the surface of a perturbed half-space. To avoid this problem, we shall use (as

the directions of the faces of our barriers) strongly stable directions that avoid the set

F( ) ∶=
⋃

X∈ 

⋃

x,y∈X

x≠y

{
u ∈ S�−1 ∶ ⟨x − y, u⟩ = 0

}
(3)

of all u perpendicular to a line joining any two sites in any update rule. Since the set  ( ) is nowhere

dense in S�−1, this restriction has a trivial effect on our choice, made in the following lemma, of strongly

stable directions to use in the proof.

Lemma 2.3. Let  be a subcritical �-dimensional update family. Then there exists a

finite set ∗ ⊂ int() ⧵ F( ) such that H ∩∗ ≠ ∅ for every open hemisphere H ⊂ S�−1.

Proof. We use the compactness of S�−1. First, set ◦ ∶= int() ⧵ F( ) and

 ∶= {Hu ∶ u ∈ ◦}, where Hu ∶= {v ∈ S�−1 ∶ ⟨u, v⟩ > 0},

so that  is the collection of all open hemispheres in S�−1 centred at elements of ◦. We

claim that  is an open cover of S�−1. To show this, let w ∈ S�−1 and observe that w ∈ Hu

for some Hu ∈  if and only if u ∈ Hw for some u ∈ ◦. It therefore suffices to show that

H∩◦ is non-empty for every open hemisphere H ⊂ S�−1. Thus, let H ⊂ S�−1 be an open

hemisphere, and recall from Definition 1.2 that int(H∩) ≠ ∅, so there exists a non-empty

open set  ⊂ H ∩ int(). Since F( ) is a finite union of (� − 2)-dimensional subspheres

of S�−1, it is nowhere dense in S�−1, and it follows that  ⧵ F( ) has non-empty interior.

In particular, H ∩ ◦ is non-empty, as claimed.

Now, since  is an open cover of S�−1, it follows that it has a finite sub-cover. More-

over, the set ∗ of centres of the open hemispheres in this finite sub-cover has the desired

property, since if H ⊂ S�−1 is an open hemisphere with centre w, then w ∈ Hu for some

u ∈ ∗, which implies that u ∈ H ∩ ∗, as required. ▪

It is natural to ask whether one can always choose ∗ to have size � + 1. In fact one can always

choose such an ∗, and this can be shown using Helly’s Theorem.6 This is optimal, since  might

consist of small open balls around the vertices of a regular �-dimensional simplex inscribed in S�−1.

Let us fix, for the rest of the paper, a subcritical �-dimensional update family  , a set ∗ ⊂

int() ⧵ F( ) as in Lemma 2.3, and a constant � > 0 such that

{
v ∈ S�−1 ∶ ||u − v|| ≤ �

}
⊂ int() ⧵ F( ) (4)

for each u ∈ ∗, where we write (here and throughout the paper) || ⋅ || for the Euclidean norm on R� .

We also write �(x, y) = ||x − y|| and, for x ∈ R� and r ≥ 0,

Br(x) ∶=
{

y ∈ R
� ∶ �(x, y) ≤ r

}
(5)

6The authors thank Wojciech Samotij for pointing this out.
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for the closed Euclidean ball of radius r centred at x. Given sets  , ⊂ R� , we write �( ,) for the

infimum of �(x, y) over x ∈  and y ∈  , and say that  and  are adjacent if �( ,) = 0. Finally,

we write Z for the discrete set  ∩ Z� .

To finish the section, let us note that A will always denote a subset of Z� ; in all deterministic state-

ments this set will be arbitrary, and in probabilistic statements it will be chosen to be p-random (i.e.,

we consider the product measure Pp on subsets of Z�). In particular, we shall use A to define ‘good’

and ‘bad’ cubes (see Definition 3.1), and thereby A will appear in our main deterministic statement,

Proposition 3.3.

3 GOOD AND BAD CUBES, AND THE MAIN PROPOSITION

In this section, we state our main deterministic result, Proposition 3.3, and use it to deduce Theorem 2.1.

The first step is to define explicitly the framework for our multi-scale argument. This will involve

defining the hypercubes that we shall work with at each scale, and defining precisely ‘good’ and ‘bad’

hypercubes.

First, we define sequences (Δk)
∞
k=1, which will be the side-lengths of hypercubes at the kth scale,

and (gk)
∞
k=1, which will be the maximum distance between a hypercube Q at the (k + 1)th scale, and a

hypercube at the kth scale that can affect whether Q is good or bad (see (7) and Definition 3.1). These

will need to be chosen so that Δk ≪ gk ≪ Δk+1.

Thus, fix an arbitrary 1 < � < 3∕2, and let p > 0 be sufficiently small. Set Δ1 ∶=
⌊
p−1∕(3�+2)

⌋
,

and for each k ≥ 1, define

Δk+1 ∶=
⌊
Δ

1∕2
k

⌋
⋅ Δk and gk ∶= Δ

�

k . (6)

Now, a (k)-cube is a (continuous) subset of R� of the form

x + [0,Δk)
� , (7)

for some x ∈ (ΔkZ)
� . Note in particular that the (k)-cubes form a tiling of R� .

As noted in Section 2, the following definition depends on the (arbitrary) set A ⊂ Z� .

Definition 3.1. A (1)-cube Q is good if Q ∩ A = ∅, and otherwise it is bad. For

each k ≥ 2, a (k)-cube Q is bad if there exist non-adjacent bad (k − 1)-cubes Q1

and Q2 with

max {�(Q,Q1), �(Q,Q2)} ≤ gk−1; (8)

otherwise Q is good.7

If Q is a (k)-cube and k ≥ 2, then the event {Q is good} depends on elements of A outside of

Q, and therefore these events are not (in general) independent for different (k)-cubes. This is why we

allow collections of pairwise-adjacent bad (k− 1)-cubes inside good (k)-cubes; it is also the reason, in

the following definition, that we take maximal unions of pairwise-adjacent bad (k)-cubes, rather than

singleton bad (k)-cubes.

7Recall that  and  are adjacent if �( ,) = 0, and note that Q1 and Q2 may lie outside Q.
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Definition 3.2. For each k ≥ 1, define k = k(A) to be the collection of all sets Q ⊂ R�

such that Q is the union of a maximal collection of pairwise-adjacent bad (k)-cubes, and

Q intersects a good (k + 1)-cube. For each k ≥ 1 and each Q ∈ k, let xQ be an arbitrary

(but fixed) element of Q.

Thus, if Q ∈ k then Q = Q1 ∪ · · · ∪ Q� , where Q1, … ,Q� are distinct bad (k)-cubes, Qi and

Qj are adjacent for all i ≠ j (so, in particular, 1 ≤ � ≤ 2�), and Q intersects a good (k + 1)-cube Q′.

Moreover, note that �(Q′,Qi) ≤ gk for every i ∈ [�], since every (k)-cube has diameter
√
� ⋅Δk ≪ gk,

by (6). Since Q is maximal and Q′ is good, it follows from Definition 3.1 that all other bad (k)-cubes

lie at distance at least gk from Q′, and therefore at distance at least gk∕2 from Q.

We are now ready to state our main deterministic result, Proposition 3.3, whose proof will take up

Sections 4–6. Recall from Section 2 that our plan is to cover each cluster Q of bad (k)-cubes that inter-

sect a good (k + 1)-cube by a set (surrounded by a ‘barrier’) whose intersection with Z� is  -closed.

The following proposition provides us with such a set, Tk(Q), and moreover guarantees that this set is

not too large.

Proposition 3.3. There exists � > 0 depending only on ∗ such that the following holds.

For every set A ⊂ Z� , and for each k ≥ 1 and Q ∈ k(A), there exists a set Tk(Q), with

Q ⊂ Tk(Q) ⊂ B�Δk
(xQ), such that Z =  ∩ Z� is  -closed, where

 ∶=

∞⋃

k=1

⋃

Q∈k(A)

Tk(Q), (9)

Let us now show that Theorem 2.1 is a straightforward consequence of Proposition 3.3. To do so,

we prove first two simple lemmas about bad (k)-cubes. We then use these to show that [A] ⊂ 

almost surely, and to bound the probability that 0 ∈  .

Lemma 3.4. For each k ≥ 1, and every pair of non-adjacent (k)-cubes Q and Q′, the

events {Q is bad} and {Q′ is bad} are independent with respect to the measure Pp.

Proof. We8 shall show that the events {Q is bad} and {Q′ is bad} depend on (the inter-

section of A with) disjoint subsets of Z� , which immediately implies that they are

independent with respect to the product measure Pp. To do so, note first that the state

(either good or bad) of a (k)-cube Q depends on the states of the (k − 1)-cubes within

distance gk−1 of Q. These in turn depend on the states of the (k − 2)-cubes within dis-

tance gk−2 of those (k − 1)-cubes, and so on, until we reach (1)-cubes, whose states do

not depend on any sites outside of them. Thus, if a site x affects the state of Q, then,

by (6), and since 1 < � < 3∕2 and p is sufficiently small, the distance of x from Q must

be at most

k−1∑

i=1

(
gi +

√
� ⋅ Δi

)
≤

k−1∑

i=1

2 ⋅ Δ
�

i ≤ 3Δ
�

k−1 < Δk∕3. (10)

However, if Q and Q′ are not adjacent, then their distance from each other is at least Δk,

and hence the sets of sites that affect their states are disjoint, as claimed. ▪

It is now easy to bound the probability that a (k)-cube is bad.

8This proof corrects a small mistake in [3].
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BALISTER ET AL. 45

Lemma 3.5. For any (k)-cube Q,

Pp (Q is bad) ≤ Δ
−(2�+2)
k .

Proof. The proof is by induction on k. Set qk ∶= Δ
−(2�+2)
k , and recall that a (1)-cube is

bad if and only if it contains an element of A. Since Δ1 ≤ p−1∕(3�+2), the expected size of

the set Q ∩ A is Δ�
1 ⋅ p ≤ Δ

−(2�+2)
1 = q1, so the claimed bound holds when k = 1.

So let k ≥ 2, let Q be a (k)-cube, and suppose that the claimed bound holds for

(k − 1)-cubes. If Q is bad then, by Definition 3.1, there exist distinct, non-adjacent bad

(k − 1)-cubes Q1 and Q2 satisfying (8). By (6), and since � < 3∕2, there are at most

(
3Δk

Δk−1

)�

≤ 3�
⋅ Δ

�∕2

k−1

choices for each of Q1 and Q2, and the states of Q1 and Q2 are independent by Lemma 3.4.

It follows that

Pp (Q is bad) ≤
(

3�
⋅ Δ

�∕2

k−1

)2

⋅ q2
k−1 = 32�

⋅ Δ
−(3�+4)
k−1 ,

and hence, since p was chosen sufficiently small, and again using (6),

Pp (Q is bad) ≤ Δ
−(3�+3)
k−1 ≤ Δ

−2(3�+3)∕3
k = qk,

as required. ▪

To deduce Theorem 2.1 from Proposition 3.3, we apply Lemma 3.5 twice: first to show that

[A] ⊂  almost surely, and then to bound the probability that 0 ∈  .

Proof of Theorem 2.1. We may assume p is sufficiently small, otherwise the assertion

holds trivially. Let A be a p-random subset of Z� and set k ∶= k(A). Now, for each k ≥ 1

and Q ∈ k, let Tk(Q) be the set given by Proposition 3.3, and let  ⊂ R� be defined as

in (9). In particular, by the proposition, the set Z ⊂ Z� is  -closed.

We claim that [A] ⊂  almost surely. To prove this, let x ∈ A and consider the

(unique) sequence x ∈ Q1 ⊂ Q2 ⊂ … such that Qk is a (k)-cube. By Lemma 3.5, the

probability Qk is bad tends to zero as k → ∞, and hence almost surely some member of

the sequence is good. Noting that Q1 is bad (since x ∈ A), choose k ≥ 1 minimal such that

Qk+1 is good, and observe that, by Definition 3.2, the bad (k)-cube Qk is contained in some

member of k. It follows that x is almost surely contained in Q ⊂ Tk(Q) for some k ≥ 1

and Q ∈ k, and hence the set A is almost surely contained in  . But Z is  -closed, so

if A ⊂  then the closure [A] is also contained in  , as claimed.

It follows from the claim, and the definition (9) of  , that

Pp (0 ∈ [A] ) ≤ Pp

(
0 ∈

∞⋃

k=1

⋃

Q∈k

Tk(Q)

)
≤

∞∑

k=1

Pp

(
0 ∈

⋃

Q∈k

Tk(Q)

)
. (11)

To bound the right-hand side of (11), recall from Definition 3.2 and Proposition 3.3 that

Tk(Q) contains at least one bad (k)-cube, and is contained in the ball B�Δk
(xQ). Thus, if
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46 BALISTER ET AL.

0 ∈ Tk(Q) for some Q ∈ k, then 0 ∈ B�Δk
(xQ), and so there must exist a bad (k)-cube

within distance 2�Δk of 0. Noting that there are at most (4� + 2)� such cubes, it follows,

by Lemma 3.5, and since Δ1 = ⌊p−1∕(3�+2)⌋ and p is sufficiently small, that

Pp (0 ∈ [A] ) ≤ (4� + 2)�
∞∑

k=1

Δ
−(2�+2)
k ≤ (8�)� ⋅ Δ

−(2�+2)
1 = O

(
p(2�+2)∕(3�+2)

)
,

as required. ▪

In order to complete the proof of Theorem 2.1, it therefore suffices to prove Proposition 3.3. To

do so, first, in Section 4, we define a family of ‘perturbed surfaces’ that will be used to construct the

boundaries of the sets Tk(Q). Then, in Section 5, we show that these surfaces can be chosen to avoid bad

cubes. Finally, in Section 6, we use these surfaces to construct the sets Tk(Q), and show that they have

the claimed properties. We remark that most of the technical difficulties are contained in Section 5.

4 PERTURBED SURFACES

In this section, we define and prove key properties of certain families of surfaces in R� . These surfaces

will later be used as the faces of the perturbed polytopes Tk(Q) that we shall construct (in the proof of

Proposition 3.3) around clusters of bad (k)-cubes. The surfaces are defined (in Definition 4.1) relative

to a co-dimension 1 hyperplane, which is modified by adding ‘bumps’ at various scales, the bumps at

larger scales being flatter and more spread out than the bumps at smaller scales (see Figure 1).

We say that a set Z ⊂ R� is i-separated if �(x, y) > gi∕2 for all distinct x, y ∈ Z. A k-tuple

(Z1, … ,Zk) of subsets of R� is said to be k-separated if Zi is i-separated for each 1 ≤ i ≤ k. We write

{u}⊥ ∶= {v ∈ R� ∶ ⟨u, v⟩ = 0} for the co-dimension 1 hyperplane with normal u, and we shall use

the function c ∶ R → R, defined by

c(x) ∶= (cos x)2 ⋅ �
[
|x| ≤ 	∕2

]
,

which we note is differentiable everywhere.

Definition 4.1. Let k ≥ 0 and u ∈ S�−1. A (k, u)-pinch is a surface

Σ = Σ(u, 
;Z1, … ,Zk) ⊂ R
�

defined by a real number 
 and a k-separated k-tuple (Z1, … ,Zk), where each Zi is a subset

of {u}⊥, as follows:

Σ ∶=
{

x + h(x)u ∶ x ∈ {u}⊥
}
,

FIGURE 1 A (3, u)-pinch with � = 2. The dashed line along the bottom of the figure is {u}⊥. The large dot is the element of

Z3, the medium dots are the elements of Z2, and the small dots are the elements of Z1.
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BALISTER ET AL. 47

where h ∶ R�
→ R is the height function9

h(x) ∶= 
 +

k∑

i=1

24�Δi

∑

z∈Zi

c

(
25

⋅ �(x, z)

gi

)
, (12)

Here � > 0 is a sufficiently large constant depending only on ∗.

We also define a corresponding (k, u)-range Ξ = Ξ(u, 
;Z1, … ,Zk) by

Ξ ∶=
{

x + hu ∶ h < h(x), x ∈ {u}⊥
}
.

The constant � = �(∗) in Definition 4.1 is the same as the constant � in Proposition 3.3. It will be

assumed to satisfy � > 2
√
� + 1, and also

⋂

u∈∗

{
x ∈ R

� ∶ ⟨x, u⟩ ≤ 4�
}
⊂ B� (0). (13)

Such a � exists because H ∩ ∗ ≠ ∅ for every open hemisphere H ⊂ S�−1, by Lemma 2.3.

We shall show, in Lemma 4.3, that the set ΞZ is  -closed for every u ∈ ∗, every k ≥ 1, and every

(k, u)-range Ξ. However, in order to do so we first need to prove some simple properties of the partial

height functions

hj(x) ∶= 
 +

k∑

i=j

24�Δi

∑

z∈Zi

c

(
25

⋅ �(x, z)

gi

)
, (14)

where 1 ≤ j ≤ k. For convenience, define also hk+1(x) ∶= 
, and note that h(x) = h1(x). We remark

that these properties will also be useful in Sections 5 and 6.

In the proofs below, we refer to the co-dimension 1 hyperplane

Σ(u, 
, ∅, … , ∅) =
{

x + 
u ∶ x ∈ {u}⊥
}
,

as the base of Σ (or Ξ), and to the k-tuple (Z1, … ,Zk) as the augmentation of Σ (or Ξ).

Lemma 4.2. Let Σ be a (k, u)-pinch. For each 1 ≤ j ≤ k, the partial height function hj of

Σ satisfies

||hj − hj+1||∞ ≤ 24�Δj and ||hj − 
||∞ ≤ 25�Δk. (15)

Moreover, if x, y ∈ R� , then

|hj(x) − hj(y)| ≤ 210�Δ
1−�
j ⋅ ||x − y||. (16)

Proof. Recall from Definition 4.1 that the augmentation (Z1, … ,Zk) of Σ is k-separated,

and therefore �(y, z) > gi∕2 for every i ∈ [k] and all distinct y, z ∈ Zi. It follows that, for

9Note that the sets Zi may be infinite; however, we show in Lemma 4.2 that the assumption that (Z1, … ,Zk) is k-separated

implies that h(x) is finite. Note also that when k = 0 we have h(x) = 
, so in this case Σ is just a translation of the co-dimension

1 hyperplane {u}⊥.

 1
0

9
8

2
4

1
8

, 2
0

2
4

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/rsa.2

1
1

7
4

 b
y

 U
n

iv
ersity

 O
f M

em
p

h
is L

ib
rary

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [2
9

/0
1

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



48 BALISTER ET AL.

each x ∈ R� , there is at most one z ∈ Zi such that �(x, z) ≤ gi∕4, and hence at most one

z ∈ Zi such that

25
⋅ �(x, z)

gi

≤
	

2
.

The inequality |hj(x) − hj+1(x)| ≤ 24�Δj now follows immediately from (14), and

|hj(x) − 
| = |hj(x) − hk+1(x)| ≤
k∑

i=j

24�Δi ≤ 25�Δk

also follows, since hk+1(x) = 
, and by the triangle inequality and the definition (6) of Δi.

Since both inequalities hold for all x ∈ R� , this proves (15).

To prove (16), recall that the function c is differentiable, and observe that

‖‖‖∇c

(
25

⋅ �(x, z)

gi

)
‖‖‖ ≤

25

gi

.

It follows that

||∇hj(x)|| ≤
k∑

i=j

24�Δi ⋅
25

gi

=

k∑

i=j

29�Δ
1−�
i ≤ 210�Δ

1−�
j ,

by the definitions (6) of Δi and gi, and since � > 1 and p is sufficiently small. Applying

the mean value theorem for multivariate functions now yields (16). ▪

We are now ready to prove the key property of (k, u)-ranges: they are  -closed.

Lemma 4.3. If u ∈ ∗, then ΞZ is  -closed for every (k, u)-range Ξ.

Proof. We are required to show that x + X ⊄ ΞZ for every x ∈ Z� ⧵ ΞZ and X ∈  . To

do so, recall that ∗ was chosen using Lemma 2.3, and that � was chosen in (4). We will

show, using Lemma 4.2 and our assumption that p is small, that the fluctuations of the

surface of Ξ are small compared with �.

Without loss of generality we may assume that x = 0, so suppose that h(0) ≤ 0 (so

that 0 ∉ Ξ), and that X ⊂ ΞZ for some X ∈  . We claim that

ΞZ ⊂
⋃

v∈S�(S�−1,u)

H
�
v , (17)

where S�(S
�−1, u) ⊂ S�−1 is the (� − 2)-sphere consisting of points of S�−1 at geodesic

distance � from u. To prove (17), observe first that, by Lemma 4.2, we have

|h(x) − h(0)| = |h1(x) − h1(0)| ≤ 210�Δ
1−�
1 ⋅ ||x||

for each x ∈ R� . Since h(0) ≤ 0, and recalling that Δ1 = ⌊p−1∕(3�+2)⌋ and � > 1, it follows

that h(x) ≤ o(||x||) as p → 0, uniformly over x ∈ R� . In particular, we may assume that
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BALISTER ET AL. 49

h(x) ≤ ||x||(sin �)∕2. Now, given x ∈ {u}⊥, set v ∶= (cos �)u − (sin �)x∕||x||, which is an

element of S�(S
�−1, u), and observe that

⟨x + h(x)u, v⟩ = h(x) cos � − ||x|| sin � < 0.

This completes the proof of (17).

It suffices, therefore, to show that no update rule X ∈  is contained in the set on

the right-hand side of (17). Observe first that if v ∈ S�(S
�−1, u) then ||u − v|| ≤ �, and

therefore v ∈  , by (4), since u ∈ ∗. It follows that X ⊄ H�
v for each v ∈ S�(S

�−1, u). We

claim that if X ⊂ ΞZ, then there exist x1, x2 ∈ X and v1, v2 ∈ S�(S
�−1, u) such that

x1 ∈ H
�
v1
⧵ H

�
v2

and x2 ∈ H
�
v2
⧵ H

�
v1
. (18)

To prove this, choose v1 ∈ S�(S
�−1, u) such that |X ∩ H�

v1
| is maximal (recalling that X is

finite). Since X ⊄ H�
v1

, there must exist x2 ∈ X ⧵ H�
v1

. Moreover, if X ⊂ ΞZ then by (17)

there must exist v2 ∈ S�(S
�−1, u) with x2 ∈ H�

v2
. By the maximality of |X∩H�

v1
|, it follows

that there exists x1 ∈ X ∩ H�
v1

with x1 ∉ H�
v2

, as claimed.

To complete the proof, we shall deduce from (18) that there exists a direction v ∈ F( )

within distance � of u, contradicting (4). In order to guarantee that v ∈ F( ), we shall

choose v ∈ S�−1 with ⟨x1 − x2, v⟩ = 0, and in order to guarantee that ||u − v|| ≤ �, we

shall choose it on the geodesic in S�−1 joining v1 to v2. The vector satisfying these two

conditions is10

v ∶=
⟨x1 − x2, v2⟩v1 + ⟨x2 − x1, v1⟩v2

||⟨x1 − x2, v2⟩v1 + ⟨x2 − x1, v1⟩v2||
,

where it follows from (18) that ⟨x1 − x2, v2⟩ ≥ 0 and ⟨x2 − x1, v1⟩ ≥ 0. Since v is the

projection onto S�−1 of an element of the convex hull of v1 and v2, it follows that ||u−v|| ≤
�, and by (4) this contradicts the fact that v ∈ F( ), as required. ▪

5 CONSTRUCTION OF PINCHES AVOIDING BAD CUBES

In the previous section, we defined (k, u)-pinches and (k, u)-ranges, and proved in Lemma 4.3 that

(k, u)-ranges are  -closed when u ∈ ∗. In this section we shall show how to construct (k, u)-pinches

that avoid (with room to spare) all bad (i)-cubes (for all 1 ≤ i ≤ k) inside a region of good (k+1)-cubes.

In order to state Lemma 5.1, which is the main result of this section, we need to introduce a little

notation. Given u ∈ S�−1 and k ∈ N, we define the line segment

L
(k)
u ∶= {
u ∶ |
| ≤ Δk} , (19)

and recall the definition of the Minkowski sum  +  ∶= {x + y ∶ x ∈  , y ∈ }.

The following lemma is the key step in the proof of Theorem 2.1.

Lemma 5.1. Let k ≥ 0 and u ∈ S�−1, and let Π be a translation of {u}⊥. If every

(k + 1)-cube intersecting Π + L
(k+1)
u is good, then there exists a (k, u)-pinch Σ, with base

Π, such that for each 1 ≤ i ≤ k, every (i)-cube intersecting Σ + 3� ⋅ L
(i)
u is good.

10Indeed, ⟨x1 − x2, v2⟩⟨v1, x1⟩ + ⟨x2 − x1, v1⟩⟨v2, x1⟩ = ⟨x1 − x2, v2⟩⟨v1, x2⟩ + ⟨x2 − x1, v1⟩⟨v2, x2⟩.

 1
0

9
8

2
4

1
8

, 2
0

2
4

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/rsa.2

1
1

7
4

 b
y

 U
n

iv
ersity

 O
f M

em
p

h
is L

ib
rary

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [2
9

/0
1

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



50 BALISTER ET AL.

In order to prove Lemma 5.1, we must construct a k-separated k-tuple (Z1, … ,Zk), where each Zi

is a subset of {u}⊥. We shall construct the sets Zi inductively, using the following lemma, which is

really the heart of the matter.

Lemma 5.2. Let k ∈ N and u ∈ S�−1, let 1 ≤ i ≤ k, and let

Σ = Σ(u, 
; ∅, … , ∅,Zi+1, … ,Zk) (20)

be a (k, u)-pinch. Suppose that all (i+1)-cubes intersecting Σ+L
(i+1)
u are good. Then there

exists an i-separated set Zi ⊂ {u}⊥ such that if

Σ′ = Σ(u, 
; ∅, … , ∅,Zi,Zi+1, … ,Zk), (21)

then all (i)-cubes intersecting Σ′ + 4� ⋅ L
(i)
u are good.

The idea of the proof is as follows. In order to construct Zi, we take a point from each maximal

collection of pairwise-adjacent bad (i)-cubes whose union intersectsΣ+4� ⋅L
(i)
u , and project those points

(orthogonally) onto {u}⊥. This pulls the surface Σ′ away (locally) from the bad (i)-cubes, causing it

to divert around them. We use the assumption that all (i + 1)-cubes intersecting Σ + L
(i+1)
u are good to

show that this set is i-separated, and then again to show that every (i)-cube that intersects Σ′ + 4� ⋅ L
(i)
u

is good.

Proof of Lemma 5.2. Let us choose, for each maximal collection of pairwise-adjacent bad

(i)-cubes whose union P intersects Σ + 4� ⋅ L
(i)
u , an arbitrary point

yP ∈ P ∩
(
Σ + 4� ⋅ L

(i)
u

)
. (22)

Let Y be the set of all such points yP, and let Zi be the orthogonal projection of Y

onto {u}⊥ (see Figure 2). We shall prove, in the next two claims, that Zi has the required

properties. ▪

Claim 5.3. Zi is i-separated.

Proof of Claim 5.3. Let x, y ∈ Y with x ≠ y, and let a ∈ R and z ∈ {u}⊥ be such that

x − y = au + z, so

a = ⟨x − y, u⟩ and ||z|| ≥ �(x, y) − |a|. (23)

We shall show that �(x, y) ≥ gi and |a| ≤ (||z|| + gi)∕4, and hence ||z|| > gi∕2.

To bound �(x, y), we use our assumption that all (i+1)-cubes intersecting Σ+L
(i+1)
u are

good. Note first that x ∈ Σ + L
(i+1)
u , since 4� ⋅ L

(i)
u ⊂ L

(i+1)
u , by (6) and (19). Therefore, the

(i+ 1)-cube Q containing x is good. Moreover, the (i)-cubes Q1 and Q2 containing x and y

(respectively) are both bad, since x and y are each contained in unions of pairwise-adjacent

bad (i)-cubes. Since Q1 ⊂ Q, it follows from Definition 3.1 that either �(Q,Q2) > gi, or

Q1 and Q2 are adjacent.

If �(Q,Q2) > gi then we are done, since x ∈ Q and y ∈ Q2, so �(x, y) ≥ �(Q,Q2).

On the other hand, if Q1 and Q2 are adjacent then, since x and y are contained in distinct

maximal collections of pairwise-adjacent bad (i)-cubes, P1 and P2, it follows that there
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FIGURE 2 The (k, u)-pinch Σ, given by (21), is the solid black curve through the centre of the upper figure. The set

Σ + L
(i+1)
u , bounded by the dotted lines, avoids all bad (i + 1)-cubes. Also shown are two bad (i)-cubes, which lie inside

Σ + 4� ⋅ L
(i)
u , the set bounded by the dashed lines. Lemma 5.2 constructs Σ′, of the form (21), and shown as the solid black line

through the lower figure, such that Σ′ + 4� ⋅ L
(i)
u avoids all bad (i)-cubes.

exist bad (i)-cubes Q′
1 ∈ P1 and Q′

2 ∈ P2 such that Q′
1 and Q′

2 are non-adjacent. Since, for

each j ∈ {1, 2}, the (i)-cubes Qj and Q′
j are adjacent (by definition of Pj), we have

�(Q,Q′
j) ≤ �(Q,Q1) +

√
� ⋅ Δi + �(Q1,Q

′
j) ≤ 2

√
� ⋅ Δi < gi.

Indeed, the first inequality follows from the fact that Q1 has diameter
√
� ⋅Δi, the second

inequality holds because Q1 ⊂ Q and �(Q1,Q
′
j) ≤

√
� ⋅ Δi, since Q1 is adjacent to Q′

1,

and both Q1 and Q′
2 are adjacent to Q2, and the third inequality follows from (6). By

Definition 3.1, and since Q′
1 and Q′

2 are non-adjacent bad (i)-cubes, this contradicts our

assumption that Q is good, and so proves that �(x, y) ≥ gi, as claimed.

In order to bound |a|, let x′ and y′ be (respectively) the orthogonal projections of x and

y onto {u}⊥, and recall that x, y ∈ Σ + 4� ⋅ L
(i)
u . It follows, by (19), that

|⟨x − y, u⟩| ≤ |hi+1(x
′) − hi+1(y

′)| + 8� ⋅ Δi.

Using Lemma 4.2 to bound |hi+1(x
′) − hi+1(y

′)|, it follows that

|a| = |⟨x − y, u⟩| ≤ 210�Δ
1−�
i+1 ⋅ ||x′ − y′|| + 8� ⋅ Δi ≤

||z|| + gi

4
, (24)

where the final inequality holds since ||x′ − y′|| = ||z|| and by (6), recalling that � > 1.

We have shown that �(x, y) ≥ gi and |a| ≤ (||z|| + gi)∕4, and it follows that

||z|| ≥ �(x, y) − |a| ≥ 3gi

4
−

||z||
4

,
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52 BALISTER ET AL.

and hence ||z|| > gi∕2. Since x and y were arbitrary elements of Y , it follows that Zi is

i-separated, as claimed. ▪

Recall that the (k, u)-pinch Σ′ was defined in (21). To complete the proof of the lemma, it only

remains to prove the following claim.

Claim 5.4. Every (i)-cube intersecting Σ′ + 4� ⋅ L
(i)
u is good.

Proof of Claim 5.4. Suppose, for a contradiction, that Q1 is a bad (i)-cube that intersects

Σ′ + 4� ⋅ L
(i)
u , and let P be the union of the maximal collection of pairwise-adjacent bad

(i)-cubes containing Q1. Suppose first that P also intersects Σ + 4� ⋅ L
(i)
u , in which case

there exists z ∈ Zi such that z is the orthogonal projection of yP onto {u}⊥.

Let x, y ∈ P, with x ∈ Σ′ + 4� ⋅ L
(i)
u and y ∈ Σ + 4� ⋅ L

(i)
u , and observe that

|⟨x − y, u⟩| ≤ 2
√
� ⋅ Δi, (25)

by the definition of P. On the other hand, we have

⟨x − y, u⟩ ≥ hi(x
′) − hi+1(y

′) − 8� ⋅ Δi, (26)

where x′ and y′ are (as in the proof of Claim 5.3) the orthogonal projections of x and y

onto {u}⊥, since x ∈ Σ′ + 4� ⋅ L
(i)
u and y ∈ Σ + 4� ⋅ L

(i)
u , and by Definition 4.1 and (19).

Now, since x′ and z are both orthogonal projections of points of P onto {u}⊥, we have

�(x′, z) ≤ 2
√
� ⋅Δi < gi∕4. Since Zi is i-separated, by Claim 5.3, it follows that for every

z ≠ z′ ∈ Zi we have �(x′, z′) > gi∕4, and hence c
(
25

⋅ �(x′, z′)∕gi

)
= 0 (cf. the proof of

Lemma 4.2). Thus, by (14),

hi(x
′) − hi+1(x

′) = 24�Δi ⋅ c

(
25

⋅ �(x′, z)

gi

)
≥ 9� ⋅ Δi, (27)

where the final inequality follows from �(x′, z) ≤ 2
√
� ⋅ Δi and (6). Moreover, by

Lemma 4.2, we have

|hi+1(x
′) − hi+1(y

′)| ≤ 210�Δ
1−�
i+1 ⋅ ||x′ − y′|| ≤ Δi, (28)

where the last inequality holds since x′ and y′ are both orthogonal projections of points of

P onto {u}⊥, so ||x′ − y′|| ≤ 2
√
� ⋅ Δi, and recalling that � > 1.

Thus, combining (26), (27), and (28), it follows that ⟨x − y, u⟩ ≥ (� − 1)Δi, which

contradicts (25) since � was chosen to be sufficiently large. This contradiction proves that

P cannot intersect Σ + 4� ⋅ L
(i)
u .

So suppose now that P ∩
(
Σ + 4� ⋅ L

(i)
u

)
= ∅, which means that there is no element

of Zi corresponding to P. In this case we again use our assumption that all (i + 1)-cubes

intersecting Σ + L
(i+1)
u are good, this time to obtain a contradiction.

To begin, recall that Q1 is a bad (i)-cube (contained in P) that intersects Σ′ + 4� ⋅ L
(i)
u ,

and let Q be the (i + 1)-cube containing Q1. Observe that

Σ′ + 4� ⋅ L
(i)
u ⊂ Σ + L

(i+1)
u ,
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since ||hi − hi+1||∞ ≤ 24� ⋅ Δi, by Lemma 4.2, and (24 + 4)� ⋅ Δi ≤ Δi+1, by (6). Since

Q1 ⊂ Q, it follows that Q intersects Σ + L
(i+1)
u . Therefore, by Definition 3.1, it suffices to

show that there exists a bad (i)-cube Q2, not adjacent to Q1, with �(Q,Q2) ≤ gi.

To do so, let x ∈ Q1 ∩
(
Σ′ + 4� ⋅ L

(i)
u

)
, and observe that hi(x

′) ≠ hi+1(x
′), where x′ is

the projection of x onto {u}⊥, since x ∈ Q1 ⊂ P, and we assumed that P does not intersect

Σ + 4� ⋅ L
(i)
u . It follows, by (14), that there exists z ∈ Zi with �(x′, z) < 2−6	 ⋅ gi. Let

y ∈ Y be such that z is the orthogonal projection of y onto {u}⊥, and let Q2 be the (i)-cube

containing y. Recall from (22) that Q2 is bad, and that y ∈ Σ + 4� ⋅ L
(i)
u .

We now claim that

�(Q,Q2) ≤ �(x, y) ≤ �(x′, z) + |⟨x − y, u⟩| ≤ gi. (29)

The first step holds since x ∈ Q1 ⊂ Q and y ∈ Q2, and the second since x′ and z are the

orthogonal projections of x and y onto {u}⊥. Since �(x′, z) < 2−6	 ⋅ gi, it is enough to

show that |⟨x − y, u⟩| ≤ gi∕2. This follows since x ∈ Σ′ + 4� ⋅ L
(i)
u and y ∈ Σ+ 4� ⋅ L

(i)
u , so

|⟨x − y, u⟩| ≤ |hi(x
′) − hi+1(z)| + 8� ⋅ Δi,

and by Lemma 4.2 we have

|hi(x
′) − hi+1(z)| ≤ |hi(x

′) − hi+1(x
′)| + |hi+1(x

′) − hi+1(z)|
≤ 24�Δi + 210�Δ

1−�
i+1 ⋅ ||x′ − z|| ≤ gi∕4,

where in the final step we used the bounds ||x′ − z|| = �(x′, z) < 2−6	 ⋅ gi and � > 1. It

follows that |⟨x − y, u⟩| ≤ gi∕4 + 8� ⋅ Δi ≤ gi∕2, and so (29) holds as claimed.

We have shown that Q1 and Q2 are bad (i)-cubes, with Q1 ⊂ Q and �(Q,Q2) ≤ gi.

Moreover, Q1 ≠ Q2, since Q2 intersectsΣ+4� ⋅L
(i)
u , and so is not contained in P. Therefore,

if Q1 and Q2 are non-adjacent (i)-cubes, then Q is a bad (i+1)-cube that intersectsΣ+L
(i+1)
u ,

and we have the claimed contradiction.

Finally, suppose that Q1 and Q2 are adjacent bad (i)-cubes. Then, since P is maximal

and Q2 ⊄ P, there exists a bad (i)-cube Q′
1 ⊂ P that is not adjacent to Q2. Since �(Q′

1,Q) ≤

�(Q′
1,Q1) = 0, we again deduce that Q is bad, as required.

By Claims 5.3 and 5.4, the set Zi ⊂ {u}⊥ is i-separated, and every (i)-cube intersecting

Σ′ + 4� ⋅ L
(i)
u is good, so the lemma follows. ▪

We may now complete the proof of Lemma 5.1 via a straightforward induction.

Proof of Lemma 5.1. If k = 0 then we may take Σ = Π and there is nothing to prove, so

suppose that k ≥ 1. We claim first that there exists a (k, u)-pinch

Σ = Σ(u, 
;Z1, … ,Zk),

with base Π, such that for every 1 ≤ i ≤ k, every (i)-cube intersecting Σi +4� ⋅L
(i)
u is good,

where

Σi ∶= Σ(u, 
; ∅, … , ∅,Zi, … ,Zk).
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54 BALISTER ET AL.

We choose the sets Z1, … ,Zk in reverse order, inductively, using Lemma 5.2. For the

base case of the induction, when i = k, we use our assumption that every (k + 1)-cube

intersecting Π+L
(k+1)
u is good. By Lemma 5.2, it follows that there exists a k-separated set

Zk ⊂ {u}⊥ such that every (k)-cube intersecting Σk + 4� ⋅ L
(k)
u is good. For the induction

step, assume that every (i + 1)-cube intersecting Σi+1 + 4� ⋅ L
(i+1)
u is good, and note that

4� > 1. By Lemma 5.2, there exists an i-separated set Zi ⊂ {u}⊥ such that every (i)-cube

intersecting Σi + 4� ⋅ L
(i)
u is good, as required.

It remains to prove that, for each 1 ≤ i ≤ k, every (i)-cube intersecting Σ + 3� ⋅ L
(i)
u is

good. Since every (i)-cube intersecting Σi + 4� ⋅ L
(i)
u is good, it is enough to show that

Σ + 3� ⋅ L
(i)
u ⊂ Σi + 4� ⋅ L

(i)
u .

To see that this holds, simply observe that

||h1 − hi||∞ ≤ 24�

i−1∑

j=1

Δj ≤ 25� ⋅ Δi−1 < � ⋅ Δi,

by Lemma 4.2 and the triangle inequality, as required. ▪

6 CONSTRUCTION OF COVERS

To complete the proof of Proposition 3.3, we shall show that one can cover each cluster of bad (k)-cubes

by intersections of (k, u)-ranges with u ∈ ∗, and observe that these intersections are  -closed and

well-separated from one another.

Let us fix the (arbitrary) set A ⊂ Z� that appears in the statement of Proposition 3.3, and set

k ∶= k(A). Recall from Definition 3.2 that for each Q ∈ k we fix an element xQ ∈ Q. We shall

write �T for the boundary of a set T ⊂ R� .

Definition 6.1. Let k ≥ 1 and let Q ∈ k. A (k)-cover of Q is a set

Tk(Q) ∶=
⋂

u∈∗

Ξu,

where {Ξu ∶ u ∈ ∗} is a set of (k − 1, u)-ranges with bases

Πu ∶=
{

x ∈ R
� ∶ ⟨x − xQ, u⟩ = 3� ⋅ Δk

}
, (30)

such that

�
(
Q′, �Tk(Q)

)
≥ 2� ⋅ Δi

for every 1 ≤ i ≤ k and every bad (i)-cube Q′, unless i = k and Q′ ⊂ Q.

The first step is to use Lemma 5.1 to show that (k)-covers exist.

Lemma 6.2. For every k ≥ 1 and Q ∈ k, there exists a (k)-cover Tk(Q) of Q with

Q ⊂ Tk(Q) ⊂ B�Δk
(xQ). (31)
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Proof. Fix k ≥ 1 and Q ∈ k. For each u ∈ ∗, we shall apply Lemma 5.1 to the

hyperplane Πu defined in (30), with the set of infected sites being A′ ∶= A ∩ B2�Δk
(xQ).

We shall then take Tk(Q) to be the intersection of the associated ranges.

To begin, we claim that every (k)-cube intersecting the set

u ∶=
(
Πu + L

(k)
u

)
∩ B3�Δk

(xQ)

is good (with respect to the set A). Indeed, suppose that Q1 is a bad (k)-cube that intersects

u. Then Q1 ⊄ Q, since Q does not intersect Πu +L
(k)
u , by (19) and (30), and recalling that

xQ ∈ Q and that Q has diameter at most 2
√
� ⋅Δk < (3�−1) ⋅Δk. Now, by the maximality

of Q (see Definition 3.2), it follows that there exists a bad (k)-cube Q2 ⊂ Q that is not

adjacent to Q1. Moreover, since Q ∈ k, there exists a good (k+1)-cube Q′ that intersects

Q. Observe that

max
{
�(Q′,Q1), �(Q

′,Q2)
}
≤ �(xQ,Q1) + 2

√
� ⋅ Δk ≤

(
3� + 2

√
�

)
Δk ≤ gk,

since Q2 ⊂ Q and u ⊂ B3�Δk
(xQ), and by (6). Since Q1 and Q2 are non-adjacent bad

(k)-cubes, it follows, by Definition 3.1, that Q′ is bad, which is a contradiction. This

contradiction proves that every (k)-cube intersecting u is good, as claimed.

Next we claim that every (k)-cube Q′ intersecting Πu +L
(k)
u is good with respect to the

set A′. If Q′ intersects u, then this follows from the claim above, since A′ ⊂ A, so every

cube that is good with respect to A is also good with respect to A′. On the other hand, if Q′

does not intersect u then let x ∈ Q′ ∩
(
Πu + L

(k)
u

)
, and note that ||x− xQ|| > 3�Δk. Since

Q′ has diameter 2
√
� ⋅Δk < � ⋅Δk, it follows that Q′ does not intersect the ball B2�Δk

(xQ),

and hence contains no point of A′. Therefore, in this case Q′ is automatically good with

respect to A′, as claimed.

Applying Lemma 5.1 to Πu and A′, we obtain a (k−1, u)-pinch Σu, with base Πu, such

that for each 1 ≤ i ≤ k − 1, every (i)-cube intersecting Σu + 3� ⋅ L
(i)
u is good with respect

to A′. We do this for each u ∈ ∗, and define

Tk(Q) ∶=
⋂

u∈∗

Ξu,

where Ξu is the (k− 1, u)-range with boundary Σu. We shall prove, in the next two claims,

that Tk(Q) has the required properties. ▪

Claim 6.3. Q ⊂ Tk(Q) ⊂ B�Δk
(xQ).

Proof of Claim 6.3. It will be useful to consider the set T̃ ∶=
⋂

u∈∗ Ξ̃u, where

Ξ̃u ∶=
{

x ∈ R
� ∶ ⟨x, u⟩ ≤ � ⋅ Δk

}
(32)

for each u ∈ ∗. We shall show that

Q ⊂ xQ + 3 ⋅ T̃ ⊂ Tk(Q) ⊂ xQ + 4 ⋅ T̃ ⊂ B�Δk
(xQ), (33)
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which will imply the claim. Note first that xQ + 4 ⋅ T̃ ⊂ B�Δk
(xQ) follows immediately

from (13). To prove the first three containments in (33), it is enough to show that

Q ⊂ xQ + 3 ⋅ Ξ̃u ⊂ Ξu ⊂ xQ + 4 ⋅ Ξ̃u (34)

for each u ∈ ∗. The first containment in (34) holds because xQ ∈ Q and the diameter

of Q is at most 2
√
� ⋅ Δk, and the second because Πu is the boundary of xQ + 3 ⋅ Ξ̃u,

by (30) and (32), and since Σu has base Πu, and the height functions defined in (12) are

non-negative. Finally, to show that Ξu ⊂ xQ + 4 ⋅ Ξ̃u, observe that if x ∈ Ξu, then

⟨x − xQ, u⟩ ≤ 3� ⋅ Δk + 25� ⋅ Δk−1 < 4� ⋅ Δk,

by (30) and Lemma 4.2. This proves (34), and hence also the claim. ▪

It only remains to show that there are no bad cubes close to the boundary of Tk(Q), except possibly

those in Q.

Claim 6.4. If 1 ≤ i ≤ k and Q1 is a bad (i)-cube with

� (Q1, �Tk(Q)) < 2� ⋅ Δi,

then Q1 ⊂ Q and i = k.

Proof of Claim 6.4. We shall deal separately with the cases i < k and i = k. Beginning

with the latter case, suppose that Q1 is a bad (k)-cube with Q1 ⊄ Q and �(Q1,Tk(Q)) <

2� ⋅ Δk. Since Tk(Q) ⊂ B�Δk
(xQ), by Claim 6.3, it follows that �(Q1, xQ) < 3� ⋅ Δk, and

hence

�(Q1,Q
′) ≤ �(Q1, xQ) + �(xQ,Q

′) < 3� ⋅ Δk + 2
√
� ⋅ Δk ≤ gk

for any (k + 1)-cube Q′ that intersects Q. Now, since Q1 ⊄ Q and by the maximality of

Q, there exists a bad (k)-cube Q2 ⊂ Q that is not adjacent to Q1. Noting that �(Q2,Q
′) ≤

2
√
� ⋅ Δk ≤ gk, it follows that Q′ is bad. Thus, since Q′ was an arbitrary (k + 1)-cube

intersecting Q, this contradicts our assumption that Q ∈ k.

So suppose that 1 ≤ i ≤ k − 1, let Q1 be an (i)-cube with �(Q1, �Tk(Q)) < 2� ⋅Δi, and

note that therefore �(Q1,Σu) < 2� ⋅ Δi for some u ∈ ∗. We shall use the fact that every

(i)-cube intersecting Σu + 3� ⋅ L
(i)
u is good with respect to A′ = A∩B2�Δk

(xQ), which holds

by our choice of Σu. The first step is to show that Q1 intersects Σu +3� ⋅L
(i)
u . To do this, let

x ∈ Q1 and y ∈ Σu with �(x, y) < 2� ⋅ Δi, and let x = x′ + 
u, where x′ ∈ Σu and 
 ∈ R.

Observe that

|
| = |⟨x − x′, u⟩| ≤ �(x, y) + |⟨x′ − y, u⟩|,

and that, since x′, y ∈ Σu,

|⟨x′ − y, u⟩| ≤ 210�Δ
1−�
1 ⋅ �(x, y) ≤ �(x, y)∕2,

by Lemma 4.2. Hence |
| ≤ (3∕2) ⋅ �(x, y), and therefore, since �(x, y) < 2� ⋅ Δi and

x′ ∈ Σu, it follows that x ∈ Σu + 3� ⋅ L
(i)
u . Thus, by our choice of Σu, the (i)-cube Q1 is

good with respect to A′.
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To complete the proof, we shall show that Q1 is also good with respect to A. To see

that this holds, observe first that, as in the proof of Lemma 3.4, the state of Q1 depends

only on the intersection of A with the set of x ∈ Z� such that

�(x,Q1) ≤

i−1∑

j=1

(
gj +

√
� ⋅ Δj

)
≤ 3 ⋅ Δ

�

i−1 < Δi∕3.

Since �(Q1, �Tk(Q)) < 2� ⋅Δi and Tk(Q) ⊂ B�Δk
(xQ), by Claim 6.3, it follows that the state

of Q1 depends only on the set of x ∈ Z� such that

�(x, xQ) ≤ � ⋅ Δk + 2� ⋅ Δi + 2
√
� ⋅ Δi + Δi∕3 ≤ 2� ⋅ Δk.

Since A′ = A ∩ B2�Δk
(xQ), this proves the claim. ▪

Combining Claims 6.3 and 6.4, it follows that Tk(Q) is a (k)-cover of Q, and that the inclusions (31)

hold, as required.

Next we note that each individual (k)-cover is closed.

Lemma 6.5. If Tk(Q) is a (k)-cover of Q ∈ k, then Tk(Q)Z is  -closed.

Proof. Recall that, by Lemma 4.3, the set ΞZ is  -closed for every u ∈ ∗ and every

(k, u)-range Ξ. Since Tk(Q) is an intersection of (k, u)-ranges with u ∈ ∗, it follows that

Tk(Q)Z is an intersection of  -closed sets, and therefore is itself  -closed, as required.▪

We need one more simple lemma to complete the proof of Proposition 3.3. Let us say that sets

 , ⊂ R� are strongly disjoint if �( ,) > 2R, where R ∶= maxx∈X∈ ||x||.

Lemma 6.6. Let 1 ≤ i ≤ k, and let Q ∈ i and Q′ ∈ k, with Q ≠ Q′. If Ti(Q) is an

(i)-cover of Q and Tk(Q
′) is a (k)-cover of Q′, with

Ti(Q) ⊂ B�Δi
(xQ) and Tk(Q

′) ⊂ B�Δk
(xQ′), (35)

then either Ti(Q) ⊂ Tk(Q
′), or the sets Ti(Q) and Tk(Q

′) are strongly disjoint.

Proof. We consider the cases i = k and i < k separately. If i = k, then let Q1 ⊂ Q and

Q2 ⊂ Q′ be non-adjacent bad (k)-cubes, which exist by Definition 3.2, since Q ≠ Q′. Now,

let Q∗ be a good (k + 1)-cube intersecting Q. If �(Q,Q′) ≤ gk∕2, then

max {�(Q∗,Q1), �(Q
∗,Q2)} ≤ �(Q,Q′) + 4

√
� ⋅ Δk ≤ gk,

since Q and Q′ each have diameter at most 2
√
� ⋅ Δk. By Definition 3.1 this contra-

dicts our assumption that Q∗ is good, and therefore �(Q,Q′) ≥ gk∕2. It follows, by (6)

and (35), that

�
(
Tk(Q),Tk(Q

′)
)
≥ �(xQ, x

′
Q) − 2�Δk ≥ gk∕2 − 2�Δk > 2R,

and hence the sets Tk(Q) and Tk(Q
′) are strongly disjoint.
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On the other hand, if i < k, then let Q1 ⊂ Q be the bad (i)-cube containing xQ. Recall

from Definition 6.1 that, since Tk(Q
′) is a (k)-cover of Q′, we have

�
(
xQ, �Tk(Q

′)
)
≥ �

(
Q1, �Tk(Q

′)
)
≥ 2� ⋅ Δi.

Now, since Ti(Q) ⊂ B�Δi
(xQ), by (35), it follows that

�
(
Ti(Q), �Tk(Q

′)
)
≥ �

(
xQ, �Tk(Q

′)
)
− � ⋅ Δi ≥ � ⋅ Δi > 2R,

and hence either Ti(Q) ⊂ Tk(Q
′), or the sets Tk(Q) and Tk(Q

′) are strongly disjoint, as

required. ▪

We are finally ready to prove Proposition 3.3.

Proof of Proposition 3.3. For each k ≥ 1 and each Q ∈ k(A), let Tk(Q) be the (k)-cover

of Q given by Lemma 6.2, so Q ⊂ Tk(Q) ⊂ B�Δk
(xQ). By Lemma 6.5, the set Tk(Q)Z is

 -closed for each Q ∈ k, and by Lemma 6.6, for each Q ∈ i and Q′ ∈ k the sets

Ti(Q)Z and Tk(Q
′)Z are either nested or strongly disjoint. Defining  as in (9), it follows

that Z is  -closed, as required. ▪

7 THE UPDATE FAMILIES WITH pc(Z
d
, ) = 1

In this final section, we shall complete the proof of Theorem 1.5 by using results from [1] to obtain

the following characterisation of update families with pc(Z
� , ) = 1.

Theorem 7.1. Let  be a �-dimensional update family. Then

pc(Z
� , ) = 1 ⇔ ( ) = S�−1.

We remark that the case � = 2 of Theorem 7.1 was observed in [3]. The proof for general � is

similar, but we will require a technical (and highly non-trivial) lemma from [1].

In order to avoid repetition, let us fix a �-dimensional update family  for the rest of the section.

We begin with the easier of the two implications in the theorem, which is dealt with in the following

lemma.

Lemma 7.2. If ( ) ≠ S�−1, then pc(Z
� , ) < 1.

Proof. Let Λ be the graph on Z� with edges between all pairs of sites at �∞ distance

at most 1. It is easy to see by a standard argument that qc(�), the critical probability for

percolation in Λ, is strictly positive. Indeed, if Xn denotes the number of paths of open sites

of length n starting at the origin, where each site is open independently with probability

q, then E[Xn] ≤ 3�nqn. Hence, if q is sufficiently small, then with probability 1 there is

no infinite component of open sites. Now recall that R = maxx∈X∈ ||x||, and choose p

such that

1 − qc(�) < p(2R)� < 1.

We claim that Pp

(
[A] = Z�

)
= 1, and hence that pc(Z

� , ) ≤ p < 1.

 1
0

9
8

2
4

1
8

, 2
0

2
4

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/rsa.2

1
1

7
4

 b
y

 U
n

iv
ersity

 O
f M

em
p

h
is L

ib
rary

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [2
9

/0
1

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



BALISTER ET AL. 59

To prove this, we tile Z� with boxes of the form
(
x + [0, 2R)�

)
∩ Z� , and say

that each box is ‘complete’ if it is entirely contained in A, and ‘incomplete’ otherwise.

By coupling with site percolation on Λ, we see that, with probability 1, every con-

nected component of incomplete hypercubes is finite. Moreover, each site in such a

connected component C lies at distance at least 2R from any uninfected site in a different

component.

Now, let u ∈ S�−1 ⧵ ( ), and let X ∈  be such that X ⊂ Hu. Choose y ∈ C with

⟨y, u⟩ minimal, and observe that y+X ⊂ A, since ⟨x, u⟩ < 0 and ||x|| ≤ R for every x ∈ X.

Continuing in this way, we may infect (one by one) each of the sites in C, in increasing

order of their inner product with u. ▪

The key step in the proof of the reverse implication is the following deterministic lemma, which

says that the  -closure of the complement of a sufficiently large ball is not the whole of Z� . Recall

from (5) that B
(x) is the Euclidean ball of radius 
 centred at x.

Lemma 7.3. If ( ) = S�−1, then

[
Z
� ⧵ B
(0)

]


≠ Z
�

for all sufficiently large 
 > 0.

In order to prove this lemma, we shall use a construction from [1] of a certain set  ⊂ S�−1, which

is called the set of ‘quasistable directions’. More precisely, we shall define a polytope

P ∶=
⋂

u∈

{
x ∈ R

� ∶ ⟨x, u⟩ ≤ 1
}
,

and show that 
 ⋅P cannot be invaded from outside in the  -bootstrap process if 
 is sufficiently large.

We state here only the properties of  that we need in order to prove Lemma 7.3, and refer the reader

to Sections 3.3 and 6 of [1] for further details.

In order to state the two properties of  that we require, we need to define the following graph,

which encodes which pairs of faces of P are adjacent.

Definition 7.4. Given a finite set  ⊂ S�−1 and u ∈ , the Voronoi cell of u with respect

to  is

Cell(u) ∶=
{

w ∈ S�−1 ∶ ⟨u,w⟩ ≥ ⟨v,w⟩ for all v ∈ 
}
.

The Voronoi graph Vor() has vertex set  and edge set

E (Vor()) ∶=
{

uv ∶ Cell(u) ∩ Cell(v) ≠ ∅
}
.

Having defined the Voronoi graph, we can now state the following lemma from [1], which says that

a suitable set of quasistable directions exists. The lemma is proved in [Section 6][1]; more precisely,

it follows from [Lemmas 6.2 and 6.4][1].

Lemma 7.5. There exists a finite set  ⊂ S�−1, intersecting every open hemisphere of

S�−1, such that if uv ∈ E (Vor()), then there does not exist x ∈ X ∈  such that

⟨u, x⟩ < 0 and ⟨v, x⟩ > 0. (36)
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Let us now fix a quasistable set  satisfying the conclusion of Lemma 7.5. We will need the

following lemma, which is a particular case of [Lemma 9.8][1].11 The proof, which is relatively

straightforward, is given in [appendix B][1].

Lemma 7.6. There exists � = �() > 0 such that the following holds. Let W ⊂ , and

suppose that there exists x ∈ P with

⟨x, u⟩ ≥ 1 − �

for every u ∈ W. Then W is a clique in Vor().

We are now ready to prove Lemma 7.3.

Proof of Lemma 7.3. In order to prove the lemma, it is enough to show that if 
 > 0 is

sufficiently large and D ∶= (
 ⋅ P) ∩ Z� , then Z� ⧵ D is  -closed.

Suppose therefore that Z� ⧵ D is not  -closed, and let x ∈ D and X ∈  be such

that (x + X) ∩ D = ∅. This implies that, for each y ∈ X, there exists u ∈  such that

⟨x + y, u⟩ > 
. Let W be the set of all such u; that is,

W ∶=
⋃

y∈X

{u ∈  ∶ ⟨x + y, u⟩ > 
} .

Now, if u ∈ W, then ⟨x, u⟩ ≥ 
 − R ≥ (1 − �)
, since ||y|| ≤ R for every y ∈ X and 
 was

chosen sufficiently large. By Lemma 7.6, it follows that W is a clique in Vor().

To complete the proof, we claim that

⟨y, u∗⟩ > 0 (37)

for all y ∈ X, where u∗ ∶=
∑

u∈W u. This will then imply that X ⊂ H
�
−v∗ , where v∗ ∶=

u∗∕||u∗||, and hence that −v∗ ∉ ( ), contradicting our assumption that ( ) = S�−1.

To prove (37), fix y ∈ X, and recall that there exists v ∈ W such that ⟨x + y, v⟩ > 
, and

therefore ⟨y, v⟩ > 0, since x ∈ D ⊂ 
 ⋅ P. Since W is a clique in Vor(), it follows by

Lemma 7.5 that ⟨y, u⟩ ≥ 0 for all u ∈ W. Since we also have ⟨y, v⟩ > 0, we obtain (37), as

required. ▪

We can now prove the following lemma which, together with Lemma 7.2, completes the proof of

Theorem 7.1.

Lemma 7.7. If ( ) = S�−1, then pc(Z
� , ) = 1.

Proof. The lemma is an almost immediate consequence of Lemma 7.3. Indeed, if p < 1

and A is a p-random subset of Z� , then with probability 1 the set Z� ⧵A contains a translate

of B
(0) ∩ Z� for every 
 > 0. By Lemma 7.3, it follows that A almost surely fails to

percolate, as required. ▪

11To be precise, we apply [Lemma 9.8][1] with W = ∅ and T = W, noting that N(∅) =  and that u ∈ P({u}) for all u ∈ ;

see (113) and (114) in [1].
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