Annals of Mathematics 192 (2020), 977-1004
https://doi.org/10.4007 /annals.2020.192.3.6

Flat Littlewood polynomials exist

By PAUL BALISTER, BELA BOLLOBAS, ROBERT MORRIS, JULIAN SAHASRABUDHE,
and MARIUS TIBA

Abstract

We show that there exist absolute constants A > § > 0 such that, for all
n > 2, there exists a polynomial P of degree n, with coefficients in {—1, 1},

such that

5v/n < |P(2)| < AVA
for all z € C with |z| = 1. This confirms a conjecture of Littlewood
from 1966.

1. Introduction

We say that a polynomial P(z) of degree n is a Littlewood polynomial if

P(z) = Z ex2”,
k=0

where ¢, € {—1,1} for all 0 < k£ < n. The aim of this paper is to prove the
following theorem, which answers a question of Erdés [15, Prob. 26] from 1957,
and confirms a conjecture of Littlewood [26] from 1966.

THEOREM 1.1. There exist constants A > § > 0 such that, for all n > 2,
there exists a Littlewood polynomial P(z) of degree n with

(1) 5V < |P(2)| < AV
for all z € C with |z| = 1.

Polynomials satisfying (1) are known as flat polynomials, and Theorem 1.1
can therefore be more succinctly stated as follows: “flat Littlewood polynomials
exist.” It turns out that our main challenge will be to prove the lower bound
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on |P(z)]; indeed, explicit polynomials satisfying the upper bound in (1) have
been known to exist since the work of Shapiro [41] and Rudin [37] over 60 years
ago (see Section 3). In the 1980s a completely different (and non-constructive)
proof of the upper bound was given by Spencer [42], who used a technique that
had been developed a few years earlier by Beck [2] in his study of combinatorial
discrepancy. We remark that the Rudin—Shapiro construction, and also ideas
from discrepancy theory (see Section 4), will play key roles in our proof.

The study of Littlewood polynomials has a long and distinguished history
(see, for example, [7] or [34]). The roots of their study go back to the work
of Hardy and Littlewood [18] on Diophantine approximation over 100 years
ago, the work of Bloch and Pélya [5] on the maximum number of real roots of
polynomials with restricted coefficients, and the work of Littlewood and Offord
[29], [30], [31] and others [16], [39] on random polynomials. Two important
extremal problems that arose from these early investigations are Littlewood’s
Li-problem [19], which was famously resolved (up to constant factors) in 1981
by McGehee, Pigno and Smith [33] and Konyagin [22], and Chowla’s cosine
problem [14]; see [8], [38].

The question studied in this paper was asked in 1957, by Erdés [15], and
was then taken up (and extensively studied) by Littlewood [24], [25], [27], [26]
in a series of papers on the extremal properties of polynomials with restricted
coefficients. In particular, Littlewood conjectured in [26] that flat Littlewood
polynomials exist. This problem was given particular consideration in his well-
known 1968 monograph [28], where he lays out 30 of his favourite problems,
which he had curated for himself and his students for more than 30 years. In
the book, he details several failed approaches to the “fascinating” question of
the existence of flat Littlewood polynomials and notes that he tried in vain to
construct such polynomials.

Another well-known open problem, also proposed by Erdés [15] in the
same problem paper, asks whether there exists a constant ¢ > 0 such that,
for every polynomial P,(2) = > 7_,axz* with a; € C and |ag| = 1 for all
0 < k < n, we have

[Pa(2)] = (1+c)vn
for some z € C with |z| = 1. (Note that, by a simple application of Parseval’s
theorem, the conclusion holds with ¢ = 0.) Let us write F,, for the family
of Littlewood polynomials of degree n, and G, for the (larger) family with
coefficients satisfying |ag| = 1. The class G, is significantly richer than F,,
and for polynomials in this richer class, significant progress was made in the
years following Littlewood’s work. It had been known since the work of Hardy
and Littlewood [18] that the upper bound in (1) holds for the polynomial in
G, given by setting ay := k%, and Littlewood [25] proved that the polynomial

in G, given by setting aj := exp ((kgl)m/(n + 1)) satisfies the stronger upper
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and lower bounds

(2) P(2)] = (L+o(1)) v

for all z € C with |z| = 1 except in a small interval around z = 1. Following fur-
ther progress in [4], [12] and building, in particular, on work of Kérner [23], the
second question of Erdés [15] mentioned above was answered by Kahane [21],
who proved that there exist ultra-flat polynomials in G, i.e., polynomials that
satisfy (2) for all z € C with |z| = 1. More recently, Bombieri and Bourgain [6]
improved Kahane’s bounds and, moreover, gave an effective construction of an
ultra-flat polynomial in G,,.

For the more restrictive class of Littlewood polynomials, much less progress
has been made over the past 50 years. The Rudin—Shapiro polynomials men-
tioned above satisfy the upper bound in (1) with A = /2 when n = 2¢ — 1,
and with A = /6 in general (see [1]). However, the previously best-known
lower bound, proved by Carroll, Eustice and Figiel [13] via a simple recursive
construction, states that there exist Littlewood polynomials P,(z) € F,, with
|Po(2)] = nP43L for all sufficiently large n € N. Moreover, exhaustive search
for small values of n (see [35]) suggests that ultra-flat Littlewood polynomials
most likely do not exist. Let us mention one final interesting result in the
direction of Littlewood’s conjecture, due to Beck [3], who proved that there
exist flat polynomials in G,, with aioo =1 for every k.

In the next section, we outline the general strategy that we will use to
prove Theorem 1.1. Roughly speaking, our Littlewood polynomial will consist
(after multiplication by a suitable negative power of z) of a real cosine polyno-
mial that is based on the Rudin—Shapiro construction, and an imaginary sine
polynomial that is designed to be large in the (few) places where the cosine
polynomial is small. To be slightly more precise, we will attempt to “push”
the sine polynomial far away from zero in these few dangerous places, using
techniques from discrepancy theory to ensure that we can do so. In order to
make this argument work, it will be important that the intervals on which the
Rudin—Shapiro construction is small are “well separated” (see Definition 2.2).
The properties of the cosine polynomial that we need are stated in Theorem 2.3
and proved in Section 3; the properties of the sine polynomial are stated in
Theorem 2.4 and proved in Section 5.

2. Outline of the proof

We may assume that n is sufficiently large, since the polynomial 1 — z —

22 — ... — 2" has no roots with |z| = 1 if n > 2. It will also suffice to prove

Theorem 1.1 for n = 0 (mod 4), since the addition of a constant number of

terms of the form 42" can at worst only change |P(z)| by an additive constant.

—2n/

We can also multiply the polynomial by z so that it becomes the centred
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“Laurent polynomial”

> &

k=—2n'
where n = 4n’. The following theorem therefore implies Theorem 1.1.

THEOREM 2.1. For every sufficiently large n € N, there exists a Little-
wood polynomial P(z) = Y2, ep2¥ such that

271 < |P(2)] <2V
for all z € C with |z| = 1.

We remark that the constants in Theorem 2.1 could be improved some-
what, but we have instead chosen to (slightly) simplify the exposition wherever
possible.

2.1. Strategy. Before embarking on the technical details of the proof, let
us begin by giving a rough outline of the strategy that we will use to prove
Theorem 2.1. The first idea is to choose a set C C [2n] = {1,...,2n}, and set
e_r =¢p for each k € C, and e_j, = —¢i, for each k € S := [2n] \ C. Setting
z = €, the polynomial P(z) then decomposes as

2n
Z ex2” =e0 +2 Z ey cos(kf) + 2i Z g sin(k6).
k=—2n keC keS
The real part of this expression is a cosine polynomial, while the imaginary part
is a sine polynomial. Our aim is to choose the sine and cosine polynomials so
that both are O(y/n) for all #, and so that the sine polynomial is large whenever
the cosine polynomial is small.

Let us first describe our rough strategy for choosing the sine polynomial
s(0), given a suitable cosine polynomial ¢(#). For each “bad” interval I C
R/27Z on which |c(0)| < dy/n, we will choose a direction (positive or negative)
and attempt to “push” the sine polynomial in that direction on that interval.
In other words, we pick a step function that is +=K+/n on each of the bad
intervals, and zero elsewhere, where K is a large constant. We then attempt
to approximate this step function with a sine polynomial, the hope being that
we can do so with an error of size O(y/n) on each bad interval (independent
of K).

In order to carry out this plan, we will use an old result® of Spencer [42]
on combinatorial discrepancy (in the form of Corollary 4.2), first to choose the
step function, and then to show that we can approximate it sufficiently closely.

"We will in fact find it convenient to use a variant of Spencer’s theorem, due to Lovett
and Meka [32].
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More precisely, the first application (see Lemma 5.3) provides us with a step
function whose Fourier coefficients are all small, and the second application (see
Lemmas 5.4 and 5.5) then produces a sine polynomial that does not deviate
by more than O(y/n) from this step function.

To make the sketch above rigorous, we will need the bad intervals to have a

” “Small’”

number of useful properties; roughly speaking, they should be “few,
and “well separated.” In particular, we will construct (see Definition 2.2 and
Theorem 2.3) a set Z of intervals, each of size O(1/n), separated by gaps of
size Q(1/n), with |c¢(0)] > é6y/n for all § ¢ (J;cr 1. Moreover, the number of
intervals in Z will be at most yn for some small constant v > 0.

To see that these demands are not unreasonable, note first that if C' C
[vn], then the cosine polynomial has few roots, and the “typical” value of the
derivative of the cosine polynomial should be ©((yn)®/?). This means that, if
we choose 6 much smaller than v, the polynomial should typically vary by more
than dy/n over a distance of order 1/n. In particular, we will show that if the set
of bad intervals cannot be covered by a collection of small and well-separated
intervals (in the sense described above), then several of the derivatives must
be small simultaneously. For our cosine polynomial, we shall use an explicit
construction based on the Rudin—Shapiro polynomials (see Section 3), and we
will show (see Lemma 3.5) that the value and first three derivatives of this
polynomial cannot all be simultaneously small.

2.2. The cosine polynomial. Let n € N be sufficiently large, choose 2743 <
v < 240 guch that
(3) yn = 2t+11 + 2t -1
for some odd integer t, and set
0:= 2_877/2,
noting that § > 27160, Define C' C [2yn] by setting C' = 2C’, where
C/ = {2t+10 o 2t+10 + 2t o 1} U {2t+11 o 2t+11 + 2t _ 1}

so that C is a set of 21! even integers. Our first aim is to construct a cosine
polynomial
c(0) = Z ey, cos(k0)
keC
that is only small on a few, well-separated intervals and is never too large.
To state the two main steps in the proof of Theorem 2.1, we first need to
define what we mean by a “suitable” and “well-separated” family of intervals.

Definition 2.2. Let Z be a collection of disjoint intervals in R/277Z. We
will say that Z is suitable if

(a) the endpoints of each interval in Z lie in T7Z;
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(b) Z is invariant under the maps 6 — 7 + 6;
(¢) |Z| = 4N for some N < yn.

We say that a suitable collection Z is well separated if

(d) |I] < 67/n for each I € T,
(e) d(I,J) = n/n for each I, J € T with I # J;>
(f) Ujez I is disjoint from the set (7/2)Z + [-1007/n, 1007 /n].

We will prove the following theorem about cosine polynomials.

THEOREM 2.3. There exists a cosine polynomial
c(f) = Z ey cos(k0),
keC

with e, € {—1,1} for every k € C, and a suitable and well-separated collection
Z of disjoint intervals in R/2nw7Z, such that

|c(0)] = dvn
for all 0 ¢ J;ez I and |c(0)| < \/n for all 0 € R/27Z.

The cosine polynomial we will use to prove Theorem 2.3 is a slight mod-
ification of the Rudin—Shapiro polynomial. We might remark here that one
would expect almost any cosine polynomial whose absolute value is O(y/n) to
satisfy somewhat similar conditions, but this seems difficult to prove in general.

2.3. The sine polynomials. There will in fact be two sine polynomials; the
first,

(4) se(0) = ) ejsin(j0),
JESe
will just be chosen to be small everywhere, more precisely at most 61/n for all
|z| =1 (see Lemma 3.3). It is defined on the set S, = 25/, where
Sl :=[n]\C’

so that S is the set of remaining even integers in [2n].
We write S, := {1,3,...,2n — 1} for the set of all the odd integers in [2n],
and our main task will be to construct an “odd sine polynomial”

$0(0) = Z er sin(k0)
keS,

that is large on each I € Z and not too large elsewhere. To be precise, we shall
prove the following theorem.

2Given two sets I, J C R/27Z, let us write d(I,J) := inf{d(0,0') : 0 € I, ¢’ € J}, where
d(0,0’) is the distance between § and 6’ mod 2.
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THEOREM 2.4. Let T be a suitable and well-separated collection of disjoint
intervals in R/27Z. There exists a sine polynomial

So(0) = Z eg sin(k0),

k€S,
with e, € {—1,1} for every k € S,, such that

(i) [s0(0)] = 10y/n for all 0 € U;er I, and
(ii) [s0(0)| < 21%/n for all 6 € R.

To deduce Theorem 2.1 from the results above, we simply set
P(ew) = (1 + 26(9)) + 21’(8@(9) + 80(9)),

where ¢(6) and s,(0) are the cosine and sine polynomials given by Theorems 2.3
and 2.4 respectively, and s.(6) is a sine polynomial as in (4); see Section 5 for
the details.

The rest of the paper is organised as follows. First, in Section 3, we will
define ¢(f) and s.(#) and prove Theorem 2.3. In Section 4 we will recall the
main lemma from [32] and deduce Corollary 4.2; this will be our main tool in
the proof of Theorem 2.4, which is given in Section 5. Finally, we will conclude
by completing the proof of Theorem 2.1.

3. Rudin—Shapiro polynomials

In this section we will define the cosine polynomial that we will use to
prove Theorem 2.3 and the sine polynomial that we will use on the remaining
even integers. In both cases, we use the so-called Rudin—Shapiro polynomials,
which were introduced independently by Shapiro [41] and Rudin [37] (and
whose sequence of coefficients was also previously studied by Golay [17]). These
polynomials have been extensively studied over the last few decades; see, e.g.,
[9], [10], [11], [36]. Let us begin by recalling their definition.

Definition 3.1 (Rudin—Shapiro polynomials). Set Py(z) = Qo(z) = 1, and
inductively define

Pi1(2) = Py(2) + 22 Qu(2),
Qu1(2) = Pi(2) — 2% Qu(2)
for each t > 0.

Observe that P;(z) and Q;(z) are both Littlewood polynomials of degree
2t —1. A simple induction argument (see, e.g., [34]) shows that P.(z)P;(1/z) +
Qi(2)Q(1/2) = 2t for all z € C\ {0}. Tt follows that

() |P(2)]? + |Qu(2)* = 2,
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and hence |Py(2)|, |Q¢(2)] < 2¢+D/2 for every z € C with |z| = 1. Observing
that the first 2¢ terms of P,y are the same as for B, let us write P, (z) for the
polynomial of degree n — 1 that agrees with P,(z) on the first n terms for all
sufficiently large ¢, and note that P;(z) = P.ot(2). The following bound, which
is a straightforward consequence of (5), was proved by Shapiro [41]. (Stronger
bounds are known — see [1] — but we shall not need them.)

LEMMA 3.2. We have |P<,(2)| < 5y/n for every z € C with |z| = 1.

We now set

T .— ot+10.
We define our cosine polynomial to be
(6) c(0) :==Re (2" Pi(2) + 227 Qu(2)),
and our even sine polynomial to be
(7) 5e(0) = Tm (Peguyny (2) — 27 Pi(2) — 227 P(2)),

where in both cases z = €2, (Note the factor of 2 in the exponent here.) We
claim first that® supp(c) = C and supp(se) = Se. This is clear for ¢, since
C =2C"and C' = {T,....,T + 2t — 1} U {2T,...,2T + 2! — 1}; for s, it
follows since the terms of P (,4.1)(2) corresponding to C’ form the polynomial
2T Py(2)+2*T Py(2). (To see this, simply consider the first time that these terms
appear in Definition 3.1, and note that the first 2! terms of both P19 and
Q410 are the same as for P;.) We remark that the idea behind the definition of
c(#) is that the highly oscillatory factors z” and 227 allow us to show that c and
its first three derivatives cannot all simultaneously be small (see Lemma 3.5).

The following lemma is an almost immediate consequence of Lemma 3.2

and (5).
LEMMA 3.3. We have |c(0)] < v/n and |se(0)| < 6/n for every 6 € R.
Proof. Observe first that, setting z := €2, we have
[e(0)] < |P(2)] + 1Qu(2)] < 292 < v/,

where the first inequality follows from the definition of ¢, the second holds
by (5), and the last holds by (3), since v < 1. Similarly, we have

[5(0)] < [Py ()] + 21Pi(2)] < 5V + 1+ 2092 < 6/,

where the first inequality follows from the definition of s., the second holds by
Lemma 3.2 and (5), and the last holds by (3). O

3We define the support, supp(f), of a sine polynomial f(§) = > ko €k sin(kd) or cosine
polynomial f(0) =37, . €x cos(kf) to be the set of k such that ex # 0.
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In order to prove Theorem 2.3, it remains to show that |c(0)| > d/n for
all 0 ¢ Ujer I for some suitable and well-separated collection Z of disjoint
intervals in R/27Z. When doing so we will find it convenient to rescale the
polynomial as follows: define a function H: R — C by setting

H(z) := e®a(x) + e B(x),
where
a(z) = 2*(t+1)/2pt(eia:/T) and B(z) == 27(t+1)/2Qt(€ix/T)7
and observe that
c(0) = 24D/ Re (H(2T9)).
Note that, by (5), we have
() ? + [B(x)* = 1.

We think of a(z) and B(z) as being slowly varying functions, relative to the
much more rapidly varying exponential factors in the definition of H(z).

The key property of the polynomial ¢(#) that we will need is given by the
following lemma.

LEMMA 3.4. Let 0 < 1 < 27 Ewvery interval I C R of length Tn
contains a sub-interval J C I of length n such that

n’

27

for every x € J. Moreover, if I = [a,a+ Tn|, then we can take J = [a+ jn,a+
(j + 1)n] for some j € {0,1,...,6}.

|Re (H(;r))| >

To prove Lemma 3.4, we will first need to prove the following lemma.

LEMMA 3.5. For any x € R, there exists k € {0,1,2,3} such that

k 1

| Re (H"(2))] > .

The proof of Lemma 3.5 is not very difficult, but we will need to work a

little. We will use Bernstein’s classical inequality (see, e.g., [40]), which states
that if f(z) is a polynomial of degree n, then

(8) gllglf’(Z)l < n-lrﬁfflf(Z)\-

This easily implies the following bound on the derivatives of the Rudin—Shapiro
polynomials.

LEMMA 3.6. Let 0 < k,t € Z. We have

dk

(9) Wpt(ew) < 2kt+(t+1)/2

) ’kaQt(e 9)
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for every 8 € R. In particular,
(10) ¥ (@)], 18W (2)] < 271
for every k > 1 and x € R.

Note that (10) justifies our intuition that a(z) and f(x) vary relatively
slowly.

Proof. To prove (9) we simply apply (8) k times and (5) once. It follows
from (9) that

max {|a(k:) (.CL‘)|, ‘/B(k) (Jj‘)‘} < 2f(t+1)/2 N Al 2kt+(t+1)/2 — 9~ 10k
for every k > 1 and = € R, as claimed. ([
We will use the following easy consequences of Lemma 3.6.

LEMMA 3.7. For each 0 < k < 4, and every x € R, we have

|H(k) (x) — (ikeixa(:v) + (2i)k62ix[3(a;))| <

ol =

and
|H®) (z)] < 2F + 2.

Proof. Since H(z) = e®a(x) + e**3(x), we have
k
H® () =Y~ (’“) (iFTe ) (z) + (2i)F T2 V) (z)),

and hence, using (10),

|H(k) (z) — (ikemoa(x) + (Zi)kemﬁ(x))’ < Z (];) (1+ 2k_j)2_10j < L

Jj=1

(0g)

(with room to spare) since k < 4. Since |i*e™®a(x) + (2i)Fe?*3(x)| < 1 4 2%,
it follows immediately that

[HO (@) < 2"+ 2,
as claimed. O
We can now easily deduce Lemma 3.5.

Proof of Lemma 3.5. Suppose that

’ Re (H(k)(:c))‘ <

PN,

for each k € {0,1,2,3}. Setting
Ej :=Re (ikema(:v) + (Zi)ke%”ﬂ(x)),
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observe that

A 4Fy + FE , Ey+ E
Re (c¥a(r)) =~ =2, Re (¢6(x)) = —— 2=,
: 4F1 + E . i+ E
Im (e a(x)) = —%, and Im (e**[(x)) = %
Now, by Lemma 3.7, we have
1 1 3
Byl<-4-=2
1Bel < 3 +5=35

for each k € {0,1,2,3}, and therefore

1= |a(z)]? + |8(x)?
= |Re (¢"a(@))|” + [Tm (¢“a(@))[* + |Re (¢** () |* + | Im (¢**5(x)) |
52 5% 22 22>.32 55 9

< R — - = — . —
(32+ T 82 9 64

32 32 62 <1

which is a contradiction. It follows that |Re(H®)(z0))| > 1/4 for some 0 <
k < 3. ([

To deduce Lemma 3.4 from Lemmas 3.5 and 3.7, we shall use a gener-
alization of Lagrange interpolation from [20, Th. 2| that bounds the higher
derivatives of a function in terms of its values at certain points.

THEOREM 3.8. Let f: I — R be a k+1 times continuously differentiable
function, and suppose yo,...,yx € I with yo <y < --- < yg. Then?

k k

kS (yi) 1

¥ () — T DY
H Z H];ﬁz Yi — ) k+1 ; o0

Lemma 3.4 is a straightforward consequence of Lemmas 3.5 and 3.7 and
Theorem 3.8.

LD (@)oo

Proof of Lemma 3.4. Let I = [a,a+Tn], and suppose (for a contradiction)
that for each 0 < j < 6, there exists a point

xzj € lj:= [a—l—jn,a—l—(j—i—l)n]

such that |Re(H (z;))| < 277n%. We will show that |Re(H® (x))| < 1/4 for
each 0 < k < 3, which will contradict Lemma 3.5, and hence prove the lemma.

For k = 0, we have | Re(H®) ()| < 277n% < 1/4 (by assumption), so let
k € {1,2,3}. By Lemma 3.7 and Theorem 3.8, applied with f := Re(H) and

“In the notation of [20], the sum in the first || - || expression is L) (z), where L(z) =
32 (i) [0 = y3)/(yi — y5), and the second || - [l expression is [|wo™ (z)/(k + 1)!s,
where w(z) = [],(x — 4:). Note that the inequality is tight when f(z) = w(x).
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yj = xg; for each 0 < j < k (so, in particular, |y; — y;| > n for all i # j), we
have

k
klon?
[ Re (H#Y@)] < 315 7 + 0 [ Re (D (@)
1=0
4-30 7(2*+2) 1
Sor ttaon o <
since n < 27 as required. O

Finally, in order to show that (J;c7 1 is disjoint from the set (7/2)Z +
[-1007 /n, 1007 /n|, we will need the following simple lemma.

LEMMA 3.9. If |z| <1/8 or |& — Tn| < 1/8, then Re (H(z)) > 1/2.

Proof. We will use the following facts (cf. [10, Th. 5]), which can be easily
verified by induction: for every t > 0,

Py (1) = Py (—1) = Qu(1) = —Qau(—1) = 2",
and
Pry1(1) = Qopyr(—1) =211, Pyr1(—1) = Qu+1(1) = 0.
Since t is odd, it follows that
Re (H(0)) = 27H2(P(1) + Q1)) = 1
and
Re (H(Tr)) = 2~/ (P(—1) + Qu(-1)) = 1.

Now, by Lemma 3.7 we have |H'(z)| < 4 for every z € R, and so

1
Re (H =>1—-4z| = -
e (H(@) > 1-4ps] > |
for all z € R with |z| < 1/8. A similar argument works for those x near T'wr. [

Remark 3.10. Note that x = T'rm corresponds to § = 7/2 in the cosine
polynomial ¢(f). The reader may have noticed that we do not necessarily need
the cosine polynomial to be large at this point, as the sine polynomial can be
large there. However, for technical reasons, this will be useful later on, in the
proof of Lemma 5.6.

We are finally ready to prove Theorem 2.3.

Proof of Theorem 2.3. Let ¢(f) be the cosine polynomial defined in (6),
and recall that supp(c) = C, that ¢ € {—1,1} for every k € C, and that
le(0)] < /n for every 6 € R/27Z, by Lemma 3.3. We will show that there
exists a suitable and well-separated collection Z of disjoint intervals in R/277Z

such that [c(0)| > dv/n for all § & (J; 1.
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To prove this, set  := 277 /n, and note that n < 7y < 271 Partition
R/4T77Z = R/2nnZ into 2n intervals I; := [jn, (j + 1)n], each of length 1, and
say that an interval I; is good if

3
[Re (H()| > 2
for all x € I;. Let J " be the collection of maximal unions of consecutive good
intervals I;, and let Z' be the collection of remaining intervals (i.e., maximal
unions of consecutive bad intervals). Thus Z’ and J’ form interleaving col-
lections of intervals decomposing R/4T7Z. Scaling from x to 8 = x/2T gives
corresponding collections of intervals Z and J; we claim that Z is the required
suitable and well-separated collection.

First, to see that Z is suitable, note that each interval I; (and hence each
I € T’) starts and ends at a multiple of n = 277 /n. Hence after scaling, each
I € 7 starts and ends at points of 77Z. The set Z is invariant under the maps
0 — m + 0 by the symmetries of the function cos(kf) when k € C C 27Z. To
see that |Z| < 4+yn, note that since a cosine polynomial of degree d has at
most 2d roots in its period, there are at most 4(27 + 2! — 1) = 4yn values of
r € R/4AT77Z where Re(H(x)) = 271, and the same bound on the number
where Re(H (z)) = —27"3. Since each I € 7' must contain at least two such
points (counted with multiplicity), we have |Z| = |Z'| < 4yn, as required.

Next, let us show that Z is well separated. Recall first that, by Lemma 3.4,
any set of seven consecutive intervals I; must contain a good interval. Thus
|I| < 6n for each I € 7', and so |I| < 67/n for each I € Z. Now, d(I,J) >
m/n for distinct I,J € Z by construction, and the sets [—100n,1007] and
Tm + [—100m,100n] are each contained in an element of J' by Lemma 3.9,
since 277n® < 1/2 and 100n < 1/8. Scaling down, it follows that (J;o7 I is
disjoint from the set (7/2)Z + [—1007 /n, 1007 /n|, as required.

Finally, recalling that n = 277 /n, yn = 2T + 2t — 1, T = 2/+19 and that
|Re(H (z))| = 273 for each x € J € J', it follows that

e(0)] > 2HD/2 27Ty = 9727327/ > 278y T2/ = 5/

for every 6 ¢ ;o7 I, as required. 0

4. Minimising discrepancy

In this section we recall the main “partial colouring” lemma of Spencer [42]
(whose proof, as noted in the introduction, was based on a technique of
Beck [2]), which will play an important role in the proof of Theorem 2.4.
In particular, we will use the results of this section both to choose in which
direction we should “push” the sine polynomial on each interval I € Z, and to
show that we can choose ¢}, € {—1, 1} so that it is pushed (roughly) the correct
distance. The following convenient variant of Spencer’s theorem was proved
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by Lovett and Meka [32, Th. 4],> who also gave a beautiful polynomial-time
randomised algorithm for finding a colouring with small discrepancy.

THEOREM 4.1 (Main Partial Colouring Lemma). Let vy,...,v, € R" and
xo € [-1, 1" If ¢1,...,¢m = 0 are such that

= n
Zexp (- c?/lG) < 16’
j=1

then there exists an x € [—1,1]" such that
{2 = o, v5)| < ¢jllvjll2
for every j € [m] and, moreover, x; € {—1,1} for at least n/2 indices i € [n].
We will in fact use the following corollary of Theorem 4.1.

COROLLARY 4.2. Let vy,...,vm €R"™ and zo € [-1,1]". If ¢1,...,¢n =0
are such that

(11) ;exp(—c?/142) < %,
then there exists an x € {—1,1}" such that

[{z = 0, v;)] < (¢ +30)v/n - [|vj]los
for every j € [m)].

Proof. We prove Corollary 4.2 by induction on n. Note first that the result
is trivial for all n < 900, since we can choose z € {—1,1}" with ||z — x|/ < 1,
and for such a vector we have [(x — zg,v;)| <1 - ||v}]loc < 30v/n - ||V} ]|0o-

For n > 900, we apply Theorem 4.1 with constants b; := 2¢;/7, noting
that

m m
2 _ 2 /142 n
Zexp (—b5/16) = Zexp (—cf/14%) < 6
j=1 j=1
We obtain a vector y € [—1,1]", with
[{y — 0, vj)] < bjllvjlla < bjv/n - [|vjlle
for every j € [m], such that y; € {—1,1} for at least n/2 indices i € [n].
®The theorem as stated in [32] only insists that |x;| > 1 — § for at least n/2 indices, due

to the requirement that a fast algorithm exists. However, it is clear by continuity that we
can take 6 = 0 if we are only interested in an “existence proof.”
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Now, let U C [n] be a set of size [n/2] such that y; € {—1,1} for every
i € U, and set W := [n]\ U. For each j € [m], define a constant a; > 0 so that

n
CL? = C? —+ 142 IOg (M)’
and observe that
m
2| _ W]
—a?2/14%) < [/ =1
Zexp( a;/14%) < T 16
j=1
and that a; < ¢j + 12, since 14%log(n/|n/2]) < 1961log 2.01 < 122 for n > 900.
Let 7: R” — RW be projection onto the coordinates of . By the induc-
tion hypothesis, we obtain a vector z € {—1,1}" with

[{z = m(y), m(v;))| < (aj +30)\/ W] [|7(v)) ][ < (aj +30)y/1/2 - [|vj|oo-
Now, define x € {—1,1}" by setting z; := y; for i € U and n(xz) = 2z, and
observe that

[y — w0, vj)| + [{z = 7(y), m(v;))]
(b + (aj +30)/V2) vV - |[vj o
2¢;  c;+42
(2 + 222 ) v ol
< (¢ +30)vn - [|vj]] 0o,
as required, since b; = 2¢;/7 and a; < ¢; + 12. This completes the induction
step. O

(2 — 2o, vj)| <
<

N

Remark 4.3. The result is stated in terms of the £°°-norms ||v;||~ because
we cannot control the decrease in ||v;||2 when we discard half of the coordinates.

Remark 4.4. It is important for our application that m can be much larger
than n, and that the only restriction on m occurs via the condition (11). In
particular, we will later apply Corollary 4.2 with m very large, but with the ¢;
increasing sufficiently rapidly so that (11) still holds.

5. The odd sine polynomial

The aim of this section is to prove Theorem 2.4. Let Z be a collection of
suitable well-separated intervals, and recall from Definition 2.2 that |Z| = 4N
for some N < ~n, and that Z is invariant under the maps 6 — w + 6. The
collection Z is therefore uniquely determined by the set Zgp C Z of N intervals
that lie in [0, 7/2] (since no I € 7 contains 0 or 7/2).

As described in Section 2.1, our aim is to “push” the sine polynomial
away from zero (in either the positive or negative direction) on each interval
in Z. Let us say that a colouring «: Z — {—1, 1} is symmetric if a(I') = a(I)
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whenever I’ = 7 — I, and o(I') = —a(l) whenever I’ = m+ I. Note that if « is
symmetric, then it is uniquely determined by its values on the set Zy. Finally,
recall that S, = {1,3,5,...,2n — 1}, and set K := 2.

Definition 5.1. Given a colouring a: Z — {—1, 1}, we define g, : R/27Z —
{_17 07 1} by
9a(0) :=>_a(I)1[0 € I].
I1eT
We also define a vector € = (é1,€3,...,82,-1) € RSo by setting

€j:=Kvn [ ga(0)sin(j0)do

—T

for each j € 5,.

Remark 5.2. By Fourier inversion, one would expect the function §,(0) :=
Zjeso €;sin(j6) to approximate mK/n go(#); in particular, it should be large
on the intervals I € Z. We will prove in Lemma 5.6 that this is indeed the
case.

We will use ¢ as the starting point of an application of Corollary 4.2, so we
need €| < 1 for all j € S,. The following lemma, which we also prove using
Corollary 4.2, shows that, since we chose « sufficiently small, we can choose
the colouring « so that this is the case.

LEMMA 5.3. There exists a symmetric colouring o: T — {—1,1} such
that & € [~1,1]%.

Proof. Write Zy = {Ii,...,In}, and recall that this collection deter-
mines Z. Now, for each j € [n], define a vector v; € RY by setting

(vj)i == 4K\/ﬁ/f sin ((2j — 1)0) db

for each i € [N], and observe that, for each j € [n], we have

- N

goic1=Kvmn | ga(0)sin (2 — 1)0) do = (L) (v;)s,

- i=1
by the symmetry conditions on both « and Z. Our task is therefore to find
a vector z € {—1,1}" such that |(z,v;)| < 1 for all j € [n]. Indeed, we will
then be able to set a(1;) = x; for each i € [N] and deduce that |é;| < 1 for all
kes,.

We do so by applying Corollary 4.2 with 2o := 0 and ¢; := 14,/log(16n/N)

for each j € [n]. Noting that (11) is satisfied, it follows from Corollary 4.2 that
there exists an x € {—1,1}V such that

(2, v;)| < (¢ +30) VN - [|v)]|oo-
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Now, since Z is well separated, by Definition 2.2(d) we have
24 K

|(Uj)i| < 4K\/ﬁ' 1] < W

for every i € [N] and j € [n]. It follows that

(@, v;)| < (144/1og(16n/N) + 30)\/N/n - 247 K.

Note that the right-hand side is an increasing function of N for N/n < v < 1

and so
[(z,v;)] < (144/10g(16/7) + 30) /7 - 247K < 1,

where the last inequality follows from our choice of K = 27 and the inequality
v <2790, [l

For the rest of the proof, fix this colouring « (and hence also the vector €).
Recall that our aim is to choose a colouring e: S, — {—1,1} so that the
conclusion of Theorem 2.4 holds. Given such a colouring, define

$o(0) 1= Y _ £;sin(j0) and $a(0) == &;sin(j0).
JESo JESo

Our aim is to choose the ¢; so that |s,(0) — 54(0)]| is uniformly bounded for all
0 € R/277Z (see Lemma 5.5). A naive approach to controlling this difference
on a sufficiently dense set of points would require imposing more constraints
(with smaller values of ¢;) than can be handled by Corollary 4.2. Instead we
shall place constraints on the differences |5((f) (0)— % (0)] of the ¢th derivatives
for each £ > 0, but at many fewer values of 8, and then use Taylor’s Theorem
to bound |s,(0) — 54(0)| at all other points. The advantage of this approach is
that the constraints we need on the higher derivatives become rapidly weaker
as ¢ increases and, in particular, can be chosen so that (11) is satisfied.

Note that it is enough to bound [s,(0) — 54(6)| on [0, §] as both s,(#) and
54(0) have the same symmetries under 6 — 7 £ 6. Set M := 16n, and let
0y, = (2’2;41” for k = 1,...,M. Then for any point 6 € [0,7], there exists
k € [M] such that |6 — 6| < ;& = 27%7/n. By Taylor’s Theorem (and the
fact that all sine polynomials are entire functions so their Taylor expansions

converge), we have

00 _ l
(12) s0(0) = 5a(0) = (s (0x) — égf)(ek))we'@k)-
=0 '

We will bound the absolute value of the right-hand side using Corollary 4.2.
LEMMA 5.4. There exists a colouring : S, — {—1,1} such that
15O(0) — 50(0)] < (65 + 20V - (2n)"
for every k € [M] and ¢ > 0.
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Proof. For each k € [M] and £ > 0, define a vector v sy € R" by setting
dt . .
(U(k,é))j = W S ((2] - 1)9) |9:9k
for each j € [n], and observe that

n

s (0x) — 50 (0r) = Z (221 — €2j-1) (Vk.0))j = (€ — &, 001 0)),

J=1

where we consider € — £ and vy ¢y as vectors in R%.
We apply Corollary 4.2 with xg := ¢ and ¢, = 141/(9+£)log2. Ob-

serve that

M oo Y e
ZZGXP(_C%k,z)/l‘lz 2222 O+0) — M.2—8:%7

k=1 £=0 k=1 (=0

—

and so (11) is satisfied. It follows® from Corollary 4.2 that there exists an
e € {—1,1}" such that

(e = & v | < (Crye) +30) V- [V(,p)lloo
for every k € [M] and ¢ > 0. Now, observe that
v lloo < (20)°,
and that 142(9 + £) log 2 < 352 + 140¢ < (35 + 2¢)?, so
Combining these bounds, we obtain
5(6) = 9(80)] = (€ — & )| < (65 420y - (2n)'
for every k € [M] and ¢ > 0, as required. O

The following bound on the magnitude of s,(0) —$§,(0) is a straightforward
consequence.

LEMMA 5.5. There exists a colouring €: S, — {—1,1} such that
|50(0) — 34(0)| < T2v/n
for every 0 € R.
5Note that we appear to be applying Corollary 4.2 with an infinite number of constraints,

but in fact only finitely many of them are needed as the constraints vacuously hold when
{>n.
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Proof. Let us assume (without loss of generality) that 6 € [0, 5], and let

k € [M] be such that |§ — 0| < 2757 /n. By (12) and Lemma 5.4, we have
(2~ 7T/n > (2_571')(
|50(6) — 34(0) Z|s<f> 01,) — 3L9( ek) < (65+20)/n R
=0

Now simply observe that

o0 2 5 )E N
> (65 + 25 = (65 +274m)e? T < 72,
=0

and the lemma follows. O

We will prove that the conclusion of Theorem 2.4 holds for the colouring
e given by Lemma 5.5. To deduce this, it will suffice to show that $§,(6)
approximates the step function 7 Kv/n-g,(6) sufficiently well and, in particular,
that it is large on each interval I € 7.

LEMMA 5.6. For every 0 € J;c7 I, we have

2K
()] > 25V

Moreover, [5,(8)| < 5K+/n for every 6 € R.

The proof of Lemma 5.6 follows from a standard (but somewhat techni-
cal) calculation, and to simplify things slightly we will find it convenient to
renormalise, by defining

54(0) == (Kv/n)"15,(0).

Fix 6y € R, and observe that, by the symmetry conditions on both  and Z,
we have

5a(00) = Zsm ((25+1 90)/ ga(0) sin ((27 + 1)) df
(13)

/2 n—1
= 4/ 9a(0) > sin (2§ + 1)6o) sin (2 + 1)6) db.
0 =0

We can now use the following simple trigonometric fact.

OBSERVATION 5.7.

—1 . .
— . . , , _ sin (2n(0 — 6p))  sin (2n(6 + 6o))
4; sin (25 + 1)) sin (25 + 1)0) = S0 0y wn(0 1 00)
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Proof. Simply note that both sides are equal to

n—1

2 Z (cos ((27 4+ 1)(0 — b)) —cos ((25 +1)(6 + 90))>,

§=0

using the addition formulae for sin(a £ ) and cos(a & §) and the telescoping
series

|
—

n

sin(2ny) = (sin ((2j +1)p+ 90) — sin ((2]' +1)p — gp))
=0
n—1
= 2cos ((27 + 1)) sin(p)
=0
for o = 6 + 6. O

Combining (13) and Observation 5.7, and recalling the definition of g,(6),
it follows that

3 B sin (2n(0 — 6))  sin (2n(0 + 6o))
(14) 504(90) = Igz:o O((I) /I ( sin(9 _ 90) o Sin(9 + 90) ) df.

Before bounding the right-hand side of (14), let us briefly discuss what is
going on. Let 6y € [0,7/2], and recall from Definition 2.2(f) that no I € Iy
contains any point close to 0 or 7/2. It follows that the integrand in (14)
behaves roughly like a point mass placed at § = 6y, and hence 3,(6p) should
be approximately a(I) when 6y € I, and small otherwise.

To make this rigorous, we will show that the integral of the first term over
the interval I € Zy containing 6y (if such an interval exists) is of order 1, and
that the integral over the remaining intervals (and over the second term) is
smaller. This will follow via a straightforward calculation from the fact that
the endpoints of each interval in 7 lie in 7 Z.

Instead of approximating the integral for an interval close to 6y directly,
we will instead compare it to the following standard “sine integral.”

LEMMA 5.8. Let I € Z, and let 0y € R.
(a) If 6y € I, then

4 < /sm (2n(6 — 6o)) & < 4
3S ), -6

(b) If 69 & I then

in (2n(0 — 6
o [,
I 0 — 6o
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Proof. Recall from Definition 2.2 that the endpoints of I are in 77Z, and
let I = [am/n,br/n], where a,b € Z with a < b. Substituting = 2n(0 — 6p)
gives us the integral

: (0 — 6 2br—2n6y
F(60) = / sm( n( o)) 20 :/ sin d.
I 2

0 — 90 am—2n6g x

and we note that
in(2br — 2nfy)  sin(2am — 2nby)
00) = (9 (sm( B
F00) = =2\ 20, 2ar — 2nfy
4mn(a — b) sin(2nby)
~ (2am — 2nbp)(2bm — 2nby)’

since a, b € Z, so sin(2am —2nby) = sin(2bmr —2nby) = —sin(2nby). Since a # b,
it follows that the extremal values of f(6p) can occur only when sin(2n6y) = 0,
i.e., when 2n#y € nZ. These extremal values must therefore be of the form

wll) Fu(l+1)+---+ul +2(b—a)—-1)

for some ¢ € Z, where

U+ g
u(y) == / )
J

- x

We claim first that if 8y € I, then

27 2 T o
/ s1nmd0<f(00)</ smxda.
0

x Y

Indeed, if 6y € I, then 2am < 20pn < 2bm, and so £ < 0 < £+ 2(b — a). Note
also that

u(2j) > 0, u(274+1)<0 and u(—7) =u(j —1)
for every non-negative j € Z, and moreover
w(2j — 1) +u(2)) <0 < u(2j)+u(2j +1)

for every j > 1. It follows that the maxima of f(y) are at most u(—1) + u(0),
and the minima are at least u(0) 4+ u(1), as claimed. Similarly, if 6y ¢ I, then
without loss of generality we have £ > 0, and by the same argument as above

27 2 T o
/ 812xd9<f(90)</ smxda.

0 i

we have

It is now straightforward to obtain the claimed bounds by numerical integra-
tion. U

We will also use the following simple lemma to bound the integrals in (14).
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LEMMA 5.9. If h: [a,b] — R is a monotonic function and b—a € %7,
then
h(b) — h(@)]

n

/ab h(0) sin(2n0) dG‘ <

Proof. Assume without loss of generality that h is increasing, and suppose
first that b= a + . Since sin(z + ) = —sin(z), we have

a+r at =
/ h(6) sin(2n6) do = / (h(0) — h(0 + F=)) sin(2n0) db,

and therefore, since h is increasing,

“tn o+ on h(b) — h
‘ / h(6) sin(2n6) d6| < (h(b) — h(a)) / (sin(2n6)| do = 1O = h@)
n
a a
as required. To deduce the general case, simply split the interval [a,b] into
sub-intervals of length 7 and use the triangle inequality. O

We are now ready to prove Lemma 5.6.
Proof of Lemma 5.6. Recall that it is enough to prove the bounds when
0 =60y €[0,7/2], and that Zo ={I € T : I C [0,7/2]}. By (14), we have

R B sin (2n(9 — 90)) sin (2n(9 + 90))
(15) 54(00) = Z a(—’)/}( sin(6 — 0o) - sin(60 + 6o) )d@

I€Zy
for every 6y € [0,7/2]. We will deal with the second term first.

Claim 1: Z /sm (2n(6 + 6y)) 0| < 1 +O(l)
= sin(6 + 6p)

507 n

Proof of Claim 1. Let I € 7y, and suppose first that sin 6 is monotonic on
I+ 6p. By Lemma 5.9, applied with h(f) = 1/sin 6, we have
in(2n(6 + 6 1 1 1
/Mde < (max. _ mm,)
;1 sin(6 + 6o) n\ el sin(d+6y)  6el sin(6 + )
since, by Definition 2.2, the endpoints of I are in ZZ. If sin 6 is not monotonic
on I + 6y, then we instead use the trivial bound
in(2n(6 + 0 1 O(1
/Smg (0 + %)) do| < |I|-max = ( ),
1 sin(6 + 6p) ocl sin(6 + 0y) n
where the final inequality holds since |I| = O(1/n), by Definition 2.2, and
hence (since sin @ is not monotonic on I+ 6y C [0, 7]) we have sin(0+6y) > 1/2
forall 0 € I.
Now, summing over intervals I € 7y and partitioning into three classes ac-

cording to whether sin # is increasing, decreasing, or neither on 46y, we obtain
two alternating sums that are both bounded by their maximum terms, and pos-
sibly one additional term (for which we use the trivial bound). Recalling from



FLAT LITTLEWOOD POLYNOMIALS EXIST 999

Definition 2.2 that | J;¢7 I is disjoint from the set (7/2)Z+[-1007/n, 1007 /n],
we obtain

Z /sin(?n(@—i—@o)) &0 2 N om 1 0@
= sin(6 + 6p) = nsin(1007/n) n 507 n’
as claimed. O

The next claim will allow us to replace the first term in (15) by the integral
in Lemma 5.8.

Claim 2: Z

Iely

Proof of Claim 2. We again apply Lemma 5.9, this time with h(f) =
— %, which is increasing on [—7/2,7/2], to give

o)

/sm (2n(0 — 69))  sin (2n(6 — 6o)) a0l =
sin(0 —0y) 0 — 6o -

1
sin 0

/ sin (2n(0 — 6p)) sin (2n(6 — 6p))
T sin(9 — 90) 0 — 90

for every I € Zy. (Note that § — 0y € [—7/2,7/2] for § € I € Zj.) Summing
over intervals I € 7y, and noting that we again have an alternating sum, we
obtain the bound

sin (2n(0 — 6p))  sin (2n(0 — 6o)) h(m/2) — h(—7/2)  O(1)
> | < -

= sin(6 — 6p) 0 — 6 n n

1 .
i8] < 1 (sgmeh(o-00) g0~

9

as claimed. O

It remains to bound [; M df for each I € Z. When d(6p,I) < w/n
we will apply Lemma 5.8 to bound thls integral. However, in order to deal with
the intervals that are far from 6y we will need the following stronger bound.
Let J(00) := {I € I : d(6o,I) > m/n}.

2 (0 —6
Claim 3: /sm n O)) df| < g
0 — 0y T
IeJ (6

Proof of Claim 3. Once again we apply Lemma 5.9, this time with h(6) =
1/6. We obtain

‘/sm (2n(0 — 90))d9' 1<max 1 . 1 )

0 — 0y vel 6 — 0 oel 6 — 0

for every I € 7y with 6y ¢ I. Summing over intervals in J(6p), and noting
that we obtain two alternating sums (one on either side of ), we obtain

‘/sm (2n(0 — 69)) dﬂ‘ 2 1 2
s

0 — 6o n w/n

IeJ(6o)

as claimed. O
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Note that 2/m + 1/(507) + O(1/n) < 2/3 if n is sufficiently large, and
suppose first that 6y € I for some I € Zy. Then d(6p,I') > n/n for all
I # I' € 7y, by Definition 2.2. Tt follows, by (15), Claims 1, 2 and 3, and

Lemma 5.8, that

2 4 2 2
2o 2500 <4+ 2 <5,
5=3 3 <[%af)|<4tg

as required. On the other hand, if 6y & (J;cz, I, then there are at most two
intervals I € Zp such that d(0y,I) < m/n. Therefore, by (15), Claims 1, 2
and 3, and Lemma 5.8, we have

2
5a(f0)l <2-2+ 3 <5.

Since 54(0) = K+/n 3,(0), this completes the proof of the lemma. O

Remark 5.10. We note that it is important that the lengths of the intervals
I € 7 are multiples of 7. Without this assumption it is possible that the error
term from the distant intervals I € Zy in Claim 3 could be unbounded. Indeed,
the reason it does not stems ultimately from the cancelation in the integrals
provided by Lemma 5.9.

Theorem 2.4 is an almost immediate consequence of Lemmas 5.5 and 5.6.

Proof of Theorem 2.4. Let T be a suitable and well-separated collection of
disjoint intervals in R/277Z. By Lemma 5.5, there exists a colouring : S, —
{—=1,1} such that, if « is the function given by Lemma 5.3, then

|50(9) - §a(0)| < 72\/'71
for every 6 € R. Now observe that, by Lemma 5.6, we have

5o0)] > 8a(0)] — Is0(6) — 5a(0)] > (25— 72) vii > 10V
for all 0 € U;er 1, and
[50(0)] < 13a(0)] + |50(0) — 3a(0)] < (5K +72)v/n < 2'%/n
for all 8 € R, as required. O
Finally, let us put together the pieces and prove Theorem 2.1.

Proof of Theorem 2.1. Let ¢(f) be the cosine polynomial, and let Z be
the suitable and well-separated collection of disjoint intervals in R/277Z, given
by Theorem 2.3. Now, given Z, let s,(f) be the sine polynomial given by
Theorem 2.4, and let s.(f) be the sine polynomial defined in (7). We claim
that the polynomial

P(ew) = (1 + 20(9)) + 21’(56(0) + 50(0))
has the properties required by the theorem.
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To prove the claim, we should first observe that P(z) = Y2, 2" with
e € {—1,1} for every k € [—2n,2n]. Indeed the supports of ¢(f), s.(6), and
50(6) are disjoint and cover the powers z¥ with k € {—2n,...,—2n}\ {0}, and
the constant 1 provides the term corresponding to k£ = 0. Now, observe that

[Pe)P < (21e(0)] +1)° + 4fse(8) + so(0) ]
< (2vn+1)2 +4(2" +6)*n < (212V/n)?

for every 6 € R, since |c¢(0)| < v/n and |s.(0)| < 6+4/n, by Theorem 2.3 and
Lemma 3.3, and |s,(0)] < 2'°/n, by Theorem 2.4. Next, observe that if

0 ¢ Urer I, then
|P(e")| = | Re (P(e"))| = 2[e(0)] — 1 > 6v/n
for all sufficiently large n, by Theorem 2.3. Finally, if § € (J;o7 I, then

IP(e™)| = | Tm (P(e"))| = 2(|30(0)] — |3¢(0)]) = 2(10v/n — 6v/n) = 8v/n,

by Theorem 2.4. Hence |P(z)| > dy/n for all z € C with |z| = 1, as required.
([
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