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1 | INTRODUCTION

The study of bootstrap percolation, which may be thought of as a monotone version of the Glauber
dynamics of the Ising model, was initiated in 1979 by Chalupa, Leath and Reich [6]. One of the most
important early results was obtained by Schonmann [15], who proved! that the critical probability
pe(Z4, r) of the r-neighbour model on Z¢ (see below) satisfies

d 0 if r<d, and
pZE,r) =
1 otherwise.

'In the case d = 2, this result was obtained several years earlier, by van Enter [8].
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In this paper, we study the corresponding problem in a vastly more general setting, whose study was
initiated in 2015 by Bollobas, Smith and Uzzell [5].

Definition 1.1. Let U = {X|, ... ,X,,} be an arbitrary finite collection of finite,
non-empty subsets of Z9¢ \ {0}. Now, given a set A C Z¢ of initially infected sites, set
Ap = A, and define for each 7 € N the set A, of sites infected at time ¢ by

A,:A,_lu{erd :x+X CA,_; for some XEU'}.

The U'-closure of A is the set [A]; := >0 Ar of all eventually-infected sites, and we say
that A percolates if all sites are eventually infected; that is, if [A]y = Z°.

We call U’ the update family of the process, each X € U’ an update rule, and the process itself
U-bootstrap percolation. Thus, according to the definition, a site x becomes infected in a given step
if the translate by x of one of the sets of the update family is already entirely infected, and infected
sites remain infected forever. For example, the classical r-neighbor model on 74, mentioned above, is
defined as the process in which a site becomes infected if at least r of its neighbors is infected, and its
update family N;¢ consists of all <2rd ) subsets of size r of the 2d nearest neighbors of the origin.

We are interested in the behavior of the U'-bootstrap process when the initial set of infected sites
A is chosen randomly. Let us say that a set A C Z is p-random if each of the sites of Z is included
in A independently with probability p, write [P, for the corresponding probability measure, and define
the critical probability to be?

p(Z V) :=inf{p : P, ([Aly =Z%) > 1/2}. (D)

One of the key insights from [5] was that, at least in two dimensions, the rough global behavior of
the U’-bootstrap process depends only on the action of the process on discrete half-spaces. In order to
make this statement precise, let S“"! be the unit sphere in R?, and for each u € S9! et us write

Hy :={xeZ? : (xu) <0}

for the discrete half-space in Z¢ with normal u € 89~'. Now, given a d-dimensional update family V",
define

S=SW):={ues" : [Hil, =H]}

to be the set of stable directions, and note that « is unstable if and only if X C H¢ for some X € U It
is moreover easy to show that if u is unstable then [H%];, = Z.

The following definition was introduced by Bollobas, Smith and Uzzell [5] (when d = 2) and by
Balister, Bollobas, Przykucki and Smith [3] (for d > 2). Given a set T C S et int(7") denote the
interior of 7 in the usual topology on the sphere 97!

Definition 1.2. A d-dimensional update family is subcritical if
inttHNS) # 0

for every hemisphere H ¢ 897"

2One can show using the 0—1 law for translation-invariant events that the probability A percolates is either O or 1, so the constant
1/2 in the definition is not important.
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40 Wl LEY BALISTER ET AL.

For example, the stable set of the r-neighbor model on Z? has empty interior if r < d, and is
equal to S*~! otherwise, and the r-neighbor model is therefore subcritical if and only if » > d. The
following theorem was conjectured by Bollobés, Smith and Uzzell [5], and was proved by Bollobas,
Smith and Uzzell [5] (for non-subcritical families) and by Balister, Bollobas, Przykucki and Smith [3]
(for subcritical families).

Theorem 1.3. Let U be a two-dimensional update family. Then

p(Z*, V) >0 o V'is subcritical.

Balister, Bollobas, Przykucki and Smith [3] moreover conjectured that the corresponding statement
also holds for all d > 2. The main aim of this paper is to prove the following theorem, which confirms
one direction of this conjecture. We remark that an alternative (very different) proof of this theorem
has been given by Hartarsky and Szabé [14], using a method that was developed recently by Swart,
Szab6 and Toninelli [16].

Theorem 1.4. Let U be a subcritical d-dimensional update family. Then

(7%, > 0.

For d-dimensional update families that are not subcritical, the behaviour of the T-bootstrap pro-
cess is quite different, and controlling the growth of the infected set requires an essentially disjoint set
of tools and techniques. For these models, the following much more precise ‘universality’ conjecture
was proposed by Bollobas, Duminil-Copin, Morris and Smith [4], and proved in [1,2] (the special case
d = 2 was proved earlier by Bollobas, Smith and Uzzell [5]). Let log,, denote the r-times iterated
logarithm, so log g, n = n and log,, n = loglog,_;, n for each r > 1.

Theorem 1.5. Let U be a d-dimensional update family. If U is not subcritical, then’

! (1)
pZi, V) = <1> )
08— 1t

for somer € {1, ... ,d}. Moreover, pc(Zd, U)=0.

Combining Theorems 1.4 and 1.5, we obtain the first part of the following theorem, which confirms
the conjecture of Balister, Bollobas, Przykucki and Smith [3]. The characterization of update families
with p.(Z¢, ") = 1 is proved in Section 7, using a technical lemma from [1].

Theorem 1.6. Let U" be a d-dimensional update family. Then
p(Z,U)> 0 & U'is subcritical.

Moreover, p.(Z2, 1) = 1 ifand only if S(U") = st

The non-triviality of p.(Z?, V") for subcritical update families T” means that one can ask of such
models questions that would more typically be associated with (classical) percolation, including those

3Here p.(Z2, V") is defined as in (1), replacing Z¢ by Z<. The upper bound in (2) is proved in Theorem 3.1 of [1], the lower
bound is proved in Theorem 3.1 of [2], and the consequence for Z¢ is Theorem 12.23 of [1].
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concerning behavior at criticality, the probabilities of one-arm events below criticality, and noise
sensitivity. A number of such questions were asked of two-dimensional models in [3], and solutions
to several of them were subsequently obtained by Hartarsky [13]. In dimensions d > 3, all such ques-
tions remain open. Since the questions are essentially the same in all dimensions, we do not repeat
them here, but instead refer the reader to [3,13].

The proof of Theorem 1.4, like the proof in [3], uses multi-scale analysis, and our main challenge
will be to define suitable high-dimensional surfaces that ‘cover’ our (random) set of infected sites. In
order to handle the additional complexities of high-dimensional geometry, we found it necessary to
develop a new method that is somewhat simpler than the one used in [3], and which we call ‘pinching
a hyperplane’. We remark that various techniques for constructing random Lipschitz surfaces have
previously been developed in the literature (see, e.g., [7,9-12]); interestingly, our method appears to
be different from these earlier approaches.

2 | AN OUTLINE OF THE PROOF

In this section, we give a high-level overview of the strategy we shall use to prove Theorem 1.4. We
shall in fact prove the theorem in the following quantitative form.

Theorem 2.1. Let U be a subcritical d-dimensional update family. Then*
P, (0 € [Aly) = 0 (p*7).

In particular, p.(Z*,U") > 0.

We shall prove Theorem 2.1 using a multi-scale argument. Hypercubes in R?, at increasing scales,
are deemed either ‘good’ or ‘bad’ (see Definition 3.1). At the smallest scale, a hypercube is ‘good’
if its intersection with the p-random set A is empty. Thereafter, a hypercube at the kth scale is ‘good’
(roughly speaking) if it does not contain two ‘independent’ bad hypercubes at the (k — 1)th scale.
The idea is that we can find a set of initially uninfected sites (or ‘barrier’), looking somewhat like a
polytope whose sides have been perturbed to avoid nearby infected sites, around each ‘bad’ hypercube
at the (k — 1)th scale that is contained in a ‘good’ hypercube at the kth scale. Moreover, and crucially,
the finite set of sites of Z¢ bounded by that barrier (including the ‘bad’ hypercube itself) is 7/-closed’
(see Proposition 3.3).

In this way, we build up a sequence of barriers with the following properties: each barrier bounds
a finite U'-closed set of sites; any pair of barriers (together with the sites bounded by them) are
either disjoint or nested; and the union of all barriers and their interiors contains A, but is (almost
surely) not all of Z¢. We emphasize that all of the technical difficulties in the proof will occur dur-
ing the (deterministic) construction of the barriers (i.e., during the proof of Proposition 3.3), which
is carried out in Sections 4—6. Our only probabilistic argument is quite straightforward, and is given
in Section 3.

We shall use the fact that U” is subcritical in order to construct approximately-polytopal U'-closed
sets whose faces are perturbed locally so that they avoid nearby infected sites. Such sets exist because
the normals to the faces are in ‘strongly stable’ directions.

“Given functions f(p) and g(p), we write f(p) = O(g(p)) to indicate the existence of a constant such that f(p) < Cg(p) for all
p € [0, 1]. We emphasize that the implicit constant in Theorem 2.1 is allowed to depend on the update family U".
SWe say that a set Q C Z? is U'-closed if [Q], = Q.
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Definition 2.2. The interior int(S) of the set S = S(U") of stable directions of V" is called
the strongly stable set of U". Directions u € int(S) are called strongly stable.

Recall that a direction u is stable if the half-space H is 1/-closed; the advantage of strongly stable
directions is that ‘small perturbations’ of H¢ are also U/-closed (see Lemma 4.3). More precisely, this
is true if U” does not contain any rule X with 0 in its convex hull; note that such rules could cause local
infections in ‘valleys’ on the surface of a perturbed half-space. To avoid this problem, we shall use (as
the directions of the faces of our barriers) strongly stable directions that avoid the set

FU) := U U{uESd_l D (x—y,u) =0} 3)
Xe U xex
x#y
of all u perpendicular to a line joining any two sites in any update rule. Since the set F(U") is nowhere
dense in S¢~! , this restriction has a trivial effect on our choice, made in the following lemma, of strongly
stable directions to use in the proof.

Lemma 2.3. Let U be a subcritical d-dimensional update family. Then there exists a
finite set S* C int(S) \ F(U") such that H N S* # @ for every open hemisphere H C S°~".

Proof. We use the compactness of S~ First, set S° := int(S) \ F(U") and
H :={H, :ueS°}, where H, :={ve S : (u,v)> 0},

so that # is the collection of all open hemispheres in S¢~' centred at elements of S°. We
claim that H is an open cover of S9! To show this, letw € S?~! and observe thatw € H,
for some H,, € H if and only if u € H,, for some u € S°. It therefore suffices to show that
H N S° is non-empty for every open hemisphere H ¢ S9~!. Thus, let H ¢ S9~! be an open
hemisphere, and recall from Definition 1.2 that int(HNS) # @, so there exists a non-empty
open set @ C H Nint(S). Since F(V") is a finite union of (d — 2)-dimensional subspheres
of 87!, it is nowhere dense in 897!, and it follows that @\ F(1") has non-empty interior.
In particular, H N S° is non-empty, as claimed.

Now, since H is an open cover of S9! it follows that it has a finite sub-cover. More-
over, the set S* of centres of the open hemispheres in this finite sub-cover has the desired
property, since if H ¢ 8%~! is an open hemisphere with centre w, then w € H,, for some
u € S*, which implies that u € H N S*, as required. ]

It is natural to ask whether one can always choose S* to have size d + 1. In fact one can always
choose such an S*, and this can be shown using Helly’s Theorem.® This is optimal, since S might
consist of small open balls around the vertices of a regular d-dimensional simplex inscribed in S~

Let us fix, for the rest of the paper, a subcritical d-dimensional update family 7/, a set S* C
int(S) \ F(V') as in Lemma 2.3, and a constant £ > 0 such that

{vesS : lu-vll <e} cin(S)\ F(V) 4)

for each u € S*, where we write (here and throughout the paper) || - || for the Euclidean norm on R¢.
We also write d(x,y) = ||x — y|| and, for x € R? and r > 0,

B,(x):={yeR’ : d(x,y)<r} ©)

The authors thank Wojciech Samotij for pointing this out.
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for the closed Euclidean ball of radius » centred at x. Given sets X, Y € R?, we write d(X, ) for the
infimum of d(x,y) overx € X and y € Y, and say that X and Y are adjacent if d(X,Y) = 0. Finally,
we write X7, for the discrete set X N Z4.

To finish the section, let us note that A will always denote a subset of 74 in all deterministic state-
ments this set will be arbitrary, and in probabilistic statements it will be chosen to be p-random (i.e.,
we consider the product measure P, on subsets of Z¢). In particular, we shall use A to define ‘good’
and ‘bad’ cubes (see Definition 3.1), and thereby A will appear in our main deterministic statement,
Proposition 3.3.

3 | GOOD AND BAD CUBES, AND THE MAIN PROPOSITION

In this section, we state our main deterministic result, Proposition 3.3, and use it to deduce Theorem 2.1.
The first step is to define explicitly the framework for our multi-scale argument. This will involve
defining the hypercubes that we shall work with at each scale, and defining precisely ‘good’ and ‘bad’
hypercubes.

First, we define sequences (Ay);2,, which will be the side-lengths of hypercubes at the kth scale,
and (gx)z2;, which will be the maximum distance between a hypercube Q at the (k + 1)th scale, and a
hypercube at the kth scale that can affect whether Q is good or bad (see (7) and Definition 3.1). These
will need to be chosen so that A < gr << Agyq.

Thus, fix an arbitrary 1 < f < 3/2, and let p > 0 be sufficiently small. Set A; := |p~!/G4+D)|,
and for each k > 1, define

N [A}(”J A¢ and g = AL 6)
Now, a (k)-cube is a (continuous) subset of R? of the form
x+[0,A0)9, (M

for some x € (AyZ)“. Note in particular that the (k)-cubes form a tiling of R¢.
As noted in Section 2, the following definition depends on the (arbitrary) set A C Z4.

Definition 3.1. A (1)-cube Q is good if Q N A = @, and otherwise it is bad. For
each k > 2, a (k)-cube Q is bad if there exist non-adjacent bad (k — 1)-cubes Q;
and Q, with

max {d(Q, 01),d(Q, 02)} < gk-1; ®)

otherwise Q is good.”

If Q is a (k)-cube and k > 2, then the event {Q is good} depends on elements of A outside of
0, and therefore these events are not (in general) independent for different (k)-cubes. This is why we
allow collections of pairwise-adjacent bad (k — 1)-cubes inside good (k)-cubes; it is also the reason, in
the following definition, that we take maximal unions of pairwise-adjacent bad (k)-cubes, rather than
singleton bad (k)-cubes.

"Recall that X and Y are adjacent if d(X, Y) = 0, and note that Q, and Q, may lie outside Q.
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Definition 3.2. Foreach k > 1, define Q; = Q(A) to be the collection of all sets Q0 c R?
such that Q is the union of a maximal collection of pairwise-adjacent bad (k)-cubes, and
Q intersects a good (k + 1)-cube. For each k > 1 and each Q € Qy, let xp be an arbitrary
(but fixed) element of Q.

Thus, if 0 € Q; then Q = Q; U ---U Qp, where Qq, ... , O, are distinct bad (k)-cubes, Q; and
Q; are adjacent for all i # j (so, in particular, 1 <7 < 2%), and Q intersects a good (k + 1)-cube Q'.
Moreover, note that d(Q’, Q;) < g for every i € [£], since every (k)-cube has diameter \/E A < g,
by (6). Since Q is maximal and Q' is good, it follows from Definition 3.1 that all other bad (k)-cubes
lie at distance at least g, from Q’, and therefore at distance at least g, /2 from Q.

We are now ready to state our main deterministic result, Proposition 3.3, whose proof will take up
Sections 4-6. Recall from Section 2 that our plan is to cover each cluster Q of bad (k)-cubes that inter-
sect a good (k + 1)-cube by a set (surrounded by a ‘barrier’) whose intersection with Z< is U"-closed.
The following proposition provides us with such a set, Tx(Q), and moreover guarantees that this set is
not too large.

Proposition 3.3. There exists y > 0 depending only on S* such that the following holds.
For every set A C Z¢, and for each k > 1 and Q € Qi(A), there exists a set Ty(Q), with
O C T (Q) C Bya,(xg), such that Tz, = T N 7% is U'-closed, where

(o)

7= U mo. ©)

k=1 Qe (A)

Let us now show that Theorem 2.1 is a straightforward consequence of Proposition 3.3. To do so,
we prove first two simple lemmas about bad (k)-cubes. We then use these to show that [A]; C T
almost surely, and to bound the probability that 0 € 7.

Lemma 3.4. For each k > 1, and every pair of non-adjacent (k)-cubes Q and Q', the
events {Q is bad} and {Q' is bad} are independent with respect to the measure IP,.

Proof. We?® shall show that the events {Q is bad} and {Q’ is bad} depend on (the inter-
section of A with) disjoint subsets of Z?, which immediately implies that they are
independent with respect to the product measure IP,. To do so, note first that the state
(either good or bad) of a (k)-cube Q depends on the states of the (k — 1)-cubes within
distance g;—; of Q. These in turn depend on the states of the (k — 2)-cubes within dis-
tance gy of those (k — 1)-cubes, and so on, until we reach (1)-cubes, whose states do
not depend on any sites outside of them. Thus, if a site x affects the state of Q, then,
by (6), and since 1 < f < 3/2 and p is sufficiently small, the distance of x from Q must
be at most

k-1 k=1
(gi+\/3-Ai> < ¥Y2.47 <3A7 < A3 (10)

i=1 i=1

However, if Q and Q’ are not adjacent, then their distance from each other is at least Ay,
and hence the sets of sites that affect their states are disjoint, as claimed. ]

It is now easy to bound the probability that a (k)-cube is bad.

8This proof corrects a small mistake in [3].
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Lemma 3.5. For any (k)-cube Q,

P, (Q is bad) < A;*/*?,

Proof. The proof is by induction on k. Set g; := A,:(zd”), and recall that a (1)-cube is
bad if and only if it contains an element of A. Since A; < p~!/34+2) the expected size of
theset QNAis A? - p < A1—(2d+2) = g1, so the claimed bound holds when k = 1.

So let k > 2, let Q be a (k)-cube, and suppose that the claimed bound holds for
(k — 1)-cubes. If Q is bad then, by Definition 3.1, there exist distinct, non-adjacent bad

(k — 1)-cubes Q; and Q, satisfying (8). By (6), and since f < 3/2, there are at most

d
<3Ak> <32
Ak

choices for each of O and O, and the states of Q| and O, are independent by Lemma 3.4.
It follows that

2
P, (Q is bad) < (3" : AZ{%) L =34 AC,
and hence, since p was chosen sufficiently small, and again using (6),
P, (Q is bad) < ALY < AP = g

as required. u

To deduce Theorem 2.1 from Proposition 3.3, we apply Lemma 3.5 twice: first to show that
[A]y, € T almost surely, and then to bound the probability that 0 € 7.

Proof of Theorem 2.1. We may assume p is sufficiently small, otherwise the assertion
holds trivially. Let A be a p-random subset of Z¢ and set Q;, := Q(A). Now, for each k > 1
and Q € Qy, let T;(Q) be the set given by Proposition 3.3, and let 7 C R? be defined as
in (9). In particular, by the proposition, the set 77 C Z¢ is U"-closed.

We claim that [A];» € 7 almost surely. To prove this, let x € A and consider the
(unique) sequence x € Q; C Oy C ... such that Oy is a (k)-cube. By Lemma 3.5, the
probability Oy is bad tends to zero as k — oo, and hence almost surely some member of
the sequence is good. Noting that Q, is bad (since x € A), choose k > 1 minimal such that
Or+1 1s good, and observe that, by Definition 3.2, the bad (k)-cube Q is contained in some
member of Q. It follows that x is almost surely contained in Q C T3(Q) for some k > 1
and Q € Oy, and hence the set A is almost surely contained in 7. But 77 is U"-closed, so
if A C T then the closure [A]y- is also contained in 7, as claimed.

It follows from the claim, and the definition (9) of 7, that

P, (0 € [Aly) <P, <0 cUUy Tk<Q)> <P, (0 e MQ)). (1)
k=1 Q€Q, k=1 €9,

To bound the right-hand side of (11), recall from Definition 3.2 and Proposition 3.3 that
Ti(Q) contains at least one bad (k)-cube, and is contained in the ball By, (xp). Thus, if
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0 € Tx(Q) for some Q € Q, then 0 € B, (xp), and so there must exist a bad (k)-cube
within distance 2y A, of 0. Noting that there are at most (4y + 2)? such cubes, it follows,
by Lemma 3.5, and since A; = [p~/34+2) | and p is sufficiently small, that

Pp (0 c [A]U) < (4y + 2)d2A;(2d+2) < (Sy)d . Al—(2d+2) =0 (p(2d+2)/(3d+2))’
k=1
as required. n

In order to complete the proof of Theorem 2.1, it therefore suffices to prove Proposition 3.3. To
do so, first, in Section 4, we define a family of ‘perturbed surfaces’ that will be used to construct the
boundaries of the sets 7;(Q). Then, in Section 5, we show that these surfaces can be chosen to avoid bad
cubes. Finally, in Section 6, we use these surfaces to construct the sets 7;(Q), and show that they have
the claimed properties. We remark that most of the technical difficulties are contained in Section 5.

4 | PERTURBED SURFACES

In this section, we define and prove key properties of certain families of surfaces in R¢. These surfaces
will later be used as the faces of the perturbed polytopes 7 (Q) that we shall construct (in the proof of
Proposition 3.3) around clusters of bad (k)-cubes. The surfaces are defined (in Definition 4.1) relative
to a co-dimension 1 hyperplane, which is modified by adding ‘bumps’ at various scales, the bumps at
larger scales being flatter and more spread out than the bumps at smaller scales (see Figure 1).

We say that a set Z C R is i-separated if d(x,y) > g;/2 for all distinct x,y € Z. A k-tuple
(Z1, ... ,Zy) of subsets of R is said to be k-separated if Z; is i-separated for each 1 < i < k. We write
{u}t := {v € R? : (u,v) = 0} for the co-dimension 1 hyperplane with normal u, and we shall use
the function ¢ : R — R, defined by

c(x) 1= (cosx)? - ¥ [|x| < 71'/2] ,
which we note is differentiable everywhere.
Definition 4.1. Letk > Oand u € S97!. A (k, u)-pinch is a surface

=X, AZi, ..., Z) cR?

defined by a real number A and a k-separated k-tuple (Zy, ... ,Z;), where each Z; is a subset
of {u}t, as follows:

T = {x+h(x)u 1x € {u}L},

FIGURE 1 A (3,u)-pinch with d = 2. The dashed line along the bottom of the figure is {u}*. The large dot is the element of
Z5, the medium dots are the elements of Z,, and the small dots are the elements of Z;.
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where i : R? — R is the height function’

h(x) —,1+224yA2 <2 I Z)>, (12)

2€Z;

Here y > 0 is a sufficiently large constant depending only on S*.

We also define a corresponding (k, u)-range E = E(u, A;Z,, ... ,Z;) by
Ei={x+hu : h<h@), xe {u}'}.

The constant y = y(S™) in Definition 4.1 is the same as the constant y in Proposition 3.3. It will be
assumed to satisfy y > 2\/3 + 1, and also

(] {xreR!: (x,u) <4d} C B,(0). (13)

ueS*

Such a y exists because H N S* # @ for every open hemisphere H ¢ $/~!, by Lemma 2.3.

We shall show, in Lemma 4.3, that the set 2z is U'-closed for every u € S*, every k > 1, and every
(k, u)-range E. However, in order to do so we first need to prove some simple properties of the partial
height functions

hi(x) = A+ 224)/A Ye (2 d(x Z)> (14)

2E€Z;

where 1 < j < k. For convenience, define also /;,1(x) := A, and note that h(x) = h;(x). We remark
that these properties will also be useful in Sections 5 and 6.
In the proofs below, we refer to the co-dimension 1 hyperplane

X(u, A9, ...,0) = {x+/1u I X€E {u}L},

as the base of Z (or E), and to the k-tuple (Zy, ... ,Z) as the augmentation of X (or E).

Lemma 4.2. Let X be a (k, u)-pinch. For each 1 < j < k, the partial height function h; of
2 satisfies

i — hiilleo < 2%7A; and I — Alleo < 277 Ay (15)
Moreover, if x,y € R, then
hi(x) = )] < 2% A7 flx =yl (16)

Proof. Recall from Definition 4.1 that the augmentation (Zy, ... ,Z;) of X is k-separated,
and therefore d(y,z) > g;/2 for every i € [k] and all distinct y, z € Z;. It follows that, for

Note that the sets Z; may be infinite; however, we show in Lemma 4.2 that the assumption that (Z,, ... ,Z;) is k-separated
implies that 4(x) is finite. Note also that when k = 0 we have h(x) = 4, so in this case X is just a translation of the co-dimension
1 hyperplane {u}*.
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each x € RY, there is at most one z € Z; such that d(x,z) < g; /4, and hence at most one
Z € Z; such that

The inequality |7;(x) — hj1(x)| < 24)/Aj now follows immediately from (14), and

k
[Bj(x) = Al = () = b (0] < D27 Ar 2074y

i=j

also follows, since A1 (x) = A, and by the triangle inequality and the definition (6) of A;.
Since both inequalities hold for all x € R?, this proves (15).
To prove (16), recall that the function c is differentiable, and observe that

”Vc <25 .d(x,z)) H < 2
8i 8i

It follows that

k k
2 _ _
VRNl < D 2% A, - P D2rAT <20y

i=j P

by the definitions (6) of A; and g;, and since f > 1 and p is sufficiently small. Applying
the mean value theorem for multivariate functions now yields (16). [

We are now ready to prove the key property of (k, u)-ranges: they are U'-closed.

Lemma 4.3. If u € S* then By is U'-closed for every (k, u)-range =.

Proof. We are required to show that x + X ¢ Zy, for every x € Z¢ \ 7 and X € U". To
do so, recall that S* was chosen using Lemma 2.3, and that £ was chosen in (4). We will
show, using Lemma 4.2 and our assumption that p is small, that the fluctuations of the
surface of E are small compared with €.

Without loss of generality we may assume that x = 0, so suppose that 2(0) < 0 (so
that 0 ¢ E), and that X C Ey, for some X € U". We claim that

2o |J HL (17)

VES, (Sd’l ,u)

where S, (8?7, u) ¢ 8%7! is the (d — 2)-sphere consisting of points of 897" at geodesic
distance € from u. To prove (17), observe first that, by Lemma 4.2, we have

|h(x) = h(O)] = |71 (x) — ki (0)] < 2% A;7 - |Ix]|

for each x € RY. Since h(0) < 0, and recalling that A; = [p~'/G9*2 | and f > 1, it follows
that 2(x) < o(||x||) as p — 0, uniformly over x € R?. In particular, we may assume that
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h(x) < ||x||(sin€)/2. Now, given x € {u}*, set v := (cos €)u — (sin €)x/||x||, which is an
element of Se(Sd_l, u), and observe that

(x + h(x)u,v) = h(x) cose — ||x|| sine < 0.

This completes the proof of (17).

It suffices, therefore, to show that no update rule X € U is contained in the set on
the right-hand side of (17). Observe first that if v € S.(S~!, u) then |lu — v|]| < &, and
therefore v € S, by (4), since u € S*. It follows that X ¢ H¢ for eachv € S (S, u). We
claim that if X C Ey, then there exist x;,x, € X and vy, v, € SE(Sd_l, u) such that

x €H{ \H{, and x€H{ \Hf. (18)

To prove this, choose v; € S.(S*7!, u) such that |X N H‘le | is maximal (recalling that X is
finite). Since X ¢ H¢ , there must exist x, € X \ H¢ . Moreover, if X C Z then by (17)
there must exist v, € S, (Sd_l, u) with x, € H€2~ By the maximality of | XN H‘V’] |, it follows
that there exists x; € X N H¢ with x; ¢ H¢ , as claimed.

To complete the proof, we shall deduce from (18) that there exists a direction v € F(U")
within distance € of u, contradicting (4). In order to guarantee that v € F(U"), we shall
choose v € §%7! with (x; — x,,v) = 0, and in order to guarantee that |[u — v|| < &, we
shall choose it on the geodesic in 897! joining v; to v. The vector satisfying these two

conditions is!?

_ (x4 (- XL v
€1 = X2, va)v1 + (22 = xp, vl

where it follows from (18) that (x; — x2,v2) > 0 and (x, — x;,v;) > 0. Since v is the
projection onto S?~! of an element of the convex hull of v; and v,, it follows that |lu—v|| <
€, and by (4) this contradicts the fact that v € F(U"), as required. n

5 | CONSTRUCTION OF PINCHES AVOIDING BAD CUBES

In the previous section, we defined (k, u)-pinches and (k, u)-ranges, and proved in Lemma 4.3 that
(k, u)-ranges are U'-closed when u € S*. In this section we shall show how to construct (k, u)-pinches
that avoid (with room to spare) all bad (i)-cubes (forall 1 < i < k) inside a region of good (k+ 1)-cubes.

In order to state Lemma 5.1, which is the main result of this section, we need to introduce a little
notation. Given u € S ' and k € N, we define the line segment

LP = {au 1 14 < A}, (19)
and recall the definition of the Minkowski sum X + Y = {x+y:x€ X, y e V}.

The following lemma is the key step in the proof of Theorem 2.1.

Lemma 5.1. Let k > 0 and u € S*7', and let T1 be a translation of {u}*. If every
(k + 1)-cube intersecting 1 + LD
I1, such that for each 1 < i < k, every (i)-cube intersecting X + 3y - L

is good, then there exists a (k,u)-pinch Z, with base
D g good.

Yndeed, (x; — xp, va)(vi,x1) + (6 = X1, v ){(Va, X1) = (X1 = X2, ) V1, X2) + (X — X1, V1 )(Va, 1)
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In order to prove Lemma 5.1, we must construct a k-separated k-tuple (Z;, ... , Z;), where each Z;
is a subset of {u}*. We shall construct the sets Z; inductively, using the following lemma, which is
really the heart of the matter.

Lemma 5.2. Letk€ Nandu € S9!, let 1 <i <k, and let
> = Z(u,/l;ﬂ, ,(J,Z,-H, e s Zp) (20)

be a (k,u)-pinch. Suppose that all (i+ 1)-cubes intersecting +LY are good. Then there
exists an i-separated set Z; C {u}* such that if

Y =%u, 0, ... 0.2, 7i1s ... ), 21

then all (i)-cubes intersecting ' + 4y - LY are good.

The idea of the proof is as follows. In order to construct Z;, we take a point from each maximal
collection of pairwise-adjacent bad (i)-cubes whose union intersects Z+4y-L(,f), and project those points
(orthogonally) onto {u}*. This pulls the surface ¥’ away (locally) from the bad (i)-cubes, causing it
to divert around them. We use the assumption that all (i + 1)-cubes intersecting Z + L are good to
show that this set is i-separated, and then again to show that every (i)-cube that intersects ' + 4y - LY
is good.

Proof of Lemma 5.2. Let us choose, for each maximal collection of pairwise-adjacent bad
(i)-cubes whose union P intersects X + 4y - LE,'), an arbitrary point

ypePn<z+4y-L§P>. 22)

Let Y be the set of all such points yp, and let Z; be the orthogonal projection of Y
onto {u}* (see Figure 2). We shall prove, in the next two claims, that Z; has the required
properties. [

Claim 5.3. Z; is i-separated.

Proof of Claim 5.3. Letx,y € Y with x # y, and let a € R and z € {u}* be such that
xX—y=au+2z, 80

a=(x-yu) and 2]l 2 d(xy) - |al. (23)

We shall show that d(x,y) > g; and |a| < (||z]| + g:)/4, and hence ||z|| > g;/2.

To bound d(x, y), we use our assumption that all (i+ 1)-cubes intersecting 2+L§f+1) are
good. Note first that x € Z + Lf,i+]), since 4y - Lff) C LSH), by (6) and (19). Therefore, the
(i+ 1)-cube Q containing x is good. Moreover, the (i)-cubes Q) and Q, containing x and y
(respectively) are both bad, since x and y are each contained in unions of pairwise-adjacent
bad (i)-cubes. Since Q; C Q, it follows from Definition 3.1 that either d(Q, Q,) > g;, or
QO and O are adjacent.

If d(Q, Q») > g; then we are done, since x € Q and y € O, so d(x,y) > d(Q, O»).
On the other hand, if Q; and Q, are adjacent then, since x and y are contained in distinct
maximal collections of pairwise-adjacent bad (i)-cubes, P; and P, it follows that there
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FIGURE 2 The (k, u)-pinch Z, given by (21), is the solid black curve through the centre of the upper figure. The set

Z+ Lg”), bounded by the dotted lines, avoids all bad (i + 1)-cubes. Also shown are two bad (i)-cubes, which lie inside
Z+4y- LY, the set bounded by the dashed lines. Lemma 5.2 constructs X', of the form (21), and shown as the solid black line
through the lower figure, such that &' + 4y - LY avoids all bad (i)-cubes.

exist bad (i)-cubes Q' € Py and Q) € P, such that Q and Q) are non-adjacent. Since, for
eachj € {1,2}, the (i)-cubes Q; and Q; are adjacent (by definition of P;), we have

d(Q.Q)) < d(Q.0) + Vd - A +d(Q1.0) <2Vd - A < g.

Indeed, the first inequality follows from the fact that Q; has diameter \/d_ - A;, the second
inequality holds because Q; C Q and d(Q;, QJ’.) < \/E - A;, since Q is adjacent to O,
and both Q; and Q) are adjacent to Q,, and the third inequality follows from (6). By
Definition 3.1, and since Q] and Q) are non-adjacent bad (i)-cubes, this contradicts our
assumption that Q is good, and so proves that d(x,y) > g;, as claimed.

In order to bound |a|, let X" and y’ be (respectively) the orthogonal projections of x and
y onto {u}*, and recall that x,y€XZ+4y- Lff). It follows, by (19), that

[{(x =y, u)| < |hip1 (X)) = i1 )] + 8y - Ay

Using Lemma 4.2 to bound |A;41(x") — hix1(y')], it follows that

lal = 1=yl < 2% AL W -l + 87 - & < LSS 4
where the final inequality holds since ||x" — y'|| = ||z|| and by (6), recalling that § > 1.
We have shown that d(x,y) > g; and |a| < (||z]| + gi)/4, and it follows that

38 _ Il
> d(x.y) - |a] > =50 - 151,
e
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and hence ||z]| > g;/2. Since x and y were arbitrary elements of Y, it follows that Z; is
i-separated, as claimed. n

Recall that the (k, u)-pinch T’ was defined in (21). To complete the proof of the lemma, it only
remains to prove the following claim.

Claim 5.4. Every (i)-cube intersecting X' + 4y - LY is good.

Proof of Claim 5.4. Suppose, for a contradiction, that Q; is a bad (i)-cube that intersects
Y +4y- Lff), and let P be the union of the maximal collection of pairwise-adjacent bad
(i)-cubes containing Q. Suppose first that P also intersects X + 4y - L, in which case
there exists z € Z; such that z is the orthogonal projection of yp onto {u}*.

Letx,y € P,withx € ¥ + 4y - LY and y € = + 4y - LY, and observe that

l(x = y,u)| <2Vd - A, (25)
by the definition of P. On the other hand, we have
(x =y, uy > hi(x") = hip1 ') = 8y - Ay, (26)

where x’" and y" are (as in the proof of Claim 5.3) the orthogonal projections of x and y
onto {u}t, sincex € ¥’ + 4y - LY andy € Z+4y LY and by Definition 4.1 and (19).

Now, since x’ and z are both orthogonal projections of points of P onto {u}*, we have
d(x',z) < 2\/5 - A; < gi/4. Since Z; is i-separated, by Claim 5.3, it follows that for every
7 # 7 € Z; we have d(x',7') > gi/4, and hence ¢ (25 . d(x’,z’)/g,-) = 0 (cf. the proof of
Lemma 4.2). Thus, by (14),

2% .d(¥,2)

mu@—mﬂu®=2%Afc<
8i

> =9y - A 27)

where the final inequality follows from d(x’,z) < 2\/2 - A; and (6). Moreover, by
Lemma 4.2, we have

it () = i OO] < 207 AT - I =yl < A, (28)
where the last inequality holds since x’ and y’ are both orthogonal projections of points of
Ponto {u}*, so ||x' —y'|| < 2\/5- A;, and recalling that > 1.

Thus, combining (26), (27), and (28), it follows that (x — y,u) > (y — 1)A;, which
contradicts (25) since y was chosen to be sufficiently large. This contradiction proves that
P cannot intersect X + 4y - Lg).

So suppose now that P N (Z +4y - Lﬁp) = {J, which means that there is no element
of Z; corresponding to P. In this case we again use our assumption that all (i + 1)-cubes
intersecting X + Lﬁf“) are good, this time to obtain a contradiction.

To begin, recall that Q; is a bad (i)-cube (contained in P) that intersects X’ + 4y - LS),
and let Q be the (i + 1)-cube containing Q. Observe that

> 44y LY cz+ LI,
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since ||h; — hipillee < 2% - A;, by Lemma 4.2, and (2* 4+ 4)y - A; < A1, by (6). Since
0, C Q, it follows that Q intersects X + Lﬁ,’“). Therefore, by Definition 3.1, it suffices to
show that there exists a bad (i)-cube Q,, not adjacent to Q,, with d(Q, O») < g;.

Todoso,letx € 01 N <E' +4y - L§Z)>, and observe that h;(x") # h;.1(x'), where x’ is
the projection of x onto {u}t, since x € Q; c P, and we assumed that P does not intersect
Y + 4y - L. It follows, by (14), that there exists z € Z; with d(x',z) < 2%z - g;. Let
y € Y be such that z is the orthogonal projection of y onto {u}*, and let O, be the (i)-cube
containing y. Recall from (22) that O, is bad, and thaty € X + 4y - LY.

We now claim that

d(Q,0r) <d(x,y) £d(,2) + [{(x = y,u)| < gi. (29)

The first step holds since x € Q; C Q and y € Q,, and the second since x” and z are the
orthogonal projections of x and y onto {u}*. Since d(x’,z) < 27z - g;, it is enough to
show that |(x — y, u)| < g;/2. This follows since x € X' + 4y LY andy € X+4y LY so

[(x =y, u)| < [hi}) = higa ()] + 8y - A,
and by Lemma 4.2 we have

[ (x") = hip1 @] < (X)) = hig1 O + [hig1 () = hi1 ()]
<2y A+ 2 AT I 2l < gi/4

where in the final step we used the bounds ||x' — z|]| = d(¥',z) < 2%z -giand # > 1. It
follows that |[{x — y,u)| < g;/4+ 8y - A; < g;/2, and so (29) holds as claimed.

We have shown that Q; and Q, are bad (i)-cubes, with @; C Q and d(Q, Q») < g;.
Moreover, Q| # Q», since Q, intersects Z+4y -LS), and so is not contained in P. Therefore,
if O and Q, are non-adjacent (i)-cubes, then Q is a bad (i+1)-cube that intersects T+LED,
and we have the claimed contradiction.

Finally, suppose that Q; and Q, are adjacent bad (i)-cubes. Then, since P is maximal
and Q, ¢ P, there exists a bad (i)-cube Q] C P that is not adjacent to Q,. Since d(Q], Q) <
d(Q}, Q1) = 0, we again deduce that Q is bad, as required.

By Claims 5.3 and 5.4, the set Z; C {u}* is i-separated, and every (i)-cube intersecting
Y 44y Lg,i) is good, so the lemma follows. n

We may now complete the proof of Lemma 5.1 via a straightforward induction.

Proof of Lemma 5.1. If k = 0 then we may take X = IT and there is nothing to prove, so
suppose that k > 1. We claim first that there exists a (k, u)-pinch

2 =2(u,/1;Z1, ,Zk),

with base I, such that for every 1 < i < k, every (i)-cube intersecting X; + 4y -Lf,i) is good,
where

Zi = Z(Lt,ﬁ;ﬂ, ,ﬁ,Zi, ,Zk).

WILEY——%
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We choose the sets Zj, ... ,Z; in reverse order, inductively, using Lemma 5.2. For the
base case of the induction, when i = k, we use our assumption that every (k + 1)-cube
intersecting IT+ L,(lkﬂ)
Z; C {u}* such that every (k)-cube intersecting X + 4y - LY s good. For the induction
step, assume that every (i + 1)-cube intersecting ;| + 4y - LY s good, and note that
4y > 1. By Lemma 5.2, there exists an i-separated set Z; C {u}* such that every (i)-cube
intersecting Z; + 4y - LY is good, as required.

It remains to prove that, for each 1 < i < k, every (i)-cube intersecting X + 3y - LY is
good. Since every (i)-cube intersecting 2; + 4y - LY is good, it is enough to show that

is good. By Lemma 5.2, it follows that there exists a k-separated set

S+3y-LY c i+ 4y - LY.
To see that this holds, simply observe that
i-1
1h1 = hille < 24}’2Aj <Vy-A <y A,

J=1

by Lemma 4.2 and the triangle inequality, as required. [

6 | CONSTRUCTION OF COVERS

To complete the proof of Proposition 3.3, we shall show that one can cover each cluster of bad (k)-cubes
by intersections of (k, u)-ranges with u € S*, and observe that these intersections are U"-closed and
well-separated from one another.

Let us fix the (arbitrary) set A C Z¢ that appears in the statement of Proposition 3.3, and set
Qi 1= Oi(A). Recall from Definition 3.2 that for each Q € Q; we fix an element xp € Q. We shall
write 0T for the boundary of a set T C R¢.

Definition 6.1. Let k > 1 and let Q € Qy. A (k)-cover of Q is a set

Q) := ) Eu

ueS*
where {E, : u € S*} is a set of (k — 1, u)-ranges with bases
I, :={xeR!: (x—xg,u) =3d - A}, (30)
such that
d(Q,0T(Q)) 22y - A

for every 1 <i < k and every bad (i)-cube Q’, unless i = k and Q' C Q.
The first step is to use Lemma 5.1 to show that (k)-covers exist.

Lemma 6.2. Foreveryk > 1 and Q € Oy, there exists a (k)-cover Ti(Q) of Q with

0 C Ti(Q) C Bya, (x0). (€29
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Proof. Fix k > 1 and Q € Q. For each u € S§*, we shall apply Lemma 5.1 to the
hyperplane I, defined in (30), with the set of infected sites being A’ := A N By, (xg).
We shall then take T;(Q) to be the intersection of the associated ranges.

To begin, we claim that every (k)-cube intersecting the set

X, = <Hu + Lﬁ“) N B3y, (xg)

is good (with respect to the set A). Indeed, suppose that Q, is a bad (k)-cube that intersects
X,. Then Q1 ¢ Q, since Q does not intersect IT,, + Lﬁk) , by (19) and (30), and recalling that
Xp € Q and that Q has diameter at most 2\/2 -Ap < (3d —1)- A;. Now, by the maximality
of O (see Definition 3.2), it follows that there exists a bad (k)-cube Q, C Q that is not
adjacent to Q;. Moreover, since Q € Qy, there exists a good (k+ 1)-cube Q’ that intersects
Q. Observe that

max {d(Q', 01).d(Q', 02)} < d(xg, 01) +2Vd - Ay < (37 +2V/d) A¢ < g,

since O, C Q and X, C B3,a,(xp), and by (6). Since Q1 and O, are non-adjacent bad
(k)-cubes, it follows, by Definition 3.1, that Q' is bad, which is a contradiction. This
contradiction proves that every (k)-cube intersecting X, is good, as claimed.

Next we claim that every (k)-cube Q' intersecting IT, + LP is good with respect to the
set A’. If Q' intersects X,, then this follows from the claim above, since A’ C A, so every
cube that is good with respect to A is also good with respect to A’. On the other hand, if Q'

does not intersect X, thenletx € Q' N <Hu + Lﬁ“), and note that ||x — xg|| > 3y A. Since

0’ has diameter 2\/5 - Ay <y - Ay, it follows that Q" does not intersect the ball B;,a, (x),
and hence contains no point of A’. Therefore, in this case Q' is automatically good with
respect to A’, as claimed.

Applying Lemma 5.1 to IT, and A’, we obtain a (k — 1, u)-pinch X, with base IT,,, such
that for each 1 <i < k — 1, every (i)-cube intersecting ~, + 3y - LY is good with respect
to A’. We do this for each u € S*, and define

T(Q) := [ Eu

ueS*

where E, is the (k — 1, u)-range with boundary X,,. We shall prove, in the next two claims,
that 7T;(Q) has the required properties. [

Claim 6.3. Q C Ti(Q) C Bya, (xo).

Proof of Claim 6.3. Tt will be useful to consider the set T := (,.s. Eu, Where

[1]:

wi={xeR! : (xuy <d- A} (32)
for each u € S*. We shall show that

QC.XQ+3-TC Tk(Q)CXQ+4'TCByAk(XQ), (33)

WILEY——5
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which will imply the claim. Note first that xo + 4 - T c By, (xg) follows immediately
from (13). To prove the first three containments in (33), it is enough to show that

QCxop+3-E,CE,Cxp+4-5, (34)

for each u € S*. The first containment in (34) holds because x; € Q and the diameter
of Q is at most 2\/5 - Ay, and the second because I, is the boundary of xp + 3 - =,

by (30) and (32), and since X, has base II,, and the height functions defined in (12) are

non-negative. Finally, to show that Z, C xp +4 - E,, observe that if x € 5, then
(x—xQ,u) <3d- Ak+257 Al <4d - Ay,

by (30) and Lemma 4.2. This proves (34), and hence also the claim. [ ]

It only remains to show that there are no bad cubes close to the boundary of 7;(Q), except possibly

those in Q.

Claim 6.4. If 1 <i < kand Q; is a bad (i)-cube with
d (Q1,0T(Q)) <2y - A,
then Q) C Qand i =k.

Proof of Claim 6.4. We shall deal separately with the cases i < k and i = k. Beginning
with the latter case, suppose that Q, is a bad (k)-cube with Q; ¢ Q and d(Q;, T(Q)) <
2y - Ag. Since Ti(Q) C By s, (xg), by Claim 6.3, it follows that d(Q1,xp) < 3y - A, and
hence

d(Q1, Q") < d(Q1,x0) +d(xg, Q') <3y - A + 2Vd - A < g

for any (k + 1)-cube Q' that intersects Q. Now, since Q; ¢ Q and by the maximality of
0, there exists a bad (k)-cube O, C Q that is not adjacent to Q. Noting that d(Q,, Q') <
2\/2 - A < g, it follows that Q' is bad. Thus, since Q' was an arbitrary (k + 1)-cube
intersecting Q, this contradicts our assumption that Q € Q.

So suppose that 1 <i < k—1,let Q; be an (i)-cube with d(Q1, dTx(Q)) < 2y - A;, and
note that therefore d(Q;,X,) < 2y - A, for some u € S*. We shall use the fact that every
(i)-cube intersecting X, + 3y - Lg) is good with respectto A’ = AN By, a,(xp), which holds
by our choice of £,,. The first step is to show that Q; intersects X, + 3y -Lff) . To do this, let
x€ Qrandy € X, with d(x,y) < 2y - A;, and let x = X’ + Au, where X’ € £, and A € R.
Observe that

|4l = [(x =¥, u)| < d(x,y) + 1 =y, )l
and that, since X',y € Z,,,
[ =yl <2417 - d(xy) < d(x,y)/2,
by Lemma 4.2. Hence |4| < (3/2) - d(x,y), and therefore, since d(x,y) < 2y - A; and

x € X,, it follows that x € £, + 3y - Lff). Thus, by our choice of X, the (i)-cube Q; is
good with respect to A’.
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To complete the proof, we shall show that Q; is also good with respect to A. To see
that this holds, observe first that, as in the proof of Lemma 3.4, the state of Q; depends
only on the intersection of A with the set of x € Z¢ such that

i—1
o< Y (g+Vd-a) <38, < a3
=1

Since d(Q1, 0T (Q)) < 2y - A; and Ti(Q) C Bya, (x), by Claim 6.3, it follows that the state
of QO depends only on the set of x € Z4 such that

A xg) <7 Ac+2r - A+2Vd - A+ AJ3 <2y - Ay

Since A’ =An Boya, (x0), this proves the claim. ]

Combining Claims 6.3 and 6.4, it follows that 7;(Q) is a (k)-cover of O, and that the inclusions (31)

hold, as required.
Next we note that each individual (k)-cover is closed.

Lemma 6.5. If T;(Q) is a (k)-cover of Q € Oy, then Ti(Q)z is U'-closed.
Proof. Recall that, by Lemma 4.3, the set Ez is U'-closed for every u € S* and every

(k, u)-range E. Since T(Q) is an intersection of (k, u)-ranges with u € S*, it follows that
T1(Q)z is an intersection of U'-closed sets, and therefore is itself T/-closed, as required.m

We need one more simple lemma to complete the proof of Proposition 3.3. Let us say that sets

X,Y c R? are strongly disjoint if d(X,Y) > 2R, where R := max,execr  ||x]|.

Lemma 6.6. Let 1 < i < k,and let Q € Q; and Q' € Qy, with Q # Q'. If Ti(Q) is an
(i)-cover of Q and Ti(Q') is a (k)-cover of Q', with

T(0) C B)a(xg)  and  Ti(Q) C By, (xp), (35)
then either T{Q) C Ti(Q"), or the sets T;(Q) and T (Q') are strongly disjoint.
Proof. We consider the cases i = k and i < k separately. If i = k, then let Q; C Q and

0> C Q' be non-adjacent bad (k)-cubes, which exist by Definition 3.2, since Q # Q. Now,
let O* be a good (k + 1)-cube intersecting Q. If d(Q, Q') < gi/2, then

max {d(Q%, Q). d(Q", 02)} < d(Q.Q") +4Vd - A, < g,
since Q and Q' each have diameter at most 2\/3 - Ag. By Definition 3.1 this contra-
dicts our assumption that Q* is good, and therefore d(Q, Q") > gi/2. It follows, by (6)
and (35), that
d (T(Q). T(Q)) = d(xg.xp) — 2y Ax > 81/2 — 2y A > 2R,

and hence the sets Tx(Q) and T;(Q') are strongly disjoint.
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On the other hand, if i < k, then let Q; C Q be the bad (i)-cube containing x¢. Recall
from Definition 6.1 that, since Tx(Q’) is a (k)-cover of Q’, we have

d (xg,9Ti(Q")) = d (Q1,0T(Q)) = 27 - A;.
Now, since T;(Q) C By a,(xg), by (35), it follows that
d (T}(Q).0T(Q)) > d (x0.0T(Q")) — 7 - A; >y - A; > 2R,

and hence either T;(Q) C Ti(Q"), or the sets Ti(Q) and Tx(Q') are strongly disjoint, as
required. [

We are finally ready to prove Proposition 3.3.

Proof of Proposition 3.3. For each k > 1 and each Q € Q(A), let Tx(Q) be the (k)-cover
of Q given by Lemma 6.2, so Q C Tx(Q) C By, (xp). By Lemma 6.5, the set Tx(Q)z is
U-closed for each Q € 9y, and by Lemma 6.6, for each Q € Q; and Q' € Q; the sets
T:(Q)z and T, (Q')z are either nested or strongly disjoint. Defining 7 as in (9), it follows
that 77 is U'-closed, as required. ]

7 | THE UPDATE FAMILIES WITH pc(Zd, U)=1

In this final section, we shall complete the proof of Theorem 1.5 by using results from [1] to obtain
the following characterisation of update families with p.(Z¢, V") = 1.

Theorem 7.1. Let U be a d-dimensional update family. Then

p(Z4, ) =1 o Sy =841

We remark that the case d = 2 of Theorem 7.1 was observed in [3]. The proof for general d is
similar, but we will require a technical (and highly non-trivial) lemma from [1].

In order to avoid repetition, let us fix a d-dimensional update family U" for the rest of the section.
We begin with the easier of the two implications in the theorem, which is dealt with in the following
lemma.

Lemma 7.2. If S(U") # 8", then p(Z*, V") < 1.

Proof. Let A be the graph on Z¢ with edges between all pairs of sites at 7, distance
at most 1. It is easy to see by a standard argument that g.(d), the critical probability for
percolation in A, is strictly positive. Indeed, if X,, denotes the number of paths of open sites
of length n starting at the origin, where each site is open independently with probability
g, then E[X,] < 39"¢". Hence, if ¢ is sufficiently small, then with probability 1 there is
no infinite component of open sites. Now recall that R = max,exer |||, and choose p
such that

1 - go(d) < p®®" < 1.

We claim that P, ([Aly = Z¢) = 1, and hence that p.(Z*, V") < p < 1.
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To prove this, we tile Z¢ with boxes of the form (x+ [0,2R)) N Z?, and say
that each box is ‘complete’ if it is entirely contained in A, and ‘incomplete’ otherwise.
By coupling with site percolation on A, we see that, with probability 1, every con-
nected component of incomplete hypercubes is finite. Moreover, each site in such a
connected component C lies at distance at least 2R from any uninfected site in a different
component.

Now, let u € 8! \ S(U’), and let X € U be such that X C Hl,. Choose y € C with
(y, u) minimal, and observe that y + X C A, since {x, u) < 0 and ||x|| < R for every x € X.
Continuing in this way, we may infect (one by one) each of the sites in C, in increasing
order of their inner product with u. [

The key step in the proof of the reverse implication is the following deterministic lemma, which
says that the U-closure of the complement of a sufficiently large ball is not the whole of Z9. Recall
from (5) that B,(x) is the Euclidean ball of radius A centred at x.

Lemma 7.3. If S(U") = S97!, then
2\ B,©)],, # Z*

for all sufficiently large A > 0.

In order to prove this lemma, we shall use a construction from [1] of a certain set Q C sd-1 , which
is called the set of ‘quasistable directions’. More precisely, we shall define a polytope

P::ﬂ{xe]Rd : (x,u)sl},

ueg

and show that A - P cannot be invaded from outside in the U -bootstrap process if A is sufficiently large.
We state here only the properties of Q that we need in order to prove Lemma 7.3, and refer the reader
to Sections 3.3 and 6 of [1] for further details.

In order to state the two properties of Q that we require, we need to define the following graph,
which encodes which pairs of faces of P are adjacent.

Definition 7.4. Given a finite set Q C S landu e Q, the Voronoi cell of u with respect
to Qis

Cello(u) := {w e S : (u,w) > (v,w) forall v € Q}.
The Voronoi graph Vor(Q) has vertex set Q and edge set

E (Vor(Q)) := {uv : Cellg(u) N Cello(v) # B} .

Having defined the Voronoi graph, we can now state the following lemma from [1], which says that
a suitable set of quasistable directions exists. The lemma is proved in [Section 6][1]; more precisely,
it follows from [Lemmas 6.2 and 6.4][1].

Lemma 7.5. There exists a finite set Q C S%7', intersecting every open hemisphere of
S such that if uv € E(Vor(Q)), then there does not exist x € X € U such that

{u,x) <0 and (v,x) > 0. (36)
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Let us now fix a quasistable set Q satisfying the conclusion of Lemma 7.5. We will need the
following lemma, which is a particular case of [Lemma 9.8][1].!' The proof, which is relatively
straightforward, is given in [appendix B][1].

Lemma 7.6. There exists 6 = 6(Q) > 0 such that the following holds. Let W C Q, and
suppose that there exists x € P with

x,uy>1-26

for everyu € W. Then W is a clique in Vor(Q).

We are now ready to prove Lemma 7.3.

Proof of Lemma 7.3. In order to prove the lemma, it is enough to show that if A > 0 is
sufficiently large and D := (4 - P) N Z4, then Z4 \ D is U'-closed.

Suppose therefore that Z¢ \ D is not U'-closed, and let x € D and X € U be such
that (x + X) N D = . This implies that, for each y € X, there exists u € Q such that
(x +y,u) > A. Let W be the set of all such u; that is,

W:=U{uEQ D {x+yu) > A}

yEX

Now, if u € W, then (x,u) > A — R > (1 — §)4, since ||y|| £ R for every y € X and A was
chosen sufficiently large. By Lemma 7.6, it follows that W is a clique in Vor(Q).
To complete the proof, we claim that

v u") >0 (37

for all y € X, where u* := ZuEW u. This will then imply that X C Hiv*, where v* =
u* /||u*||, and hence that —v* & S(U"), contradicting our assumption that S(V") = st
To prove (37), fix y € X, and recall that there exists v € W such that (x + y,v) > A, and
therefore (y,v) > 0, since x € D C A - P. Since W is a clique in Vor(Q), it follows by
Lemma 7.5 that (y, u) > 0 for all u € W. Since we also have (y,v) > 0, we obtain (37), as
required. u

We can now prove the following lemma which, together with Lemma 7.2, completes the proof of
Theorem 7.1.

Lemma 7.7. If S(U') = S97}, then p.(Z4, V") = 1.

Proof. The lemma is an almost immediate consequence of Lemma 7.3. Indeed, if p < 1
and A is a p-random subset of Z¢, then with probability 1 the set Z? \ A contains a translate
of B;(0) n Z¢ for every A > 0. By Lemma 7.3, it follows that A almost surely fails to
percolate, as required. [

"'To be precise, we apply [Lemma 9.8][1] with W = @ and T = W, noting that No(®) = Q and that u € P({u}) for all u € Q;
see (113) and (114) in [1].
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