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Differential equation compartmental models are crucial tools for forecasting and analyzing
disease trajectories. Among these models, those dealing with only susceptible and infec-
tious individuals are particularly useful as they offer closed-form expressions for solutions,
namely the logistic equation. However, the logistic equation has limited ability to describe
disease trajectories since its solutions must converge monotonically to either the disease-
free or endemic equilibrium, depending on the parameters. Unfortunately, many diseases
exhibit periodic cycles, and thus, do not converge to equilibria. To address this limitation,
we developed a generalized susceptible-infectious-susceptible compartmental model
capable of accurately incorporating the duration of infection distribution and describing
both periodic and non-periodic disease trajectories. We characterized how our model's
parameters influence its behavior and applied the model to predict gonorrhea incidence in
the US, using Akaike Information Criteria to inform on its merit relative to the traditional

SIS model. The significance of our work lies in providing a novel susceptible-infected-
susceptible model whose solutions can have closed-form expressions that may be peri-
odic or non-periodic depending on the parameterization. Our work thus provides disease
modelers with a straightforward way to investigate the potential periodic behavior of
many diseases and thereby may aid ongoing efforts to prevent recurrent outbreaks.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A rare few ODE compartmental models have solutions that are closed-form expressions. Most view this list as the class of
susceptible-infectious and susceptible-infectious-susceptible (SIS) models, which amount to some form of the logistic growth
equation (Martcheva, 2015; Nasell, 2011). Less well-known are the infectious-recovered (IR) models (A. Lloyd, 2017), which
are akin to exponential growth, and thereby also deserve inclusion. Historically, these simple models have proven to be of
great utility in the study of disease dynamics. For instance, SIS models are commonly used as a first means to predict the total
number of people that an epidemic will infect, through the use of the associated final size equation (Brauer, 2006; Martcheva,
2015). They are also used in the framework to estimate the doubling time of an epidemic (Smirnova et al., 2022) and can be
applied to determine the vaccination level required to cause disease burnout (van den Driessche, 2017). While IR models may
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have fewer applications, they are infamously quoted in media and literature (Fansher et al., 2022), as “exponential growth” is
synonymous with most pandemics. Consequently, lay audiences and novice disease modelers are far more likely to be familiar
with the behavior of IR models, at least in comparison to other model types.

Inarguably, SI, SIS, and IR differential equation models and their applications have inspired many current and future
disease models. These models have limitations though. For instance, their ability to predict the trajectory of diseases is
limited, as all trajectories monotonically converge to an equilibrium. Thus, these models cannot predict any form of recurrent
epidemics, such as seasonal influenza, measles, and many sexually transmitted infections, among others. While current
extensions of these models can address this issue, they do so at the cost of losing the closed-form expressions that make these
elementary models convenient.

Here, we propose a new take on the SIS model. We derive our model starting from the general formulation of SIS models as
a system of integral equations (Brauer, 2010; Greenhalgh & Rozins, 2021) under a general assumption placed on the duration
of infection distribution. For particular cases of this class of distributions, we show that our generalized susceptible-infected-
susceptible model (gSIS) reduces to the traditional SIS model (Kermack & McKendrick, 1991a; 1991b; 1991c) with constant
coefficients, and the IR model, respectively. Furthermore, while many other works may have tackled SIS models formulated as
logistic growth equations (Benardete et al., 2008; Hale & Kocak, 2012; Lopez et al., 2010; Mir & Dubeau, 2016), we illustrate
how to connect the time-varying rates directly from the duration of infection distribution and transmission rate. To achieve
this, we propose that the duration of infection distribution belongs to a particular family of generalized exponential distri-
bution (Bakouch et al., 2018), rather than the classical exponential distribution that is commonly inappropriate for describing
the duration of infection (Conlan et al., 2010; Krylova & Earn, 2013; A. L. Lloyd, 2001a, 2001b; Nguyen & Rohani, 2008).

As proof of concept, we apply our generalized susceptible-infectious-susceptible (gSIS) model to predict gonorrhea
incidence in the US. Gonorrhea is a nationally reportable sexually transmitted disease (Centers for Disease Control and
Prevention, 2019; 2022), which is typically caused by the spread of bacteria during sexual contact (Buder et al., 2019),
although mother-to-child transmission is possible. While medical treatment is available, gonorrhea infection confers little to
no immunity (Russell et al., 2020), with re-infection common after subsequent exposures (Fung et al., 2007). However, despite
this dynamic of infection, return to susceptibility, and re-infection, trends in gonorrhea infection can appear oscillatory (Tan
et al., 2013), rather than convergent to a disease-free or endemic equilibrium, which casts doubt on the applicability of
traditional SIS models for predicting disease trends. So, we apply our gSIS model to capture the oscillatory trajectory of
gonorrhea in the US, all the while maintaining the convenient properties expected of traditional SIS models.

2. Methods

In what follows, we illustrate a gSIS model, as formulated by a system of ODEs. We derive the model starting from a system
of Volterra integral equations, imposing the assumption that the duration of infection belongs to a class of generalized
exponential distributions. We then proceed to reduce the model to a logistic growth equation with time-varying parameters,
illustrate the closed-form solutions for all special parameter values (Table 1), and completely characterize the stability
properties of the system, including the potential occurrence of periodic cycles.

2.1. Generalized differential equation compartmental models

Classically, one of the most general forms of compartmental models are those formulated as a system of Volterra integral
equations (Brauer, 2008, 2010; Hethcote & Tudor, 1980; Kermack & McKendrick, 1991a, 1991b, 1991c). For such compart-
mental models, the proportion of susceptible individuals is typically denoted as s(t), and the proportion of infected in-
dividuals is denoted as i(t), (Brauer, 2008, 2010), where i,Q(t) characterizes the proportion of infected individuals at the
beginning of the epidemic. The relation between compartments is given by

Table 1
Summary of gSIS model stability conditions and properties.

Growth rate condition Hazard rate condition Closed-form expression Asymptotically stable DFE Asymptotically stable periodic solution

= a=0o0rw= Yes Yes No
=0 1] 0

6=0 a=0and w0 Yes Yes No
86— p<0 a=0o0orw=0 Yes Yes No
B—p>0 a=0o0rw=0 Yes No No
6—p=0 a=0o0orw=0 Yes Yes No
6—p=0 a+#0and w=0 Yes Yes No
B—p<0 a#0and w#0 Yes Yes No
6—p>0 a#0 and w=0 Yes No Yes
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t
s(t)=1 —igQ(t) — / inew(X)Q(t — X)dx,
0 2.1
i(t) = ipQ(t) + / inew(X)Q(t — x)dx.
0

Here inew(x) is the rate of new incidence at time x, iy is the initial proportion of infected individuals, and Q (t — x) is the survival
function associated with the infectious period distribution, which describes the proportion of individuals that remain in-
fectious at time t given infection occurred at time x.

From (2.1), one can obtain the traditional differential equation SIS model (with recovery rate y) by imposing izew(X) =
Bi(x)s(x) and Q(t — x) = e~"(tX)_ differentiating (2.1) with respect to t, and then substituting the remaining integral terms
with the appropriate multiple of equations from (2.1), respectively. Alternatively, by imposing

Q(t—x) = Zﬁ;b%e”(“‘), i.e. an Erlang distributed duration of infection, one obtains the SI¥S model (Krylova & Earn,
2013), where the state of infection has been subdivided into k stages.

To obtain new differential equation compartmental models we propose their derivation from a quantity other than
incidence, or respectively the proportion of infected individuals, namely person-days of infection. To elaborate, at each fixed
time 7 during an epidemic, infected individuals remain infectious according to the survival function associated with the
(conditional) duration of infection distribution, P(t,7), with a subset being newly infected individuals, who remain infectious
according to the survival function of the infectious period distribution Q(t — 7) (Fig. 1), where t > 7. The area of the region
enclosed by these survival curves is the quantity, “person-days” of infection.

Initially, for this new compartmental model, the number of person-days of infection is denoted as D(t), where Duew(t)
characterizes the person-days of infection from newly infected individuals who are initially infectious at time t, and person-
days susceptible to infection is denoted as Z(t). Thus, the time evolution can be modeled as

Z(t) = M(t) - DoQ(t) - / Drew(¥)Q(t — X) dx
° 2.2

where M(t) is the total number of all person-days, Dy is the initial person-days of infection from infectious individuals at the
start of the epidemic, and once again Q(t — x) is the survival function associated with the infectious period distribution.

In classical ODE compartmental models, it is assumed by virtue the law of mass action (Al-arydah et al., 2020) that new
infections are based on prior knowledge of the infected and susceptible individuals, namely inew (X)Q(t — X) = Bi(x)s(x)P(t,X)
where P(t,x) is the (conditional) duration of infection distribution for individuals infected at time x, with t > x (Brauer, 2010;
Greenhalgh & Rozins, 2021; Hethcote & Tudor, 1980).

Denoting N as the total population, we assume that
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Fig. 1. The survival of infected individuals throughout an outbreak. a) The trajectory of incidence (solid black curve), new incidence (dotted black curve), and the
survival of newly infected individuals for remaining infectious at 5-week intervals (blue regions), and the survival of all previously infected individuals for
remaining infectious at 5-week intervals (purple plus blue regions) over a total of 50 weeks. b) The survival of newly infected individuals for remaining infectious
(blue regions), and the survival of all previously infected individuals for remaining infectious (purple plus blue regions) for a given initial time 7, c) the duration of
infection distribution, P(t, 7), and d) the infectious period distribution Q(t).
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Drew (x)Q(t — X) = uNinew (X)Q(t — X) = m(x)NBi(x)s(x)P(t, X). 23

The main difference from the classical assumption is the inclusion of the average infectious period, u, and the average
duration of infection at time x, m(x), which is referred to as the mean residual waiting-time in the literature (Gupta & Bradley,
2003). It is assumed that new person-days of infection are based on prior knowledge of the infected and susceptible in-
dividuals along with their (time-varying) average duration of infection, which is included to reflect that not all currently
infected individuals have the same initial moment of infection.

In addition, while many potential forms of P(t, x) exist, we consider it to be defined by (Gupta & Bradley, 2003),

t
m(x) 1

along with the associated Equilibrium distribution (Gupta, 2007) of the duration of infection,

t
Pe(t,x)—mP(t,x)—exp<— /Ldz) 25

m(x) m(z)

From equation (2.4), we obtain the person-days of infection at time x, given the number of infected individuals at this time
is I(x), as (Bradley & Gupta, 2003)

D(x)= /I(x)P(t,x)dt = I(x)m(x) = Ni(x)m(x).

X

The structure of D(x) in terms of I(x)m(x) implies that we can equivalently represent the area enclosed by the survival
curve (Fig. 1a) with a rectangle of width m(x) and height I(x) (Fig. 2).
To convert system (2.2) into one based on the product of incidence and the duration of infection we impose that

D(t) = Ni(t)m(t), Z(t) = Ns(t)m(t),andM(t) = Nm(t). 26

From (2.3) and (2.6), it follows that equation (2.2) becomes
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Fig. 2. Person-days of infection throughout an outbreak. Incidence (black curve) and the person-days of infection from newly infected individuals at 5-week
intervals (blue regions), and the person-days of infection from previously infected individuals at 5-week intervals (purple plus blue regions).
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0 2.7

m(t)i(t) = igm(0)P(t, 0) +/ﬂi(x)m(x)s(x)P(t,x)dx,
0

Multiplying (2.7) through by P(7,t), we can predict the survival of person-days of infection from any moment t (ignoring
any future transmission) as
t
m(t)i(t)P(r,t) =igm(0)P(7,0) + / Bi(x)m(x)s(x)P(t,x)dx,7 >t > x. 2.8
0

To obtain a generalized differential equation compartmental model (GDECM), we differentiate equation (2.8) with respect
to t and divide through by P(7,t) to obtain (i(t)m(t))’, and then apply the conservation of population to obtain (s(t)m(t))’:

(som(e)’ = m'e) - giomies(o) + (T iomeo
29
tem) = giomose) - ("o iomo),
Using the conservation of population s(t) + i(t) = 1, we can also rewrite system (2.9) as the single ODE,
VI . 2m'(6)+1Y .
i(t) =6i(t)(1 —i(t)) — (W)l(t). 2.10

Note, that there is a subtle difference between equation (2.10) and the analogous traditional SIS model with time-varying

2 () +1

recovery rate. Specifically, the coefficient of the recovery term of (2.10) is ( ) ) whereas the traditional SIS model would

m(t)
of infected individuals (Greenhalgh & Rozins, 2021).

have (m'(t)“). The seemingly extra m’(t) of the gSIS model accounts for the time variability in the mean residual waiting-time

2.2. The periodic hazard rate and mean residual waiting-time

The hazard rate and mean residual waiting-time functions are constructs often used in survival and reliability analysis to
describe the frequency of events and the time remaining in a given state, respectively, after an elapsed period (M. Finkelstein,
2008).

To begin, the hazard rate function, n(t), (M. Finkelstein, 2008; Gupta & Bradley, 2003) is connected to the mean residual
waiting-time, m(t), through

m'(t)+1

n(t)= mio 2.11

While many functional forms of hazard rates and mean residual waiting-times exist, most fall into the category of being
either non-increasing or non-decreasing (M. S. Finkelstein & Esaulova, 2001). Recent work, however, illustrates the utility of
more flexible functional forms. Specifically, hazard rates with a bathtub (M. S. Finkelstein & Esaulova, 2001), upside-down
bathtub (Sharma et al., 2014), or roller-coaster (Wong & Lindstrom, n.d.) shape have been applied broadly in various con-
texts (Gupta & Gupta, 2007).

As the goal of this work is to obtain a potentially periodic closed-formed expression for a gSIS model, we require that the
coefficient of the recovery term in (2.10) is periodic. So, we now derive a potentially periodic mean residual waiting-time,
depending on model parameterization (Bakouch et al., 2018).

Making the ansatz that m(t) = p(t)e”*, we have that

/ / pt / pt
2m(O+1 200 +pp(0) 1 P et 1o

mt) ploert P=Ep©  p()

We also assume that
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p'(t)  e"  2awsin(wt)
p(t) "p(t) 1+ acos(wt)

, 213
as the righthand side will eventually yield an integrating factor that is integrable (see Section 2.3) and the first order linear
nonhomogeneous ODE,

awsin(wt) 1

/ et ST — yus
PO 1+a cos(wt)p(t) 2 2.14

Solving with initial condition p(0) = pg yields

(1+a) ( (1 + a)p>+4w? > e 2t (p2(1 + a cos(wt))+4w? —2awpsin(wt))
0— .
p

pO)= §! (P2 +4w?)(1 + a) (1 + a cos(wt))p(p2-+4w?)

+ a cos(wt))
It follows that

m(t) = 2.15

(1+a) (1 + a)p?+4w? obit (p?(1 + a cos(wt))+4w? —2awpsin(wt))
(T+acoswe) \ ™~ p(p2+4w2)(1 + a) " (1+a cos(wt))p(p2+4w?)

Given this general solution of m(t), several conditions are required for it to be biologically valid. First, p >0 as when p<0
the first term goes to zero and the second term oscillates between positive and negative values, which is impossible given

durations of infection must be non-negative. Furthermore, given p > 0 then necessarily py = p((;zfz"fvim
would grow exponentially, and eventually exceed any feasible value.

Imposing the suggested condition on pg implies

as otherwise m(t)

p2(1 + a cos(wt))+4w? —2awpsin(wt)

(1 + a cos(wt))p(p?+4w?) 2.16

m(t)=

)

where the average infectious period is given by

2 2
p=(1+ a)+4w
m0)=p=——ro—c. 217
©) = (1+a)p(p?>+4w?)
2.3. GDECM solutions and properties

Under the assumption that m(t) is time-dependent, equation (2.10) is a Bernoulli equation (Buckley, 1953) of the form

di ) o
E#—R(f)l(f) = Q()i(t)",
where n=2,R(t) = — B+ n(0) + 'mh = — B+ 22O Q(r) = — 6.

Thus, the nonlinear ODE can be transformed through i(t)= 1/y(t) into the first-order linear non-constant coefficient ODE
of the form

dy -
4~ Rioy=-Q(), 2.18

which is a first-order linear ODE that can be solved by integrating factors.
Given the definitions of R(t) and Q(t), it follows that the integrating factor of (2.18) is

2.19

t
1
t ﬁt—/—dz
R 2m'(z)+1 0)2 m(z)
#(t):exp(/ﬁ mm((zz);r dz) =':1((t))2e 0 .
0

and thus, the solution of the transformed ODE is given by
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t

Y(t):iyo i B / fi(x)dx. 2.20
0

i(t):%. 221

Turning to the integrating factor fi(t), the assumed conditions on m(t) = p(t)e:* implies

ﬁ(t):exP<(ﬁp)t / 2awsin(wz) ) _ (1 +acoswt))?

/ 1+ acos(wz) 1+ ) exp((8 —p)t). 2.22

It follows because fi(t) is the product of exponential and positive integer powers of cosine functions that it is also inte-
grable. Thus, for $+p, we have that

t
0/ | ﬁ(z)dz:exl(’l(f;)’z’)t) (2 G —p?2+4w2) ((B— p)cos(2wt)+ 2awsin(2wt) +4(8 — p)cos(wt)+4wsin(wt)) +% 2;_0;2)
1 < a(B—p)(a+d) 12+a2>
(e \2((8-p)?+4w2) 2 6= )
2.23
and for § = p that
224

t
_ 1 a(4+acos(wt)sinwt)  (2+a)
0/u(z)dz_2 1+ 0w +2(1 o t.

t
Naturally, as m(t), u(t), and / i(z)dz have closed-form expressions in terms of elementary functions, the infected pro-
0
portion i(t) also shares this property.

2.3.1. The case when =0, and w=0o0ra =0
In this case, equation (2.10) reduces to an IR model, as described by an exponential decay. The solution of the mean residual

waiting-time is given by m(t) = %.

It follows from (2.19) and (2.23) that

¢ ¢ t
ﬁ(t)—exp(/—zm(l)ﬂdz) —exp(—/pdz) :exp(—pt)and/ﬁ(z)dz:%(l —exp(—pt)).
0 0 0

m(z)

Thus, by (2.21) the solution is
i(t) =i exp(—pt),

which decays to the disease-free equilibrium (DFE), namely tlim i(t) =ipge=0.

2.3.2. The case when =0, and w=0 or a+0
Similar to Section 2.3.1, this model also reduces to an IR model, but the decay rate is time-dependent. The solution of the
mean residual waiting-time is given by (2.16), with the general solution of (2.10) given by

7
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1+« cos(wt))2

O=h a2

exp((—p)t).

Naturally, tlimi(t) =ippp=0.

2.3.3. The case when  — p#0, and w=0o0ra =0
For this scenario, the gSIS reduces to the traditional SIS model. The integrating factor and its integral are

fi(t) =exp((8 — p)t)

and

t
AAdze 1 -
0/ R(2)dz = 5= (exp((8— p)O)-1).

It follows that (2.10) reduces to the logistic curve,

ioexp(6—p)t)
1-+igg; (exp(6 — p)t) 1)

i(t)=

Thus, two outcomes are possible, first if § — p>0 then i(t)—1 —% as t— oo, and second when § — p<0 then i(t)—0 as t—

0.

2.3.4. The case when f—p=0, and w=0o0ra =0

¢
Under such conditions, = 1/p, u(t)=1, /ﬁ(z)dz = t. It follows that
0

g
l(t) 1 + piot.

Given that p >0, we have that i(t)—0 as t — co.

2.3.5. The case when f— p = 0,w=0,a#0

t
: ~ (1+a cos(wt))” -~ _ 1 a(4+a cos(wt )sin(wt) 2+a)?
For this case, we have that u(t) = () " and /u =5 ra)w + 2 iraP »t. Thus, we have
0
io(1 + a cos(wt))?

1= 1+ a)? 2610( (4 + a cos(wt))sin(wt) + (2 + a)zt) .

As 1Big(2 + a)® >0, we have that i(t) >0 as t — co.
2.3.6. The case when f— p#0,w=+0,00
For the final case m(t), fi(t), and / U(z)dz are all given by their general forms. Provided §— p>0, it follows that for

sufficiently large ¢t that

- B B

t
1+ i / Axdx 6 / (x)dx
0 0
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1+« cos(wt))2

8 (W (a(B — p)cos(2wt)+2awsin(2wt)+4(8 — p)cos(wt)+4w sin(wt)) + 1 2{_?;)

Alternatively, if 8 — p <0 it follows from (2.23) that

t
N P a(B—p)a+d) 12+4a?
fhgmoo/ K a2 <2((6p)2+4wz)+2 ﬁf’>>0’

and fi(t) —0ast — co. Thus, we have that i(t) -0 as t — co.
3. Application of the methodology to gonorrhea in the United States

To illustrate the utility of our gSIS model, we apply it, and the traditional SIS model to predict gonorrhea incidence in the
United States. We estimate parameters by minimizing the least-square error of model predictions with historical data on
gonorrhea incidence (Centers for Disease Control and Prevention, 2019; 2022), as well as the literature (Garnett et al., 1999;
Hethcote & Yorke, 2014). Specifically, the average duration of infection is based on an average of 1.5 days from gonorrhea
exposure to infectiousness (Hethcote & Yorke, 2014), an incubation period of approximately 7.5 days (Centers for Disease
Control and Prevention, 2022), and an average of 7.4 days (Centers for Disease Control and Prevention, 2022) from symp-
tom onset to visiting a medical professional for treatment. Altogether, this implies the average duration of infection is
u=1.91weeks.

Using this estimate, we reduce the number of parameters to estimate by imposing that p satisfies

PP ta)+4w?
. (1+a)p(p?+4w?)

where w and « are determined by minimizing the least-square error between model predictions and gonorrhea incidence
data for the gSIS model or set to zero for the traditional SIS model. We also base the total population size on the 15- to 24-year
population in the US (Blakeslee, L, Caplan, Z, Meyer, J.A., Rabe, M.A., 2023), who are the primary at-risk group for gonorrhea
infection(Centers for Disease Control and Prevention, 2022). Additional details of parameters, including the transmission rate,
are available in Table 2.

Given the estimates of model parameters, the (time-varying) average duration of infection varies between 1.83 weeks and
2.17 weeks for the gSIS model and remains constant at 1.91 weeks for the SIS model (Fig. 3). For the models, we have that the

DFE is unstable, as § — = 0.018>0, and § — 5= 0.01>0 for the gSIS, and SIS models, respectively. Using the estimated
parameters (Table 2), the gSIS, and traditional SIS models predict a peak and trough of 4.5—30.1 thousand, and 4.9—93.9
thousand incidences of gonorrhea per week, respectively, over the next 300 weeks (Fig. 4). Furthermore, the period of the
epidemic for the gSIS model was estimated as 27/w= 39.4 weeks, with an amplitude of seasonality of a= 0.1571.

To inform on the merit of our predictions, we calculated the Akaike information criteria (AIC) (Lancelot et al., 2002). Briefly,
AIC is a mathematical method for comparing how well models fit data, relative to one another, which takes into account
model complexity (Symonds & Moussalli, 2011). Assuming model solutions are represented by i(t; §,a,w,ig,tg), we define the
new incidence as

A("’Nvﬁv a,w, i07 tO) :Nﬁ l(t7 ﬂ,O{,W, i07 tO)(l - l(t7 6a o,w, i07 to))a

where a subscript of SIS, or gSIS is used to distinguish between cases.
The AIC score (Lancelot et al., 2002) for SIS and gSIS models is then determined from

Table 2

Parameters, base values, and sources.
Parameter Symbol SIS value gSIS value
Population (15—24 yrs) (millions) N 43 43
Duration of infection (in absence of periodicity) 1/p 1.91 weeks 1.91 weeks
Transmission rate 6 0.541/week 0.534/week
Period of the epidemic 2w /w Undefined 39.4 weeks
Magnitude of seasonality a 0 0.1571
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Fig. 3. The mean residual waiting-time and hazard rates of the duration of infection. Estimate of a) the average duration of infection and b) hazard rate of the
duration of infection distribution of gonorrhea at time t for the gSIS model with 1/p= 1.99 weeks ,a= 0.1571, ZW": 39.4 weeks (blue dashed curve), and the SIS
model with 1/p=1.91 weeks ,« = w= 0 (red solid curve).
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Fig. 4. Model fit and predictions of new gonorrhea infections. The trajectory of new gonorrhea infections based on data (black dotted curve), the gSIS model with
1/p=1.99 weeks ,a= 0.1571, ZW“: 39.4 weeks (blue dashed curve), and the SIS model with 1/p=1.91 weeks ,« = w= 0 (red solid curve).

M
AIC=M(n@m)+1) + M [ oS (1G: B, wio, f0) — hrew()? | +20k+1)
j=0

J

where M is the number of data points, Iew (j) is the observed new incidence on the j week and k is the number of estimated
parameters.

4. Discussion

We demonstrated a novel take on SIS models motivated by their extension to compartmental models that track person-
days of infection. For our model, we completely characterized its stability behavior, in addition to demonstrating that the SIS
and IR families of compartmental models are special cases. Naturally, this guarantees gSIS models will do at least as well as SIS
and IR models in application and demonstrates that the family of compartmental models with closed-form solutions is much
broader than these classical cases alone. Importantly, this work is also the first to build an SIS compartmental model with
time-varying parameters directly from assumptions placed on the duration of infection distribution, while also extending SIS
models to potentially feature periodic behavior.

We illustrated a novel SIS model with new solutions that were closed-form expressions beyond the well-known SIS, SI,
and IR models. While it remains an open question whether more complex models have such convenient properties, the added
flexibility of GDECM should provide a means to obtain additional gSIS models with such features. Furthermore, the GDECM
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framework may even enable the development of the first SIR models with solutions that have a closed-form expression. If
such a SIR model exists, it would imply the existence of an additional conservation law beyond the conservation of popu-
lation, and therefore could, at least in theory, be tested empirically.

An interesting feature of the gSIS model is that the existence of periodic solutions requires § — p >0, or equivalently% > 1.
Typically, for autonomous compartmental models, the existence of periodic solutions (when only one endemic equilibrium
exists) requires a specific set of parameter values so that Ry=1, which would be equivalent to %:1 for the traditional SIS

model, at least according to Hopf-bifurcation theory (Stadtlander, 2010). As such, the condition required for periodic solutions
of gSIS models suggests oscillatory dynamics are far more likely, which is corroborated by observed trends of many disease
trajectories that feature reproductive numbers greater than one.

The estimated epidemic period of 39.4 weeks provided by the gSIS model closely mirrors the average duration of a school
year of approximately 40 weeks (including weekends and holidays). While this similarity could be a coincidence, the high
prevalence of gonorrhea among 15-24 year-olds (Centers for Disease Control and Prevention, 2019; 2022), and the known role
of the school year in the transmission of other diseases (Keeling et al., 2001; Metcalf et al., 2009), suggest that the length of the
school year may play a prominent role in the periodic behavior of gonorrhea.

A further avenue of research is to consider a gSIS multistrain model that features a mixture of distributions with periodic
hazard rates. With such a model and distribution, it may be possible to ascertain fundamental frequencies of transmission and
infection directly from the model's solution. Subsequently, it may also be possible to determine whether there could be any
resonance between strains (Bacaér & Abdurahman, 2008) and how such a thing may contribute to pathogen evolution. Future
work could also include the merger of gSIS with techniques for predicting the doubling-time of epidemics. While recent work
tackles the question of doubling-time for epidemic models in the context of a modified Richards model (Smirnova et al., 2022)
(a generalization of logistic growth), it stands to reason that such analysis could be applied to gSIS models, given their for-
mulations as logistic growth equations with time-dependent parameters. Relatedly, the solutions with closed-form
expression of gSIS should also provide a means to estimate a final size function, akin to a final size equation of autono-
mous SIS models, that could provide details on the number of infected individuals, given only an initial condition and desired
time period.

While this work focuses on a modification of differential equation SIS models to include a time-varying average duration of
infection, one could also study gSIS models in the context of integral equations. The added flexibility of such a modification to
an integral equation description of disease spread may provide a means to tackle open challenges in disease modeling (Lloyd-
Smith et al., 2015), such as understanding the endemic equilibrium and defining its stability (Roberts et al., 2015). Similarly,
gSIS models could also be generalized to incorporate additional epidemiological states that are pertinent for capturing the
dynamics of disease Extending SIS models to the framework of GDECM carries with it many of the limitations of differential
equation compartmental models, with a homogeneously mixed population likely being the most prominent drawback.
Furthermore, the extension of SIS to gSIS still may not be sufficient to accurately represent the transmission dynamics of
gonorrhea, as the inclusion of treatment, asymptomatic infection, and treatment resistance classes, among others, may be
required to accurately capture transmission dynamics. Another drawback of gSIS, at least relative to SIS, is that it requires
more abundant information on the average duration of infection, namely how it varies in time. While this requirement may
not greatly inhibit the theoretical development and application of this new class of models, as extensions of the gSIS model to
a SEAIR model are possible (Farrell et al., 2023), it may impede its use in more intensive disease modeling analyses.

In summary, we demonstrated a new type of compartmental model based on extending a simple SIS model to the
framework of GDECM. In accomplishing this, we showed how this simple extension adds the potential for rich dynamics,
solutions that have closed-form expressions, and its potential to more accurately capture the patterns of disease in a pop-
ulation. Naturally, generalizing compartmental models further will likely only enhance these features and properties, and
thereby provide ample avenues for future investigation.
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