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Flat Littlewood polynomials exist

By Paul Balister, Béla Bollobás, Robert Morris, Julian Sahasrabudhe,

and Marius Tiba

Abstract

We show that there exist absolute constants ∆ > δ > 0 such that, for all

n > 2, there exists a polynomial P of degree n, with coefficients in {−1, 1},
such that

δ
√
n 6 |P (z)| 6 ∆

√
n

for all z ∈ C with |z| = 1. This confirms a conjecture of Littlewood

from 1966.

1. Introduction

We say that a polynomial P (z) of degree n is a Littlewood polynomial if

P (z) =

n
∑

k=0

εkz
k,

where εk ∈ {−1, 1} for all 0 6 k 6 n. The aim of this paper is to prove the

following theorem, which answers a question of Erdős [15, Prob. 26] from 1957,

and confirms a conjecture of Littlewood [26] from 1966.

Theorem 1.1. There exist constants ∆ > δ > 0 such that, for all n > 2,

there exists a Littlewood polynomial P (z) of degree n with

(1) δ
√
n 6 |P (z)| 6 ∆

√
n

for all z ∈ C with |z| = 1.

Polynomials satisfying (1) are known as flat polynomials, and Theorem 1.1

can therefore be more succinctly stated as follows: “flat Littlewood polynomials

exist.” It turns out that our main challenge will be to prove the lower bound
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on |P (z)|; indeed, explicit polynomials satisfying the upper bound in (1) have

been known to exist since the work of Shapiro [41] and Rudin [37] over 60 years

ago (see Section 3). In the 1980s a completely different (and non-constructive)

proof of the upper bound was given by Spencer [42], who used a technique that

had been developed a few years earlier by Beck [2] in his study of combinatorial

discrepancy. We remark that the Rudin–Shapiro construction, and also ideas

from discrepancy theory (see Section 4), will play key roles in our proof.

The study of Littlewood polynomials has a long and distinguished history

(see, for example, [7] or [34]). The roots of their study go back to the work

of Hardy and Littlewood [18] on Diophantine approximation over 100 years

ago, the work of Bloch and Pólya [5] on the maximum number of real roots of

polynomials with restricted coefficients, and the work of Littlewood and Offord

[29], [30], [31] and others [16], [39] on random polynomials. Two important

extremal problems that arose from these early investigations are Littlewood’s

L1-problem [19], which was famously resolved (up to constant factors) in 1981

by McGehee, Pigno and Smith [33] and Konyagin [22], and Chowla’s cosine

problem [14]; see [8], [38].

The question studied in this paper was asked in 1957, by Erdős [15], and

was then taken up (and extensively studied) by Littlewood [24], [25], [27], [26]

in a series of papers on the extremal properties of polynomials with restricted

coefficients. In particular, Littlewood conjectured in [26] that flat Littlewood

polynomials exist. This problem was given particular consideration in his well-

known 1968 monograph [28], where he lays out 30 of his favourite problems,

which he had curated for himself and his students for more than 30 years. In

the book, he details several failed approaches to the “fascinating” question of

the existence of flat Littlewood polynomials and notes that he tried in vain to

construct such polynomials.

Another well-known open problem, also proposed by Erdős [15] in the

same problem paper, asks whether there exists a constant c > 0 such that,

for every polynomial Pn(z) =
∑n

k=0 akz
k with ak ∈ C and |ak| = 1 for all

0 6 k 6 n, we have

|Pn(z)| > (1 + c)
√
n

for some z ∈ C with |z| = 1. (Note that, by a simple application of Parseval’s

theorem, the conclusion holds with c = 0.) Let us write Fn for the family

of Littlewood polynomials of degree n, and Gn for the (larger) family with

coefficients satisfying |ak| = 1. The class Gn is significantly richer than Fn,

and for polynomials in this richer class, significant progress was made in the

years following Littlewood’s work. It had been known since the work of Hardy

and Littlewood [18] that the upper bound in (1) holds for the polynomial in

Gn given by setting ak := kik, and Littlewood [25] proved that the polynomial

in Gn given by setting ak := exp
((k+1

2

)

πi/(n+ 1)
)

satisfies the stronger upper
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and lower bounds

(2) |P (z)| =
(

1 + o(1)
)√

n

for all z ∈ C with |z| = 1 except in a small interval around z = 1. Following fur-

ther progress in [4], [12] and building, in particular, on work of Körner [23], the

second question of Erdős [15] mentioned above was answered by Kahane [21],

who proved that there exist ultra-flat polynomials in Gn, i.e., polynomials that

satisfy (2) for all z ∈ C with |z| = 1. More recently, Bombieri and Bourgain [6]

improved Kahane’s bounds and, moreover, gave an effective construction of an

ultra-flat polynomial in Gn.

For the more restrictive class of Littlewood polynomials, much less progress

has been made over the past 50 years. The Rudin–Shapiro polynomials men-

tioned above satisfy the upper bound in (1) with ∆ =
√
2 when n = 2t − 1,

and with ∆ =
√
6 in general (see [1]). However, the previously best-known

lower bound, proved by Carroll, Eustice and Figiel [13] via a simple recursive

construction, states that there exist Littlewood polynomials Pn(z) ∈ Fn with

|Pn(z)| > n0.431 for all sufficiently large n ∈ N. Moreover, exhaustive search

for small values of n (see [35]) suggests that ultra-flat Littlewood polynomials

most likely do not exist. Let us mention one final interesting result in the

direction of Littlewood’s conjecture, due to Beck [3], who proved that there

exist flat polynomials in Gn with a400k = 1 for every k.

In the next section, we outline the general strategy that we will use to

prove Theorem 1.1. Roughly speaking, our Littlewood polynomial will consist

(after multiplication by a suitable negative power of z) of a real cosine polyno-

mial that is based on the Rudin–Shapiro construction, and an imaginary sine

polynomial that is designed to be large in the (few) places where the cosine

polynomial is small. To be slightly more precise, we will attempt to “push”

the sine polynomial far away from zero in these few dangerous places, using

techniques from discrepancy theory to ensure that we can do so. In order to

make this argument work, it will be important that the intervals on which the

Rudin–Shapiro construction is small are “well separated” (see Definition 2.2).

The properties of the cosine polynomial that we need are stated in Theorem 2.3

and proved in Section 3; the properties of the sine polynomial are stated in

Theorem 2.4 and proved in Section 5.

2. Outline of the proof

We may assume that n is sufficiently large, since the polynomial 1 − z −
z2 − · · · − zn has no roots with |z| = 1 if n > 2. It will also suffice to prove

Theorem 1.1 for n ≡ 0 (mod 4), since the addition of a constant number of

terms of the form ±zk can at worst only change |P (z)| by an additive constant.

We can also multiply the polynomial by z−2n′
so that it becomes the centred
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“Laurent polynomial”
2n′
∑

k=−2n′

εkz
k,

where n = 4n′. The following theorem therefore implies Theorem 1.1.

Theorem 2.1. For every sufficiently large n ∈ N, there exists a Little-

wood polynomial P (z) =
∑2n

k=−2n εkz
k such that

2−160√n 6 |P (z)| 6 212
√
n

for all z ∈ C with |z| = 1.

We remark that the constants in Theorem 2.1 could be improved some-

what, but we have instead chosen to (slightly) simplify the exposition wherever

possible.

2.1. Strategy. Before embarking on the technical details of the proof, let

us begin by giving a rough outline of the strategy that we will use to prove

Theorem 2.1. The first idea is to choose a set C ⊆ [2n] = {1, . . . , 2n}, and set

ε−k = εk for each k ∈ C, and ε−k = −εk for each k ∈ S := [2n] \ C. Setting

z = eiθ, the polynomial P (z) then decomposes as

2n
∑

k=−2n

εkz
k = ε0 + 2

∑

k∈C

εk cos(kθ) + 2i
∑

k∈S

εk sin(kθ).

The real part of this expression is a cosine polynomial, while the imaginary part

is a sine polynomial. Our aim is to choose the sine and cosine polynomials so

that both are O(
√
n) for all θ, and so that the sine polynomial is large whenever

the cosine polynomial is small.

Let us first describe our rough strategy for choosing the sine polynomial

s(θ), given a suitable cosine polynomial c(θ). For each “bad” interval I ⊆
R/2πZ on which |c(θ)| < δ

√
n, we will choose a direction (positive or negative)

and attempt to “push” the sine polynomial in that direction on that interval.

In other words, we pick a step function that is ±K
√
n on each of the bad

intervals, and zero elsewhere, where K is a large constant. We then attempt

to approximate this step function with a sine polynomial, the hope being that

we can do so with an error of size O(
√
n) on each bad interval (independent

of K).

In order to carry out this plan, we will use an old result1 of Spencer [42]

on combinatorial discrepancy (in the form of Corollary 4.2), first to choose the

step function, and then to show that we can approximate it sufficiently closely.

1We will in fact find it convenient to use a variant of Spencer’s theorem, due to Lovett

and Meka [32].
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More precisely, the first application (see Lemma 5.3) provides us with a step

function whose Fourier coefficients are all small, and the second application (see

Lemmas 5.4 and 5.5) then produces a sine polynomial that does not deviate

by more than O(
√
n) from this step function.

To make the sketch above rigorous, we will need the bad intervals to have a

number of useful properties; roughly speaking, they should be “few,” “small,”

and “well separated.” In particular, we will construct (see Definition 2.2 and

Theorem 2.3) a set I of intervals, each of size O(1/n), separated by gaps of

size Ω(1/n), with |c(θ)| > δ
√
n for all θ /∈

⋃

I∈I I. Moreover, the number of

intervals in I will be at most γn for some small constant γ > 0.

To see that these demands are not unreasonable, note first that if C ⊆
[γn], then the cosine polynomial has few roots, and the “typical” value of the

derivative of the cosine polynomial should be Θ((γn)3/2). This means that, if

we choose δ much smaller than γ, the polynomial should typically vary by more

than δ
√
n over a distance of order 1/n. In particular, we will show that if the set

of bad intervals cannot be covered by a collection of small and well-separated

intervals (in the sense described above), then several of the derivatives must

be small simultaneously. For our cosine polynomial, we shall use an explicit

construction based on the Rudin–Shapiro polynomials (see Section 3), and we

will show (see Lemma 3.5) that the value and first three derivatives of this

polynomial cannot all be simultaneously small.

2.2. The cosine polynomial. Let n ∈ N be sufficiently large, choose 2−43 <

γ 6 2−40 such that

(3) γn = 2t+11 + 2t − 1

for some odd integer t, and set

δ := 2−8γ7/2,

noting that δ > 2−160. Define C ⊆ [2γn] by setting C = 2C ′, where

C ′ :=
{

2t+10, . . . , 2t+10 + 2t − 1
}

∪
{

2t+11, . . . , 2t+11 + 2t − 1
}

,

so that C is a set of 2t+1 even integers. Our first aim is to construct a cosine

polynomial

c(θ) =
∑

k∈C

εk cos(kθ)

that is only small on a few, well-separated intervals and is never too large.

To state the two main steps in the proof of Theorem 2.1, we first need to

define what we mean by a “suitable” and “well-separated” family of intervals.

Definition 2.2. Let I be a collection of disjoint intervals in R/2πZ. We

will say that I is suitable if

(a) the endpoints of each interval in I lie in π
nZ;
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(b) I is invariant under the maps θ 7→ π ± θ;

(c) |I| = 4N for some N 6 γn.

We say that a suitable collection I is well separated if

(d) |I| 6 6π/n for each I ∈ I;
(e) d(I, J) > π/n for each I, J ∈ I with I 6= J ;2

(f)
⋃

I∈I I is disjoint from the set (π/2)Z+ [−100π/n, 100π/n].

We will prove the following theorem about cosine polynomials.

Theorem 2.3. There exists a cosine polynomial

c(θ) =
∑

k∈C

εk cos(kθ),

with εk ∈ {−1, 1} for every k ∈ C , and a suitable and well-separated collection

I of disjoint intervals in R/2πZ, such that

|c(θ)| > δ
√
n

for all θ /∈
⋃

I∈I I and |c(θ)| 6 √
n for all θ ∈ R/2πZ.

The cosine polynomial we will use to prove Theorem 2.3 is a slight mod-

ification of the Rudin–Shapiro polynomial. We might remark here that one

would expect almost any cosine polynomial whose absolute value is O(
√
n) to

satisfy somewhat similar conditions, but this seems difficult to prove in general.

2.3. The sine polynomials. There will in fact be two sine polynomials; the

first,

(4) se(θ) =
∑

j∈Se

εj sin(jθ),

will just be chosen to be small everywhere, more precisely at most 6
√
n for all

|z| = 1 (see Lemma 3.3). It is defined on the set Se = 2S′
e, where

S′
e := [n] \ C ′

so that Se is the set of remaining even integers in [2n].

We write So := {1, 3, . . . , 2n−1} for the set of all the odd integers in [2n],

and our main task will be to construct an “odd sine polynomial”

so(θ) =
∑

k∈So

εk sin(kθ)

that is large on each I ∈ I and not too large elsewhere. To be precise, we shall

prove the following theorem.

2Given two sets I, J ⊆ R/2πZ, let us write d(I, J) := inf{d(θ, θ′) : θ ∈ I, θ′ ∈ J}, where
d(θ, θ′) is the distance between θ and θ′ mod 2π.
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Theorem 2.4. Let I be a suitable and well-separated collection of disjoint

intervals in R/2πZ. There exists a sine polynomial

so(θ) =
∑

k∈So

εk sin(kθ),

with εk ∈ {−1, 1} for every k ∈ So, such that

(i) |so(θ)| > 10
√
n for all θ ∈

⋃

I∈I I , and

(ii) |so(θ)| 6 210
√
n for all θ ∈ R.

To deduce Theorem 2.1 from the results above, we simply set

P (eiθ) :=
(

1 + 2c(θ)
)

+ 2i
(

se(θ) + so(θ)
)

,

where c(θ) and so(θ) are the cosine and sine polynomials given by Theorems 2.3

and 2.4 respectively, and se(θ) is a sine polynomial as in (4); see Section 5 for

the details.

The rest of the paper is organised as follows. First, in Section 3, we will

define c(θ) and se(θ) and prove Theorem 2.3. In Section 4 we will recall the

main lemma from [32] and deduce Corollary 4.2; this will be our main tool in

the proof of Theorem 2.4, which is given in Section 5. Finally, we will conclude

by completing the proof of Theorem 2.1.

3. Rudin–Shapiro polynomials

In this section we will define the cosine polynomial that we will use to

prove Theorem 2.3 and the sine polynomial that we will use on the remaining

even integers. In both cases, we use the so-called Rudin–Shapiro polynomials,

which were introduced independently by Shapiro [41] and Rudin [37] (and

whose sequence of coefficients was also previously studied by Golay [17]). These

polynomials have been extensively studied over the last few decades; see, e.g.,

[9], [10], [11], [36]. Let us begin by recalling their definition.

Definition 3.1 (Rudin–Shapiro polynomials). Set P0(z) = Q0(z) = 1, and

inductively define

Pt+1(z) = Pt(z) + z2
t

Qt(z),

Qt+1(z) = Pt(z)− z2
t

Qt(z)

for each t > 0.

Observe that Pt(z) and Qt(z) are both Littlewood polynomials of degree

2t−1. A simple induction argument (see, e.g., [34]) shows that Pt(z)Pt(1/z)+

Qt(z)Qt(1/z) = 2t+1 for all z ∈ C \ {0}. It follows that

(5) |Pt(z)|2 + |Qt(z)|2 = 2t+1,
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and hence |Pt(z)|, |Qt(z)| 6 2(t+1)/2, for every z ∈ C with |z| = 1. Observing

that the first 2t terms of Pt+1 are the same as for Pt, let us write P<n(z) for the

polynomial of degree n − 1 that agrees with Pt(z) on the first n terms for all

sufficiently large t, and note that Pt(z) = P<2t(z). The following bound, which

is a straightforward consequence of (5), was proved by Shapiro [41]. (Stronger

bounds are known — see [1] — but we shall not need them.)

Lemma 3.2. We have |P<n(z)| 6 5
√
n for every z ∈ C with |z| = 1.

We now set

T := 2t+10.

We define our cosine polynomial to be

(6) c(θ) := Re
(

zTPt(z) + z2TQt(z)
)

,

and our even sine polynomial to be

(7) se(θ) := Im
(

P<(n+1)(z)− zTPt(z)− z2TPt(z)
)

,

where in both cases z = e2iθ. (Note the factor of 2 in the exponent here.) We

claim first that3 supp(c) = C and supp(se) = Se. This is clear for c, since

C = 2C ′ and C ′ = {T, . . . , T + 2t − 1} ∪ {2T, . . . , 2T + 2t − 1}; for se, it

follows since the terms of P<(n+1)(z) corresponding to C ′ form the polynomial

zTPt(z)+z2TPt(z). (To see this, simply consider the first time that these terms

appear in Definition 3.1, and note that the first 2t terms of both Pt+10 and

Qt+10 are the same as for Pt.) We remark that the idea behind the definition of

c(θ) is that the highly oscillatory factors zT and z2T allow us to show that c and

its first three derivatives cannot all simultaneously be small (see Lemma 3.5).

The following lemma is an almost immediate consequence of Lemma 3.2

and (5).

Lemma 3.3. We have |c(θ)| 6 √
n and |se(θ)| 6 6

√
n for every θ ∈ R.

Proof. Observe first that, setting z := e2iθ, we have

|c(θ)| 6 |Pt(z)|+ |Qt(z)| 6 2(t+3)/2
6

√
n,

where the first inequality follows from the definition of c, the second holds

by (5), and the last holds by (3), since γ 6 1. Similarly, we have

|se(θ)| 6 |P<(n+1)(z)|+ 2|Pt(z)| 6 5
√
n+ 1 + 2(t+3)/2

6 6
√
n,

where the first inequality follows from the definition of se, the second holds by

Lemma 3.2 and (5), and the last holds by (3). �

3We define the support, supp(f), of a sine polynomial f(θ) =
∑

k>0 εk sin(kθ) or cosine

polynomial f(θ) =
∑

k>0 εk cos(kθ) to be the set of k such that εk 6= 0.
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In order to prove Theorem 2.3, it remains to show that |c(θ)| > δ
√
n for

all θ /∈
⋃

I∈I I for some suitable and well-separated collection I of disjoint

intervals in R/2πZ. When doing so we will find it convenient to rescale the

polynomial as follows: define a function H : R → C by setting

H(x) := eixα(x) + e2ixβ(x),

where

α(x) := 2−(t+1)/2Pt(e
ix/T ) and β(x) := 2−(t+1)/2Qt(e

ix/T ),

and observe that

c(θ) = 2(t+1)/2 Re
(

H(2Tθ)
)

.

Note that, by (5), we have

|α(x)|2 + |β(x)|2 = 1.

We think of α(x) and β(x) as being slowly varying functions, relative to the

much more rapidly varying exponential factors in the definition of H(x).

The key property of the polynomial c(θ) that we will need is given by the

following lemma.

Lemma 3.4. Let 0 < η < 2−11. Every interval I ⊆ R of length 7η

contains a sub-interval J ⊆ I of length η such that

∣

∣Re
(

H(x)
)∣

∣ >
η3

27

for every x ∈ J . Moreover, if I = [a, a+7η], then we can take J = [a+ jη, a+

(j + 1)η] for some j ∈ {0, 1, . . . , 6}.

To prove Lemma 3.4, we will first need to prove the following lemma.

Lemma 3.5. For any x ∈ R, there exists k ∈ {0, 1, 2, 3} such that

∣

∣Re
(

H(k)(x)
)∣

∣ >
1

4
.

The proof of Lemma 3.5 is not very difficult, but we will need to work a

little. We will use Bernstein’s classical inequality (see, e.g., [40]), which states

that if f(z) is a polynomial of degree n, then

(8) max
|z|=1

|f ′(z)| 6 n ·max
|z|=1

|f(z)|.

This easily implies the following bound on the derivatives of the Rudin–Shapiro

polynomials.

Lemma 3.6. Let 0 6 k, t ∈ Z. We have

(9)

∣

∣

∣

∣

dk

dθk
Pt(e

iθ)

∣

∣

∣

∣

,

∣

∣

∣

∣

dk

dθk
Qt(e

iθ)

∣

∣

∣

∣

6 2kt+(t+1)/2
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for every θ ∈ R. In particular,

(10) |α(k)(x)|, |β(k)(x)| 6 2−10k

for every k > 1 and x ∈ R.

Note that (10) justifies our intuition that α(x) and β(x) vary relatively

slowly.

Proof. To prove (9) we simply apply (8) k times and (5) once. It follows

from (9) that

max
{

|α(k)(x)|, |β(k)(x)|
}

6 2−(t+1)/2 · T−k · 2kt+(t+1)/2 = 2−10k

for every k > 1 and x ∈ R, as claimed. �

We will use the following easy consequences of Lemma 3.6.

Lemma 3.7. For each 0 6 k 6 4, and every x ∈ R, we have

∣

∣H(k)(x)−
(

ikeixα(x) + (2i)ke2ixβ(x)
)∣

∣ 6
1

8

and

|H(k)(x)| 6 2k + 2.

Proof. Since H(x) = eixα(x) + e2ixβ(x), we have

H(k)(x) =

k
∑

j=0

Ç

k

j

å

(

ik−jeixα(j)(x) + (2i)k−je2ixβ(j)(x)
)

,

and hence, using (10),

∣

∣H(k)(x)−
(

ikeixα(x) + (2i)ke2ixβ(x)
)∣

∣ 6

k
∑

j=1

Ç

k

j

å

(

1 + 2k−j
)

2−10j
6

1

8

(with room to spare) since k 6 4. Since |ikeixα(x) + (2i)ke2ixβ(x)| 6 1 + 2k,

it follows immediately that

|H(k)(x)| 6 2k + 2,

as claimed. �

We can now easily deduce Lemma 3.5.

Proof of Lemma 3.5. Suppose that

∣

∣Re
(

H(k)(x)
)∣

∣ <
1

4

for each k ∈ {0, 1, 2, 3}. Setting
Ek := Re

(

ikeixα(x) + (2i)ke2ixβ(x)
)

,
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observe that

Re
(

eixα(x)
)

=
4E0 + E2

3
, Re

(

e2ixβ(x)
)

= −E0 + E2

3
,

Im
(

eixα(x)
)

= −4E1 + E3

3
, and Im

(

e2ixβ(x)
)

=
E1 + E3

6
.

Now, by Lemma 3.7, we have

|Ek| 6
1

4
+

1

8
=

3

8

for each k ∈ {0, 1, 2, 3}, and therefore

1 = |α(x)|2 + |β(x)|2

=
∣

∣Re
(

eixα(x)
)∣

∣

2
+
∣

∣ Im
(

eixα(x)
)∣

∣

2
+
∣

∣Re
(

e2ixβ(x)
)∣

∣

2
+
∣

∣ Im
(

e2ixβ(x)
)∣

∣

2

6

Å

52

32
+

52

32
+

22

32
+

22

62

ã

· 3
2

82
=

55

9
· 9

64
< 1,

which is a contradiction. It follows that |Re(H(k)(x0))| > 1/4 for some 0 6

k 6 3. �

To deduce Lemma 3.4 from Lemmas 3.5 and 3.7, we shall use a gener-

alization of Lagrange interpolation from [20, Th. 2] that bounds the higher

derivatives of a function in terms of its values at certain points.

Theorem 3.8. Let f : I → R be a k+1 times continuously differentiable

function, and suppose y0, . . . , yk ∈ I with y0 < y1 < · · · < yk. Then4

∥

∥

∥

∥

f (k)(x)−
k

∑

i=0

k!f(yi)
∏

j 6=i(yi − yj)

∥

∥

∥

∥

∞

6

∥

∥

∥

∥

x− 1

k + 1

k
∑

i=0

yi

∥

∥

∥

∥

∞

· ‖f (k+1)(x)‖∞.

Lemma 3.4 is a straightforward consequence of Lemmas 3.5 and 3.7 and

Theorem 3.8.

Proof of Lemma 3.4. Let I = [a, a+7η], and suppose (for a contradiction)

that for each 0 6 j 6 6, there exists a point

xj ∈ Ij :=
[

a+ jη, a+ (j + 1)η
]

such that |Re(H(xj))| < 2−7η3. We will show that |Re(H(k)(x0))| < 1/4 for

each 0 6 k 6 3, which will contradict Lemma 3.5, and hence prove the lemma.

For k = 0, we have |Re(H(k)(x0))| < 2−7η3 < 1/4 (by assumption), so let

k ∈ {1, 2, 3}. By Lemma 3.7 and Theorem 3.8, applied with f := Re(H) and

4In the notation of [20], the sum in the first ‖ · ‖∞ expression is L(k)(x), where L(x) =
∑

i
f(yi)

∏
j 6=i

(x − yj)/(yi − yj), and the second ‖ · ‖∞ expression is ‖ω(k)(x)/(k + 1)!‖∞,

where ω(x) =
∏

i
(x− yi). Note that the inequality is tight when f(x) = ω(x).
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yj := x2j for each 0 6 j 6 k (so, in particular, |yi − yj | > η for all i 6= j), we

have

∣

∣Re
(

H(k)(x0)
)∣

∣ 6

k
∑

i=0

k!

ηk
· η

3

27
+ 7η ·

∥

∥Re
(

H(k+1)(x)
)
∥

∥

∞

6
4 · 3!
27

+
7(24 + 2)

211
<

1

4
,

since η < 2−11, as required. �

Finally, in order to show that
⋃

I∈I I is disjoint from the set (π/2)Z +

[−100π/n, 100π/n], we will need the following simple lemma.

Lemma 3.9. If |x| 6 1/8 or |x− Tπ| 6 1/8, then Re
(

H(x)
)

> 1/2.

Proof. We will use the following facts (cf. [10, Th. 5]), which can be easily

verified by induction: for every t > 0,

P2t(1) = P2t(−1) = Q2t(1) = −Q2t(−1) = 2t,

and

P2t+1(1) = Q2t+1(−1) = 2t+1, P2t+1(−1) = Q2t+1(1) = 0.

Since t is odd, it follows that

Re
(

H(0)
)

= 2−(t+1)/2
(

Pt(1) +Qt(1)
)

= 1

and

Re
(

H(Tπ)
)

= 2−(t+1)/2
(

Pt(−1) +Qt(−1)
)

= 1.

Now, by Lemma 3.7 we have |H ′(x)| 6 4 for every x ∈ R, and so

Re
(

H(x)
)

> 1− 4|x| > 1

2

for all x ∈ R with |x| 6 1/8. A similar argument works for those x near Tπ. �

Remark 3.10. Note that x = Tπ corresponds to θ = π/2 in the cosine

polynomial c(θ). The reader may have noticed that we do not necessarily need

the cosine polynomial to be large at this point, as the sine polynomial can be

large there. However, for technical reasons, this will be useful later on, in the

proof of Lemma 5.6.

We are finally ready to prove Theorem 2.3.

Proof of Theorem 2.3. Let c(θ) be the cosine polynomial defined in (6),

and recall that supp(c) = C, that εk ∈ {−1, 1} for every k ∈ C, and that

|c(θ)| 6 √
n for every θ ∈ R/2πZ, by Lemma 3.3. We will show that there

exists a suitable and well-separated collection I of disjoint intervals in R/2πZ

such that |c(θ)| > δ
√
n for all θ /∈

⋃

I∈I I.
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To prove this, set η := 2Tπ/n, and note that η < πγ < 2−11. Partition

R/4TπZ = R/2nηZ into 2n intervals Ij := [jη, (j + 1)η], each of length η, and

say that an interval Ij is good if

∣

∣Re
(

H(x)
)∣

∣ >
η3

27

for all x ∈ Ij . Let J ′ be the collection of maximal unions of consecutive good

intervals Ij , and let I ′ be the collection of remaining intervals (i.e., maximal

unions of consecutive bad intervals). Thus I ′ and J ′ form interleaving col-

lections of intervals decomposing R/4TπZ. Scaling from x to θ = x/2T gives

corresponding collections of intervals I and J ; we claim that I is the required

suitable and well-separated collection.

First, to see that I is suitable, note that each interval Ij (and hence each

I ∈ I ′) starts and ends at a multiple of η = 2Tπ/n. Hence after scaling, each

I ∈ I starts and ends at points of π
nZ. The set I is invariant under the maps

θ 7→ π ± θ by the symmetries of the function cos(kθ) when k ∈ C ⊆ 2Z. To

see that |I| 6 4γn, note that since a cosine polynomial of degree d has at

most 2d roots in its period, there are at most 4(2T + 2t − 1) = 4γn values of

x ∈ R/4TπZ where Re(H(x)) = 2−7η3, and the same bound on the number

where Re(H(x)) = −2−7η3. Since each I ∈ I ′ must contain at least two such

points (counted with multiplicity), we have |I| = |I ′| 6 4γn, as required.

Next, let us show that I is well separated. Recall first that, by Lemma 3.4,

any set of seven consecutive intervals Ij must contain a good interval. Thus

|I| 6 6η for each I ∈ I ′, and so |I| 6 6π/n for each I ∈ I. Now, d(I, J) >

π/n for distinct I, J ∈ I by construction, and the sets [−100η, 100η] and

Tπ + [−100η, 100η] are each contained in an element of J ′ by Lemma 3.9,

since 2−7η3 < 1/2 and 100η < 1/8. Scaling down, it follows that
⋃

I∈I I is

disjoint from the set (π/2)Z+ [−100π/n, 100π/n], as required.

Finally, recalling that η = 2Tπ/n, γn = 2T + 2t − 1, T = 2t+10, and that

|Re(H(x))| > 2−7η3 for each x ∈ J ∈ J ′, it follows that

|c(θ)| > 2(t+1)/2 · 2−7η3 = 2−12π3(2T )7/2/n3
> 2−8γ7/2

√
n = δ

√
n

for every θ /∈
⋃

I∈I I, as required. �

4. Minimising discrepancy

In this section we recall the main “partial colouring” lemma of Spencer [42]

(whose proof, as noted in the introduction, was based on a technique of

Beck [2]), which will play an important role in the proof of Theorem 2.4.

In particular, we will use the results of this section both to choose in which

direction we should “push” the sine polynomial on each interval I ∈ I, and to

show that we can choose εk ∈ {−1, 1} so that it is pushed (roughly) the correct

distance. The following convenient variant of Spencer’s theorem was proved
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by Lovett and Meka [32, Th. 4],5 who also gave a beautiful polynomial-time

randomised algorithm for finding a colouring with small discrepancy.

Theorem 4.1 (Main Partial Colouring Lemma). Let v1, . . . , vm ∈ R
n and

x0 ∈ [−1, 1]n. If c1, . . . , cm > 0 are such that

m
∑

j=1

exp
(

− c2j/16
)

6
n

16
,

then there exists an x ∈ [−1, 1]n such that

|〈x− x0, vj〉| 6 cj‖vj‖2

for every j ∈ [m] and, moreover, xi ∈ {−1, 1} for at least n/2 indices i ∈ [n].

We will in fact use the following corollary of Theorem 4.1.

Corollary 4.2. Let v1, . . . , vm∈R
n and x0∈ [−1, 1]n. If c1, . . . , cm> 0

are such that

(11)

m
∑

j=1

exp
(

− c2j/14
2
)

6
n

16
,

then there exists an x ∈ {−1, 1}n such that

|〈x− x0, vj〉| 6 (cj + 30)
√
n · ‖vj‖∞

for every j ∈ [m].

Proof. We prove Corollary 4.2 by induction on n. Note first that the result

is trivial for all n 6 900, since we can choose x ∈ {−1, 1}n with ‖x−x0‖∞ 6 1,

and for such a vector we have |〈x− x0, vj〉| 6 n · ‖vj‖∞ 6 30
√
n · ‖vj‖∞.

For n > 900, we apply Theorem 4.1 with constants bj := 2cj/7, noting

that
m
∑

j=1

exp
(

− b2j/16
)

=
m
∑

j=1

exp
(

− c2j/14
2
)

6
n

16
.

We obtain a vector y ∈ [−1, 1]n, with

|〈y − x0, vj〉| 6 bj‖vj‖2 6 bj
√
n · ‖vj‖∞

for every j ∈ [m], such that yi ∈ {−1, 1} for at least n/2 indices i ∈ [n].

5The theorem as stated in [32] only insists that |xi| > 1 − δ for at least n/2 indices, due

to the requirement that a fast algorithm exists. However, it is clear by continuity that we

can take δ = 0 if we are only interested in an “existence proof.”
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Now, let U ⊆ [n] be a set of size dn/2e such that yi ∈ {−1, 1} for every

i ∈ U , and set W := [n] \U . For each j ∈ [m], define a constant aj > 0 so that

a2j := c2j + 142 log

Å

n

bn/2c

ã

,

and observe that
m
∑

j=1

exp
(

− a2j/14
2
)

6
bn/2c
16

=
|W |
16

,

and that aj 6 cj +12, since 142 log(n/bn/2c) < 196 log 2.01 < 122 for n > 900.

Let π : Rn → R
W be projection onto the coordinates of W . By the induc-

tion hypothesis, we obtain a vector z ∈ {−1, 1}W with

|〈z − π(y), π(vj)〉| 6 (aj + 30)
»

|W | · ‖π(vj)‖∞ 6 (aj + 30)
»

n/2 · ‖vj‖∞.

Now, define x ∈ {−1, 1}n by setting xi := yi for i ∈ U and π(x) = z, and

observe that

|〈x− x0, vj〉| 6 |〈y − x0, vj〉|+ |〈z − π(y), π(vj)〉|
6

(

bj + (aj + 30)/
√
2
)√

n · ‖vj‖∞

6

Å

2cj
7

+
cj + 42√

2

ã√
n · ‖vj‖∞

6 (cj + 30)
√
n · ‖vj‖∞,

as required, since bj = 2cj/7 and aj 6 cj + 12. This completes the induction

step. �

Remark 4.3. The result is stated in terms of the `∞-norms ‖vj‖∞ because

we cannot control the decrease in ‖vj‖2 when we discard half of the coordinates.

Remark 4.4. It is important for our application that m can be much larger

than n, and that the only restriction on m occurs via the condition (11). In

particular, we will later apply Corollary 4.2 with m very large, but with the cj
increasing sufficiently rapidly so that (11) still holds.

5. The odd sine polynomial

The aim of this section is to prove Theorem 2.4. Let I be a collection of

suitable well-separated intervals, and recall from Definition 2.2 that |I| = 4N

for some N 6 γn, and that I is invariant under the maps θ 7→ π ± θ. The

collection I is therefore uniquely determined by the set I0 ⊆ I of N intervals

that lie in [0, π/2] (since no I ∈ I contains 0 or π/2).

As described in Section 2.1, our aim is to “push” the sine polynomial

away from zero (in either the positive or negative direction) on each interval

in I. Let us say that a colouring α : I → {−1, 1} is symmetric if α(I ′) = α(I)
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whenever I ′ = π− I, and α(I ′) = −α(I) whenever I ′ = π+ I. Note that if α is

symmetric, then it is uniquely determined by its values on the set I0. Finally,
recall that So = {1, 3, 5, . . . , 2n− 1}, and set K := 27.

Definition 5.1. Given a colouring α : I → {−1, 1}, we define gα : R/2πZ →
{−1, 0, 1} by

gα(θ) :=
∑

I∈I

α(I)1[θ ∈ I].

We also define a vector ε̂ = (ε̂1, ε̂3, . . . , ε̂2n−1) ∈ R
So by setting

ε̂j := K
√
n

∫ π

−π
gα(θ) sin(jθ) dθ

for each j ∈ So.

Remark 5.2. By Fourier inversion, one would expect the function ŝα(θ) :=
∑

j∈So
ε̂j sin(jθ) to approximate πK

√
n gα(θ); in particular, it should be large

on the intervals I ∈ I. We will prove in Lemma 5.6 that this is indeed the

case.

We will use ε̂ as the starting point of an application of Corollary 4.2, so we

need |ε̂j | 6 1 for all j ∈ So. The following lemma, which we also prove using

Corollary 4.2, shows that, since we chose γ sufficiently small, we can choose

the colouring α so that this is the case.

Lemma 5.3. There exists a symmetric colouring α : I → {−1, 1} such

that ε̂ ∈ [−1, 1]So .

Proof. Write I0 = {I1, . . . , IN}, and recall that this collection deter-

mines I. Now, for each j ∈ [n], define a vector vj ∈ R
N by setting

(vj)i := 4K
√
n

∫

Ii

sin
(

(2j − 1)θ
)

dθ

for each i ∈ [N ], and observe that, for each j ∈ [n], we have

ε̂2j−1 = K
√
n

∫ π

−π
gα(θ) sin

(

(2j − 1)θ
)

dθ =

N
∑

i=1

α(Ii)(vj)i,

by the symmetry conditions on both α and I. Our task is therefore to find

a vector x ∈ {−1, 1}N such that |〈x, vj〉| 6 1 for all j ∈ [n]. Indeed, we will

then be able to set α(Ii) = xi for each i ∈ [N ] and deduce that |ε̂k| 6 1 for all

k ∈ So.

We do so by applying Corollary 4.2 with x0 := 0 and cj := 14
√

log(16n/N)

for each j ∈ [n]. Noting that (11) is satisfied, it follows from Corollary 4.2 that

there exists an x ∈ {−1, 1}N such that

|〈x, vj〉| 6
(

cj + 30
)
√
N · ‖vj‖∞.
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Now, since I is well separated, by Definition 2.2(d) we have

|(vj)i| 6 4K
√
n · |Ii| 6

24πK√
n

for every i ∈ [N ] and j ∈ [n]. It follows that

|〈x, vj〉| 6
(

14
»

log(16n/N) + 30
)

»

N/n · 24πK.

Note that the right-hand side is an increasing function of N for N/n 6 γ < 1

and so

|〈x, vj〉| 6
(

14
»

log(16/γ) + 30
)√

γ · 24πK 6 1,

where the last inequality follows from our choice of K = 27 and the inequality

γ 6 2−40. �

For the rest of the proof, fix this colouring α (and hence also the vector ε̂).

Recall that our aim is to choose a colouring ε : So → {−1, 1} so that the

conclusion of Theorem 2.4 holds. Given such a colouring, define

so(θ) :=
∑

j∈So

εj sin(jθ) and ŝα(θ) :=
∑

j∈So

ε̂j sin(jθ).

Our aim is to choose the εj so that |so(θ)− ŝα(θ)| is uniformly bounded for all

θ ∈ R/2πZ (see Lemma 5.5). A näıve approach to controlling this difference

on a sufficiently dense set of points would require imposing more constraints

(with smaller values of cj) than can be handled by Corollary 4.2. Instead we

shall place constraints on the differences |s(`)o (θ)− ŝ
(`)
α (θ)| of the `th derivatives

for each ` > 0, but at many fewer values of θ, and then use Taylor’s Theorem

to bound |so(θ)− ŝα(θ)| at all other points. The advantage of this approach is

that the constraints we need on the higher derivatives become rapidly weaker

as ` increases and, in particular, can be chosen so that (11) is satisfied.

Note that it is enough to bound |so(θ)− ŝα(θ)| on [0, π2 ] as both so(θ) and

ŝα(θ) have the same symmetries under θ 7→ π ± θ. Set M := 16n, and let

θk := (2k−1)π
4M for k = 1, . . . ,M . Then for any point θ ∈ [0, π2 ], there exists

k ∈ [M ] such that |θ − θk| 6 π
4M = 2−6π/n. By Taylor’s Theorem (and the

fact that all sine polynomials are entire functions so their Taylor expansions

converge), we have

(12) so(θ)− ŝα(θ) =
∞
∑

`=0

(

s(`)o (θk)− ŝ(`)α (θk)
)(θ − θk)

`

`!
.

We will bound the absolute value of the right-hand side using Corollary 4.2.

Lemma 5.4. There exists a colouring ε : So → {−1, 1} such that
∣

∣s(`)o (θk)− ŝ(`)α (θk)
∣

∣ 6 (65 + 2`)
√
n · (2n)`

for every k ∈ [M ] and ` > 0.
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Proof. For each k ∈ [M ] and ` > 0, define a vector v(k,`) ∈ R
n by setting

(v(k,`))j =
d`

dθ`
sin

(

(2j − 1)θ
)∣

∣

θ=θk

for each j ∈ [n], and observe that

s(`)o (θk)− ŝ(`)α (θk) =
n
∑

j=1

(

ε2j−1 − ε̂2j−1

)

(v(k,`))j = 〈ε− ε̂, v(k,`)〉,

where we consider ε− ε̂ and v(k,`) as vectors in R
So .

We apply Corollary 4.2 with x0 := ε̂ and c(k,`) = 14
√

(9 + `) log 2. Ob-

serve that

M
∑

k=1

∞
∑

`=0

exp
(

− c2(k,`)/14
2
)

=
M
∑

k=1

∞
∑

`=0

2−(9+`) = M · 2−8 =
n

16
,

and so (11) is satisfied. It follows6 from Corollary 4.2 that there exists an

ε ∈ {−1, 1}n such that

|〈ε− ε̂, v(k,`)〉| 6
(

c(k,`) + 30
)√

n · ‖v(k,`)‖∞

for every k ∈ [M ] and ` > 0. Now, observe that

‖v(k,`)‖∞ 6 (2n)`,

and that 142(9 + `) log 2 6 352 + 140` 6 (35 + 2`)2, so

c(k,`) + 30 6 65 + 2`.

Combining these bounds, we obtain
∣

∣s(`)o (θk)− ŝ(`)α (θk)
∣

∣ = |〈ε− ε̂, v(k,`)〉| 6 (65 + 2`)
√
n · (2n)`

for every k ∈ [M ] and ` > 0, as required. �

The following bound on the magnitude of so(θ)−ŝα(θ) is a straightforward

consequence.

Lemma 5.5. There exists a colouring ε : So → {−1, 1} such that

|so(θ)− ŝα(θ)| 6 72
√
n

for every θ ∈ R.

6Note that we appear to be applying Corollary 4.2 with an infinite number of constraints,

but in fact only finitely many of them are needed as the constraints vacuously hold when

` > n.
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Proof. Let us assume (without loss of generality) that θ ∈ [0, π2 ], and let

k ∈ [M ] be such that |θ − θk| 6 2−6π/n. By (12) and Lemma 5.4, we have

∣

∣so(θ)− ŝα(θ)
∣

∣ 6

∞
∑

`=0

∣

∣s(`)o (θk)− ŝ(`)α (θk)
∣

∣

(2−6π/n)`

`!
6

∞
∑

`=0

(65+2`)
√
n · (2

−5π)`

`!
.

Now simply observe that

∞
∑

`=0

(65 + 2`)
(2−5π)`

`!
= (65 + 2−4π)e2

−5π
6 72,

and the lemma follows. �

We will prove that the conclusion of Theorem 2.4 holds for the colouring

ε given by Lemma 5.5. To deduce this, it will suffice to show that ŝα(θ)

approximates the step function πK
√
n·gα(θ) sufficiently well and, in particular,

that it is large on each interval I ∈ I.

Lemma 5.6. For every θ ∈
⋃

I∈I I , we have

|ŝα(θ)| >
2K

√
n

3
.

Moreover, |ŝα(θ)| 6 5K
√
n for every θ ∈ R.

The proof of Lemma 5.6 follows from a standard (but somewhat techni-

cal) calculation, and to simplify things slightly we will find it convenient to

renormalise, by defining

s̃α(θ) := (K
√
n)−1ŝα(θ).

Fix θ0 ∈ R, and observe that, by the symmetry conditions on both α and I,
we have

s̃α(θ0) =
n−1
∑

j=0

sin
(

(2j + 1)θ0
)

∫ π

−π
gα(θ) sin

(

(2j + 1)θ
)

dθ

= 4

∫ π/2

0
gα(θ)

n−1
∑

j=0

sin
(

(2j + 1)θ0
)

sin
(

(2j + 1)θ
)

dθ.

(13)

We can now use the following simple trigonometric fact.

Observation 5.7.

4

n−1
∑

j=0

sin
(

(2j + 1)θ0
)

sin
(

(2j + 1)θ
)

=
sin

(

2n(θ − θ0)
)

sin(θ − θ0)
− sin

(

2n(θ + θ0)
)

sin(θ + θ0)
.
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Proof. Simply note that both sides are equal to

2

n−1
∑

j=0

(

cos
(

(2j + 1)(θ − θ0)
)

− cos
(

(2j + 1)(θ + θ0)
)

)

,

using the addition formulae for sin(α± β) and cos(α± β) and the telescoping

series

sin(2nϕ) =

n−1
∑

j=0

(

sin
(

(2j + 1)ϕ+ ϕ
)

− sin
(

(2j + 1)ϕ− ϕ
)

)

=

n−1
∑

j=0

2 cos
(

(2j + 1)ϕ
)

sin(ϕ)

for ϕ = θ ± θ0. �

Combining (13) and Observation 5.7, and recalling the definition of gα(θ),

it follows that

(14) s̃α(θ0) =
∑

I∈I0

α(I)

∫

I

Å

sin
(

2n(θ − θ0)
)

sin(θ − θ0)
− sin

(

2n(θ + θ0)
)

sin(θ + θ0)

ã

dθ.

Before bounding the right-hand side of (14), let us briefly discuss what is

going on. Let θ0 ∈ [0, π/2], and recall from Definition 2.2(f) that no I ∈ I0
contains any point close to 0 or π/2. It follows that the integrand in (14)

behaves roughly like a point mass placed at θ = θ0, and hence s̃α(θ0) should

be approximately α(I) when θ0 ∈ I, and small otherwise.

To make this rigorous, we will show that the integral of the first term over

the interval I ∈ I0 containing θ0 (if such an interval exists) is of order 1, and

that the integral over the remaining intervals (and over the second term) is

smaller. This will follow via a straightforward calculation from the fact that

the endpoints of each interval in I lie in π
nZ.

Instead of approximating the integral for an interval close to θ0 directly,

we will instead compare it to the following standard “sine integral.”

Lemma 5.8. Let I ∈ I , and let θ0 ∈ R.

(a) If θ0 ∈ I , then

4

3
6

∫

I

sin
(

2n(θ − θ0)
)

θ − θ0
dθ 6 4.

(b) If θ0 /∈ I then

−1 6

∫

I

sin
(

2n(θ − θ0)
)

θ − θ0
dθ 6 2.
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Proof. Recall from Definition 2.2 that the endpoints of I are in π
nZ, and

let I = [aπ/n, bπ/n], where a, b ∈ Z with a < b. Substituting x = 2n(θ − θ0)

gives us the integral

f(θ0) :=

∫

I

sin
(

2n(θ − θ0)
)

θ − θ0
dθ =

∫ 2bπ−2nθ0

2aπ−2nθ0

sinx

x
dx,

and we note that

f ′(θ0) = (−2n)

Å

sin(2bπ − 2nθ0)

2bπ − 2nθ0
− sin(2aπ − 2nθ0)

2aπ − 2nθ0

ã

=
4πn(a− b) sin(2nθ0)

(2aπ − 2nθ0)(2bπ − 2nθ0)
,

since a, b ∈ Z, so sin(2aπ−2nθ0) = sin(2bπ−2nθ0) = − sin(2nθ0). Since a 6= b,

it follows that the extremal values of f(θ0) can occur only when sin(2nθ0) = 0,

i.e., when 2nθ0 ∈ πZ. These extremal values must therefore be of the form

u(`) + u(`+ 1) + · · ·+ u(`+ 2(b− a)− 1)

for some ` ∈ Z, where

u(j) :=

∫ (j+1)π

jπ

sinx

x
dθ.

We claim first that if θ0 ∈ I, then
∫ 2π

0

sinx

x
dθ 6 f(θ0) 6

∫ π

−π

sinx

x
dθ.

Indeed, if θ0 ∈ I, then 2aπ 6 2θ0n 6 2bπ, and so ` 6 0 6 ` + 2(b − a). Note

also that

u(2j) > 0, u(2j + 1) < 0 and u(−j) = u(j − 1)

for every non-negative j ∈ Z, and moreover

u(2j − 1) + u(2j) < 0 < u(2j) + u(2j + 1)

for every j > 1. It follows that the maxima of f(θ0) are at most u(−1)+ u(0),

and the minima are at least u(0) + u(1), as claimed. Similarly, if θ0 /∈ I, then

without loss of generality we have ` > 0, and by the same argument as above

we have
∫ 2π

π

sinx

x
dθ 6 f(θ0) 6

∫ π

0

sinx

x
dθ.

It is now straightforward to obtain the claimed bounds by numerical integra-

tion. �

We will also use the following simple lemma to bound the integrals in (14).
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Lemma 5.9. If h : [a, b] → R is a monotonic function and b − a ∈ π
nZ,

then
∣

∣

∣

∣

∫ b

a
h(θ) sin(2nθ) dθ

∣

∣

∣

∣

6
|h(b)− h(a)|

n
.

Proof. Assume without loss of generality that h is increasing, and suppose

first that b = a+ π
n . Since sin(x+ π) = − sin(x), we have

∫ a+π
n

a
h(θ) sin(2nθ) dθ =

∫ a+ π
2n

a

(

h(θ)− h(θ + π
2n)

)

sin(2nθ) dθ,

and therefore, since h is increasing,
∣

∣

∣

∣

∫ a+π
n

a
h(θ) sin(2nθ) dθ

∣

∣

∣

∣

6
(

h(b)− h(a)
)

∫ a+ π
2n

a
| sin(2nθ)| dθ =

h(b)− h(a)

n
,

as required. To deduce the general case, simply split the interval [a, b] into

sub-intervals of length π
n and use the triangle inequality. �

We are now ready to prove Lemma 5.6.

Proof of Lemma 5.6. Recall that it is enough to prove the bounds when

θ = θ0 ∈ [0, π/2], and that I0 = {I ∈ I : I ⊆ [0, π/2]}. By (14), we have

(15) s̃α(θ0) =
∑

I∈I0

α(I)

∫

I

Å

sin
(

2n(θ − θ0)
)

sin(θ − θ0)
− sin

(

2n(θ + θ0)
)

sin(θ + θ0)

ã

dθ

for every θ0 ∈ [0, π/2]. We will deal with the second term first.

Claim 1:
∑

I∈I0

∣

∣

∣

∣

∫

I

sin(2n(θ + θ0))

sin(θ + θ0)
dθ

∣

∣

∣

∣

6
1

50π
+

O(1)

n
.

Proof of Claim 1. Let I ∈ I0, and suppose first that sin θ is monotonic on

I + θ0. By Lemma 5.9, applied with h(θ) = 1/ sin θ, we have
∣

∣

∣

∣

∫

I

sin(2n(θ + θ0))

sin(θ + θ0)
dθ

∣

∣

∣

∣

6
1

n

Å

max
θ∈I

1

sin(θ + θ0)
− min

θ∈I

1

sin(θ + θ0)

ã

since, by Definition 2.2, the endpoints of I are in π
nZ. If sin θ is not monotonic

on I + θ0, then we instead use the trivial bound
∣

∣

∣

∣

∫

I

sin(2n(θ + θ0))

sin(θ + θ0)
dθ

∣

∣

∣

∣

6 |I| ·max
θ∈I

1

sin(θ + θ0)
=

O(1)

n
,

where the final inequality holds since |I| = O(1/n), by Definition 2.2, and

hence (since sin θ is not monotonic on I+θ0 ⊆ [0, π]) we have sin(θ+θ0) > 1/2

for all θ ∈ I.

Now, summing over intervals I ∈ I0 and partitioning into three classes ac-

cording to whether sin θ is increasing, decreasing, or neither on I+θ0, we obtain

two alternating sums that are both bounded by their maximum terms, and pos-

sibly one additional term (for which we use the trivial bound). Recalling from
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Definition 2.2 that
⋃

I∈I I is disjoint from the set (π/2)Z+[−100π/n, 100π/n],

we obtain
∑

I∈I0

∣

∣

∣

∣

∫

I

sin(2n(θ + θ0))

sin(θ + θ0)
dθ

∣

∣

∣

∣

6
2

n sin(100π/n)
+

O(1)

n
=

1

50π
+

O(1)

n
,

as claimed. �

The next claim will allow us to replace the first term in (15) by the integral

in Lemma 5.8.

Claim 2:
∑

I∈I0

∣

∣

∣

∣

∫

I

sin
(

2n(θ − θ0)
)

sin(θ − θ0)
− sin

(

2n(θ − θ0)
)

θ − θ0
dθ

∣

∣

∣

∣

=
O(1)

n
.

Proof of Claim 2. We again apply Lemma 5.9, this time with h(θ) =
1

sin θ − 1
θ , which is increasing on [−π/2, π/2], to give

∣

∣

∣

∣

∫

I

sin
(

2n(θ − θ0)
)

sin(θ − θ0)
− sin

(

2n(θ − θ0)
)

θ − θ0
dθ

∣

∣

∣

∣

6
1

n

(

max
θ∈I

h(θ−θ0)−min
θ∈I

h(θ−θ0)
)

for every I ∈ I0. (Note that θ − θ0 ∈ [−π/2, π/2] for θ ∈ I ∈ I0.) Summing

over intervals I ∈ I0, and noting that we again have an alternating sum, we

obtain the bound
∑

I∈I0

∣

∣

∣

∣

∫

I

sin
(

2n(θ − θ0)
)

sin(θ − θ0)
− sin

(

2n(θ − θ0)
)

θ − θ0
dθ

∣

∣

∣

∣

6
h(π/2)− h(−π/2)

n
=

O(1)

n
,

as claimed. �

It remains to bound
∫

I
sin(2n(θ−θ0))

θ−θ0
dθ for each I ∈ I. When d(θ0, I) < π/n

we will apply Lemma 5.8 to bound this integral. However, in order to deal with

the intervals that are far from θ0 we will need the following stronger bound.

Let J (θ0) :=
{

I ∈ I0 : d(θ0, I) > π/n
}

.

Claim 3:
∑

I∈J (θ0)

∣

∣

∣

∣

∫

I

sin
(

2n(θ − θ0)
)

θ − θ0
dθ

∣

∣

∣

∣

6
2

π
.

Proof of Claim 3. Once again we apply Lemma 5.9, this time with h(θ) =

1/θ. We obtain
∣

∣

∣

∣

∫

I

sin
(

2n(θ − θ0)
)

θ − θ0
dθ

∣

∣

∣

∣

6
1

n

Å

max
θ∈I

1

θ − θ0
− min

θ∈I

1

θ − θ0

ã

for every I ∈ I0 with θ0 /∈ I. Summing over intervals in J (θ0), and noting

that we obtain two alternating sums (one on either side of θ0), we obtain

∑

I∈J (θ0)

∣

∣

∣

∣

∫

I

sin
(

2n(θ − θ0)
)

θ − θ0
dθ

∣

∣

∣

∣

6
2

n
· 1

π/n
=

2

π

as claimed. �
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Note that 2/π + 1/(50π) + O(1/n) 6 2/3 if n is sufficiently large, and

suppose first that θ0 ∈ I for some I ∈ I0. Then d(θ0, I
′) > π/n for all

I 6= I ′ ∈ I0, by Definition 2.2. It follows, by (15), Claims 1, 2 and 3, and

Lemma 5.8, that
2

3
=

4

3
− 2

3
6

∣

∣s̃α(θ0)
∣

∣ 6 4 +
2

3
< 5,

as required. On the other hand, if θ0 /∈
⋃

I∈I0
I, then there are at most two

intervals I ∈ I0 such that d(θ0, I) < π/n. Therefore, by (15), Claims 1, 2

and 3, and Lemma 5.8, we have

|s̃α(θ0)| 6 2 · 2 + 2

3
< 5.

Since ŝα(θ) = K
√
n s̃α(θ), this completes the proof of the lemma. �

Remark 5.10. We note that it is important that the lengths of the intervals

I ∈ I are multiples of π
n . Without this assumption it is possible that the error

term from the distant intervals I ∈ I0 in Claim 3 could be unbounded. Indeed,

the reason it does not stems ultimately from the cancelation in the integrals

provided by Lemma 5.9.

Theorem 2.4 is an almost immediate consequence of Lemmas 5.5 and 5.6.

Proof of Theorem 2.4. Let I be a suitable and well-separated collection of

disjoint intervals in R/2πZ. By Lemma 5.5, there exists a colouring ε : So →
{−1, 1} such that, if α is the function given by Lemma 5.3, then

|so(θ)− ŝα(θ)| 6 72
√
n

for every θ ∈ R. Now observe that, by Lemma 5.6, we have

|so(θ)| > |ŝα(θ)| − |so(θ)− ŝα(θ)| >
Å

2K

3
− 72

ã√
n > 10

√
n

for all θ ∈
⋃

I∈I I, and

|so(θ)| 6 |ŝα(θ)|+ |so(θ)− ŝα(θ)| 6
(

5K + 72
)√

n 6 210
√
n

for all θ ∈ R, as required. �

Finally, let us put together the pieces and prove Theorem 2.1.

Proof of Theorem 2.1. Let c(θ) be the cosine polynomial, and let I be

the suitable and well-separated collection of disjoint intervals in R/2πZ, given

by Theorem 2.3. Now, given I, let so(θ) be the sine polynomial given by

Theorem 2.4, and let se(θ) be the sine polynomial defined in (7). We claim

that the polynomial

P (eiθ) :=
(

1 + 2c(θ)
)

+ 2i
(

se(θ) + so(θ)
)

has the properties required by the theorem.
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To prove the claim, we should first observe that P (z) =
∑2n

k=−2n εkz
k with

εk ∈ {−1, 1} for every k ∈ [−2n, 2n]. Indeed the supports of c(θ), se(θ), and

so(θ) are disjoint and cover the powers zk with k ∈ {−2n, . . . ,−2n} \ {0}, and
the constant 1 provides the term corresponding to k = 0. Now, observe that

|P (eiθ)|2 6
(

2|c(θ)|+ 1
)2

+ 4|se(θ) + so(θ)|2

6
(

2
√
n+ 1

)2
+ 4

(

210 + 6
)2
n 6

(

212
√
n
)2

for every θ ∈ R, since |c(θ)| 6 √
n and |se(θ)| 6 6

√
n, by Theorem 2.3 and

Lemma 3.3, and |so(θ)| 6 210
√
n, by Theorem 2.4. Next, observe that if

θ /∈
⋃

I∈I I, then

|P (eiθ)| >
∣

∣Re
(

P (eiθ)
)∣

∣ > 2|c(θ)| − 1 > δ
√
n

for all sufficiently large n, by Theorem 2.3. Finally, if θ ∈
⋃

I∈I I, then

|P (eiθ)| >
∣

∣ Im
(

P (eiθ)
)∣

∣ > 2
(

|so(θ)| − |se(θ)|
)

> 2
(

10
√
n− 6

√
n
)

= 8
√
n,

by Theorem 2.4. Hence |P (z)| > δ
√
n for all z ∈ C with |z| = 1, as required.

�

Acknowledgements. Much of this research was carried out during a one-

month visit by the authors to IMT Lucca. We are grateful to IMT (and

especially to Prof. Guido Caldarelli) for providing a wonderful working envi-

ronment.

References

[1] P. Balister, Bounds on Rudin–Shapiro polynomials of arbitrary degree, 2019.

arXiv 1909.08777.

[2] J. Beck, Roth’s estimate of the discrepancy of integer sequences is nearly sharp,

Combinatorica 1 no. 4 (1981), 319–325. MR 0647981. Zbl 0491.10046. https:

//doi.org/10.1007/BF02579452.

[3] J. Beck, Flat polynomials on the unit circle—note on a problem of Littlewood,

Bull. London Math. Soc. 23 no. 3 (1991), 269–277. MR 1123337. Zbl 0748.30006.

https://doi.org/10.1112/blms/23.3.269.

[4] E. Beller and D. J. Newman, The minimum modulus of polynomials, Proc.

Amer. Math. Soc. 45 (1974), 463–465. MR 0355015. Zbl 0306.30001. https:

//doi.org/10.2307/2039981.
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[15] P. Erdős, Some unsolved problems, Michigan Math. J. 4 (1957), 291–300.

MR 0098702. Zbl 0081.00102. https://doi.org/10.1307/mmj/1028997963.

[16] P. Erdös and A. C. Offord, On the number of real roots of a random algebraic

equation, Proc. London Math. Soc. (3) 6 (1956), 139–160. MR 0073870. Zbl 0070.

01702. https://doi.org/10.1112/plms/s3-6.1.139.

[17] M. J. E. Golay, Multi-slit spectrometry, J. Opt. Soc. Am. 39 no. 6 (1949),

437–444. https://doi.org/10.1364/JOSA.39.000437.

[18] G. H. Hardy and J. E. Littlewood, Some problems of Diophantine approxi-

mation: A remarkable trigonometric series, Proc. Nat. Acad. Sci. 2 (1916), 583–

586. JFM 46.0443.02.

[19] G. H. Hardy and J. E. Littlewood, A new proof of a theorem on rearrange-

ments, J. London Math. Soc. 23 (1948), 163–168. MR 0028445. Zbl 0034.04301.

https://doi.org/10.1112/jlms/s1-23.3.163.

[20] G. W. Howell, Derivative error bounds for Lagrange interpolation: an ex-

tension of Cauchy’s bound for the error of Lagrange interpolation, J. Ap-

prox. Theory 67 no. 2 (1991), 164–173. MR 1133057. Zbl 0749.41005. https:

//doi.org/10.1016/0021-9045(91)90015-3.
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