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Abstract. In this paper we develop methods to extend the minimal
hypersurface approach to positive scalar curvature problems to all di-
mensions. This includes a proof of the positive mass theorem in all di-
mensions without a spin assumption. It also includes statements about
the structure of compact manifolds of positive scalar curvature extend-
ing the work of [SY1] to all dimensions. The technical work in this paper
is to construct minimal slicings and associated weight functions in the
presence of small singular sets and to show that the singular sets do
not become too large in the lower dimensional slices. It is shown that
the singular set in any slice is a closed set with Hausdorff codimension
at least three. In particular for arguments which involve slicing down
to dimension 1 or 2 the method is successful. The arguments can be
viewed as an extension of the minimal hypersurface regularity theory to
this setting of minimal slicings.

1. Introduction

The study of manifolds of positive scalar curvature has a long history
in both differential geometry and general relativity. The theorems involved
include the positive mass theorem, the topological classification of manifolds
of positive scalar curvature, and the local geometric study of metrics of pos-
itive scalar curvature. There are two methods which have been successful in
this study in general situations, the Dirac operator method and the mini-
mal hypersurface method. Both of these methods have restrictions on their
applicability, the Dirac operator methods require the topological assump-
tion that the manifold be spin, and the minimal hypersurface method has
been restricted to the case of manifolds with dimension at most 8 because of
the possibility of singularities which might occur in the hypersurfaces. The
purpose of this paper is to extend the minimal hypersurface method to all
dimensions.
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The Dirac operator method was pioneered by A. Lichnerowicz [Li] and
M. Atiyah, I. Singer [AS] in the early 1960s. It was extended by N. Hitchin
[H] and then systematically developed by M. Gromov and H. B. Lawson
in [GL1], [GL2], and [GL3]. Surgery methods for manifolds of positive
scalar curvature were developed in [SY1] and [GL2]. For simply connected
manifolds Mn with n ≥ 5 Gromov and Lawson conjectured necessary and
conditions for M to have a metric of positive scalar curvature (related to
the index of the Dirac operator in the spin case). The conjecture was solved
in the affirmative by S. Stolz [St]. The Dirac operator method was used by
E. Witten [W] to prove the positive mass theorem for spin manifolds (see
also [PT]).

The minimal hypersurface method originated in [SY4] for the three
dimensional case and was extended to higher dimensions in [SY1]. The ex-
tension to the positive mass theorem was initiated in [SY2] and in higher
dimensions in [SY5] and [Sc]. In this paper we extend the minimal hyper-
surface argument to all dimensions at least as regards the applications to
the positive mass theorem and results which can be proven by slicing down
to dimension two.

The basic objects of study in this paper are called minimal k-slicings and
we now describe them. We start with a compact oriented Riemannian man-
ifold M which will be our top dimensional slice Σn. We choose an oriented
volume minimizing hypersurface Σn−1. Since Σn−1 is stable, the second vari-
ation form Sn−1(ϕ,ϕ) has first eigenvalue which is non-negative. We choose
a positive first eigenfunction un−1 and we use it as a weight ρn−1 for the
volume functional on n− 2 cycles which are contained in Σn−1. We assume
we have a Σn−2 ⊂ Σn−1 which minimizes the weighted volume Vρn−1(·). The
second variation Sn−2(ϕ,ϕ) for the weighted volume on Σn−2 then has non-
negative first eigenvalue and we let un−2 be a positive first eigenfunction.
We then define ρn−2 = un−2ρn−1 and we continue this process. That is if
we have Σj+1 ⊂ Σj+2 ⊂ . . . ⊂ Σn which have been constructed, we choose
Σj to be a minimizer of the weighted volume Vρj+1(·). Such a nested family
Σk ⊂ Σk+1 ⊂ . . . ⊂ Σn is called a minimal k-slicing.

The basic geometric theorem about minimal k-slicings which is general-
ized in Section 2 is the statement that if Σn has positive scalar curvature
then for any minimal k-slicing we have that Σk is Yamabe positive and so
admits a metric of positive scalar curvature. In particular if k = 2 then Σ2

must be diffeomorphic to S2 and there can be no minimal 1-slicing.
If we start with Σn with n ≥ 8, there might be a closed singular set

Sn−1 of Hausdorff dimension at most n − 8 in Σn−1. In this paper we de-
velop methods to carry out the construction of minimal k-slicings allowing
for the possibility that the Σj may have nonempty singular sets Sj . In order
to do this it is necessary to extend the existence and regularity theory for
minimal hypersurfaces to this setting. To do this requires maintaining some
integral control of the geometry of the Σj in the ambient manifold Σn, and
also of constructing the eigenfunctions uj which are bounded in appropriate
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weighted Sobolev spaces. This control is gotten by carefully exploiting the
terms which are left over in the geometry of the second variation at each
stage of the slicing. This is done by modifying the second variation form
Sj to a larger form Qj . The form Qj is more coercive and can be diago-
nalized with respect to the weighted L2 norm even in the presence of small
singular sets. We can then construct the next slice using the first eigenfunc-
tion for the form Qj to modify the weight. This procedure only works if
the singular sets Sj do not become too large. We prove that for a minimal
k-slicing the Hausdorff dimension of the singular set Sk is at most k − 3.
The regularity theorem is proven by establishing appropriate compactness
theorems for minimal k-slicings and showing that at a singular point there is
a homogeneous minimal k-slicing gotten by rescaling and using appropriate
monotonicity theorems (volume monotonicity and monotonicity of an appro-
priate frequency function). A homogeneous minimal k-slicing is one in R

n

for which all of the Σj are cones and all of the uj are homogeneous of some
degree. It is then possible to show that if we had a Σk+1 with singular set
of codimension at least 3, but Σk had a singular set of Hausdorff dimension
larger then k − 3 then there would exist a nontrivial homogeneous 2-slicing
with Σ2 having an isolated singularity at the origin. We show that no such
homogeneous slicings exist to conclude that if Sk+1 has codimension at least
3 in Σk+1, then Sk has codimension at least 3 in Σk. In particular if k = 2
then Σ2 is regular.

We now state the main theorems of the paper beginning with the positive
mass theorem. A manifold Mn is called asymptotically flat if there is a
compact set K ⊂ M such that M \ K is diffeomorphic to the exterior of
a ball in R

n and there are coordinates near infinity x1, . . . , xn so that the
metric components gij satisfy

gij = δij +O
(

|x|−p
)

, |x||∂gij |+ |x|2|∂2gij | = O
(

|x|−p
)

for some p > n−2
2 . We also require the scalar curvature R to satisfy

|R| = O
(

|x|−q
)

for some q > n. Under these assumptions the ADM mass is well defined by
the formula (see [Sc] for the n dimensional case)

m =
1

4(n− 1)ωn−1
lim
σ→∞

∫

Sσ

∑

i,j

(gij.i − gii,j)νj dξ(σ)

where Sσ is the euclidean sphere in the x coordinates, ωn−1 = V ol(Sn−1(1)),
and the unit normal and volume integral are with respect to the euclidean
metric. The positive mass theorem is as follows.

Theorem 1.1. Assume that M is an asymptotically flat manifold with
R ≥ 0. We then have that the ADM mass is nonnegative. Furthermore, if
the mass is zero, then M is isometric to R

n.
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It is shown in Section 5 using results of [SY3] to simplify the asymptotic
behavior and an observation of J. Lohkamp which allows us to compact-
ify the manifold keeping the scalar curvature positive. The result which is
needed for compact manifolds follows.

Theorem 1.2. If M1 is any closed manifold of dimension n, then
M1#Tn does not have a metric of positive scalar curvature.

Both of these theorems were known if either n ≤ 8 or for any n assuming
the manifold is a spin manifold. Actually for n = 8 there may be isolated
singularities, but in this dimension a result of N. Smale [Sm] shows that
there is a dense set of ambient metrics for which the singularities do not
occur. Using this result the eight dimensional case can also be done without
dealing with singularities. In this paper we remove the dimensional and spin
assumptions.

Finally we prove the following more precise theorem about compact man-
ifolds with positive scalar curvature.

Theorem 1.3. Assume that M is a compact oriented n-manifold with a
metric of positive scalar curvature. If α1, . . . ,αn−2 are classes in H1(M,Z)
with the property that the class σ2 given by σ2 = αn−2∩αn−3∩ . . .α1∩ [M ] ∈
H2(M,Z) is nonzero, then the class σ2 can be represented by a sum of smooth
two spheres. If αn−1 is any class in H1(M,Z), then we must have αn−1∩σ2 =
0. In particular, if M has classes α1, . . . ,αn−1 with αn−1∩ . . .∩α1∩[M ] ̸= 0,
then M cannot carry a metric of positive scalar curvature.

We also point out the recent series of papers by J. Lohkamp [Lo1],
[Lo2], [Lo3], and [Lo4]. These papers also present an approach to the high
dimensional positive mass theorem by extending the minimal hypersurface
approach to all dimensions. Our approach seems quite different both con-
ceptually and technically, and is more in the classical spirit of the calculus
of variations. In any case we feel that, for such a fundamental result, it is of
value to have multiple approaches.

2. Terminology and statements of main theorems

We begin by introducing the notation involved in the construction of a
minimal k-slicing; that is, a nested family of hypersurfaces beginning with
a smooth manifold Σn of dimension n and going down to Σk of dimension
k ≤ n − 1. This consists of Σk ⊂ Σk+1 ⊂ . . . ⊂ Σn where each Σj will be
constructed as a volume minimizer of a certain weighted volume in Σj+1.

Let Σn be a properly embedded n-dimensional submanifold in an open
set Ω contained in R

N . We will consider a minimal slicing of Σn defined in
an inductive manner. First, let un = 1, and let Σn−1 be a volume minimizing
hypersurface in Σn. Of course, it may happen that Σn−1 has a singular set
Sn−1 which is a closed subset of Hausdorff dimension at most n − 8. On
Σn−1 we will construct a positive definite quadratic form Qn−1 on functions
by suitably modifying the index form associated to the second variation of
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volume. We will then construct a positive function un−1 on Σn−1 which is a
least eigenfunction of Qn−1. We then define ρn−1 = un−1un, and we let Σn−2

be a hypersurface in Σn−1 which is a minimizer of the ρn−1-weighted volume
Vρn−1(Σ) =

∫

Σ
ρn−1dµn−2 for an n − 2 dimensional submanifold of Σn−1

and we denote µj to be the Hausdorff j-dimensional measure. Inductively,
assume that we have constructed a slicing down to dimension k + 1; that
is, we have a nested family of hypersurfaces, quadratic forms, and positive
functions (Σj , Qj , uj) for j = k + 1, . . . , n such that Σj minimizes the ρj+1-
weighted volume where ρj+1 = uj+1uj+2 . . . un, Qj is a positive definite
quadratic form related to the second variation of the ρj+1-weighted volume
(see (2.1) below), and uj is a lowest eigenfunction of Qj with eigenvalue
λj ≥ 0. We will always take λj to be the lowest Dirichlet eigenvalue (if
∂Σj ̸= 0) of Qj with respect to the weighted L2 norm and we take uj to
be a corresponding eigenfunction. We will show in Section 3 that such λj

and uj exist. We then inductively construct (Σk, Qk, uk) by letting Σk be
a minimizer of the ρk+1 weighted volume where ρk+1 = uk+1uk+2 . . . un,
Qk a positive definite quadratic form described below, and uk a positive
eigenfunction of Qk.

Note that if Σj is a leaf in a minimal k-slicing, then choosing a unit nor-
mal vector νj to Σj in Σj+1 gives us an orthonormal basis νk, νk+1, . . . , νn−1

for the normal bundle of Σk defined on the regular set Rk. Thus the second
fundamental form of Σk in Σn consists of the scalar forms A

νj
k = ⟨Ak, νj⟩ for

j = k, . . . , n− 1 and we have |Ak|
2 =

∑n−1
j=k |A

νj
k |2.

Now if we have a minimal k-slicing, we let gk denote the metric induced
on Σk from Σn, and we let ĝk denote the metric ĝk = gk +

∑n−1
p=k u

2
pdt

2
p on

Σk × (S1)n−k where we use S1 to denote a circle of length 1, and we denote
by tp a coordinate on the pth factor of S1. We then note that the volume
measure of the metric ĝk is given by ρkdµk where we have suppressed the
tp variables since we will consider only objects which do not depend on
them; for example, the ρk-weighted volume of Σk is the volume of the n-
dimensional manifold Σk × Tn−k. We will need to introduce another metric
g̃k on Σk×(S1)n−k−1. This is defined by g̃k = gk+

∑n−1
p=k+1 u

2
p dt

2
p. Note that

g̃k is the metric induced on Σk × (S1)n−k−1 by ĝk+1. We also let Ãk denote
the second fundamental form of Σk×(S1)n−k−1 in (Σk+1×(S1)n−k−1, ĝk+1).
The following lemma computes this second fundamental form.

Lemma 2.1. We have Ãk = Aνk
k −

∑n−1
p=k+1 upνk(up)dt

2
p, and the square

length with respect to g̃k is given by |Ãk|
2 = |Aνk

k |2 +
∑n−1

p=k+1(νk(log up))
2.

Proof. If we consider a hypersurface Σ in a Riemannian manifold with
unit normal ν, then we can consider the parallel hypersurfaces parametrized
on Σ by Fε(x) = exp(εν(x)) for small ε and x ∈ Σ. We then have a family of
induced metrics gε from Fε on Σ, and the second fundamental form is given
by A = −1

2 ġ where ġ denotes the ε derivative of gε at ε = 0.
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If we let exp denote the exponential map of Σk in Σk+1, then since Σk+1

is totally geodesic in Σk+1 × Tn−k−1, we have

Fε(x, t) = (exp
(

ενk(x), t
)

for (x, t) ∈ Σk × Tn−k−1, and the induced family of metrics is given by

g̃ε = (gk)ε +

n−1
∑

p=k+1

(up
(

exp(ενk)
)2

dt2p.

Thus we have

˙̃g = −2Aνk
k + 2

n−1
∑

p=k+1

upνk(up) dt
2
p

since Aνk
k is the second fundamental form of Σk in Σk+1. It follows that

Ãk = Aνk
k −

∑n−1
p=k+1 upνk(up)dt

2
p, and taking the square norm with respect

to the metric g̃k then gives the desired formula for |Ãk|
2. !

We now describe the choice we will make for Qj . Let Sj be the second
variation form for the weighted volume Vρj+1 at Σj , and define

Qj(ϕ,ϕ) = Sj(ϕ,ϕ) +
3

8

∫

Σj

(

|Ãj |
2(2.1)

+
1

3n

n
∑

p=j+1

(

|∇j log up|
2 + |Ãp|

2
)

)

ϕ2ρj+1 dµj

where, for now, ϕ is a function supported in the regular set Rj and we define

Ãn = 0, un = 1. We will discuss an extended domain for Qj in the Section 3.
Up to this point our discussion is formal because we have not discussed

issues related to the singularities of the Σj in a minimal slicing. We first
define the regular set, Rj of Σj to be the set of points x for which there
is a neighborhood of x in R

N in which all of Σj ,Σj+1, . . .Σn are smooth
embedded submanifolds of RN . The singular set, Sj is then defined to be the
complement of Rj in Σj . Thus Sj is a closed set by definition. The following
result follows from the standard minimizing hypersurface regularity theory.
In this paper dim(A) always refers to the Hausdorff dimension of a subset
A ⊂ R

N .

Proposition 2.2. For j ≤ n− 1 we have dim(Sj ∼ Sj+1) ≤ j − 7, and
in particular we have dim(Sn−1) ≤ n− 8.

In light of this result, we see that our main task in controlling singular-
ities is to control the size of the set Sj ∩ Sj+1. We will do this by extending
the minimal hypersurface regularity theory to this slicing setting. In order
to do this we need to establish the relevant compactness and tangent cone
properties and this requires establishing suitable bounds on the slicings. To
begin this process we make the following definition.
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Definition 2.1. For a constant Λ > 0, a Λ-bounded minimal k-
slicing is a minimal k-slicing satisfying the following bounds

λj ≤ Λ, V olρj+1(Σj) ≤ Λ,

∫

Σj

(

1+|Aj |
2+

n
∑

p=j+1

|∇j log up|
2

)

u2jρj+1 dµj ≤ Λ

for j = k, k+1, . . . n−1, where µj is Hausdorff measure, ∇j is taken on (the
regular set of) Σj , and Aj is the second fundamental form of Σj in R

N .

The minimal k-slicings we will consider in this paper will always be
Λ-bounded for some Λ. We have the following regularity theorem.

Theorem 2.3. Given any Λ-bounded minimal k-slicing, we have for each
j = k, k + 1, . . . , n− 1 the bound on the singular set dim(Sj) ≤ j − 3.

We now formulate an existence theorem for minimal k-slicings in Σn.
We consider the case in which Σn is a closed oriented manifold. We assume
that there is closed oriented k-dimensional manifold Xk and a smooth map
F : Σn → X × Tn−k of non-zero degree s. We let Ω denote a k-form of X
with

∫

X Ω = 1, and we denote by dtk+1, . . . dtn the basic one forms on Tn−k

where we assume the periods are equal to one. We introduce the notation
Θ = F ∗Ω and ωp = F ∗(dtp) for p = k + 1, . . . , n.

We can now state our first existence theorem. A more refined existence
theorem is given by Theorem 4.6 which we will not state here.

Theorem 2.4. For a manifold M = Σn as described above, there is a
Λ-bounded, partially regular, minimal k-slicing Moreover, if k ≤ j ≤ n − 1
and Σj is regular, then

∫

Σj
Θ ∧ ωk+1 ∧ . . . ∧ ωj = s.

The proofs of Theorems 2.3 and 2.4 will be given in Sections 3 and 4.
In the remainder of this section we discuss the quadratic forms Qj in more
detail and derive important geometric consequences for minimal 1-slicings
and 2-slicings under the assumption that Σn has positive scalar curvature.
Consequences of these results, which are the main geometric theorems of the
paper, will be given in Section 5.

Recall that in general if Σ is a stable two-sided (trivial normal bundle)
minimal hypersurface in a Riemannian manifold M , then we may choose
a globally defined unit normal vector ν, and we may parametrize normal
deformations by functions ϕ·ν. The second variation of volume then becomes
the quadratic form

S(ϕ,ϕ) =

∫

Σ

[

|∇ϕ|2 − 1

2

(

RM −RΣ + |A|2
)

ϕ2

]

dµ(2.2)

where RM and RΣ are the scalar curvature functions of M and Σ and A
denotes the second fundamental form of Σ in M .

We have the following result which computes the scalar curvature R̃k

of g̃k.
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Lemma 2.5. The scalar curvature of the metric g̃k is given by

R̃k = Rk − 2
n−1
∑

p=k+1

u−1
p ∆kup − 2

∑

k+1≤p<q≤n−1

⟨∇k log up,∇k log uq⟩

where ∆k and ∇k denote the Laplace and gradient operators with respect
to gk.

Proof. The calculation is a finite induction using the formula

R̃ = R− 2u−1
∆u

for the scalar curvature of the metric g̃ = g + u2dt2.
For j = k, . . . , n − 1 Let ḡj = gk +

∑n−1
p=j u

2
pdt

2
p. Note that ḡk = ĝk and

ḡk+1 = g̃k. We prove the formula

R̄j = Rk − 2
n−1
∑

p=j

u−1
p ∆kup − 2

∑

j≤p<q≤n−1

⟨∇k log up,∇k log uq⟩

by a finite reverse induction on j. First note that for j = n− 1 the formula
follows from the one above. Now assume the formula is correct for ḡj+1. We
then apply the formula above to obtain

R̄j = R̄j+1 − 2u−1
j ∆̄juj .

Since uj does not depend on the extra variables tp, we have

u−1
j ∆̄juj = u−1

j ρ−1
j divk(ρj∇kuj) = u−1

j ∆kuj +
n−1
∑

p=j+1

⟨∇k log up,∇k log uj⟩

where as above ρj = uj+1 · · ·un−1. The statement now follows from the
inductive assumption. Since ḡk+1 = g̃k, we have proven the required state-
ment. !

We now consider consequences of having a minimal k-slicing of a mani-
fold of positive scalar curvature.

Theorem 2.6. Assume that the scalar curvature of Σn is bounded below
by a constant κ. If Σk is a leaf in a minimal k-slicing, then we have the
following scalar curvature formula and eigenvalue estimate

R̂k = Rn + 2

n−1
∑

p=k

λp +
1

4

n−1
∑

p=k

(

|Ãp|
2 − 1

n

n
∑

q=p+1

(

|∇p log uq|
2 + |Ãq|

2
)

)

∫

Σk

(

κ+
3

4

n
∑

j=k+1

|∇k log uj |
2 −Rk

)

ϕ2 dµk ≤ 4

∫

Σk

|∇kϕ|
2 dµk

where ϕ is any smooth function with compact support in Rk.
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Proof. First note that from (2.1) and (2.2) we have

Qj(ϕ,ϕ) =

∫

Σj

[

|∇jϕ|
2 − 1

2
(R̂j+1 − R̃j)ϕ

2

− 1

8

(

|Ãj |
2 − 1

n

n
∑

p=j+1

(

|∇j log up|
2 + |Ãp|

2
)

)

ϕ2

]

ρj+1 dµj ,

and therefore uj satisfies the equation Ljuj = −λjuj where

Lj = ∆̃j +
1

2
(R̂j+1 − R̃j) +

1

8

(

|Ãj |
2 − 1

n

n
∑

p=j+1

(

|∇j log up|
2 + |Ãp|

2
)

)

.

(2.3)

We derive the scalar curvature formula by a finite downward induction
beginning with k = n− 1. In this case the eigenvalue estimates follow from
the standard stability inequality (2.2) since ρn = un = 1 and R̃n−1 = Rn−1.

We also have from Lemma 2.5 that R̂n−1 = Rn−1 − 2u−1
n−1∆n−1un−1. The

equation satisfied by un−1 is

∆n−1un−1 +
1

2
(Rn −Rn−1)un−1 +

1

8
|Ãn−1|

2un−1 = −λn−1un−1

and so we have R̂n−1 = Rn + 2λn−1 +
1
4 |Ãn−1|

2. This proves the result for
k = n− 1.

Now we assume the conclusions are true for integers k and larger, and we
will derive them for k−1. We first observe that ĝk−1 = g̃k−1+u2k−1 dt

2
k−1 and

so R̂k−1 = R̃k−1 − 2u−1
k−1∆̃k−1uk−1. On the other hand from (2.3) applied

with j = k − 1 we see that uk−1 satisfies the equation

∆̃k−1uk−1 +
1

2
(R̂k − R̃k−1)uk−1 +

1

8

(

|Ãk−1|
2

− 1

n

n
∑

p=k

(

|∇k−1 log up|
2 + |Ãp|

2
)

)

uk−1 = −λk−1uk−1.

Substituting this above we have

R̂k−1 = R̃k−1 + 2

[

λk−1 +
1

2
(R̂k − R̃k−1)

+
1

8

(

|Ãk−1|
2 − 1

n

n
∑

q=k

(

|∇k−1 log uq|
2 + |Ãq|

2
)

)]

,

so we have

R̂k−1 = 2λk−1 + R̂k +
1

4

(

|Ãk−1|
2 − 1

n

n
∑

q=k

(

|∇k−1 log uq|
2 + |Ãq|

2
)

)

.



450 R. SCHOEN AND S.-T. YAU

Using the inductive hypothesis we get the desired formula

R̂k−1 = Rn + 2

n−1
∑

p=k−1

λp +
1

4

n−1
∑

p=k−1

(

|Ãp|
2 − 1

n

n
∑

q=p+1

(

|∇p log uq|
2 + |Ãq|

2
)

)

.

Now observe that by an easy rewrite and estimate on the first term

n−1
∑

p=k

(

n|Ãp|
2 −

n−1
∑

q=p+1

(

|∇p log uq|
2 + |Ãq|

2
)

)

≥
n−1
∑

p=k

(

n−1
∑

r=k

|Ãr|
2 −

n−1
∑

q=p+1

(

|∇p log uq|
2 + |Ãq|

2
)

)

=

n−1
∑

p=k

(

p
∑

r=k

|Ãr|
2 −

n−1
∑

q=p+1

|∇p log uq|
2

)

.

From Lemma 2.1 we have the bound

p
∑

r=k

|Ãr|
2 ≥

p
∑

r=k

n−1
∑

q=r+1

(νr log uq)
2 ≥

p
∑

r=k

n−1
∑

q=p+1

(νr log uq)
2

=

n−1
∑

q=p+1

p
∑

r=k

(νr log uq)
2

since r ≤ p. Combining these we have

n−1
∑

p=k

(

n|Ãp|
2 −

n−1
∑

q=p+1

(

|∇p log uq|
2 + |Ãq|

2
)

)

≥
n−1
∑

p=k

n−1
∑

q=p+1

(

p−1
∑

r=k

(νr log uq)
2 − |∇p log uq|

2

)

= −
n−1
∑

p=k

n−1
∑

q=p+1

|∇k log uq|
2 ≥ −n

n−1
∑

q=k

|∇k log uq|
2.

This formula implies that for each k we have

R̂k ≥ κ− 1/4
n
∑

j=k

|∇k log uj |
2.

It then follows from Lemma 2.1 that

|Ãk|
2 + R̂k+1 ≥ κ− 1/4

n
∑

j=k+1

|∇k log uj |
2(2.4)
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and so the following eigenvalue estimate follows from (2.2)

∫

Σk

(

κ− 1

4

−1
∑

j=k+1

n|∇k log uj |
2 − R̃k

)

ϕ2ρk+1 dµk ≤ 2

∫

Σk

|∇kϕ|
2ρk+1 dµk

The remainder of the proof derives the eigenvalue estimate from this one.
Since ϕ is arbitrary we may replace ϕ by ϕ(ρk+1)

1/2 to obtain
∫

Σk

(

κ− 1

4

n
∑

j=k+1

|∇k log uj |
2 − R̃k

)

ϕ2 dµk

≤ 2

∫

Σk

|∇k(ϕ/
√
ρk+1)|

2ρk+1 dµk

≤ 4

∫

Σk

|∇k(ϕ/
√
ρk+1)|

2ρk+1 dµk

where we used the inequality 2 ≤ 4. After expanding, the term on the right
becomes

4

∫

Σk

(

|∇kϕ|
2 − ϕ⟨∇kϕ,∇k log ρk+1⟩+ 1/4ϕ2|∇k log ρk+1|

2
)

dµk.

Rewriting the middle term in terms of ∇k(ϕ)
2 and integrating by parts the

term becomes

4

∫

Σk

(

|∇kϕ|
2+1/2ϕ2

[

n−1
∑

p=k+1

(

u−1
p ∆kup−|∇k log up|

2
)

+1/2|∇k log ρk+1|
2

])

dµk.

Now recall from Lemma 2.5 that

R̃k = Rk − 2
n−1
∑

p=k+1

u−1
p ∆kup − 2

∑

k+1≤p<q≤n−1

⟨∇k log up,∇k log uq⟩.

Thus we see that the terms involving ∆kup cancel out, and note also that

|∇k log ρk+1|
2 =

n−1
∑

p=k+1

|∇k log up|
2 + 2

∑

k+1≤p<q≤n−1

⟨∇k log up,∇k log uq⟩

so the second term also cancels. Thus we are left with
∫

Σk

(

κ− 1

4

n
∑

j=k+1

|∇k log uj |
2 −Rk

)

ϕ2 dµk

≤ 4

∫

Σk

(

|∇kϕ|
2 − 1

4

n
∑

j=k+1

|∇k log uj |
2

)

dµk.

This gives the desired eigenvalue estimate. !

This theorem will be central to the regularity proof in the next section
and it also has an important geometric consequence which is the main tool
in the applications of Section 5.
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Theorem 2.7. Assume that Rn ≥ κ > 0. If Σk is regular, then (Σk, gk)
is a Yamabe positive conformal manifold. If Σ2 lies in a minimal 2-slicing,
Σ2 is regular, and ∂Σ2 = 0, then each connected component of Σ2 is homeo-
morphic to the two sphere. If Σ1 lies in a minimal 1-slicing and Σ1 is regular,
then each component of Σ1 is an arc of length at most 2π/

√
κ.

Proof. Recall that the condition that gk be Yamabe positive is that
the lowest eigenvalue of the conformal Laplacian −∆k + c(k)Rk be positive
where c(k) = k−2

4(k−1) . In variational form this condition says

−
∫

Σk

Rkϕ
2 dµk < c(k)−1

∫

Σk

|∇kϕ|
2 dµk

for all nonzero functions ϕ which vanish on ∂Σk (if Σk has a boundary).
Since 4 < c(k)−1 we see that this follows from the eigenvalue estimate of
Theorem 2.6.

Now consider Σ2, and apply the eigenvalue estimate of Theorem 2.6 with
ϕ = 1 to a component S of Σ2 to see that

∫

S R2 dµ2 > 0. It then follows
from the Gauss-Bonnet Theorem that S is homeomorphic to the two sphere
(note that S is orientable).

Finally, it γ is a connected component of Σ1 of length l, then the eigen-
value estimate of Theorem 2.6 implies that the lowest Dirichlet eigenvalue
of γ is at least κ/4. Thus κ/4 ≤ π2/l2 and l ≤ 2π/

√
κ as claimed. !

3. Compactness and regularity of minimal k-slicings

The main goal of this section is to prove Theorem 2.3. In order to do
this we first must clarify some analytic issues concerning the domain of the
quadratic form Qj . We let L2(Σj) denote the space of square integrable
functions on Σj with respect to the measure ρj+1µj . We let

∥ϕ∥20,j =
∫

Σj

ϕ2ρj+1 dµj

denote the square norm on L2
Σj
. We introduce some notation, defining Pj to

be the function defined on Σj

Pj = |Aj |
2 +

n
∑

p=j+1

|∇j log up|
2.

We will say that a minimal k-slicing in an open set Ω is partially regular
if dim(Sj) ≤ j − 3 for j = k, . . . , n− 1. It follows from Proposition 2.2 that
if the (k + 1)-slicing associated to a minimal k-slicing is partially regular,
then dim(Sk) ≤ min{dim(Sk+1), k − 7} ≤ k − 2.

For functions ϕ which are Lipschitz (with respect to ambient distance)
on Σj with compact support in Rj ∩ Ω̄, we define a square norm by

∥ϕ∥21,j = ∥ϕ∥20,j +
∫

Σj

(

|∇jϕ|
2 + Pjϕ

2
)

ρj+1 dµj .
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We let Hj denote the Hilbert space which is the completion with respect
to this norm. Note that functions in Hj are clearly locally in W1,2 on Rj .
We will assume from now on that uj ∈ Hj for j ≥ k; in fact, we take this
as part of the definition of a bounded minimal k-slicing. We define Hj,0 to
be the closed subspace of Hj consisting of the completion of the Lipschitz
functions with compact support in Rj ∩ Ω. In order to handle boundary
effects we also assume that there is a larger domain Ω1 which contains Ω̄ as
a compact subset and that the k-slicing is defined and boundaryless in Ω1.
Note that this is automatic if ∂Σj = φ. Thus Hj,0 consists of those functions
in Hj with 0 boundary data on Σj ∩ ∂Ω. The existence of eigenfunctions uj
in this space will be discussed in the next section. The following estimate of
the L2(Σk) norm near the singular set will be used both in this section and
the next. The result may be thought of as a non-concentration result for the
weighted L2 norm near the singular set in case the Hk norm is bounded.

Proposition 3.1. Let S be a closed subset of Ω1 with zero (k − 1)-
dimensional Hausdorff measure. Let Σk be a member of a bounded minimal
k-slicing such that Σk+1 is partially regular in Ω1. For any η > 0 there exists
an open set V ⊂ Ω1 containing S ∩ Ω̄ such that whenever Sk ∩ Ω̄ ⊂ V we
have the following estimate

∫

Σk∩V
ϕ2ρk+1 dµk ≤ η

∫

Σk∩Ω

[

|∇kϕ|
2 + (1 + Pk)ϕ

2
]

ρk+1 dµk

for all ϕ ∈ Hk,0.

Proof. Let ε > 0, δ > 0 be given. We may choose a finite covering of
the compact set S ∩ Ω̄ by balls Brα(xα) with rα ≤ δ/5 such

∑

α

rk−1
α ≤ ε.

We let V denote the union of the balls, V = ∪αBrα(xα).
Assume that Sk ∩ Ω̄ ⊂ V and let ϕ ∈ Hk,0. We may extend ϕ to Σk ∩Ω1

be taking ϕ = 0 in Ω1 ∼ Ω. By a standard first variation argument for
submanifolds of RN , for a nonnegative function we have

k

∫

Σk∩Br

ϕ2ρk+1 dµk ≤ r

∫

Σk∩Br

(

|∇kϕ
2ρk+1|+ |Hk|ϕ

2ρk+1

)

dµk

+ r

∫

Σk∩∂Br

ϕ2ρk+1 dµk−1.

Let Lα(r) =
∫

Σk∩Br(xα)
ϕ2ρk+1 dµk and

Mα(r) =

∫

Σk∩Br(xα)

(

|∇k

(

ϕ2ρk+1

)

|+ |Hk|ϕ
2ρk+1

)

dµk.

The above inequality then implies

kLα(r) ≤ rMα(r) + r
d

dr

(

Lα(r)
)

.
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Now for any α and a small constant ε0 we consider two cases: (1) There
exists r with rα ≤ r ≤ δ/5 such that the inequality

ε0Lα(5r) ≤ rMα(r).

We denote such a choice of r by r′α. Secondly, we have case (2) For all r with
rα ≤ r ≤ δ/5 we have

rMα(r) < ε0Lα(5r).

The collection of α for which the first case holds will be labeled A1, and that
for which the second holds A2. We will handle the two cases separately.

For the collection of balls with radius r′α indexed by A1 we may apply
the five times covering lemma to extract a subset A′

1 ⊆ A1 for which the
balls in A′

1 are disjoint and such that

V1 ≡ ∪α∈A1Brα(xα) ⊆ ∪α∈A1Br′
α

(xα) ⊆ ∪α∈A′
1
B5r′

α

(xα).

From the inequality of case (1) above applied for α ∈ A′
2 we have

Lα(rα) ≤ Lα

(

5r′α
)

≤ ε−1
0 r′αMα

(

r′α
)

≤ ε−1
0 δMα

(

r′α
)

.

Summing over α ∈ A1 and using disjointness of the balls we have
∫

Σk∩V1

ϕ2ρk+1 dµk ≤ ε−1
0 δ

∫

Σk∩Ω

(

|∇kϕ
2ρk+1|+ |Hk|ϕ

2ρk+1

)

dµk.(3.1)

Now for α ∈ A2 we have

kLα(r) ≤ ε0Lα(5r) + r
d

dr

(

Lα(r)
)

for rα ≤ r ≤ δ/5. For j = 0, 1, 2, . . . define σj = 5jrα and let p be the
positive integer such that σp−1 < δ/5 ≤ σp. We define Λj by Λj = Lα(σj)
for j = 0, 1, . . . , p. For σj ≤ r ≤ σj+1 we then have

kLα(r) ≤ ε0Λj+2Λ
−1
j Lα(r) + r

d

dr

(

Lα(r)
)

.

Integrating we find

Λj+1Λ
−1
j ≥ 5k−ε0Λj+2Λ

−1
j .

Setting Rj = Λj+1Λ
−1
j we have shown

Rj ≥ 5k−ε0RjRj+1 .

Now if Rj ≤ 5k−1 then we would have 5k−1 ≥ 5k−ε0RjRj+1 which in turn

implies ε05
k−1Rj+1 ≥ ε0RjRj+1 ≥ 1. Thus if we choose ε0 = 5−3k+3 we

find Rj+1 ≥ 52(k−1) and hence it follows that RjRj+1 ≥ 52(k−1). Thus we

have shown that for any j = 0, 1, . . . , p − 1 we either have Rj ≥ 5k−1 or

RjRj+1 ≥ 52(k−1). This implies that ΛpΛ
−1
0 ≥ 5(p−1)(k−1) ≥ 51−k(δ/rα)

k−1

and therefore we have Lα(rα) ≤ c(rα/δ)
k−1Lα(σp) for each α ∈ A2. Sum-

ming this over these α and using the choice of the covering we have
∫

Σk∩V2

ϕ2ρk+1 dµk ≤ cεδ1−k

∫

Σk∩Ω

ϕ2ρk+1 dµk.
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Combining this with (3.1) we finally obtain
∫

Σk∩V
ϕ2ρk+1 dµk

≤ cεδ1−k

∫

Σk∩Ω

ϕ2ρk+1 dµk + cδ

∫

Σk∩Ω

(

|∇kϕ
2ρk+1|+ |Hk|ϕ

2ρk+1

)

dµk,

since we have now fixed ε0. We can estimate the second term on the right
using

|∇kϕ
2ρk+1|+ |Hk|ϕ

2ρk+1

≤
(

ϕ2 + |∇kϕ|
2
)

ρk+1 +
1

2
ϕ2

(

2 + |∇k log ρk+1|
2 + |Hk|

2
)

ρk+1.

This implies the bound
∫

Σk∩V
ϕ2ρk+1 dµk

≤ c
(

εδ1−k + δ
)

∫

Σk∩Ω

ϕ2ρk+1 dµk + cδ

∫

Σk∩Ω

[

|∇kϕ|
2 + Pkϕ

2
]

ρk+1 dµk.

The desired conclusion now follows by choosing δ so that cδ = η/2 and then
choosing ε so that cεδ1−k = η. This completes the proof. !

The following coercivity bound will be useful both in this section and in
the next. We assume here that we have a partially regular minimal k-slicing.

Proposition 3.2. Assume that our k-slicing is bounded. There is a
constant c such that for ϕ ∈ Hk,0 we have

c−1

∫

Σk

[

|∇kϕ|
2+

(

Pk+|∇k log uk|
2
)

ϕ2
]

ρk+1 dµk≤Qk(ϕ,ϕ)+

∫

Σk

ϕ2ρk+1 dµk.

Moreover we have the bound

c−1

∫

Σk

(

|∇k(ϕ
√
ρk+1)|

2 + |Ak|
2ϕ2ρk+1

)

dµk ≤ Qk(ϕ,ϕ) +

∫

Σk

ϕ2ρk+1 dµk.

Proof. We can see from (2.1) that

Qk(ϕ,ϕ) ≥ Sk(ϕ,ϕ) +
1

8n

∫

Σk

(

n
∑

p=k

|Ãp|
2 +

n
∑

p=k+1

|∇k log up|
2

)

ϕ2ρk+1dµk.

Using the stability of Σk we have

Qk(ϕ,ϕ) ≥
1

8n

∫

Σk

(

n
∑

p=k

|Ãp|
2 +

n
∑

p=k+1

|∇k log up|
2

)

ϕ2ρk+1dµk.(3.2)

Finally we use Lemma 2.1 to conclude that (note that Ãn = 0)

n
∑

p=k

|Ãp|
2 ≥

n−1
∑

p=k

|A
νp
p |2 ≥

n−1
∑

p=k

|A
νp
k |2 = |Ak|

2,
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and thus we have

Qk(ϕ,ϕ) ≥
1

8n

∫

Σk

Pkϕ
2ρk+1 dµk.

Recall that Sk(ϕ,ϕ) =
∫

Σk
(|∇kϕ|

2 − qkϕ
2)ρk+1 dµk where

qk =
1

2

(

|Ãk|
2 + R̂k+1 − R̃k

)

where R̂k+1 is given in Theorem 2.6 and R̃k is given in Lemma 2.5. We will
need an upper bound on qk, so we first see from Theorem 2.6 with k replace
by k + 1

qk ≤ c+
1

2

n−1
∑

p=k

|Ãp|
2 − 1

2
R̃k

where the constant bounds the curvature of Σn and the eigenvalues. Now
from Lemma 2.5 we can obtain the bound

−1

2
R̃k ≤ 1

2
|Rk|+

n−1
∑

p=k+1

|∇k log up|
2 + divk(Xk)

where Xk =
∑n−1

p=k+1∇k log up. We observe that the Gauss equation implies

that |Rk| ≤ c(1 + |Ak|
2), and so we have

qk ≤ c+ c
n−1
∑

p=k

|Ãp|
2 +

n−1
∑

p=k+1

|∇k log up|
2 + divk(Xk)

Now observe that Qk ≥ Sk and so we have
∫

Σk

(

|∇kϕ|
2 +

1

8n
Pkϕ

2

)

ρk+1 dµk ≤ 2Qk(ϕ,ϕ) +

∫

Σk

qkϕ
2ρk+1 dµk.

We want to bound the second term on the right by a constant times the
first plus up to the square of the L2 norm of ϕ, so we use the bound for qk
to obtain

∫

Σk

qkϕ
2ρk+1 dµk ≤ c

∫

Σk

(

1 +
n−1
∑

p=k

|Ãp|
2 +

n−1
∑

p=k+1

|∇k log up|
2

)

ϕ2ρk+1dµk

+

∫

Σk

divk(Xk)ϕ
2ρk+1dµk.

Now since ϕ has compact support we have
∫

Σk

divk(Xk)ϕ
2ρk+1 dµk = −

∫

Σk

〈

Xk,∇
(

ϕ2ρk+1

)〉

dµk.
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Easy estimates then imply the bound
∣

∣

∣

∣

∫

Σk

divk(Xk)ϕ
2ρk+1 dµk

∣

∣

∣

∣

≤ 1

2

∫

Σk

|∇kϕ|
2ρk+1 dµk + c

∫

Σk

(

n−1
∑

p=k+1

|∇k log up|
2

)

ϕ2ρk+1 dµk.

We may now absorb the first term back to the left and use (3.2) to obtain
the bound

∫

Σk

(

|∇kϕ|
2 + Pkϕ

2
)

ρk+1 dµk ≤ cQk(ϕ,ϕ) +

∫

Σk

ϕ2ρk+1dµk.

To bound the term involving |∇k log uk|
2 we recall that on the regular

set we have

∆̃kuk + qkuk = −λkuk

where λk ≥ 0. This implies by direct calculation

∆̃ log uk = −qk − λk − |∇k log uk|
2.

(Note that ∇̃k = ∇k on functions which do not depend on the extra vari-
ables tp.) Now if ϕ has compact support in Rk, we multiply by ϕ2, integrate
by parts to obtain

∫

Σk

(

|∇k log uk|
2 + qk

)

ϕ2ρk+1 dµk ≤ 2

∫

Σk

ϕ⟨∇kϕ,∇k log uk⟩ρk+1 dµ.

By the arithmetic-geometric mean inequality
∫

Σk

(

|∇k log uk|
2 + qk

)

ϕ2ρk+1 dµk ≤ 1

2

∫

Σk

(

|∇k log uk|
2 + qk

)

ϕ2ρk+1 dµk

+ 2

∫

Σk

|∇kϕ|
2ρk+1 dµk.

This implies

1

2

∫

Σk

|∇k log uk|
2ϕ2ρk+1 dµk ≤ 1

2
Qk(ϕ,ϕ) +

3

2

∫

Σk

|∇kϕ|
2ρk+1 dµk.

The first inequality then follows from this and our previous estimate.
The second conclusion follows since |∇k log ρk+1|

2 ≤ cPk, and so the
integrand on the left |∇k(ϕ

√
ρk+1)|

2+ |Ak|
2ϕ2ρk+1 is bounded pointwise by

a constant times (|∇kϕ|
2 + Pkϕ

2)ρk+1. !

Recall that an important analytic step in the minimal hypersurface reg-
ularity theory is the local reduction to the case in which the hypersurface is
the boundary of a set. This makes comparisons particularly simple and re-
duces consideration to a multiplicity one setting. We will need an analogous
reduction in our situation. Since the leaves of a k-slicing can be singular,
we must consider the possibility that local topology comes into play and
prohibits such a reduction to boundaries of sets. What saves us here is the
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fact that k-slicings come with a natural trivialization of the normal bundle
(on the regular set). We have the following result.

Proposition 3.3. Assume that U is compactly contained in Ω, and that
U∩Σn is diffeomorphic to a ball. Assume that we have a minimal k-slicing in
Ω such that the associated (k+ 1)-slicing is partially regular. Let Σ̂k denote
the closure of any connected component of Σk∩U∩Rk+1. Then it follows that

Σ̂k divides the corresponding connected component (denoted Σ̂k+1) of Σk+1

into a union of two relatively open subsets, and choosing the one, denoted
Uk+1, for which the unit normal of Σ̂k points outward, we have Σ̂k = ∂Uk+1

as a point set boundary in Σ̂k+1, and as an oriented boundary in Rk+1.

Proof. Since Σ̂k∩Rk+1 and Σ̂k+1∩Rk+1 are connected, it follows that

the complement of Σ̂k ∩Rk+1 in Σ̂k+1 ∩Rk+1 has either 1 or 2 connected
components. These consist of the connected components of points lying near
Σ̂k on either side. Locally these are separate components, but they may re-
duce globally to a single connected component. If this were to happen, then
since dim(Sk+1) ≤ k − 2, we could find a smooth embedded closed curve

γ(t) parametrized by a periodic variable t ∈ [0, 1] with γ(0) ∈ Σ̂k ∩ Rk+1

and γ(t) ∈ Rk+1 ∼ Σ̂k for t ̸= 0. We may also assume that γ′(0) is trans-

verse to Σ̂k. We choose local coordinates x1, . . . , xk for Σ̂k in a neighborhood
V of γ(0) and we may find an embedding F of V × S1 in Rk+1 with the

property that F (0, t) = γ(t), F (x, 0) ∈ Σ̂k, F (x, t) ̸∈ Σ̂k for t ̸= 0, and
∂F
∂t (x, 0) is transverse to Σ̂k. The k-form ω = ζ(x)dx1 ∧ . . .∧ dxk, where ζ is
a nonnegative and nonzero function with compact support in V , is a closed
form which has positive integral over Σ̂k. Since the image V1 = F (V × S1)

is compactly contained in Rk+1 and the normal bundle of Σ̂k+1 is trivial,
we may choose coordinates xk+2, . . . , xn for a normal disk, and the coordi-
nates x1, . . . , xk, t, xk+2, . . . , xn are then coordinates on a neighborhood of
V1 in Σn. We may then extend ω to an (n − 1)-form on this neighborhood
by setting

ω1 = ω ∧ ζ1
(

xk+2, . . . , xn
)

dxk+2 ∧ . . . ∧ dxn

where ζ1 is a nonzero, nonnegative function with compact support in the do-
main of xk+1, . . . , xn. Thus ω1 is a closed (n−1)-form with compact support

in U ∩Σn which has positive integral on Σ̂n−1, the connected component of
Σn−1 containing γ(0). This contradicts the condition that each connected
component of Σn−1 must divide the ball U ∩ Σn into 2 connected compo-

nents and is the oriented boundary of one of them, say Σ̂n−1 = ∂Un, since
Stokes theorem would imply that

∫

Σ̂n−1
ω1 =

∫

Un
dω1 = 0 (note that ω1 has

compact support in U ∩ Σn). !

We will prove a boundedness theorem which will be needed in the proof
of the compactness theorem. Note that we will obtain the partial regularity
theorem by finite induction down from dimension n−1, so we may assume in
the following theorems that we have already established partial regularity for
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(k+1)-slicings. In the following result we will consider the restriction of a k-
slicing to a small ball Bσ(x) where x ∈ R

N . We consider the rescaled k-slicing
of the unit ball given by Σj,σ = σ−1(Σj−x) with uj,σ(y) = ajuj(x+σy) with
aj chosen so that

∫

Σj,σ
(uj,σ)

2ρj+1,σ dµj = 1. We note that by Proposition 3.3

we may assume that each Σj in Bσ(x) is the oriented boundary of a relatively
open set Oj+1 ⊆ Σj+1. We take Oj+1,σ to be the rescaled open set. The
following result implies that the rescaled k-slicing remains Λ-bounded for a
suitably chosen Λ.

Theorem 3.4. Assume that all bounded (k + 1)-slicings are partially
regular. If we take any bounded minimal k-slicing (Σj , uj) in Ω and a ball
Bσ(x) compactly contained in Ω, then there is a Λ depending only on Σn

such that (Σj,σ, uj,σ), j = k, . . . , n− 1 is Λ-bounded in B1/2(0).

Proof. The proof is by a finite induction beginning with k = n − 1.
The boundedness of µn−1(Σn−1,σ) follows by comparison with a portion of
the sphere of radius 1 in a standard way (see a similar argument below). We
normalize

∫

Σn−1,σ
(un−1,σ)

2 dµn−1 = 1, so it remains to show

∫

Σn−1,σ∩B1/2(0)
|An−1,σ|

2u2n−1,σ dµn−1 ≤ Λ.

To see this, we use stability with the variation ζun−1,σ to obtain

1

4

∫

Σn−1,σ

|An−1,σ|
2ζ2u2n−1,σ dµn−1 ≤ Qn−1,σ(ζun−1,σ, ζun−1,σ).

Now we have by direct calculation for any W1,2(Σn−1,σ) function v

Qn−1,σ(ζv, ζv) = Qn−1,σ

(

ζ2v, v
)

+

∫

Σn−1,σ

v2|∇n−1,σζ|
2 dµn−1.

Taking v = un−1,σ and choosing ζ to be a function which is 1 on B1/2(0)
with support in B1(0) and with bounded gradient we find

∫

Σn−1,σ

|An−1,σ|
2u2n−1,σ dµn−1 ≤ 4λn−1,σ + c ≤ Λ

for a constant Λ where we have used the eigenvalue condition

Qn−1,σ

(

ζ2un−1,σ, un−1,σ

)

= λn−1,σ

∫

Σn−1,σ

ζ2u2n−1,σ dµn−1

and the obvious relation λn−1,σ = σ2λn−1. This proves Λ-boundedness for
k = n− 1.

Now assume that we have Λ-boundedness for j ≥ k+1 in B3/4(0). Thus

it follows that
∫

Σk+1,σ∩B3/4(0)
(1 + (uk+1,σ)

2)ρk+2,σ dµk+1 is bounded and

hence
∫

Σk+1,σ∩B3/4(0)
ρk+1,σ dµk+1 is bounded. We may then use the coarea
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formula to find a radius r ∈ (1/2, 3/4) so that
∫

Σk+1,σ∩∂Br(0)
ρk+1,σ dµk ≤ Λ.

Using the portion of Σk+1,σ ∩ ∂Br(0) lying outside Ok,σ as a comparison
surface we find

V olρk+1,σ

(

Σk,σ ∩B1/2(0)
)

≤ V olρk+1,σ

(

Σk+1,σ ∩ ∂Br(0)
)

≤ Λ.

Finally we prove the bound

∫

Σk,σ∩B1/2(0)

(

|Ak,σ|
2 +

n
∑

p=k+1

|∇k,σ log up,σ|
2

)

u2k,σρk+1,σ dµk ≤ Λ

by the use of stability as we did above for the case k = n− 1. !

We will now formulate and prove a compactness theorem for minimal
k-slicings under the assumption that the associated (k + 1)-slicings for the
sequence are partially regular. We will say that a Λ-bounded sequence of k-

slicings (Σ
(i)
j , u

(i)
j ), j = k, . . . , n− 1 converges to a minimal k-slicing (Σj , uj)

in an open set U if Σ
(i)
j converges in C2 norm to Σj in Ū locally on the

complement of the singular set (of the limit) Sj , and such that for j =
k, . . . , n− 1

lim
i→∞

V
ρ
(i)
j+1

(

Σ
(i)
j ∩ Ui

)

= Vρj+1(Σj ∩ U),(3.3)

lim
i→∞

∥u(i)j ∥20,j,Ui
= ∥uj∥20,j,U(3.4)

lim
i→∞

∫

Σ
(i)
j ∩Ui

(

|∇ju
(i)
j |2 + P

(i)
j

(

u
(i)
j

)2)
ρ
(i)
j+1 dµj

=

∫

Σj∩U

(

|∇juj |
2 + Pju

2
j

)

ρj+1 dµj

where Ui is a sequence of compact subdomains of U with Ui ⊆ Ui+1 ⊆ U
and U = ∪iUi.

To make precise the meaning of convergence on compact subsets for
this problem involves some subtlety since changing the up, p ≥ j + 1 by
multiplication by a positive constant has no effect on the Σj , so in order to
get nontrivial limits for the up we must normalize them appropriately. In
case Σj ∩ U has multiple components this normalization must be done on
each component. If (Σj , uj) is a minimal k-slicing with Σj being partially
regular for j ≥ k + 1, then we call a compact subdomain U of Ω admissible
for (Σj , uj) if U is a smooth domain which meets ∂Σj transversally and
dim(∂U ∩ Sj) ≤ j − 3. It follows from the coarea formula that any smooth
domain can be perturbed to be admissible. We make the following definition.
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Definition 3.1. We say that a sequence of k-slicings (Σ
(i)
j , u

(i)
j ) con-

verges on compact subsets to a k-slicing (Σj , uj) if for any compact subdo-
main U of Ω which is admissible for (Σj , uj) and for any admissible domains

Ui for (Σ
(i)
j , u

(i)
j ) with Ui ⊆ Ui+1 ⊆ U compactly contained in U it is true

that each connected component of Σj ∩ Rj+1 ∩ U is a limit of connected

components of Σ
(i)
j ∩R

(i)
j+1 ∩ Ui in the sense of (3.3) and (3.4) with uj ap-

propriately normalized on each connected component.

Remark 3.1. Because of the connectedness of the regular set and the
Harnack inequality, we may normalize the uj to be equal to 1 at a point of
x0 ∈ Rk about which we have a uniform ball on which the Σj have bounded
curvature, and this normalization suffices for the connected component of
Σk ∩ U for any compact admissible domain for (Σj , uj). A consequence of
the compactness theorem below implies that this normalization suffices.

The following compactness and regularity theorem includes Theorem 2.3
as a special case.

Theorem 3.5. Assume that all bounded minimal (k + 1)-slicings are
partially regular. Given a Λ-bounded sequence of k-slicings, there is a sub-
sequence which converges to a Λ-bounded k-slicing on compact open subsets
of Ω. Furthermore Σk is partially regular.

Proof. We will proceed as usual by downward induction beginning with
k = n − 1. We will break the proof into two separate steps, the first estab-
lishing the first statement of (3.3) for convergence of the Σk and the second
showing the other two statements (3.4) involving convergence of the uk. For
k = n − 1 the first step follows from the usual compactness theorem for
volume minimizing hypersurfaces (see [Si]). To complete the proof we will
need to develop some monotonicity ideas both for the Σj and for the uj . We
digress on this topic and return to the proof below.

We now prove a version of the monotonicity of the frequency-type func-
tion. This idea is due to F. Almgren [A], and it gives a method to prove
that solutions of variationally defined elliptic equations are approximately
homogeneous on a small scale. The importance of this method for us is that
it works in the presence of singularities provided certain integrals are de-
fined. We will apply this to show that the uk become homogeneous upon
rescaling at a given singular point. Assume that C is a k dimensional cone
in R

n which is regular except for a set S with dim(S) ≤ k− 3. Assume that
Q is a quadratic form on C of the form

Q(ϕ,ϕ) =

∫

C

(

|∇ϕ|2 − q(x)ϕ2
)

ρ dµ

where ρ is a homogeneous weight function on C of degree p; i.e. assume that
ρ(λx) = λpρ(x) for x ∈ C and λ > 0. Assume also that ρ is smooth and
positive on the regular set R of C and that ρ is locally L1 on C. Assume
also that q is smooth on R and is homogeneous of degree −2; i.e. assume
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that q(λx) = λ−2q(x) for x ∈ C and λ > 0. Finally assume that u is a
minimizer for Q in a neighborhood of 0 and in particular that u is smooth
and positive on R. Assume also that q = div(X ) + q̄ where |X |2 + |q̄| ≤ P
for some positive function P and that the following integral bound holds

∫

C

[

|∇u|2 +
(

1 + |∇ log ρ|2 + P
)

u2
]

ρ dµ < ∞.

Under these conditions we may define the frequency function N(σ) which is
a function of a radius σ > 0 such that Bσ(0) is contained in the domain of
definition of u. It is defined by

N(σ) =
σQσ(u)

Iσ(u)
(3.5)

where Qσ(u) and Iσ(u) are defined by

Qσ(u) =

∫

C∩Bσ(0)

(

|∇u|2 − q(x)u2
)

ρ dµk, Iσ(u) =

∫

C∩∂Bσ(0)
u2ρ dµk−1

where the last integral is taken with respect to k− 1 dimensional Hausdorff
measure. We may now prove the following monotonicity result for N(σ).

Theorem 3.6. Assume that u is a critical point of Q which is integrable
as above. The function N(σ) is monotone increasing in σ, and for almost
all σ we have

N ′(σ) =
2σ

Iσ(u)

(

Iσ(ur)Iσ(u)− ⟨ur, u⟩2σ
)

where ur denotes the radial derivative of u and ⟨·, ·⟩σ denotes the ρ-weighted
L2 inner product taken on C ∩ ∂Bσ(0). The limit of N(σ) as σ goes to 0
exists and is finite. The function N(σ) is equal to a constant N(0) if and
only if u is homogeneous of degree N(0).

Proof. The argument can be done variationally and combines two dis-
tinct deformations of the function u. The first involves a radial deforma-
tion of C; precisely, let ζ(r) be a function which is nonnegative, decreasing,
and has support in Bσ(0). Let X denote the vector field on R

n given by
X = ζ(r)x where x denotes the position vector. The flow Ft of X then
preserves C, and we may write

Qσ(u ◦ Ft) =

∫

C∩Bσ(0)

(

|∇tu|
2 − (q ◦ Ft)u

2
)

ρ ◦ Ft dµt

where we have used a change of variable and ∇t and µt denotes the gradient
operator and volume measure with respect to F ∗

t (g) where g is the induced
metric on C from R

n. Differentiating with respect to t and setting t = 0 we
obtain

0 =

∫

C

{(

⟨−LXg, du⊗du⟩−X(q)u2
)

ρ+
(

|∇u|2−qu2
)(

X(ρ)+ρ div(X)
)}

dµ
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where L denotes the Lie derivative. By direct calculation we have X(q) =
−2ζq, X(ρ) = pζρ, div(X) = rζ ′(r)+kζ, and LXg = 2rζ ′(r)(dr⊗dr)+2ζg.
Substituting in this information and collecting terms we have

0 =

∫

C

{

(p+ k − 2)ζ
(

|∇u|2 − qu2
)

+ rζ ′
(

|∇u|2 − 2u2r − qu2
)}

ρ dµ.

Letting ζ approach the characteristic function of Bσ(0) this implies

(p+ k − 2)Qσ(u) = σ

∫

C∩∂Bσ(0)

(

|∇u|2 − 2u2r − qu2
)

} ρ dµk−1

= σ
dQσ(u)

dσ
− 2σ

∫

C∩∂Bσ(0)
u2rρ dµk−1.

The second ingredient we need comes from the deformation ut = (1 +
tζ(r))u where ζ is as above. Since u̇ = ζu this deformation implies

0 =

∫

C

(〈

∇u,∇(ζu)
〉

− qζu2
)

ρ dµ.

Expanding this and letting ζ approach the characteristic function of Bσ(0)
we have

Qσ(u) =

∫

C∩∂Bσ(0)
uur ρ dµk−1.

The proof will now follow by combining these. First we have

N ′(σ) = Iσ(u)
−2

{(

Qσ + σQ′
σ

)

Iσ − σQσI
′
σ

}

.

Substituting in for the terms involving derivatives this implies

N ′(σ) = I−2
σ

{(

Qσ + (p+ k − 2)Qσ

)

Iσ −Qσ(p+ k − 1)Iσ)
}

+ 2σI−2
σ

{
∫

C∩∂Bσ(0)
u2rρ dµk−1 −Q2

σIσ

}

.

Since the first term on the right is 0, we may write this as

N ′(σ) = 2Iσ(u)
−1

(

Iσ(u)Iσ(ur)− ⟨ur, u⟩2σ
)

which is the desired formula.
To see that N(σ) is bounded from below as σ goes to 0 we can observe

that

N(σ) =
1

2
σ

d

dσ
log

(

Īσ(u)
)

, Īσ(u) =

∫

C∩∂Bσ(0)
u2ρ dµk−1

∫

C∩∂Bσ(0)
ρ dµk−1

,

and the monotonicity expresses the condition that the function log Īσ(u) is
a convex function of t = log σ. Since this function is defined for all t ≤ 0,
and by the coarea formula for any σ1 > 0, there is a σ ∈ [σ1, 2σ1] so that
Iσ(u) ≤ cσ−1 it follows that there is a sequence ti = log σi tending to

−∞ such that Īσi(u) ≤ cσ−K
i for some K > 0. Thus we have the function

log Īσi(u) ≤ −cti. It follows that the slope (that is N(σ)) of the convex
function log Īσ(u) is bounded from below as t tends to −∞.
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Now if N(σ) = N(0) is constant, we must have equality in the Schwartz
inequality for each σ, and hence we would have ur = f(r)u for some function
f(r). Now this implies that Qσ = f(σ)Iσ and hence we have rf(r) = N(0).
Therefore it follows that f(r) = r−1N(0), and rur = N(0)u so u is homoge-
neous of degree N(0) by Euler’s formula. !

We will need to extend the usual monotonicity formula for the volume of
minimal submanifolds to the setting in which the submanifold under consid-
eration minimizes a weighted volume with a homogeneous weight function
within a partially regular cone. Precisely, let C be a k+1 dimensional cone
in R

n with a singular set S of Hausdorff dimension at most k − 2. Let ρ be
a positive weight function which is homogeneous of degree p; i.e. we have
ρ(λx) = λpρ(x) for x ∈ C and λ > 0. Assume that ρ is smooth and posi-
tive on the regular set of C, and that ρ is locally integrable with respect to
Hausdorff measure on C.

Theorem 3.7. Let Σ be a hypersurface in a k + 1 dimensional cone C
which minimizes the weighted volume Vρ for a homogeneous weight func-
tion ρ. We then have the monotonicity formula

d

dσ
(σ−k−p V olρ

(

Σ ∩Bσ(0)
)

=

∫

Σ∩∂Bσ(0)
r−p−k−2|x⊥|2ρ dµk−1

where x⊥ denotes the component of the position vector x perpendicular to Σ.

Proof. We take a function ζ(r) which is decreasing, nonnegative, and
equal to 0 for r > σ, and we consider the vector field X = ζx where x
denotes the position vector. The first variation formula for the ρ-weighted
volume then implies

0 =

∫

Σ

(

X(ρ) + divΣ(X)ρ
)

dµk.

Since ρ is homogeneous we have X(ρ) = pζρ, and by direct calculation
divΣ(X) = kζ+ r−1ζ ′|xT |2 where xT denotes the component of x tangential
to Σ. Thus we have

0 =

∫

Σ

{

(p+ k)ζ + r−1ζ ′|xT |2
}

ρ dµk

Taking ζ to approximate the characteristic function of Bσ(0) we may write
this

(p+k)V olρ
(

Σ∩Bσ(0)
)

= σ
d

dσ
V olρ

(

Σ∩Bσ(0)
)

−
∫

Σ∩∂Bσ(0)
r−1|x⊥|2ρ dµk−1

where x⊥ is the component of x normal to Σ in C. Note that r2 = |xT |2 +
|x⊥|2 because C is a cone and so x is tangential to C. This may be rewritten
as the desired monotonicity formula and completes the proof. !

We now show that there can be no tangent minimal 2-slicing with C2

having an isolated singularity at {0}.
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Theorem 3.8. If C2 is a cone lying in a tangent minimal 2-slicing such
that C2 ∼ {0} ⊆ R2, then C2 is a plane and R2 = C2.

Proof. From the eigenvalue estimate of Theorem 2.6 we have
∫

C2

(

3

4

n
∑

j=3

|∇2 log uj |
2 −R2

)

ϕ2 dµ2 ≤ 4

∫

C2

|∇2ϕ|
2 dµ2

for test functions ϕ with compact support in C2 ∼ {0}. Since C2 is a two
dimensional cone we have R2 = 0 away from the origin, and hence we have

∫

C2

n
∑

j=3

|∇2 log uj |
2ϕ2 dµ2 ≤ c

∫

C2

|∇2ϕ|
2 dµ2.

Letting r denote the distance to the origin, we take ε and R so that 0 <
ε ≪ R and choose ϕ to be a function of r which is equal to 0 for r ≤ ε2,
equal to 1 for ε ≤ r ≤ R, and equal to 0 for r ≥ R2. In the range ε2 ≤ r ≤ ε

we choose

ϕ(r) =
log(ε−2r)

log(ε−1)

and for R ≤ r ≤ R2

ϕ(r) =
log(R2r−1)

logR
.

Thus for ε2 ≤ r ≤ ε we have |∇2ϕ|
2 = (r| log ε|)−2 and for R ≤ r ≤ R2 we

have |∇2ϕ|
2 = (r logR)−2. It thus follows that

∫

C2

|∇2ϕ|
2 dµ2 ≤ c

(

| log ε|−1 + (logR)−1
)

.

Thus we may let ε tend to 0 and R tend to ∞ to conclude that the functions
u3, . . . , un are constant on C2. This implies that C2 has zero mean curvature
and hence is a plane. If all of the cones C3, . . . Cn−1 are regular near the
origin, then it follows that 0 ∈ R2, and we have completed the proof. Oth-
erwise there is a Cm for m ≥ 3 which denotes the largest dimensional cone
in the minimal 2-slicing for which the origin is a singular point. It follows
that Cm is a volume minimizing cone in R

m+1 = Cm+1, and hence um must
be homogeneous of a negative degree (see Lemma 3.10 below) contradicting
the fact that um is constant along C2. This completes the proof. !

Completion of proof of Theorem 3.5: We first prove the compactness of
the Σk in the sense of (3.3) under the assumption that we have the partial
regularity of bounded minimal (k + 1)-slicings and the compactness (both
(3.3) and (3.4)) for j ≥ k + 1. We need the following lemma.

Lemma 3.9. Assume that both the compactness and partial regularity
hold for (k + 1)-slicings. Given any x ∈ Sk+1, there are constants c and r0
(depending on x and Σk+1) so that for r ∈ (0, r0] we have

∫

Σk+1∩B2r(x)
u2k+1ρk+2 dµk+1 ≤ cr2

∫

Σk+1∩Br(x)
Pk+1u

2
k+1ρk+2 dµk+1,
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and

V olρk+2

(

Σk+1 ∩B2r(x)
)

≤ cV olρk+2

(

Σk+1 ∩Br(x)
)

.

Proof. Since the left hand side of the inequality is continuous under
convergence and the right hand side is lower semicontinuous (Fatou’s theo-
rem) it is enough to establish the inequality for r = 1 on a cone Ck+1. This
we can do by a compactness argument since we can normalize

∫

Ck+1∩B1(0)
u2k+1ρk+2 dµk+1 = 1

and if we had a sequence of singular cones for which the right hand side
tends to zero we would have a limiting cone Ck+1 on which Pk+1 = 0. It
follows that uk+2, . . . , un−1 are constant on Ck+1. Note that the highest
dimensional singular cone in the slicing Cn0 is minimal and hence un0 is
homogeneous of a negative degree (see Lemma 3.10 below). Therefore if n0 >
k + 1 we have a contradiction. Therefore we conclude that Ck+1 is minimal

and Ck+2, . . . , Cn−1 are planes. Thus it follows that Ãk+1 = Ak+1 = 0 and
hence Ck+1 is also a plane. Thus the cones are regular sufficiently far out
in the sequence; a contradiction. The second inequality follows easily by
reduction to cones. This proves the bounds. !

Given a sequence (Σ
(i)
j , u

(i)
j ) of Λ-bounded minimal k- slicings, we may

apply the inductive assumption to obtain a subsequence (with the same
notation) for which the corresponding sequence of (k+1)-slicings converges
in the sense of (3.3) and (3.4). By standard compactness theorems we may

assume that Σ
(i)
k converges on compact subsets of Ω ∼ Sk+1 to a limiting

submanifold Σk which minimizes V olρk (and is therefore regular outside
a closed set of dimension at most k − 7). To establish (3.3) we choose a
neighborhood U of Sk+1 such that

V olρk+2
(Σk+1 ∩ Ū) < ε.

We apply Lemma 3.9 and compactness to find a finite collection of points
xα ∈ Sk+1 and balls Brα(xα) ⊂ U so that
∫

Σk+1∩B2rα (xα)
u2k+1ρk+2 dµk+1 < cr2α

∫

Σk+1∩Brα (xα)
Pk+1u

2
k+1ρk+2 dµk+1

and

V olρk+2

(

Σk+1 ∩B2rα(xα)
)

< cV olρk+2

(

Σk+1 ∩Brα(xα)
)

.

Now apply the Besicovitch covering lemma to extract a finite number of
disjoint collections Bα, α = 1, . . . ,K of such balls whose union covers Sk+1.
If V denotes the union of these balls, then V is a neighborhood of Sk+1,

and hence for i sufficiently large we have S
(i)
k+1 ⊂ V . Because of convergence

of the left sides and lower semicontinuity of the right side, we have for i
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sufficiently large
∫

Σ
(i)
k+1∩B2rα (xα)

(

u
(i)
k+1

)2
ρ
(i)
k+2 dµk+1

< cr2α

∫

Σ
(i)
k+1∩Brα (xα)

P
(i)
k+1

(

u
(i)
k+1

)2
ρ
(i)
k+2 dµk+1

and

V ol
ρ
(i)
k+2

(

Σ
(i)
k+1 ∩B2rα(xα)

)

< cV ol
ρ
(i)
k+2

(

Σ
(i)
k+1 ∩Brα(xα)

)

.

By the coarea formula, for each such ball Br0(x) we may find s ∈ [r0, 2r0]
(s depending on i) so that

V ol
ρ
(i)
k+1

(

Σ
(i)
k+1 ∩ ∂Bs(x)

)

≤ 2r−1
0

∫

Σ
(i)
k+1∩B2r0

u
(i)
k+1ρ

(i)
k+2 dµk+1.

Using the minimizing property of Σ
(i)
k and simple inequalities we find

V ol
ρ
(i)
k+1

(

Σ
(i)
k ∩Br0

)

≤ ε−1
1

∫

Σk+1∩B2r0(x)
ρ
(i)
k+2 dµk+1

+ ε1r
−2
0

∫

Σk+1∩B2r0

(

u
(i)
k+1

)2
ρ
(i)
k+2 dµk+1

for any ε1 > 0. Applying the inequalities above and summing over the balls
(using disjointness and a bound on K) we find

V ol
ρ
(i)
k+1

(

Σ
(i)
k ∩ V

)

≤ cε−1
1 V ol

ρ
(i)
k+2

(

Σ
(i)
k+1 ∩ Ū

)

+ cε1

∫

Σ
(i)
k+1

P
(i)
k+1

(

u
(i)
k+1

)2
ρ
(i)
k+2 dµk+1.

For i sufficiently large this implies

V ol
ρ
(i)
k+1

(

Σ
(i)
k ∩ V

)

≤ cε−1
1 ε+ cε1,

so that we may fix ε1 sufficiently small and then choose ε as small as we wish
to make the right hand side smaller than any preassigned amount. Since we
have

lim
i→∞

V ol
ρ
(i)
k+1

(

Σ
(i)
k ∼ V

)

= V olρk+1
(Σk ∼ V ),

we can conclude that limi→∞ V ol
ρ
(i)
k+1

(Σ
(i)
k ) = V olρk+1

(Σk) establishing (3.3).

Now assume that we have established the partial regularity of all bounded
minimal (k + 1)-slicings and that we have proven the compactness for the
Σk in the sense of (3.3). We can then use the results we have obtained above
together with dimension reduction to prove partial regularity for Σk. Pre-
cisely, we have dim(Sk) ≤ k−2, and if dim(Sk) > k−3, then we can choose
a number d with

k − 3 < d < dim(Sk),
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and go to a point x ∈ Sk of density for the measure Hd
∞ (since Hd

∞(Sk) > 0).
Taking successive tangent cones in the standard way and using the upper-
semicontinuity of Hd

∞(Sk) we would eventually produce a minimal 2-slicing
by cones such that C2 ×R

k−2 has singular set with Hausdorff dimension at
most k− 2 (by partial regularity of (k+ 1)-slicings) and greater than k− 3.
Therefore the cone C2 must have an isolated singularity at the origin. This
in turn contradicts Theorem 3.8. Therefore it follows that dim(Sk) ≤ k − 3
and Σk is partially regular.

The final step of the proof is to show that the compactness statement
holds for the uk under the assumption that it holds for (Σj , uj) for j ≥ k+1
and also for Σk (as established above). Assume that we have a sequence of

minimal k-slicings such that the associated (k+1)-slicings and Σ
(i)
k converge

on compact subsets in the sense of (3.3) and (3.4). We choose a compact
domain U which is admissible for (Σj , Uj) and a nested sequence of domains

Ui admissible for (Σ
(i)
j , u

(i)
j ). We work with a connected component of Σk∩U

which by abuse of notation we call by the same name Σk.

We may assume that the u
(i)
k converge uniformly to uk on compact sub-

sets of Ω ∼ Sk (where we can write Σ
(i)
k locally as a normal graph over Σk

and compare corresponding values of u
(i)
k to uk). In particular, if W is a

compact subdomain of Ω ∩Rk we have convergence of weighted L2 norms

of u
(i)
k to the corresponding L2 norm of uk on W . If U is any compact sub-

domain of Ω and η > 0, then by Proposition 3.1 applied with S = Sk we
can find an open neighborhood V of S ∩ Ū so that for i sufficiently large

S
(i)
k ∩ Ū ⊂ V , and
∫

Σ
(i)
k ∩V

(

u
(i)
k

)2
ρ
(i)
k+1 dµk ≤ η

∫

Σ
(i)
k ∩Ω

[

|∇ku
(i)
k |2 +

(

1 + P
(i)
k

)(

u
(i)
k

)2]
ρ
(i)
k+1 dµk.

The same inequality holds for the limit, and by the boundedness of the
sequence the integral on the right is uniformly bounded. Thus by choosing η

small enough we can make the right hand side less than any prescribed ε > 0.
On the other hand if we take W = U \ V̄ we then have convergence of the
weighted L2 norms on W , so we can make the difference as small as we wish
onW . It follows that the difference of L2 norms can be made arbitrarily small
on U . This completes the proof that the weighted L2 integrals converge.

Completing the proof will require the construction of a proper locally
Lipschitz function Ψk on Rk such that uk|∇kΨk| is bounded in L2(Σk). We
give the construction of such a function in Proposition 3.11 below. It also

follows that we may construct a subsequence so that Ψ
(i)
k are uniformly close

to Ψk on compact subsets of RN ∼ Sk for i large. We can now prove the
second part of the convergence (3.4). Assume that U ⊂ U1 ⊂ Ω are compact
domains. We let ε > 0 we may choose a neighborhood V of Sk so small
that

∫

V ∩Ū1
u2kρk+1 dµk < ε. Because Ψk is proper on Rk, we may choose Λ

sufficiently large that Ek(Λ) ⊂ V where Ek(Λ) is the subset of Σk on which
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Ψk > Λ. We now let γ(t) be a nondecreasing Lipschitz function such that
γ(t) = 0 for t < Λ, γ(t) = 1 for t > Λ, and γ′(t) ≤ Λ−1. We let ϕ be a spatial
cutoff function which is 1 on U , 0 outside U1, and has bounded gradient.
We then have the inequality by Proposition 3.2

∫

Σ
(i)
k

(

|∇kψ
(i)
k |2 + P

(i)
k

(

ψ
(i)
k

)2)
ρ
(i)
k dµj ≤ cQk

(

ψ
(i)
k ,ψ

(i)
k

)

where ψ
(i)
k = ϕ(γ ◦Ψ(i)

k )u
(i)
k . Since the support of ψ

(i)
k is contained in V for

i sufficiently large we then have
∫

Σ
(i)
k

(

|∇kψ
(i)
k |2 + P

(i)
k

(

ψ
(i)
k

)2)
ρ
(i)
k+1 dµj

≤ c

∫

Σ
(i)
k ∩V

(

1 + Λ
−2|∇kΨ

(i)
k |2

)(

u
(i)
k

)2
ρ
(i)
k+1 dµk.

Since we have convergence of the L2 norms of u
(i)
k and boundedness of the

L2 norms of u
(i)
k |∇kΨ

(i)
k |, we then conclude that

∫

Σ
(i)
k

(

|∇kψ
(i)
k |2 + P

(i)
k

(

ψ
(i)
k

)2)
ρ
(i)
k+1 dµj ≤ cε+ cΛ−2.

If we let V1 be a neighborhood of Sk such that Σk ∩ V1 ⊂ Ek(3Λ), then for

i sufficiently large we will have Σ
(i)
k ∩ V1 ⊂ E

(i)
k (2Λ) and hence

∫

Σ
(i)
k ∩V1

(

|∇ku
(i)
k |2 + P

(i)
k

(

u
(i)
k

)2)
ρ
(i)
k+1 dµj ≤ cε+ cΛ−2.

Since this can be made arbitrarily small, we have shown (3.4) and completed
the proof of Theorem 3.5. !

We will need the following lemma concerning minimal conesCm ⊂ R
m+1.

Lemma 3.10. Assume that Cm is a volume minimizing cone in R
m+1

and that um is a positive minimizer for Qm which is homogeneous of degree
d on C. There is a positive constant c depending only on m so that d ≤ −c.

Proof. We first observe that

Qm(ϕ,ϕ) = Sm(ϕ,ϕ) +
3

8

∫

Cm

|Am|2ϕ2 dµm

=

∫

Cm

(

|∇mϕ|2 − 5

8
|Am|2ϕ2

)

dµm.

We write um = rdv(ξ) where ξ ∈ Sm, and we observe that the equation for
um evaluated at r = 1 becomes

0 = ∆mum +
5

8
um = ∆v +

5

8
|Am|2v + d(d+m− 2)v

where we let Σ = C ∩Sm and ∆ the Laplace operator on Σ. Thus v satisfies
the eigenvalue equation ∆v + 5/8|Am|2v = −µv where d(d + m − 1) = µ.
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This implies that d = 1/2(1 − m +
√

(m− 1)2 + 4µ) or d = 1/2(1 − m −
√

(m− 1)2 + 4µ). Since v and |∇v| are in L2(Σ) we must have µ < 0 and
this implies that d < 0. To prove the negative upper bound on d recall that
the set of volume minimizing cones is a compact set, and we have proven
the compactness theorem above for the L2 norms, so if we had a sequence

(C
(i)
m , u

(i)
m ) such that d(i) tends to 0 we could extract a convergent subse-

quence of the (Σ(i), v(i)) which converges to (Σ, v) where we could normalize
∫

Σ(i)(v(i))2 dµm−1 = 1 (hence
∫

Σ
v2 dµm−1 = 1). Since we have smooth con-

vergence on compact subsets of the complement of the singular set of Σ we
would then have ∆v + 5/8|Am|2v = 0 and therefore we would have µ = 0
for the limiting cone, a contradiction. !

As the final topic of this section we construct the proper functions which
were used in the proof of Theorem 3.5. This result will also be used in the
next section.

Proposition 3.11. Suppose we have a Λ-bounded minimal k-slicing
in Ω. There exists a positive function Ψk which is locally Lipschitz on Rk

and such that for any domain U compactly contained in Ω, the function
Ψk is proper on Rk ∩ Ū . Moreover, the function uk|∇kΨk| is bounded in
L2(Σk ∩ U) for any domain U compactly contained in Ω.

Proof. We define Ψk = max{1, log uk, log uk+1, . . . , log un−1} and we
show that it has the properties claimed. First note thatΨk is locally Lipschitz
on Rk since it is the maximum of a finite number of smooth functions on Rk.
The bound

∫

Σk∩U
(uk|∇kΨk|)

2ρk+1 dµk ≤ max
k≤j≤n−1

∫

Σk∩U
(uk|∇k log uj |)

2ρk+1 dµk

together with Proposition 3.2 implies the L2(Σk) bound claimed on Ψk.
(Note that we may replace ϕ by ϕuk in the first inequality of Proposition 3.2
where ϕ is a cutoff function which is equal to 1 on U .)

It remains to prove that Ψk is proper on Rk ∩ Ū . Since Ū is compact it
suffices to show that for any x0 ∈ Sk ∩ Ū we have

lim
x→x0

Ψk(x) = ∞.

If we let m ≥ k be the largest integer such that Σm is singular at x0, then
there is an open neighborhood V of x0 in which Σm is a volume minimizing
hypersurface in a smooth Riemannian manifold. We will show that um tends
to infinity at x0 by first showing that this is true for any homogeneous ap-
proximation of um at x0. In order to construct homogeneous approximations
we need to have the compactness theorem for this top dimensional case, but
our proof of compactness used the result we are trying to prove, so we must
find another argument for establishing (3.4) since (3.3) is a standard result
for volume minimizing hypersurfaces in smooth manifolds. Our proof of the
first part of (3.4) did not require the function Ψk, so we need only deal with
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the second part. First recall that dim(Sm) ≤ m − 7, so it follows from a
standard result that given any ε, δ > 0 and a ∈ (0, 7) we can find a Lipschitz
function ψ so that ψ = 1 in a neighborhood of Sm, ψ(x) = 0 for points x
with dist(x,Sm) ≥ δ, and

∫

Σm∩V
|∇mψ|a dµm < εa.

We show that
∫

Σm∩V
|∇mψ|2u2m dµm ≤ cε2.

If we can establish this inequality, then we can complete the proof of com-
pactness for k = m in the set V as in the proof of Theorem 3.5. To establish
the inequality, we observe that the equation satisfied by um is of the form

∆mum + 5/8|Am|2um + qum = 0

where q is a bounded function (since Σm is volume minimizing in a smooth
manifold). On the other hand the stability implies that

∫

Σm

|Am|2ϕ2 dµm ≤
∫

Σm

(

|∇ϕ|2 + cϕ2
)

dµm.

We may then replace ϕ by u
8/5
m ϕ and use the equation for um to obtain

∫

Σm

|∇m(um)8/5|2ϕ2 dµm ≤ c

∫

Σm

u16/5m

(

|∇mϕ|2 + ϕ2
)

dµm.

We may then apply the Sobolev inequality for minimal submanifolds to
conclude that um satisfies

∫

Σm∩V
u

16m
5(m−2)
m dµm ≤ c.

We then apply the Hölder inequality to obtain
∫

Σm∩V
|∇mψ|2u2m dµm ≤ ∥∇mψ∥2 16m

3m+10
∥um∥2 16m

5(m−2)
.

Setting a = 16m
3m+10 < 7 we have from above

∫

Σm∩V
|∇mψ|2u2m dµm ≤ cε2

as desired.
Thus we have the compactness theorem for (Σm, um) in V and we can

construct tangent cones to Σm at x0 and homogeneous approximations to um
at x0. By Lemma 3.10 any such homogeneous approximation vm has strictly
negative degree d ≤ −c on its cone Cm of definition. If we let Rm(C) denote
the regular set of C, then it follows that for any µ > 1, we have

inf
Rm(C)∩Bασ(0)

vm ≥ µ inf
Rm(C)∩Bσ(0)

vm

for a fixed constant α ∈ (0, 1) depending on µ, but independent of which cone
and which homogeneous approximation we choose. Note that ∆mum ≤ cum
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and ∆mvm ≤ 0, so by the mean value inequality on volume minimizing
hypersurfaces (see [BG]) we have

um(x) ≥ cr−m

∫

Σm∩Br(x)
um dµm, vm(x) ≥ cr−m

∫

Cm∩Br(x)
vm dµm

for any r so that Br(x0) is compactly contained in V . It follows that the
essential infima of both um and vm are positive on any compact subset. We
now show that there exists α ∈ (0, 1) such that

inf
Rm∩Bασ(x0)

um ≥ 2 inf
Rm∩Bσ(x0)

um

for σ sufficiently small. If we establish this, we have finished the proof that
um tends to infinity at x0 and hence we will have the desired properness

conclusion for Ψk. To establish this inequality we observe that if (Σ
(i)
m , u

(i)
m )

is a sequence converging to (Σm, um) in the sense of (3.3) and (3.4) and K
is a compact set such that Rm ∩K ̸= φ we have

inf
Rm∩K

um ≤ lim inf
i→∞

inf
R

(i)
m ∩K

u(i)m ≤ lim sup
i→∞

inf
R

(i)
m ∩K

u(i)m ≤ c inf
Rm∩K

um

for a fixed constant c. The first and second inequalities are obvious, and to
get the third we observe that for a small radius r and any x ∈ Rm ∩K we
have from above

um(x) ≥ cr−m

∫

Σm∩Br(x)
um dµm,

and hence for i sufficiently large

um(x) ≥ cr−m

∫

Σ
(i)
m ∩Br(x)

u(i)m dµm ≥ ε0 inf
Σ

(i)
m ∩Br(x)

u(i)m

for a positive constant ε0. This establishes the third inequality. The proof
can now be completed by using rescalings at x0 which converge to (Cm, vm)
for some cone and homogeneous function together with the corresponding
result for the homogeneous case. !

4. Existence of minimal k-slicings

The main purpose of this section is to prove Theorem 2.4. We begin
with the construction of the eigenfunction uk assuming the Σk has already
been constructed and is partially regular in the sense that dim(Sk) ≤ k− 3.
We define the Hilbert spaces Hk and Hk,0 as in the last section, namely, Hk

(respectively Hk,0) is the completion in ∥·∥0,1 of the Lipschitz functions with
compact support inRk∩Ω̄ (respectivelyRk∩Ω). In order to handle boundary
effects we also assume that there is a larger domain Ω1 which contains Ω̄ as
a compact subset and that the k-slicing is defined and boundaryless in Ω1.
Note that this is automatic if ∂Σj = φ. Thus Hk,0 consists of those functions
inHk with 0 boundary data on Σk∩Ω. The quadratic form Qk is nonnegative
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definite on the Lipschitz functions with compact support in Rk ∩Ω, and so
the standard Schwartz inequality holds for any pair of such functions ϕ,ψ

Qk(ϕ,ψ) ≤
√

Qk(ϕ,ϕ)
√

Qk(ψ,ψ).(4.1)

We now have the following result.

Theorem 4.1. The function Qk(ϕ,ψ) is continuous with respect to the
norm ∥ ·∥0,1 in both variables and therefore extends as a continuous nonneg-
ative definite bilinear form on Hk,0. The Schwartz inequality (4.1) holds for
ϕ,ψ ∈ Hk,0. The function Qk(ϕ,ϕ) is strongly continuous and weakly lower
semicontinuous on Hk,0.

Proof. From Proposition 3.2 we have for ϕ1,ϕ2 Lipschitz functions
with compact support in Rk ∩ Ω

Qk(ϕ1 − ϕ2,ϕ1 − ϕ2) ≤ c∥ϕ1 − ϕ2∥21,k,

so it follows from (4.1) that

|Qk(ϕ1,ψ)−Qk(ϕ2,ψ)| ≤
√

Qk(ϕ1 − ϕ2,ϕ1 − ϕ2)
√

Qk(ψ,ψ).

Combining these we see that Qk is continuous in the first slot, and since it is
symmetric in both slots. Therefore Qk extends as a continuous nonnegative
definite bilinear form on Hk,0 and the Schwartz inequality holds on Hk,0 by
continuity.

To complete the proof we must prove that Qk(ϕ,ϕ) is weakly lower semi-
continuous on Hk,0. Note that the square norm ∥ϕ∥20,k +Qk(ϕ,ϕ) is equiv-

alent to ∥ϕ∥21,k by Proposition 3.2. Therefore these have the same bounded
linear functionals and hence determine the same weak topology on Hk,0.
Assume we have a sequence ϕ ∈ Hk,0 which converges weakly to ϕ ∈ Hk,0.
We then have for any ψ ∈ Hk,0

Qk(ϕ,ψ) = lim
i→∞

Qk(ϕi,ψ).

This implies that for i sufficiently large

Qk(ϕ,ϕ) = Qk(ϕ− ϕi,ϕ) +Qk(ϕi,ϕ) ≤ ε+
√

Qk(ϕi,ϕi)
√

Qk(ϕ,ϕ)

for any chosen ε > 0. It follows that

Qk(ϕ,ϕ) ≤
√

Qk(ϕ,ϕ) lim inf
i→∞

√

Qk(ϕi,ϕi)

which implies the desired weak lower semicontinuity. !

In order to construct a lowest eigenfunction uk we will need the following
Rellich-type compactness theorem.

Theorem 4.2. The inclusion of Hk,0 into L2(Σk) is compact in the sense
that any bounded sequence in Hk,0 has a convergent subsequence in L2(Σk).



474 R. SCHOEN AND S.-T. YAU

Proof. This statement follows from Proposition 3.1 and the standard
Rellich theorem. Assume that we have a bounded sequence ϕi ∈ Hk,0; that
is, ∥ϕi∥21,k ≤ c. We may extend the ϕi to Ω1 be taking ϕi = 0 in Ω1 ∼ Ω, and
by the standard Rellich compactness theorem we may assume by extracting
a subsequence that the ϕi converge in L2 norm on compact subsets of Ω̄ ∼ Sk

and weakly in Hk,0 to a limit ϕ ∈ Hk,0. We show that ϕi converges to ϕ in
L2(Σk). Given any ε1 > 0, we can choose ε > 0, δ > 0 in Proposition 3.1 so
that for each i we have

(
∫

Σk∩V
ϕ2
i ρk+1 dµk

)1/2

≤ ε1/3

where V is an open neighborhood of Sk∩Ω̄. The Fatou theorem then implies
(
∫

Σk∩V
ϕ2ρk+1 dµk

)1/2

≤ ε1/3

Since K = (Σk ∼ V ) ∩ Ω̄ is a compact subset of Ω̄ ∼ Sk, we have for i
sufficiently large

(
∫

K
(ϕi − ϕ)2ρk+1 dµk

)1/2

≤ ε1/3.

Combining these bounds we find

∥ϕi−ϕ∥0 ≤
(
∫

K
(ϕi−ϕ)2ρk+1 dµk

)1/2

+

(
∫

Σk∩V
(ϕi−ϕ)2ρk+1 dµk

)1/2

≤ ε1

for i sufficiently large. This completes the proof. !

We are now ready to prove the existence, positivity, and uniqueness of
uk on Σk ∩ Ω.

Theorem 4.3. The quadratic form Qk on Hk,0 has discrete spectrum
with respect to the L2(Σk) inner product and may be diagonalized in an
orthonormal basis for L2(Σk). The eigenfunctions are smooth on Rk ∩ Ω,
and if we choose a first eigenfunction uk, then uk is nonzero on Rk ∩ Ω

and is therefore either strictly positive or strictly negative since Rk ∩ Ω is
connected. Furthermore any first eigenfunction is a multiple of uk which we
may take to be positive.

Proof. This follows from the standard minmax variational procedure
for defining eigenvalues and constructing eigenfunctions. For example, to
construct the lowest eigenvalue and eigenfunction we let

λk = inf
{

Qk(ϕ,ϕ) : ϕ ∈ Hk,0, ∥ϕ∥0,k = 1
}

.

By Theorem 4.2 and Theorem 4.1 we may achieve this infimum with a
function uk ∈ Hk,0 with ∥uk∥0,k = 1. The Euler-Lagrange equation for uk is
then the eigenfunction equation with eigenvalue λk. The higher eigenvalues
and eigenfunctions can be constructed by imposing orthogonality constraints
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with respect the L2(Σk) inner product. We omit the standard details. The
smoothness on Rk ∩ Ω follows from elliptic regularity theory.

The fact that a lowest eigenfunction u is nonzero follows from the fact
that if u ∈ Hk,0 then |u| ∈ Hk,0 and Qk(u, u) = Qk(|u|, |u|) a property which
can be easily checked on the dense subspace of Lipschitz functions with
compact support in Rk ∩Ω and then follows by continuity. The multiplicity
one property of the lowest eigenspace follows from this property in the usual
way. We omit the details. !

We now come to the existence results. We first discuss Theorem 2.4 and
we then generalize the existence proof to a more precise form. Suppose X
is a closed k-dimensional oriented manifold with k < n. We assume that
Σn is a closed oriented n-manifold and that there is a smooth map F :
Σn → X × Tn−k of degree s ̸= 0. We let Ω denote a (unit volume) volume
form of X and let Θ = F ∗Ω so that Θ is a closed k-form on Σn. We let tp

for p = k + 1, . . . , n denote the coordinates on the circles and we assume
they are periodic with period 1. For p = k + 1, . . . , n we let ωp be the
closed 1-form ωp = F ∗(dtp). The assumption on the degree of F implies
that

∫

Σn
Θ ∧ ωk+1 ∧ . . . ∧ ωn = s.

We will need the following elementary lemma.

Lemma 4.4. Suppose Nm is a closed oriented Riemannian manifold and
let Ω be its volume form. Given any open set U of N which is not dense
in N , the form Ω is exact on U . Moreover, given an open set V compactly
contained in U , we can find a closed m-form Ω1 which agrees with Ω on
M \ U and such that Ω1 = 0 in V .

Proof. Let f be a smooth function which is equal to 1 in U and such
that

∫

N f dΩ = 0. Let u be a solution of ∆u = f and let θ be the (m− 1)-
form θ = ∗du. We then have dθ = d ∗ du = (∆u)Ω, so we have dθ = Ω

on U .
To prove the last statement, we let ζ be a smooth cutoff function which

is equal to 1 in V and has compact support in U . We then define Ω1 =
Ω− d(ζ ∗ du). We then have Ω1 = 0 in V and Ω1 differs from Ω by an exact
form. !

We now restate the existence theorem.

Theorem 4.5. For a manifold M = Σn as described above, there is a
Λ-bounded, partially regular, minimal k-slicing Moreover, if k ≤ j ≤ n − 1
and Σj is regular, then

∫

Σj
Θ ∧ ωk+1 ∧ . . . ∧ ωj = s.

Proof. We begin with the 1-form ωn and we integrate to get a map
un : Σn → S1 so that ωn = dun. Let t be a regular value of un and consider
the hypersurface Sn = u−1

n (t). Because the map F has degree s and we
have normalized our forms in X × Tn−k to have integral 1, we see that
∫

Sn
Θ ∧ ωk+1 ∧ . . . ∧ ωn−1 = s. Let Σn−1 be a least volume cycle in Σn with
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the property that
∫

Σn
Θ∧ωk+1 ∧ . . .∧ωn−1 = s. The existence follows from

standard results of geometric measure theory.
Now suppose for j ≥ k we have constructed a partially regular minimal

j+1 slicing with the property that there is a form Θj+1 of compact support

which is cohomologous to Θ ∧ ωk+1 ∧ . . . ∧ ωj+1 such that
∫

Σj+1
Θj+1 = s.

Since the slicing is partially regular, we have that the Hausdorff dimension
of Sj+1 is at most j − 2, so it follows that the image Fj(Sj+1) under the

projection map Fj : Σn → X×T j−k is a compact set of Hausdorff dimension

at most j−2. It follows from Lemma 4.4 that the form Ω∧dtk+1∧ . . .∧dtj is
exact in a neighborhood U of Fj(Sj+1), given a neighborhood V of Fj(Sj+1)
which is compact in U we can find a form Ωj which is cohomologous to

Ω∧ dtk+1 ∧ . . .∧ dtj and vanishes in V . Pulling back we see that Θj = F ∗Ωj

vanishes in a neighborhood of Sj+1 and is cohomologous to Θ∧ωk+1 ∧ . . .∧
ωj . We let uj+1 be the map gotten by integrating ωj+1 and consider its
restriction to Σj+1. Since uj+1 is in L2 with respect to the weight ρj+2, we
see that ρj+1 = uj+1ρj+2 is integrable on Σj+1. It then follows from the
coarea formula that we can find a regular value t of uj+1 in Rj+1 so that

the hypersurface Sj ⊂ Σj+1 given by Sj = u−1
j+1(t) has finite ρj+1-weighted

volume and satisfies
∫

Sj
Θj = s. We can then solve the minimization problem

for the ρj+1-weighted volume among integer multiplicity rectifiable currents
T with support in Σj+1, with no boundary in Rj+1, and with T (Θj) = s. A
minimizer for this problem gives us Σj and completes the inductive step for
the existence. !

Remark 4.1. The existence proof above does not specify the homol-
ogy class of the minimizers even if the minimizers are smooth since we are
minimizing among cycles for which the integral of Θj is fixed. In general
there may be homology classes for which the integral of Θj vanishes. We
have chosen the class to do the minimization in order to avoid a precise
discussion of the homology of the singular spaces in which we are working.
In the following we give a more precise existence theorem which specifies the
homology classes and allows them to be general integral homology classes,
possibly torsion classes.

We now formulate and prove a more general existence theorem for mini-
mal k slicings. In the theorem we let [Σn] denote the fundamental homology
class in Hn(Σn,Z) and, for a cohomology class α ∈ Hp(Σn,Z), we let α∩[Σn]
denote its Poincaré dual in Hn−p(M,Z).

Theorem 4.6. Let Σn be a smooth oriented manifold of dimension n
and let k be an integer with 1 ≤ k ≤ n− 1. Let α1, . . . ,αn−k be cohomology
classes in H1(Σn,Z), and suppose that αn−k ∩ αn−k−1 ∩ . . . ∩ α1 ∩ [Σn] ̸= 0
in Hn(Σn,Z). There exists a partially regular minimal k slicing with Σj

representing the homology class αn−j ∩ . . . ∩ α1 ∩ [Σn].

Proof. Assume that we are given a partially regular Λ-bounded mini-
mal (k+1)-slicing which represents α1, . . . ,αn−k−1. We thus have the weight
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function ρk+1 defined on Σk+1 which we use to produce Σk. From the partial
regularity the singular set Sk+1 of Σk+1 has Hausdorff dimension at most
k − 2.

We consider the class of integer multiplicity rectifiable currents which
are relative cycles in Hk(Σn,Sk+1,Z); that is, for any k−1 form θ of compact
support in Σk+1 \ Sk+1 we have T (dθ) = 0. Because the set Sk+1 has zero
k−1 dimensional Hausdorff measure we have Hk(Σn,Z) = Hk(Σn,Sk+1,Z).
This follows because a current which is a relative cycle T in Σn \ Sk+1 is
also a cycle in Σn since ∂T is zero since it is unchanged by adding a set of
k − 1 measure zero.

We use ρk+1 weighted volume to set up a minimization problem. We
consider the class of relative cycles T with support contained in Σk+1 which
have finite weighted mass; that is, T = (Sk,Θ, ξ) where Sk is a countably
k-rectifiable set, Θ a µk-measurable integer valued function on Sk, and ξ a
µk-measurable map from Sk to ∧k

R
N such that ξ(x) is a unit simple vector

for µk a.e. x ∈ Sk. Such a k-current Tk is ρk+1-finite if

V olρk+1
(Tk) ≡

∫

Sk

ρk+1|Θ| dµk < ∞.

Since we have already constructed Σk+1 so that it is Λ-bounded we have
∫

Σk+1

ρk+1 dµk+1 ≤ Λ.

Now we can find a smooth closed hypersurface Hk which is Poincaré dual
to αk, and we may perturb it and use the coarea formula in a standard way
to arrange that Σ̄k ≡ Σk+1 ∩Hk is a smooth embedded submanifold away
from Sk+1 and

∫

Σ̄k

ρk+1 dµk ≤ c.

In particular the associated current T̄k ≡ (Σ̄k, 1, ξ̄) (where ξ̄ is the oriented
unit tangent plane of Σ̄k) is ρk+1-finite and is a competitor in our variational
problem.

The standard theory of integral currents now allows us to construct a
minimizer for our variational problem which gives us the next slice Σk which
could be disconnected and with integer multiplicity. Thus Σk represents the
homology class αn−k∩. . .∩α1∩[Σn]. This completes the proof of Theorem 4.6.

!

5. Application to scalar curvature problems

In this section we prove two theorems for manifolds with positive scalar
curvature. The first of these is for compact manifolds and the second is the
Positive Mass Theorem for asymptotically flat manifolds. Our first theorem
which we will need to prove the Positive Mass Theorem is the following.
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Theorem 5.1. Let M1 be any closed oriented n-manifold. The manifold
M = M1#Tn does not have a metric of positive scalar curvature.

Proof. Such a manifold M has admits a map F : M → Tn of degree
1, and so by Theorem 2.4 there exists a closed minimal 1-slicing of M in
contradiction to Theorem 2.7. !

We also prove the following more general theorem.

Theorem 5.2. Assume that M is a compact oriented n-manifold with a
metric of positive scalar curvature. If α1, . . . ,αn−2 are classes in H1(M,Z)
with the property that the class σ2 given by σ2 = αn−2∩αn−3∩ . . .α1∩ [M ] ∈
H2(M,Z) is nonzero, then the class σ2 can be represented by a sum of smooth
two spheres. If αn−1 is any class in H1(M,Z), then we must have αn−1∩σ2 =
0. In particular, if M has classes α1, . . . ,αn−1 with αn−1∩ . . .∩α1∩[M ] ̸= 0,
then M cannot carry a metric of positive scalar curvature.

Proof. By the existence and regularity results of Sections 3 and 4, there
is a minimal 2-slicing so that Σ2 ∈ σ2 is regular and satisfies the eigenvalue
bound of Theorem 2.6. Choosing ϕ = 1 on any given component of Σ2 and
applying the Gauss-Bonnet theorem we see that each component must be
topologically S2.

In particular it follows that for any other αn−1 ∈ H1(M,Z) we have that
αn−1 ∩ σ2 is a class in H1(Σ2,Z), and therefore is zero. !

We now prove a Riemannian version of the positive mass theorem. As-
sume that M is a complete manifold with the property that there is a com-
pact subset K ⊂ M such that M ∼ K is a union of a finite number of
connected components each of which is an asymptotically flat end. This
means that each of the components is diffeomorphic to the exterior of a
compact set in R

n and admits asymptotically flat coordinates x1, . . . , xn in
which the metric gij satisfies

gij = δij +O
(

|x|−p
)

, |x||∂gij |+ |x|2|∂2gij | = O
(

|x|−p
)

, |R| = O
(

|x|−q
)

(5.1)

where p > (n− 2)/2 and q > n. Under these assumptions the ADM mass is
well defined by the formula (see [Sc] for the n dimensional case)

m =
1

4(n− 1)ωn−1
lim
σ→∞

∫

Sσ

∑

i,j

(gij.i − gii,j)νj dξ(σ)

where Sσ is the euclidean sphere in the x coordinates, ωn−1 = V ol(Sn−1(1)),
and the unit normal and volume integral are with respect to the euclidean
metric. We may now state the Positive Mass Theorem.

Theorem 5.3. Assume that M is an asymptotically flat manifold with
R ≥ 0. For each end it is true that the ADM mass is nonnegative. Further-
more, if any of the masses is zero, then M is isometric to R

n.
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Proof. The theorem can be reduced to the case when there is a single
end by capping off the other ends keeping the scalar curvature nonnegative.
We will show only that m ≥ 0, and the equality statement can be derived
from this (see [SY2]). We will reduce the proof to the compact case using
results of [SY3] and an observation of J. Lohkamp.

Proposition 5.4. If the mass of M is negative, there is a metric of
nonnegative scalar curvature on M which is euclidean outside a compact
set. This produces a metric of positive scalar curvature on a manifold M̂
which is gotten by replacing a ball in Tn by the interior of a large ball in M .

Proof. Results of [SY3] and [Sc] imply that if m < 0 we can construct
a new metric on M with nonnegative scalar curvature, negative mass, and
which is conformally flat and scalar flat near infinity. In particular, we have
g = u4/(n−2δ near infinity where u is a euclidean harmonic function which
is asymptotic to 1. Thus u has the expansion

u(x) = 1 +
m

|x|n−2
+O

(

|x|1−n
)

where m is the mass. Now we use an observation of Lohkamp. Since m < 0,
we can choose 0 < ε2 < ε1 and σ sufficiently large so that we have u(x) <
1 − ε1 for |x| = σ and u(x) > 1 − ε2 for |x| ≥ 2σ. If we define v(x) = u(x)
for |x| ≤ σ and v(x) = min{1− ε2, u(x)} for |x| > σ, then we see that v(x)
is weakly superharmonic for |x| ≥ σ, so may be approximated by a smooth
superharmonic function with v(x) = u(x) for |x| ≤ σ and v(x) = 1− ε2 for
|x| sufficiently large. The metric which agrees with the original inside Sσ

and is given by v4/(n−2)δ outside then has nonnegative scalar curvature and
is euclidean near infinity.

By extending this metric periodically we then produce a metric on M̂
with nonnegative scalar curvature which is not Ricci flat. Therefore the
metric can be perturbed to have positive scalar curvature. !

Using this result the theorem follows from Theorem 5.2 since the stan-
dard 1-forms on Tn can be pulled back to M̂ to produce the α1, . . . ,αn−1

of that theorem. This completes the proof of Theorem 5.3. !
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