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Positive scalar curvature and minimal
hypersurface singularities

Richard Schoen and Shing-Tung Yau

ABSTRACT. In this paper we develop methods to extend the minimal
hypersurface approach to positive scalar curvature problems to all di-
mensions. This includes a proof of the positive mass theorem in all di-
mensions without a spin assumption. It also includes statements about
the structure of compact manifolds of positive scalar curvature extend-
ing the work of [SY1] to all dimensions. The technical work in this paper
is to construct minimal slicings and associated weight functions in the
presence of small singular sets and to show that the singular sets do
not become too large in the lower dimensional slices. It is shown that
the singular set in any slice is a closed set with Hausdorff codimension
at least three. In particular for arguments which involve slicing down
to dimension 1 or 2 the method is successful. The arguments can be
viewed as an extension of the minimal hypersurface regularity theory to
this setting of minimal slicings.

1. Introduction

The study of manifolds of positive scalar curvature has a long history
in both differential geometry and general relativity. The theorems involved
include the positive mass theorem, the topological classification of manifolds
of positive scalar curvature, and the local geometric study of metrics of pos-
itive scalar curvature. There are two methods which have been successful in
this study in general situations, the Dirac operator method and the mini-
mal hypersurface method. Both of these methods have restrictions on their
applicability, the Dirac operator methods require the topological assump-
tion that the manifold be spin, and the minimal hypersurface method has
been restricted to the case of manifolds with dimension at most 8 because of
the possibility of singularities which might occur in the hypersurfaces. The
purpose of this paper is to extend the minimal hypersurface method to all
dimensions.
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The Dirac operator method was pioneered by A. Lichnerowicz [Li] and
M. Atiyah, I. Singer [AS] in the early 1960s. It was extended by N. Hitchin
[H] and then systematically developed by M. Gromov and H. B. Lawson
in [GL1], [GL2], and [GL3]. Surgery methods for manifolds of positive
scalar curvature were developed in [SY1] and [GL2]. For simply connected
manifolds M"™ with n > 5 Gromov and Lawson conjectured necessary and
conditions for M to have a metric of positive scalar curvature (related to
the index of the Dirac operator in the spin case). The conjecture was solved
in the affirmative by S. Stolz [St]. The Dirac operator method was used by
E. Witten [W] to prove the positive mass theorem for spin manifolds (see
also [PT]).

The minimal hypersurface method originated in [SY4] for the three
dimensional case and was extended to higher dimensions in [SY1]. The ex-
tension to the positive mass theorem was initiated in [SY2] and in higher
dimensions in [SY5] and [Sc|. In this paper we extend the minimal hyper-
surface argument to all dimensions at least as regards the applications to
the positive mass theorem and results which can be proven by slicing down
to dimension two.

The basic objects of study in this paper are called minimal k-slicings and
we now describe them. We start with a compact oriented Riemannian man-
ifold M which will be our top dimensional slice 3,. We choose an oriented
volume minimizing hypersurface ¥,,_1. Since ¥,,_1 is stable, the second vari-
ation form S,,_1(¢p, ¢) has first eigenvalue which is non-negative. We choose
a positive first eigenfunction u,_; and we use it as a weight p,_1 for the
volume functional on n — 2 cycles which are contained in >,,_1. We assume
we have a ¥,,_o C X, _1 which minimizes the weighted volume V,, _,(-). The
second variation S,,_2(¢, ¢) for the weighted volume on ¥, _o then has non-
negative first eigenvalue and we let u,_o be a positive first eigenfunction.
We then define p,_s = up—2pn—1 and we continue this process. That is if
we have ¥,;11 C Xj42 C ... C X, which have been constructed, we choose
¥j to be a minimizer of the weighted volume V), (-). Such a nested family
Y C Yga1 C ... C Xy, is called a minimal k-slicing.

The basic geometric theorem about minimal k-slicings which is general-
ized in Section 2 is the statement that if 3,, has positive scalar curvature
then for any minimal k-slicing we have that ¥ is Yamabe positive and so
admits a metric of positive scalar curvature. In particular if £ = 2 then X,
must be diffeomorphic to S? and there can be no minimal 1-slicing.

If we start with ¥, with n > 8, there might be a closed singular set
S,,—1 of Hausdorff dimension at most n — 8 in ¥,,_1. In this paper we de-
velop methods to carry out the construction of minimal k-slicings allowing
for the possibility that the >; may have nonempty singular sets S;. In order
to do this it is necessary to extend the existence and regularity theory for
minimal hypersurfaces to this setting. To do this requires maintaining some
integral control of the geometry of the ¥; in the ambient manifold X,,, and
also of constructing the eigenfunctions u; which are bounded in appropriate
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weighted Sobolev spaces. This control is gotten by carefully exploiting the
terms which are left over in the geometry of the second variation at each
stage of the slicing. This is done by modifying the second variation form
S; to a larger form ;. The form (; is more coercive and can be diago-
nalized with respect to the weighted L? norm even in the presence of small
singular sets. We can then construct the next slice using the first eigenfunc-
tion for the form @; to modify the weight. This procedure only works if
the singular sets §; do not become too large. We prove that for a minimal
k-slicing the Hausdorff dimension of the singular set Sy is at most & — 3.
The regularity theorem is proven by establishing appropriate compactness
theorems for minimal k-slicings and showing that at a singular point there is
a homogeneous minimal k-slicing gotten by rescaling and using appropriate
monotonicity theorems (volume monotonicity and monotonicity of an appro-
priate frequency function). A homogeneous minimal k-slicing is one in R"
for which all of the ¥; are cones and all of the u; are homogeneous of some
degree. It is then possible to show that if we had a 3j,q with singular set
of codimension at least 3, but 3 had a singular set of Hausdorff dimension
larger then k — 3 then there would exist a nontrivial homogeneous 2-slicing
with ¥o having an isolated singularity at the origin. We show that no such
homogeneous slicings exist to conclude that if Sk11 has codimension at least
3 in ¥j11, then S has codimension at least 3 in Xk. In particular if k = 2
then X9 is regular.

We now state the main theorems of the paper beginning with the positive
mass theorem. A manifold M" is called asymptotically flat if there is a
compact set K C M such that M \ K is diffeomorphic to the exterior of
a ball in R” and there are coordinates near infinity z',...,z" so that the
metric components g;; satisfy

gij = 5ij +O(|z]7?), |z||0gij| + |x]*|0%gi;| = O(|z|7P)
for some p > 2=, We also require the scalar curvature R to satisfy
|R| = O(|z|7%)

for some ¢ > n. Under these assumptions the ADM mass is well defined by
the formula (see [Sc| for the n dimensional case)

m= oo dm [ S ug delo)

cr /1’7.7

where S, is the euclidean sphere in the x coordinates, w,_1 = Vol(S""1(1)),
and the unit normal and volume integral are with respect to the euclidean
metric. The positive mass theorem is as follows.

THEOREM 1.1. Assume that M is an asymptotically flat manifold with
R > 0. We then have that the ADM mass is nonnegative. Furthermore, if
the mass is zero, then M is isometric to R™.
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It is shown in Section 5 using results of [SY 3] to simplify the asymptotic
behavior and an observation of J. Lohkamp which allows us to compact-
ify the manifold keeping the scalar curvature positive. The result which is
needed for compact manifolds follows.

THEOREM 1.2. If My is any closed manifold of dimension n, then
M1#T™ does not have a metric of positive scalar curvature.

Both of these theorems were known if either n < 8 or for any n assuming
the manifold is a spin manifold. Actually for n = 8 there may be isolated
singularities, but in this dimension a result of N. Smale [Sm] shows that
there is a dense set of ambient metrics for which the singularities do not
occur. Using this result the eight dimensional case can also be done without
dealing with singularities. In this paper we remove the dimensional and spin
assumptions.

Finally we prove the following more precise theorem about compact man-
ifolds with positive scalar curvature.

THEOREM 1.3. Assume that M is a compact oriented n-manifold with a
metric of positive scalar curvature. If o, ..., an_o are classes in H(M,Z)
with the property that the class oo given by oo = ap_2Nap—_3N...a1N[M] €
Hy(M,Z) is nonzero, then the class oo can be represented by a sum of smooth
two spheres. If a, 1 is any class in H' (M, 7), then we must have oy, _1Nog =
0. In particular, if M has classes au, . .., Qp—1 With a,—1N...Na1N[M] # 0,
then M cannot carry a metric of positive scalar curvature.

We also point out the recent series of papers by J. Lohkamp [Lol],
[Lo2], [Lo3], and [Lo4]. These papers also present an approach to the high
dimensional positive mass theorem by extending the minimal hypersurface
approach to all dimensions. Our approach seems quite different both con-
ceptually and technically, and is more in the classical spirit of the calculus
of variations. In any case we feel that, for such a fundamental result, it is of
value to have multiple approaches.

2. Terminology and statements of main theorems

We begin by introducing the notation involved in the construction of a
minimal k-slicing; that is, a nested family of hypersurfaces beginning with
a smooth manifold ,, of dimension n and going down to ¥; of dimension
k < n — 1. This consists of ¥}, C ¥y41 C ... C X, where each X; will be
constructed as a volume minimizer of a certain weighted volume in ¥;4;.

Let X, be a properly embedded n-dimensional submanifold in an open
set Q) contained in RYV. We will consider a minimal slicing of ¥,, defined in
an inductive manner. First, let u,, = 1, and let 3,,_1 be a volume minimizing
hypersurface in ¥,,. Of course, it may happen that X, has a singular set
S,—1 which is a closed subset of Hausdorff dimension at most n — 8. On
Yn—1 we will construct a positive definite quadratic form (),_1 on functions
by suitably modifying the index form associated to the second variation of



POSITIVE SCALAR CURVATURE 445

volume. We will then construct a positive function u,_1 on ¥,_1 which is a
least eigenfunction of @),—1. We then define p,—1 = up_1u,, and we let ¥, _o
be a hypersurface in 3,1 which is a minimizer of the p,_;-weighted volume
Vo1 (B) = fZ Pn—1dpin—o for an n — 2 dimensional submanifold of ¥, _;
and we denote p; to be the Hausdorff j-dimensional measure. Inductively,
assume that we have constructed a slicing down to dimension k + 1; that
is, we have a nested family of hypersurfaces, quadratic forms, and positive
functions (X;,Qj,u;) for j = k+1,...,n such that ¥; minimizes the p; ;-
weighted volume where pj11 = wjt1ujq2...up, Q; is a positive definite
quadratic form related to the second variation of the p;ii-weighted volume
(see (2.1) below), and u; is a lowest eigenfunction of @); with eigenvalue
Aj > 0. We will always take A; to be the lowest Dirichlet eigenvalue (if
9%; # 0) of Q; with respect to the weighted L? norm and we take u; to
be a corresponding eigenfunction. We will show in Section 3 that such A;
and u; exist. We then inductively construct (Xj, Qg,ur) by letting ¥y be
a minimizer of the priq, weighted volume where pri1 = upi1Ukio. .. Up,
Q). a positive definite quadratic form described below, and wuy a positive
eigenfunction of Q.

Note that if 3; is a leaf in a minimal k-slicing, then choosing a unit nor-
mal vector v; to X; in ;11 gives us an orthonormal basis vy, vg41,...,Vn—1
for the normal bundle of ¥ defined on the regular set Rj. Thus the second
fundamental form of X, in %, consists of the scalar forms A,” = (Ay, v;) for
j=k,...,n—1 and we have |A|> = Z;‘:—,i |47 2.

Now if we have a minimal k-slicing, we let gi denote the metric induced
on X, from ¥, and we let g, denote the metric g, = gi + ZZ;,% ugdtg on
i x (S where we use S* to denote a circle of length 1, and we denote
by t, a coordinate on the pth factor of S1. We then note that the volume
measure of the metric g is given by prdur where we have suppressed the
t, variables since we will consider only objects which do not depend on
them; for example, the pp-weighted volume of ¥ is the volume of the n-
dimensional manifold ¥ x 7" *. We will need to introduce another metric

Gr on Xp x (SN k=1 This is defined by g = ngrZZ;l_H uz dt?,. Note that

gk is the metric induced on ¥y x (SH)"*~1 by gi,1. We also let Ay, denote
the second fundamental form of ¥ x (S1)"*=Lin (X1 x (SH)"*=1 Grr1).
The following lemma computes this second fundamental form.

LEMMA 2.1. We have Aj, = A — Z;;liﬂ upvy(up)dts, and the square

length with respect to gy, is given by |Ag|? = |A7*|2 + 22;141;+1(Vk(10g up))?.

Proor. If we consider a hypersurface ¥ in a Riemannian manifold with
unit normal v, then we can consider the parallel hypersurfaces parametrized
on X by F(z) = exp(ev(z)) for small € and z € ¥. We then have a family of
induced metrics g. from £ on X, and the second fundamental form is given
by A = —% g where g denotes the € derivative of g. at € = 0.
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If we let exp denote the exponential map of ¥y in 341, then since ¥4

is totally geodesic in ¥p11 x T" %=1 we have
Fo(w,1) = (exp (v (2), 1)
for (z,t) € X x T"*~1 and the induced family of metrics is given by
n—1 )
ge = (gr)e + Z (up(exp(eyk)) dt?)-
p=k-+1
Thus we have
n—1
g=—24F+2 Z Upli(up) dtf,
p=k+1

since AZ’“ is the second fundamental form of ¥ in Xgyi. It follows that
Ay = AlF — E;:kl: 4 upyk(up)dtz, and taking the square norm with respect
to the metric g then gives the desired formula for |Ag|?. O

We now describe the choice we will make for );. Let S; be the second
variation form for the weighted volume V)., at X;, and define

(21) cm%w:&mw+§é<wf
J
+i§n:(\v-1o 2+ A2 |@Ppjar dp;
3n jlogupl® +1A4p1%) | ¢ pje1 du;
p=j+1
where, for now, ¢ is a function supported in the regular set R; and we define
A, = 0, u, = 1. We will discuss an extended domain for ¢); in the Section 3.
Up to this point our discussion is formal because we have not discussed
issues related to the singularities of the ¥; in a minimal slicing. We first
define the regular set, R; of X; to be the set of points = for which there
is a neighborhood of z in RY in which all of 2,241, .. 2y are smooth
embedded submanifolds of RY. The singular set, §; is then defined to be the
complement of R; in XJ;. Thus §; is a closed set by definition. The following
result follows from the standard minimizing hypersurface regularity theory.
In this paper dim(A) always refers to the Hausdorff dimension of a subset
ACRN.

PROPOSITION 2.2. For j <n —1 we have dim(S; ~ Sj41) < j— 7, and
in particular we have dim(S,—1) < n — 8.

In light of this result, we see that our main task in controlling singular-
ities is to control the size of the set S; N S; 1. We will do this by extending
the minimal hypersurface regularity theory to this slicing setting. In order
to do this we need to establish the relevant compactness and tangent cone
properties and this requires establishing suitable bounds on the slicings. To
begin this process we make the following definition.
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DEFINITION 2.1. For a constant A > 0, a A-bounded minimal k-
slicing is a minimal k-slicing satisfying the following bounds

Aj <A, Volpj+1 (X5) <A, / <1+|Aj|2+ Z 1V logup|2> U?PjJrl dup; < A
b))

p=j+1

J

for j = k,k+1,...n—1, where p; is Hausdorff measure, V; is taken on (the
regular set of) X;, and A; is the second fundamental form of ¥; in RY.

The minimal k-slicings we will consider in this paper will always be
A-bounded for some A. We have the following regularity theorem.

THEOREM 2.3. Given any A-bounded minimal k-slicing, we have for each
j=kk+1,...,n—1 the bound on the singular set dim(S;) < j — 3.

We now formulate an existence theorem for minimal k-slicings in 3.
We consider the case in which ¥, is a closed oriented manifold. We assume
that there is closed oriented k-dimensional manifold X* and a smooth map
F: %, = X x T" % of non-zero degree s. We let Q denote a k-form of X
with fX Q =1, and we denote by dtF1, ... dt" the basic one forms on T7%
where we assume the periods are equal to one. We introduce the notation
O =F*Qand wP = F*(dtP) forp=k+1,...,n.

We can now state our first existence theorem. A more refined existence
theorem is given by Theorem 4.6 which we will not state here.

THEOREM 2.4. For a manifold M = %, as described above, there is a
A-bounded, partially regular, minimal k-slicing Moreover, if k < j <mn —1
and X; is regular, then fzj OANWFTIA . AW =5,

The proofs of Theorems 2.3 and 2.4 will be given in Sections 3 and 4.
In the remainder of this section we discuss the quadratic forms (; in more
detail and derive important geometric consequences for minimal 1-slicings
and 2-slicings under the assumption that X, has positive scalar curvature.
Consequences of these results, which are the main geometric theorems of the
paper, will be given in Section 5.

Recall that in general if 3 is a stable two-sided (trivial normal bundle)
minimal hypersurface in a Riemannian manifold M, then we may choose
a globally defined unit normal vector v, and we may parametrize normal
deformations by functions ¢-v. The second variation of volume then becomes
the quadratic form

@1 Sl = [|IV6P - (R - Bs +14P)?] da

where Rj; and Ry are the scalar curvature functions of M and X and A
denotes the second fundamental form of ¥ in M. R
We have the following result which computes the scalar curvature Ry

of gk
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LEMMA 2.5. The scalar curvature of the metric g is given by

n—1
Ry = Ry — 2 Z u;lAkup -2 Z (Vi logup, Vi log ug)
p=k+1 k+1<p<g<n-—1

where A and Vi denote the Laplace and gradient operators with respect
to gk -

PRrROOF. The calculation is a finite induction using the formula
R=R—-2u"'Au

for the scalar curvature of the metric § = g + u2dt>.
For j=k,...,n—1Let g; = g + ZZ;} uf,dtz. Note that gr = g and
Jk+1 = Jk. We prove the formula

n—1
Rj — R, -2 Z U;lAkup _9 Z (Vi logup, Vi log ug)

p=J J<p<q<n-—1

by a finite reverse induction on j. First note that for j =n — 1 the formula
follows from the one above. Now assume the formula is correct for g; 1. We
then apply the formula above to obtain

_ _ s
Rj == Rj+1 - 2uj Ajuj.
Since u; does not depend on the extra variables t,, we have

n—1
uj_lﬁjuj = uj_lpj_l divy(pjViuj) = u;lAkuj + Z (Vi logup, Vi log uj)
p=j+1
where as above p; = wuj41---up—1. The statement now follows from the
inductive assumption. Since gx11 = gk, we have proven the required state-
ment. O

We now consider consequences of having a minimal k-slicing of a mani-
fold of positive scalar curvature.

THEOREM 2.6. Assume that the scalar curvature of %, is bounded below
by a constant k. If Xi is a leaf in a minimal k-slicing, then we have the
following scalar curvature formula and eigenvalue estimate

n

n—1 n—1
; 1 . 1 .
Rp=Ro+2) 2+ 1) j(\APP —— > (IVplogu® + !Aq\2)>

p=k p=k q=p+1

3 n
/ K+ = Z |V loguj]2 — Ry, (,02 dug < 4/ |Vk<p\2 dpg
Yk 4 Xk

j=h+1

where ¢ is any smooth function with compact support in Ry.
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PRrOOF. First note that from (2.1) and (2.2) we have

1 . .
Qi(p, ¢) = / [WﬂplQ = 5 (Rj = R))e?
i
1z 1< 2 12 2
3 |45 T Z (IVjloguy|® + [Ap]7) |97 | pjs1 dpsy,
p=j+1
and therefore u; satisfies the equation L;ju; = —\;u; where
(2.3)
< 1. A R 2,172
p=j+1

We derive the scalar curvature formula by a finite downward induction
beginning with £k = n — 1. In this case the eigenvalue estimates follow from
the standard stability inequality (2.2) since p, = u, = 1 and Ry_1=Ry_1.
We also have from Lemma 2.5 that R,_1 = R,_1 — 2u;i1An_1un_1. The
equation satisfied by wu,_1 is

1 1, -
An—lun—l + §(Rn - Rn—l)un—l + g‘An—1|2un—1 = —Ap—1Un—1

and so we have R,,_1 = Ry + 2\n_1 + %|f~ln,1|2. This proves the result for
k=n-—1.

Now we assume the conclusions are true for integers k and larger, and we
will derive them for k—1. We first observe that gx_1 = gr—1 +u%71 dtzf1 and

so Rp_1 = Rj_1 — QuE_IIAk,luk,l. On the other hand from (2.3) applied
with j = k — 1 we see that up_ satisfies the equation

- 1 - - 1 ~
Ap_qup—1 + §(Rk — Ry—1)up—1 + 3 (\Akl\z

1 & _
T Z(W’f—l logup|2 + ’Ap‘2)>“k—l = —Ap—1Ug—1.
p=k

Substituting this above we have

. - 1 . .
Ry 1 =Rp—1+2| A1+ §(Rk — Ri—1)

. 1 & 5
(!Ak—ﬂz - > (I Vi—1logug|* + !Aq‘z)ﬂ 7

q=k

+

|

so we have

. 1 - 1 — -
Ry 1 =2 1+ Ry + 1 <|Ak1|2 - 2(%1 loguq|2 + |Aq]2)>.
q:
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Using the inductive hypothesis we get the desired formula

n—1 n—1 n
R 1 ~ 1 -
Ri_1 =R, +2 Z )\p—i—z Z <‘AP’2_E Z (]Vploguq|2+]z4q!2)).

p=k—1 p=k—1 qg=p+1

Now observe that by an easy rewrite and estimate on the first term

n—1 n—1
Z (”APF - Z (|vp loguq|2 + |Aq|2)>

p=k q=p+1
n—1 /n—1 ~ n—1 _
=Y (Z A7 = > (IVplogug|* + !Aq\2)>
p=k \r=k q=p+1
n—1 p ~ n—1
_Z<Z|A’"’2_ Z \Vplogqu).
p=k \r=k q=p+1

From Lemma 2.1 we have the bound

Il
]~
—~
AN
-
o
o
<
=}
S~—

since r < p. Combining these we have

n—1 n—1
Z (nViP‘Z - Z (IVplog ugl® + Aq|2)>

p=k

q=p+1
n—1 n—1 p—1

> Z Z ( (vrlogug)? — |V, log uq|2>
p=k q=p+1 \r=k

n—1 n—1

_Z Z ‘Vkloguq‘ > nZ\Vkloguq\2.

p=k g=p+1

This formula implies that for each k we have

n
Ry >k — 1/42 |V log uj|>.
j=k
It then follows from Lemma 2.1 that

(2.4) JAR? + Bea > k= 1/4 > [V loguy|?
j=k+1
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and so the following eigenvalue estimate follows from (2.2)
—1

1 -
/ k=7 > n|Vilogus|* — Ry, |0®pryr dp < 2/ Vo prer1 dps
Xk j=k+1 Xk

The remainder of the proof derives the eigenvalue estimate from this one.
Since ¢ is arbitrary we may replace ¢ by ©(pr+1)'/? to obtain

1 & N
/Ek (K 4 Z Vi logu;|? — sz> @ du
Jj=k+1

< 2/2 Vi (o//Prr1) |Poks1 dp
k

< 4/2 Vi (o//Prr1) P Prr1 dpk
k

where we used the inequality 2 < 4. After expanding, the term on the right
becomes

4/ (IVeel® = o(Vip, Vi log prg1) + 1/49% Vi 1og praa|*) dpe.
Xk

Rewriting the middle term in terms of V()? and integrating by parts the
term becomes

n—1
4/ (VWI2+1/2902[ > (u, ' Apup—| Vi log uy|* )+ /2| Vi log pk+1l2D dyt.
Lk p=k+1

Now recall from Lemma 2.5 that

n—1
Ry = Ry — 2 Z u;lAkup —2 Z (Vi loguy, Vi log ug).
p=k+1 k+1<p<g<n—1

Thus we see that the terms involving Aju, cancel out, and note also that

n—1
IVilogpraal® = > [Viloguw>+2 > (Viloguy,, Vilogu,)
p=k+1 k+1<p<g<n-—1

so the second term also cancels. Thus we are left with

1 n
. 1 12 2d
/Ek <f€ 1 ) [Viloguyl Rk)SO e

j=k+1
1 n
§4/ Viel? =5 Y [Viloguy|® | dpy.
Sk 4 £
j=k+1
This gives the desired eigenvalue estimate. O

This theorem will be central to the regularity proof in the next section
and it also has an important geometric consequence which is the main tool
in the applications of Section 5.
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THEOREM 2.7. Assume that R, > k > 0. If ¥y, is regular, then (X, gx)
is a Yamabe positive conformal manifold. If 3o lies in a minimal 2-slicing,
Y9 is regular, and 0%9 = 0, then each connected component of Yo is homeo-
morphic to the two sphere. If 31 lies in a minimal 1-slicing and ¥, is regqular,
then each component of X1 is an arc of length at most 27 /+/k.

PRroOF. Recall that the condition that g be Yamabe positive is that
the lowest eigenvalue of the conformal Laplacian —Ay + ¢(k) Ry be positive
2

where c(k) = ﬁ. In variational form this condition says

- [ R du < i)t [ Vel din
Xk Xk

for all nonzero functions ¢ which vanish on 0% (if ¥; has a boundary).
Since 4 < ¢(k)~! we see that this follows from the eigenvalue estimate of
Theorem 2.6.

Now consider Y, and apply the eigenvalue estimate of Theorem 2.6 with
@ = 1 to a component S of ¥y to see that fS Ry dpe > 0. It then follows
from the Gauss-Bonnet Theorem that S is homeomorphic to the two sphere
(note that S is orientable).

Finally, it ~ is a connected component of ¥y of length [, then the eigen-
value estimate of Theorem 2.6 implies that the lowest Dirichlet eigenvalue
of v is at least x/4. Thus x/4 < 72/I? and | < 27//k as claimed. O

3. Compactness and regularity of minimal k-slicings

The main goal of this section is to prove Theorem 2.3. In order to do
this we first must clarify some analytic issues concerning the domain of the
quadratic form @Q;. We let L2(2j) denote the space of square integrable
functions on ¥; with respect to the measure p;i1p;. We let

loll2, = /E ot dp;

J

denote the square norm on LQEA. We introduce some notation, defining P; to
be the function defined on X;

n
Pi= 4P+ > |Vjlogul”
p=j+1

We will say that a minimal k-slicing in an open set €2 is partially regular
if dim(S;) < j—3for j =k,...,n— 1. It follows from Proposition 2.2 that
if the (k + 1)-slicing associated to a minimal k-slicing is partially regular,
then dim(Sy) < min{dim(Sg+1),k — 7} <k —2.

For functions ¢ which are Lipschitz (with respect to ambient distance)
on X; with compact support in R; N 2, we define a square norm by

5 +/E (IVj0l* + Pjp?) pjs1 dpj.

J

lelld; = lle
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We let ‘H; denote the Hilbert space which is the completion with respect
to this norm. Note that functions in H; are clearly locally in W2 on R;.
We will assume from now on that u; € H; for j > k; in fact, we take this
as part of the definition of a bounded minimal k-slicing. We define H; to
be the closed subspace of H; consisting of the completion of the Lipschitz
functions with compact support in R; N ). In order to handle boundary
effects we also assume that there is a larger domain € which contains  as
a compact subset and that the k-slicing is defined and boundaryless in €.
Note that this is automatic if 0X; = ¢. Thus H ;o consists of those functions
in H; with 0 boundary data on ¥; N 9€. The existence of eigenfunctions u;
in this space will be discussed in the next section. The following estimate of
the L?(X;) norm near the singular set will be used both in this section and
the next. The result may be thought of as a non-concentration result for the
weighted L? norm near the singular set in case the #;, norm is bounded.

PROPOSITION 3.1. Let S be a closed subset of 1 with zero (k — 1)-
dimensional Hausdorff measure. Let ¥, be a member of a bounded minimal
k-slicing such that Xy is partially reqular in 1. For any n > 0 there exists
an open set V. .C Qy containing S N Q such that whenever S, N C V we
have the following estimate

/ O pri1 dpy < 77/ [[Vipl* + (14 Py)e?] prs1 dp
XNV YN

for all o € Hyp.

PROOF. Let € > 0, § > 0 be given. We may choose a finite covering of
the compact set S N2 by balls B, (z4) with 4 < /5 such

Z Tffl <e.
a

We let V' denote the union of the balls, V = U, B, (4).

Assume that S, NQ C V and let ¢ € Hpi0. We may extend ¢ to Xy N2y
be taking ¢ = 0 in Q; ~ . By a standard first variation argument for
submanifolds of RY, for a nonnegative function we have

k‘/ 0 prr1 dp, < 7"/ (V9?1 ] + [ Hilo® prs1) dpas
YrNByr YrNBy

+T/ O pr+1 dptg—1.
$.NOB;
Let Ly(r) = fszr(za) ©%pr41 dpg, and
Ma(r) = / (IVi(©*pr+1)| + [ He|@?prs1) dpk.
EkﬂBT(:pa)

The above inequality then implies

kLo (1) <rMgy(r) + TC% (La(r)).
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Now for any « and a small constant ¢y we consider two cases: (1) There
exists r with ro < r < §/5 such that the inequality

e0La(57) < T My(r).

We denote such a choice of r by r/,. Secondly, we have case (2) For all » with
ro <1 <§/5 we have
Mo (1) < e0La(57).

The collection of « for which the first case holds will be labeled A1, and that
for which the second holds As. We will handle the two cases separately.

For the collection of balls with radius 7/, indexed by A; we may apply
the five times covering lemma to extract a subset A} C A; for which the
balls in A are disjoint and such that

Vi= UaeAlBra ($a) - anEAlB'ré¥ (xa) - UaeA’lB5r{X (xa)'
From the inequality of case (1) above applied for € A, we have
La(ra) < La(514) < &5 'roMa(rh) < g '6Ma(rl,).

Summing over « € Ay and using disjointness of the balls we have

(3.1) / O pri1 dug < 5015/ (Vi prs1| + | Hi|o*pr+1) dp.
SNV 2N
Now for o € Ay we have
d
kLq(r) < eoLo(br) + r%(La(r))
for 1o, < r < §/5. For j = 0,1,2,... define 0; = 51, and let p be the
positive integer such that o, < §/5 < 0. We define A; by Aj = Ly(05)
for j =0,1,...,p. For 0; <r < 0j41 we then have
d
kLq(r) < EoAjJrzA;lLa(r) + 7“% (La('r)).
Integrating we find

-1
AjaAGt > phmeohidy
Setting R; = AjHA;l we have shown
R] Z 5k—60R]‘Rj+1'

Now if R; < 5%=1 then we would have 551 > 5F—20liRit1 which in turn
implies 505k_1Rj+1 > eoljRj41 > 1. Thus if we choose g = 5363 we
find Rj41 > 52(k=1) and hence it follows that RiRj 1 > 52(k=1)  Thus we
have shown that for any j = 0,1,...,p — 1 we either have R; > 55=1 or
R;R;j1 > 52~V This implies that ApAyt > 5P—N¢=1 > 51=k(5/p k=1
and therefore we have Ly (74) < ¢(ra/8)* 1La(0,) for each a € Ay, Sum-
ming this over these o and using the choice of the covering we have

/ @ Pt dpg < ce6' 7" / @ Pt Aty
YNV YN
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Combining this with (3.1) we finally obtain

/ ©>pros1 dpy
YNV

< C€51_k/ ©*prr1 dp + €6 (IVeo®prril + [Hilo® prs1) dpk,
£,N0 £,N0

since we have now fixed £9. We can estimate the second term on the right
using
IVro? pres| + [ Hilo? pria
1
< (©* + |Vigl?) g1 + 5902 (24 | Vi 1og pr1|® + [Hl?) prt1-

This implies the bound

/ > pros1 g
YNV

< (617 +9) / ©*pret1 dpy + 6 [IViel® + Pu®] prsr dps.
SenQ enQ

The desired conclusion now follows by choosing § so that ¢d = n/2 and then
choosing € so that ce6' =% = 7. This completes the proof. O

The following coercivity bound will be useful both in this section and in
the next. We assume here that we have a partially regular minimal k-slicing.

PROPOSITION 3.2. Assume that our k-slicing is bounded. There is a
constant ¢ such that for ¢ € Hy o we have

0_1/E [V P+ (Pet| Vi log ug|*) 0] prs1 d#kéQk(%<ﬁ)+/ > prr1 dp.
k

Xk
Moreover we have the bound
6_1/Z (IVe(ov/Prrn) P + [Ak?0% o) dpr < Qr(ep, ) +/2 @ pry1 dps.
k k

PROOF. We can see from (2.1) that

1 n N n
Qi(p,0) = Sk(p, ) + 8_n/2 <Z | Apl? + Z Vi 10gup|2> @ Prr1dp.
k \p=k p=k+1

Using the stability of X; we have

1 n 5 n
(3:2)  Qilp,p) = 8_n/ (Z AP+ D (Vs 10gup|2> ©° prr1dp.
X p=k p=k+1
Finally we use Lemma 2.1 to conclude that (note that A, = 0)

n _ n—1 n—1
DA =D AP =Y AR = AP
k p=~k p=k

p=
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and thus we have

1
Qrlp, @) > 8_n/ Peo®presr dpg.
Xk

Recall that Sy(¢, ) = [5, (IViel* — axp?)prs1 duy, where

(’AHQ + Ryp1 — Rk)

N =

qr =

where Rk+1 is given in Theorem 2.6 and Ry, is given in Lemma 2.5. We will
need an upper bound on ¢, so we first see from Theorem 2.6 with k replace
by k+1

1= 1
S -
qr <c+ §Z|Ap| — 5Bk
p=k
where the constant bounds the curvature of ¥, and the eigenvalues. Now

from Lemma 2.5 we can obtain the bound

n—1

1. 1 ,
_§Rk < §|Rk\ + Zk;rl |V logup|” + dive (%)
p:

where X}, = ZZ;; +1 Vi logu,. We observe that the Gauss equation implies
that |Rg| < c(1 + |Ax|?), and so we have

n—1 n—1
net SIS Wil + ()
p=k p=k+1

Now observe that Q > Sk and so we have
1
/ (IVW\Q + _Pk802>/7k+1 dpr, < 2Qx(p, ) +/ QP i1 dptk
&n po

We want to bound the second term on the right by a constant times the
first plus up to the square of the L? norm of ¢, so we use the bound for ¢
to obtain

n—1

n—1

/ 0P’ Pt dpar < C/ (1 Y 1P+ ) Vi logup|2> ©® prs1dpe
Zk Ek —
p=k

p=k+1

+ / divk(é\,’k)gozpkﬂduk.
Xk
Now since ¢ has compact support we have

g divi (X))@ prs1 dpk = _/z (X, V(9% pres1) ) dpve-
k k
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Easy estimates then imply the bound

/ dive (X)) prt1 dpu
P

1 n—1
< 5/ Vil prsr duk +C/ Z Vi log up|? | ¢ prr1 dpsg.
Sk Xk p=k+1

We may now absorb the first term back to the left and use (3.2) to obtain
the bound

/2 (IViel® + Pu®) prt1 dpr < cQi(0, ) +/ ©*pr-+1d 4k
k

Xk
To bound the term involving |V logug|?> we recall that on the regular
set we have
Agug + qrug = —Agug
where Ar > 0. This implies by direct calculation

Aloguy, = —q, — A, — |V, log ug|%.

(Note that @k: = V} on functions which do not depend on the extra vari-
ables t,,.) Now if ¢ has compact support in Ry, we multiply by ©?, integrate
by parts to obtain

/ (IVilogurl® + qr) 0 prs1 dpk < 2/ ©(Vip, Vi logug) pri1 dp.
Xk Xk

By the arithmetic-geometric mean inequality

1
/ (Vi logug|® + qr) ¢ prs1 dpg < 5/ (IVilog ug? + qr) 0> prs1 dik
Xk Xk

+2/ Vi prt1 dps-
Xk
This implies

1 1 3
—/ Vi log ug |* 0% pri1 dur < =Qi(ip, ) + —/ Vol pr1 dps-
2 DN 2 2 N

The first inequality then follows from this and our previous estimate.

The second conclusion follows since |V log pk+1|2 < c¢P, and so the
integrand on the left |V (¢\/prr1)]? + | Ak[*¢?pr11 is bounded pointwise by
a constant times (|Vi|? + Poo?)pri1- O

Recall that an important analytic step in the minimal hypersurface reg-
ularity theory is the local reduction to the case in which the hypersurface is
the boundary of a set. This makes comparisons particularly simple and re-
duces consideration to a multiplicity one setting. We will need an analogous
reduction in our situation. Since the leaves of a k-slicing can be singular,
we must consider the possibility that local topology comes into play and
prohibits such a reduction to boundaries of sets. What saves us here is the
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fact that k-slicings come with a natural trivialization of the normal bundle
(on the regular set). We have the following result.

PROPOSITION 3.3. Assume that U is compactly contained in 2, and that
UNY, is diffeomorphic to a ball. Assume that we have a minimal k-slicing in
Q such that the associated (k + 1)-slicing is partially reqular. Let flk denote
the closure of any connected component of XyNUNRgy1. Then it follows that
f]k divides the corresponding connected component (denoted f]kﬂ) of X1
into a union of two relatively open subsets, and choosing the one, denoted
Ugt1, for which the unit normal of flk points outward, we have f)k = OUg41
as a point set boundary in 2k+1; and as an oriented boundary in Riy1.

PROOF. Since Ek NRyy1 and Ek—i—l NRyy1 are connected, it follows that
the complement of Ek N Rg41 in Ek+1 N Rp+1 has either 1 or 2 connected
components. These consist of the connected components of points lying near
3% on either side. Locally these are separate components, but they may re-
duce globally to a single connected component. If this were to happen, then
since dim(Sky+1) < k — 2, we could find a smooth embedded closed curve
7(t) parametrized by a periodic variable ¢ € [0,1] with (0) € Sk N Rt
and v(t) € Rpp1 ~ Xp for t # 0. We may also assume that 4/(0) is trans-
verse to Ek We choose local coordinates x! zF for Zk in a neighborhood
V of 4(0) and we may find an embeddmg F of V x S!in Rjyq with the
property that F(0,t) = y(t), F(x,0) € Sk, F(z,t) € 5 for ¢t # 0, and
%ﬁ (z,0) is transverse to . The k-form w = ¢(z)dz' A... Adz*, where C is
a nonnegative and nonzero function with compact support in V, is a closed
form which has positive integral over . Since the image Vi = F (V x S1)
is compactly contained in Rg1q and the normal bundle of flkﬂ is trivial,
we may choose coordinates zFt2, ... 2" for a normal disk, and the coordi-
nates z!, ..., 2%, t, 22 ... x™ are then coordinates on a neighborhood of
Vi in ¥,,. We may then extend w to an (n — 1)-form on this neighborhood
by setting

w1 =wA Cl(xk+2, e ,l‘n)dl‘k+2 Ao A dx"
where (7 is a nonzero, nonnegative function with compact support in the do-
main of 1 ... 2" Thus wy is a closed (n— 1)-form with compact support
in U N ¥, which has positive integral on $,_1, the connected component of
Yn—1 containing v(0). This contradicts the condition that each connected
component of ¥, must divide the ball U N 3, into 2 connected compo-
nents and is the oriented boundary of one of them, say in,l = 0U,, since
Stokes theorem would imply that fiwl w1 = fUn dwi = 0 (note that wy has

compact support in U N %,). O

We will prove a boundedness theorem which will be needed in the proof
of the compactness theorem. Note that we will obtain the partial regularity
theorem by finite induction down from dimension n—1, so we may assume in
the following theorems that we have already established partial regularity for
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(k+1)-slicings. In the following result we will consider the restriction of a k-
slicing to a small ball B, (x) where z € RY. We consider the rescaled k-slicing
of the unit ball given by ; , = 0 71(3; —z) with u; ,(y) = ajuj(x+oy) with
a; chosen so that fzj i (4j.5)%pj+1.0 duj = 1. We note that by Proposition 3.3
we may assume that cach Y; in B, () is the oriented boundary of a relatively
open set Ojy1 € ¥j;41. We take Oj411,, to be the rescaled open set. The
following result implies that the rescaled k-slicing remains A-bounded for a
suitably chosen A.

THEOREM 3.4. Assume that all bounded (k + 1)-slicings are partially
reqular. If we take any bounded minimal k-slicing (¥;,u;) in  and a ball
By (x) compactly contained in 2, then there is a A depending only on %,
such that (Xj5,uj5), j =k,...,n — 1 is A-bounded in B, 5(0).

PRrOOF. The proof is by a finite induction beginning with £ = n — 1.
The boundedness of p,—1(X,-1,,) follows by comparison with a portion of
the sphere of radius 1 in a standard way (see a similar argument below). We
normalize fEnq U(un,lﬂ)Q dpp—1 = 1, so it remains to show

2.2
/ |An—1,0] Up—1,0 dpn—1 < A.
Z’n,fl,o'mBl/2(0)

To see this, we use stability with the variation (u,—1,, to obtain

1
- A,
4/En_1,0’ n—1,0

Now we have by direct calculation for any W1 2(2,-1,) function v

2C2u721—1,a' d,Ufn—l S Qn—l,a(cun—l,ay Cun—l,a)-

Qn—l,a(@,@) = Qn—l,a (C2U,U) +/ UQ‘vn—l,JCF d,U/n—l-

Zn—l,a

Taking v = u,-1,, and choosing ¢ to be a function which is 1 on By /5(0)
with support in B;(0) and with bounded gradient we find

/ ’An—l,a|2u271,g d,uln—l < 4)\71—170' +c< A
Enfl,u
for a constant A where we have used the eigenvalue condition

Qn—l,a (C2un—l,avun—1,a) = An—l,a/ C2ui—1,g dﬂn—l

anl,a
and the obvious relation \,_1, = 0% An—1. This proves A-boundedness for
k=n-—1.
Now assume that we have A-boundedness for j > k+1 in Bj/4(0). Thus
it follows that f2k+1,amBS/4(0)(1 + (Ukt1,0)?)Prt2.0 dik+1 is bounded and
hence f2k+1,aﬂB3/4(0) Pk+1,0 dptg4+1 is bounded. We may then use the coarea
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formula to find a radius r € (1/2,3/4) so that

/ Pr+1,0 dp < A.
St 1,0N0B(0)

Using the portion of ¥y, N 0B,(0) lying outside Oy, as a comparison
surface we find

Vol (Zk,a N Bl/Q(O)) < Vol (Zk—i-l,a N 8BT(())) < A.

Pk+1,0 Pk+1,0

Finally we prove the bound

n

/ (\Ak,ar2+ > vk,alogup,aﬁ)uz,apma dpy, < A
Xk,0NB1/2(0) p=k+1

by the use of stability as we did above for the case k =n — 1. U

We will now formulate and prove a compactness theorem for minimal
k-slicings under the assumption that the associated (k + 1)-slicings for the
sequence are partially regular. We will say that a A-bounded sequence of k-

5-1)), j=k,...,n—1 converges to a minimal k-slicing (X;, u;)

in an open set U if Egi)

complement of the singular set (of the limit) S;, and such that for j =
ky...,n—1

slicings (Egz) U

converges in C? norm to 2 in U locally on the

(3.3) ilij& pr+>1 (EE?) NG;) =V, (Z;n0),
(34) Tim 13 50, = N2 5.0
. % % i)\ 2 %
tm [ (V2 PO W), iy

1—00 ES’) nU;

2/ (IVjusl + Pyuf) pja dps;
;N0

where U; is a sequence of compact subdomains of U with U; C U;41 C U
and U = U;U;.

To make precise the meaning of convergence on compact subsets for
this problem involves some subtlety since changing the w,, p > j + 1 by
multiplication by a positive constant has no effect on the 3;, so in order to
get nontrivial limits for the u, we must normalize them appropriately. In
case X; N'U has multiple components this normalization must be done on
each component. If (X;,u;) is a minimal k-slicing with X; being partially
regular for j > k + 1, then we call a compact subdomain U of Q admissible
for (3j,u;) if U is a smooth domain which meets 03; transversally and
dim(0U N S;) < j — 3. It follows from the coarea formula that any smooth
domain can be perturbed to be admissible. We make the following definition.
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DEFINITION 3.1. We say that a sequence of k-slicings (E;I),uéz)) con-
verges on compact subsets to a k-slicing (X;,u;) if for any compact subdo-
main U of 2 which is admissible for (¥, u;) and for any admissible domains
U, for (Zg-i),ug-i)) with U; C U;41 C U compactly contained in U it is true
that each connected component of ¥; N Rj41 NU is a limit of connected

components of Egi) N Rg?_l N U; in the sense of (3.3) and (3.4) with u; ap-

propriately normalized on each connected component.

REMARK 3.1. Because of the connectedness of the regular set and the
Harnack inequality, we may normalize the u; to be equal to 1 at a point of
xo € Ry, about which we have a uniform ball on which the XJ; have bounded
curvature, and this normalization suffices for the connected component of
Y, NU for any compact admissible domain for (3;,u;). A consequence of
the compactness theorem below implies that this normalization suffices.

The following compactness and regularity theorem includes Theorem 2.3
as a special case.

THEOREM 3.5. Assume that all bounded minimal (k + 1)-slicings are
partially regular. Given a A-bounded sequence of k-slicings, there is a sub-
sequence which converges to a A-bounded k-slicing on compact open subsets
of Q. Furthermore Xy, is partially reqular.

Proor. We will proceed as usual by downward induction beginning with
k =n — 1. We will break the proof into two separate steps, the first estab-
lishing the first statement of (3.3) for convergence of the ¥; and the second
showing the other two statements (3.4) involving convergence of the uy. For
k = n — 1 the first step follows from the usual compactness theorem for
volume minimizing hypersurfaces (see [Si]). To complete the proof we will
need to develop some monotonicity ideas both for the 3J; and for the u;. We
digress on this topic and return to the proof below.

We now prove a version of the monotonicity of the frequency-type func-
tion. This idea is due to F. Almgren [A], and it gives a method to prove
that solutions of variationally defined elliptic equations are approximately
homogeneous on a small scale. The importance of this method for us is that
it works in the presence of singularities provided certain integrals are de-
fined. We will apply this to show that the u; become homogeneous upon
rescaling at a given singular point. Assume that C is a & dimensional cone
in R™ which is regular except for a set S with dim(S) < k — 3. Assume that
Q@ is a quadratic form on C' of the form

Qp,p) = /C(|V80\2 — q(x)¢*)p dp

where p is a homogeneous weight function on C' of degree p; i.e. assume that
p(Ax) = NPp(x) for x € C and A > 0. Assume also that p is smooth and
positive on the regular set R of C' and that p is locally L' on C. Assume
also that ¢ is smooth on R and is homogeneous of degree —2; i.e. assume
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that g(Az) = A~2¢(x) for x € C and A > 0. Finally assume that u is a
minimizer for @ in a neighborhood of 0 and in particular that u is smooth
and positive on R. Assume also that ¢ = div(X) + g where |X|?> + |g| < P
for some positive function P and that the following integral bound holds

/ [[Vul? + (1 + |V1og p|* + P)u?]p du < oc.
C

Under these conditions we may define the frequency function V(o) which is
a function of a radius o > 0 such that B,(0) is contained in the domain of
definition of u. It is defined by

Qo (u)
(3.5) N(o) = T, @)
where Q. (u) and I,(u) are defined by
_ 2 _ 2 _ 2
Qo) = | o (T =@ i 1) /. o

where the last integral is taken with respect to k — 1 dimensional Hausdorff
measure. We may now prove the following monotonicity result for N(o).

THEOREM 3.6. Assume that u is a critical point of Q which is integrable
as above. The function N (o) is monotone increasing in o, and for almost

all o we have
2 — (U, u)?
T, (u) (Ig(ur)la(u) (Up, )0)

where u, denotes the radial derivative of u and (-,-), denotes the p-weighted
L? inner product taken on C N 0B, (0). The limit of N(c) as o goes to 0
exists and is finite. The function N(o) is equal to a constant N(0) if and
only if u is homogeneous of degree N(0).

N'(o) =

PrRoOOF. The argument can be done variationally and combines two dis-
tinct deformations of the function w. The first involves a radial deforma-
tion of C'; precisely, let {(r) be a function which is nonnegative, decreasing,
and has support in B,(0). Let X denote the vector field on R™ given by
X = ((r)z where = denotes the position vector. The flow F; of X then
preserves C, and we may write

Qo(uo Fy) = / (]Vtu|2 — (qut)ug)poFt de
CNB,(0)

where we have used a change of variable and V; and p; denotes the gradient

operator and volume measure with respect to Fy(g) where g is the induced

metric on C' from R". Differentiating with respect to ¢ and setting t = 0 we

obtain

0=/C{(<—£xg,du®du>—X(q)u2)p+(|vu|2—qu2)(X(p)+p div(X))} du
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where £ denotes the Lie derivative. By direct calculation we have X(q) =
—2(q, X(p) = pCp, div(X) = r('(r) + k¢, and Lxg = 2r{/ (r)(dr @ dr) +2(g.
Substituting in this information and collecting terms we have

0= /C{(p +k—2)¢(|Vul* = qu?) + ¢ (|Vul]? = 2u2 — qu?) } p dp.

Letting ¢ approach the characteristic function of B, (0) this implies
(p+k—2)Qs(u) = 0’/ (|Vu|* = 2u? — qu*)} p dpg—1
CNOB,(0)
dQs
= JM — 20/ u?p dpg_1.
do CNOB4(0)

The second ingredient we need comes from the deformation u; = (1 +
t¢(r))u where ( is as above. Since % = (u this deformation implies

0= / ((Vu, V(Cu)) — q(uz)p dpu.
C

Expanding this and letting { approach the characteristic function of B, (0)

we have
Qo(u) = / Uy P dpig_1-
CNOB, (0)
The proof will now follow by combining these. First we have

N'(0) = I () *{(Qo + 0Q4) [0 — 0Qo I, }.

Substituting in for the terms involving derivatives this implies

N'(©)=L*{(Qe+ p+k—2)Qo)Ir — Qolp+k —1)I,)}

+ 20[;2{/ ulp dug_1 — Q%,IU}.
CNOB4(0)

Since the first term on the right is 0, we may write this as

N'(0) = 2I,(u)™" (Lo (w)Io(ur) — (ur,u>2)

g

which is the desired formula.
To see that N (o) is bounded from below as o goes to 0 we can observe
that

2
1,4 I 7 u”p dpig—1

N(0) = 50 log (I (w)), T(u) = Jeros. o) |
7 Jeron, o) P -

and the monotonicity expresses the condition that the function log I,(u) is
a convex function of t = logo. Since this function is defined for all ¢ < 0,
and by the coarea formula for any o1 > 0, there is a o € [01,201] so that
I,(u) < co—! it follows that there is a sequence t; = log o; tending to
—o0 such that I, (u) < co; & for some K > 0. Thus we have the function
log I,,(u) < —ct;. It follows that the slope (that is N (o)) of the convex
function log I,(u) is bounded from below as t tends to —oo.
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Now if N (o) = N(0) is constant, we must have equality in the Schwartz
inequality for each o, and hence we would have u, = f(r)u for some function
f(r). Now this implies that Q, = f(c0)I, and hence we have rf(r) = N(0).
Therefore it follows that f(r) = r~*N(0), and ru, = N(0)u so u is homoge-
neous of degree N(0) by Euler’s formula. O

We will need to extend the usual monotonicity formula for the volume of
minimal submanifolds to the setting in which the submanifold under consid-
eration minimizes a weighted volume with a homogeneous weight function
within a partially regular cone. Precisely, let C be a k£ + 1 dimensional cone
in R™ with a singular set S of Hausdorff dimension at most k — 2. Let p be
a positive weight function which is homogeneous of degree p; i.e. we have
p(Ax) = Np(z) for x € C and A > 0. Assume that p is smooth and posi-
tive on the regular set of C, and that p is locally integrable with respect to
Hausdorff measure on C.

THEOREM 3.7. Let ¥ be a hypersurface in a k + 1 dimensional cone C
which minimizes the weighted volume V), for a homogeneous weight func-
tion p. We then have the monotonicity formula

d
d—(a_k_p Vol, (XN B,(0)) = / r PR 20 2 dpgey
o ¥NdB(0)

where z1 denotes the component of the position vector x perpendicular to 3.

PrROOF. We take a function ((r) which is decreasing, nonnegative, and
equal to 0 for r > o, and we consider the vector field X = (x where x
denotes the position vector. The first variation formula for the p-weighted
volume then implies

0= [ (X(p) + dvs(X)p) du.
b

Since p is homogeneous we have X(p) = p(p, and by direct calculation
divs (X) = k¢ +771¢'|2T|? where 27 denotes the component of 2 tangential
to 2. Thus we have

0= [ {tr+ 1+ dia
Taking ¢ to approximate the characteristic function of B,(0) we may write
this

d
(p+k) Vol,(SNB,(0)) = 0—Vol, (SN B,(0)) —/ r 2t P p dug o
do $N0B,(0)
where z+ is the component of x normal to ¥ in C. Note that r% = |27|? +
|zt |2 because C is a cone and so x is tangential to C. This may be rewritten
as the desired monotonicity formula and completes the proof. O

We now show that there can be no tangent minimal 2-slicing with Co
having an isolated singularity at {0}.
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THEOREM 3.8. If Cs is a cone lying in a tangent minimal 2-slicing such
that Cy ~ {0} C Ra, then Cy is a plane and Ro = Cy.

PRrROOF. From the eigenvalue estimate of Theorem 2.6 we have
3 2 2 2
1 > [Valogu;* — Ry | dug <4 [ |Vaipl? dpo
Co j=3 Co
for test functions ¢ with compact support in Cy ~ {0}. Since Cs is a two
dimensional cone we have Ry = 0 away from the origin, and hence we have

/ Z Vo loguj[>¢? dus < c/ (Va|? dus.
Ca =3 Co

Letting r denote the distance to the origin, we take £ and R so that 0 <
£ < R and choose ¢ to be a function of r which is equal to 0 for r < &2,
equal to 1 for e < r < R, and equal to 0 for r > R?. In the range 2 <r<e

we choose log( ) )
og(e™“r
(1) -

~ log(e™ 1)
and for R <r < R? -
B log(R*r™")
SO(T) - lOgR .
Thus for €2 < r < & we have |Vap|? = (r|loge|)~2 and for R < r < R? we
have |Vap|? = (rlog R)~2. Tt thus follows that

/ |Vaopl|? dus < c(] loge|™! + (log R)_l).

Ca
Thus we may let € tend to 0 and R tend to oo to conclude that the functions
us, . .., Uy, are constant on Cs. This implies that C5 has zero mean curvature

and hence is a plane. If all of the cones Cs,...C,_1 are regular near the
origin, then it follows that 0 € Rs, and we have completed the proof. Oth-
erwise there is a C,, for m > 3 which denotes the largest dimensional cone
in the minimal 2-slicing for which the origin is a singular point. It follows
that C,, is a volume minimizing cone in R™*! = C,,.1, and hence u,, must
be homogeneous of a negative degree (see Lemma 3.10 below) contradicting
the fact that wu,, is constant along C5. This completes the proof. (|

Completion of proof of Theorem 3.5: We first prove the compactness of
the ) in the sense of (3.3) under the assumption that we have the partial
regularity of bounded minimal (k + 1)-slicings and the compactness (both
(3.3) and (3.4)) for j > k + 1. We need the following lemma.

LEMMA 3.9. Assume that both the compactness and partial regularity
hold for (k + 1)-slicings. Given any x € Sk11, there are constants ¢ and g
(depending on x and Xj11) so that for r € (0,r] we have

2 2 2
/ Uk+1Pk+2 dpgy1 < cr / Pk+1uk+1pk+2 dpig41,
Sk41NBar(x) Zp+1NBr(z)
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and
Vol (Sk1 N Bor(2)) < Vol , (Sk1 N Br(z)).

PRrOOF. Since the left hand side of the inequality is continuous under
convergence and the right hand side is lower semicontinuous (Fatou’s theo-
rem) it is enough to establish the inequality for » =1 on a cone Cy1. This
we can do by a compactness argument since we can normalize

/ Uj 1 P2 i1 = 1
Cr+1NB1(0)

and if we had a sequence of singular cones for which the right hand side
tends to zero we would have a limiting cone Cy4q on which Priq = 0. It
follows that ug4o,...,unp—1 are constant on Ci4i. Note that the highest
dimensional singular cone in the slicing C,, is minimal and hence u,, is
homogeneous of a negative degree (see Lemma 3.10 below). Therefore if ng >
k 4+ 1 we have a contradiction. Therefore we conclude that Cj4; is minimal
and Ciyo,...,Ch_1 are planes. Thus it follows that Ak+1 = Apy1 =0 and
hence Cj1 is also a plane. Thus the cones are regular sufficiently far out
in the sequence; a contradiction. The second inequality follows easily by
reduction to cones. This proves the bounds. [l

Given a sequence (Ey), uy)
apply the inductive assumption to obtain a subsequence (with the same
notation) for which the corresponding sequence of (k 4+ 1)-slicings converges
in the sense of (3.3) and (3.4). By standard compactness theorems we may

) of A-bounded minimal k- slicings, we may

assume that E,(;) converges on compact subsets of {2 ~ Sy to a limiting
submanifold 3;, which minimizes Vol,, (and is therefore regular outside
a closed set of dimension at most k — 7). To establish (3.3) we choose a
neighborhood U of Si4; such that

Voly, ,(Srp1NU) <e.

Pk+2

We apply Lemma 3.9 and compactness to find a finite collection of points
Zo € Sga1 and balls B, (z4) C U so that

2 2 2
/ Ukt1Pk+2 dptkt1 < €T, / Pyy1uii1pr+2 ditksa
Yk41NBorg (Ta Sk4+1NBrg (o

and
Volpy, ., (Ek+1 N By, (xa)) <cVol,,,, (Ek+1 N B, (xa))

Now apply the Besicovitch covering lemma to extract a finite number of
disjoint collections B,, a« = 1,..., K of such balls whose union covers Si1.
If V denotes the union of these balls, then V is a neighborhood of Sgy1,
and hence for ¢ sufficiently large we have S,gz)rl C V. Because of convergence
of the left sides and lower semicontinuity of the right side, we have for ¢



POSITIVE SCALAR CURVATURE 467

sufficiently large

% 2 (3
/E(” (u](g3.1) P]E;j_Q dptk+1

k+1mBQT‘a (ma)

2 @) (@) \2 (i)
<ecr . Pl (u DPrro Atk
“ /El(jllnBra (za) k+1( k+1) b2 ’

and
(%) ()
VOle(flz (Ek+1 N Bay,, (a;a)) < CVOZPI(QQ (Ek+1 N By, (xa))

By the coarea formula, for each such ball B, (z) we may find s € [rg, 2r]
(s depending on i) so that

Vol @ »@ NoB (x)) < 27“1/ _ ul? p(i) 1.
pkﬂ( k+1 s ) 0 £0) (B, k+1Pk+2
Using the minimizing property of E,(f) and simple inequalities we find

Vol (5 nBy) <&t [ oy i
k+1 Ek+lm32r0 (:E)
B N 2 (g
+eirg 2/ (ugj-l) pl(;J)rz dfi41
Y4+1NBar
for any €1 > 0. Applying the inequalities above and summing over the balls
(using disjointness and a bound on K) we find

(y(
Voo (3 0V)

- i = i i) N2 (i
<eept VOlpgz (254:3-1 NU) + ce1 /E(i) Plg-zl (ul(c}rl) /’212 dftg41-
k41

For i sufficiently large this implies

Vol o (5S¢ NV) < eeyle + ce,
Prr1

so that we may fix € sufficiently small and then choose ¢ as small as we wish

to make the right hand side smaller than any preassigned amount. Since we

have

lim Vol o (S ~ V) =Vol,,,, (S ~ V),

1—00 P;(jll
(Xk) establishing (3.3).

Now assume that we have established the partial regularity of all bounded
minimal (k + 1)-slicings and that we have proven the compactness for the
Yk in the sense of (3.3). We can then use the results we have obtained above
together with dimension reduction to prove partial regularity for ¥j. Pre-
cisely, we have dim(Sy) < k—2, and if dim(S) > k — 3, then we can choose
a number d with

we can conclude that lim;_,eo Volp@) (E,(j)) =Vol,, .,
k+1

k—3<d<dim(S),
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and go to a point = € Sy, of density for the measure H%, (since HZ (Sy) > 0).
Taking successive tangent cones in the standard way and using the upper-
semicontinuity of HZ (Sk) we would eventually produce a minimal 2-slicing
by cones such that Cy x R¥~2 has singular set with Hausdorff dimension at
most k — 2 (by partial regularity of (k + 1)-slicings) and greater than k — 3.
Therefore the cone C'y must have an isolated singularity at the origin. This
in turn contradicts Theorem 3.8. Therefore it follows that dim(S;) <k —3
and Y is partially regular.

The final step of the proof is to show that the compactness statement
holds for the uj under the assumption that it holds for (X;,u;) for j > k+1
and also for X (as established above). Assume that we have a sequence of
minimal k-slicings such that the associated (k+1)-slicings and Z,(;) converge
on compact subsets in the sense of (3.3) and (3.4). We choose a compact
domain U which is admissible for (X, U;) and a nested sequence of domains

U; admissible for (Ey), ugz)) We work with a connected component of ¥, NU
which by abuse of notation we call by the same name Y.

We may assume that the u,(j) converge uniformly to u; on compact sub-

sets of  ~ Sy (where we can write Zg) locally as a normal graph over >,
and compare corresponding values of u,(f) to uy). In particular, if W is a
compact subdomain of 2 NR;, we have convergence of weighted L? norms
of u,(j) to the corresponding L? norm of u, on W. If U is any compact sub-
domain of 2 and n > 0, then by Proposition 3.1 applied with § = & we

can find an open neighborhood V of S N U so that for i sufficiently large
SS) NU C V, and

Lo 8 i< [ 08 0 B AL,
=NV = no

The same inequality holds for the limit, and by the boundedness of the
sequence the integral on the right is uniformly bounded. Thus by choosing n
small enough we can make the right hand side less than any prescribed € > 0.
On the other hand if we take W = U \ V we then have convergence of the
weighted L? norms on W, so we can make the difference as small as we wish
on W It follows that the difference of L2 norms can be made arbitrarily small
on U. This completes the proof that the weighted L? integrals converge.
Completing the proof will require the construction of a proper locally
Lipschitz function ¥y on Ry, such that ug|V; Vg is bounded in L%(X;). We
give the construction of such a function in Proposition 3.11 below. It also
follows that we may construct a subsequence so that \IJ,(;) are uniformly close
to W, on compact subsets of RY ~ &, for i large. We can now prove the
second part of the convergence (3.4). Assume that U C U; C Q) are compact
domains. We let € > 0 we may choose a neighborhood V' of &; so small
that fVﬁU_l u%pkﬂ duy, < €. Because Wy is proper on Ry, we may choose A

sufficiently large that Ej(A) C V where Ej(A) is the subset of ¥j on which
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Uy > A. We now let y(t) be a nondecreasing Lipschitz function such that
y(t) =0fort < A, y(t) =1fort > A, and v/(t) < A~1. We let o be a spatial
cutoff function which is 1 on U, 0 outside U;, and has bounded gradient.
We then have the inequality by Proposition 3.2

Lo (9B + PO G008 s < cuwf?. 0f?)

where zp](f) =p(yo \I/,(;))u,(;) Since the support of 1/1,(;) is contained in V for
1 sufficiently large we then have

/ (|v¢l)‘ +P (1/’ ))pk+1 dp;

= c/(') (1+ A2V 2 1?) () ol .
oy nv
Since we have convergence of the L? norms of u,(j) and boundedness of the

L? norms of u |Vk\11 ] we then conclude that

[ T8+ PO OVl doy < e en
Ek

If we let V7 be a neighborhood of Sy such that ¥x N V; C Ex(3A), then for
i sufficiently large we will have E;CZ) NV C E,iz)(2A) and hence

/z<) (IVk uk ] +P,§z)( (l)) )p,(vi1 du; < ce + A2
Since this can be made arbitrarily small, we have shown (3.4) and completed
the proof of Theorem 3.5. (|
We will need the following lemma concerning minimal cones C,,, C R™*1,

LEMMA 3.10. Assume that C,, is a volume minimizing cone in R™T!
and that uy, is a positive minimizer for Q., which is homogeneous of degree
d on C. There is a positive constant ¢ depending only on m so that d < —c.

PRrooOF. We first observe that
3
Qm (. ¢) = Smlp, ) + g/c | A |*0* dpim,

)
= [ (19l = 314 ) i
C’UL

We write wu,, = r®v(¢) where & € S™, and we observe that the equation for
Uy, evaluated at r = 1 becomes

) )
0= Aty + Ztum = Av+ é\Am\Qv +d(d+m —2)v

where we let ¥ = C'NS™ and A the Laplace operator on Y. Thus v satisfies
the eigenvalue equation Av + 5/8|A,|?v = —pv where d(d +m — 1) = p.
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This implies that d = 1/2(1 —m + /(m —1)24+4pu) or d = 1/2(1 — m —

(m —1)2 4+ 4u). Since v and |Vv| are in L?(X) we must have p < 0 and
this implies that d < 0. To prove the negative upper bound on d recall that
the set of volume minimizing cones is a compact set, and we have proven
the compactness theorem above for the L? norms, so if we had a sequence
(Cffl),u%)) such that d@ tends to 0 we could extract a convergent subse-
quence of the (X, v(®) which converges to (X, v) where we could normalize
S0 (02 dptpy—1 =1 (hence Js v* dpm—1 = 1). Since we have smooth con-
vergence on compact subsets of the complement of the singular set of > we
would then have Av + 5/8|A,,|?>v = 0 and therefore we would have pu = 0
for the limiting cone, a contradiction. U

As the final topic of this section we construct the proper functions which
were used in the proof of Theorem 3.5. This result will also be used in the
next section.

PropoSITION 3.11. Suppose we have a A-bounded minimal k-slicing
in Q2. There exists a positive function YV which is locally Lipschitz on Ry
and such that for any domain U compactly contained in ), the function
U, is proper on Ry N U. Moreover, the function ug| VWi is bounded in
L?(3x N U) for any domain U compactly contained in €.

PrROOF. We define ¥y, = max{1,logug,logugi1,...,logu,—1} and we
show that it has the properties claimed. First note that Wy, is locally Lipschitz
on R, since it is the maximum of a finite number of smooth functions on Ry.
The bound

/ (ur|ViWe|)prr1 dy, < max / (ur| Vi log uj])pri1 dp
$NU k<j<n—1Jw, nU
together with Proposition 3.2 implies the L?(X;) bound claimed on Wy.
(Note that we may replace ¢ by ¢uy in the first inequality of Proposition 3.2
where ¢ is a cutoff function which is equal to 1 on U.)
It remains to prove that W}, is proper on Ry N U. Since U is compact it

suffices to show that for any zg € S N U we have

lim ¥y(z) = oco.

T—T0
If we let m > k be the largest integer such that ¥, is singular at xg, then
there is an open neighborhood V' of x¢ in which ¥, is a volume minimizing
hypersurface in a smooth Riemannian manifold. We will show that u,, tends
to infinity at zg by first showing that this is true for any homogeneous ap-
proximation of u,, at x¢. In order to construct homogeneous approximations
we need to have the compactness theorem for this top dimensional case, but
our proof of compactness used the result we are trying to prove, so we must
find another argument for establishing (3.4) since (3.3) is a standard result
for volume minimizing hypersurfaces in smooth manifolds. Our proof of the
first part of (3.4) did not require the function ¥y, so we need only deal with
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the second part. First recall that dim(S,,) < m — 7, so it follows from a
standard result that given any €, > 0 and a € (0,7) we can find a Lipschitz
function v so that ¢¥» = 1 in a neighborhood of S,,, ¥ (z) = 0 for points z
with dist(x,Sy,) > 0, and

/ Vot dpin < 2.
YmNV

We show that
/ Vot 2u2, dptm < ce2.
YmnNV

If we can establish this inequality, then we can complete the proof of com-

pactness for k = m in the set V as in the proof of Theorem 3.5. To establish

the inequality, we observe that the equation satisfied by u,, is of the form
At + 5/8]Am]2um + qUy, =0

where ¢ is a bounded function (since ¥, is volume minimizing in a smooth
manifold). On the other hand the stability implies that

/ | A |?©? dpm, < / (IVo* + c?) dpum.

m m

We may then replace ¢ by ug{Sap and use the equation for u,, to obtain

/E Vo () ¥ 202 dpiy, < 0/2 w3 (1Vimpl? + 2 dptm.

We may then apply the Sobolev inequality for minimal submanifolds to
conclude that u,, satisfies

16m
/ u™ ™ dpy, < c.
YmnV

We then apply the Holder inequality to obtain

/ Vb2, it < (VP16 [t 16
SNV 3m-+10 5(m—2)

16m
3m+10

< 7 we have from above

Setting a =

/ \leﬂ\ZU?n dptm < 652
YmNV

as desired.

Thus we have the compactness theorem for (X,,,u,,) in V and we can
construct tangent cones to X, at xg and homogeneous approximations to u,
at xg. By Lemma 3.10 any such homogeneous approximation v, has strictly
negative degree d < —c on its cone Cy, of definition. If we let R,,,(C) denote
the regular set of C, then it follows that for any p > 1, we have

inf Um > W inf Um
R (C)NBao (0) Rm(C)NBs(0)
for a fixed constant a € (0, 1) depending on u, but independent of which cone
and which homogeneous approximation we choose. Note that Aty < cum,
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and Apvy, < 0, so by the mean value inequality on volume minimizing
hypersurfaces (see [BG]) we have

U () > C’r‘_m/ U Afbyny V() > cr_m/ U, i,
SmNBr(x) CmNBr(z)

for any r so that B,(x() is compactly contained in V. It follows that the
essential infima of both u,, and v, are positive on any compact subset. We
now show that there exists a € (0,1) such that
inf Uy, > 2 inf U,
RmNBas (o) RmNBgs(z0)

for o sufficiently small. If we establish this, we have finished the proof that
Uy, tends to infinity at ¢ and hence we will have the desired properness
conclusion for ¥y. To establish this inequality we observe that if (E%),u%))
is a sequence converging to (X,,, %) in the sense of (3.3) and (3.4) and K
is a compact set such that R,, N K # ¢ we have

inf wu,, <liminf inf uld) < limsup inf uld) <c inf up,

RinNK i mlap isoo ROAK RunNK

for a fixed constant c. The first and second inequalities are obvious, and to
get the third we observe that for a small radius r» and any z € R,, N K we
have from above

U () > cr_m/ Uy, A,
SmNBr(z)

and hence for i sufficiently large

U (x) > cr_m/ ‘ ul dpy, > o inf  ul)

2@ NB, () 29 NB,(z)
for a positive constant 9. This establishes the third inequality. The proof
can now be completed by using rescalings at x¢ which converge to (Cy,, vm)
for some cone and homogeneous function together with the corresponding
result for the homogeneous case. (]

4. Existence of minimal k-slicings

The main purpose of this section is to prove Theorem 2.4. We begin
with the construction of the eigenfunction wu assuming the Y; has already
been constructed and is partially regular in the sense that dim(S;) < k — 3.
We define the Hilbert spaces Hy, and Hj, o as in the last section, namely, Hy,
(respectively Hy, ) is the completion in ||-||o,1 of the Lipschitz functions with
compact support in R;N$ (respectively RxN). In order to handle boundary
effects we also assume that there is a larger domain € which contains Q as
a compact subset and that the k-slicing is defined and boundaryless in .
Note that this is automatic if 93; = ¢. Thus Hy, ¢ consists of those functions
in ‘Hi with 0 boundary data on ¥;NS). The quadratic form Q) is nonnegative
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definite on the Lipschitz functions with compact support in Ry N €2, and so
the standard Schwartz inequality holds for any pair of such functions ¢, ¥

(4.1) Q. 1) <V Qi(, 0)V/ Qi (1, ).

We now have the following result.

THEOREM 4.1. The function Qg(p, ) is continuous with respect to the
norm || -||o,1 in both variables and therefore extends as a continuous nonneg-
ative definite bilinear form on Hy . The Schwartz inequality (4.1) holds for
0, € Hio. The function Q(p, p) is strongly continuous and weakly lower
semicontinuous on Hp .

Proor. From Proposition 3.2 we have for @i,y Lipschitz functions
with compact support in Rg N

Qu(®1 — 92,01 — 92) < cllor — palli g,
so it follows from (4.1) that

Q1 (1,%) — Qr(2,¥)| < vV Qi1 — 92,01 — ©2)V/ Qi(¥, V).

Combining these we see that Q. is continuous in the first slot, and since it is
symmetric in both slots. Therefore Qi extends as a continuous nonnegative
definite bilinear form on Hj, o and the Schwartz inequality holds on H;, o by
continuity.

To complete the proof we must prove that Q (¢, ¢) is weakly lower semi-
continuous on Hy . Note that the square norm HcpH(Q)k + Qi(p, ¢) is equiv-

alent to ||¢||? . by Proposition 3.2. Therefore these have the same bounded
linear functionals and hence determine the same weak topology on Hy .
Assume we have a sequence ¢ € Hy o which converges weakly to ¢ € Hy 0.
We then have for any v € Hy o

Qr(p, ) = JLim Qi (i ).
This implies that for i sufficiently large
Qk(p, #) = Qrlw — ¢i,0) + Qil(i, ) < £+ VQilpi, 21) vV Qi(, #)

for any chosen ¢ > 0. It follows that

Qk(p,9) < VQilp, p) liminf v/ Q. (s, 1)

which implies the desired weak lower semicontinuity. O

In order to construct a lowest eigenfunction u; we will need the following
Rellich-type compactness theorem.

THEOREM 4.2. The inclusion of Hy o into L*(3y) is compact in the sense
that any bounded sequence in Hy o has a convergent subsequence in L3(Zy).
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Proor. This statement follows from Proposition 3.1 and the standard
Rellich theorem. Assume that we have a bounded sequence ¢; € Hy, o; that
is, [|ps]|? . < c. We may extend the ¢; to € be taking ¢; = 0in Q1 ~ €, and
by the standard Rellich compactness theorem we may assume by extracting
a subsequence that the ¢; converge in L? norm on compact subsets of Q ~ S,
and weakly in Hy o to a limit ¢ € Hy 9. We show that ¢; converges to ¢ in
L?(3). Given any &1 > 0, we can choose € > 0, § > 0 in Proposition 3.1 so
that for each ¢ we have

1/2
(/ O Pt duk) <e1/3
YNV

where V is an open neighborhood of S;; N{). The Fatou theorem then implies

1/2
</ ¢ Pri duk> <e1/3
YNV

Since K = (Xx ~ V)N Q is a compact subset of Q ~ Si, we have for i
sufficiently large

1/2
(/ (0i — )2 pr1 duk> <e1/3.
K

Combining these bounds we find

1/2 1/2
lpi—¢llo < </ (i —©)?prt1 d%) + (/ (i —©)?prt1 d%) <er
K YNV

for ¢ sufficiently large. This completes the proof. O

We are now ready to prove the existence, positivity, and uniqueness of
up on X N L.

THEOREM 4.3. The quadratic form Qi on Hyo has discrete spectrum
with respect to the L%*(X) inner product and may be diagonalized in an
orthonormal basis for L?(Xy). The eigenfunctions are smooth on Ry N €,
and if we choose a first eigenfunction uy, then uy is nonzero on Ri N
and is therefore either strictly positive or strictly negative since Ry N Q is
connected. Furthermore any first eigenfunction is a multiple of ui which we
may take to be positive.

Proor. This follows from the standard minmax variational procedure
for defining eigenvalues and constructing eigenfunctions. For example, to
construct the lowest eigenvalue and eigenfunction we let

Ao = inf{Qr(p,¢) : ¢ € Hio, ll@llog =1}

By Theorem 4.2 and Theorem 4.1 we may achieve this infimum with a
function wy € Mo with ||ugl|ox = 1. The Euler-Lagrange equation for uy, is
then the eigenfunction equation with eigenvalue A\;. The higher eigenvalues
and eigenfunctions can be constructed by imposing orthogonality constraints
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with respect the L?(Xj) inner product. We omit the standard details. The
smoothness on Ry N 2 follows from elliptic regularity theory.

The fact that a lowest eigenfunction u is nonzero follows from the fact
that if u € Hy o then |u| € Hy o and Qx(u, u) = Qx(|ul, |u|) a property which
can be easily checked on the dense subspace of Lipschitz functions with
compact support in R, N and then follows by continuity. The multiplicity
one property of the lowest eigenspace follows from this property in the usual
way. We omit the details. O

We now come to the existence results. We first discuss Theorem 2.4 and
we then generalize the existence proof to a more precise form. Suppose X
is a closed k-dimensional oriented manifold with k£ < n. We assume that
Yn is a closed oriented n-manifold and that there is a smooth map F :
Yp — X x T"F of degree s # 0. We let  denote a (unit volume) volume
form of X and let ® = F*Q) so that © is a closed k-form on 3,,. We let P
for p = k+1,...,n denote the coordinates on the circles and we assume
they are periodic with period 1. For p = k + 1,...,n we let wP be the
closed 1-form wP = F*(dtP). The assumption on the degree of F' implies
that fzn@/\w’€+1 A AW =s.

We will need the following elementary lemma.

LEMMA 4.4. Suppose N™ is a closed oriented Riemannian manifold and
let Q1 be its volume form. Given any open set U of N which is not dense
in N, the form € is exact on U. Moreover, given an open set V. compactly
contained in U, we can find a closed m-form Q1 which agrees with €2 on
M\ U and such that Q1 =0 in V.

PRrOOF. Let f be a smooth function which is equal to 1 in U and such
that [ f dQ = 0. Let u be a solution of Au = f and let § be the (m — 1)-
form 6 = xdu. We then have df = d x du = (Au)S2, so we have df =
on U.

To prove the last statement, we let ¢ be a smooth cutoff function which
is equal to 1 in V and has compact support in U. We then define 2 =
Q —d(¢ *du). We then have Q1 = 0 in V and Q, differs from Q by an exact
form. O

We now restate the existence theorem.

THEOREM 4.5. For a manifold M = %, as described above, there is a
A-bounded, partially regular, minimal k-slicing Moreover, if k < j <mn —1
and j is regular, then [y, © Awh AL AW = .

J

PROOF. We begin with the 1-form w” and we integrate to get a map
Up : Bp — ST so that w™ = du,. Let t be a regular value of u,, and consider
the hypersurface S, = u,'(t). Because the map F has degree s and we
have normalized our forms in X x 7"~ % to have integral 1, we see that

fSn OANWFTEA AW = 5. Let 2,1 be a least volume cycle in X, with
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the property that [, ©A WAL AW = 5. The existence follows from
standard results of geometric measure theory.

Now suppose for j > k we have constructed a partially regular minimal
J+1 slicing with the property that there is a form ©;41 of compact support
which is cohomologous to © A w*1 A ... Aw/t! such that fz_+1 ©j41 =s.
Since the slicing is partially regular, we have that the Hausdojrff dimension
of Sj41 is at most j — 2, so it follows that the image F};(Sj4+1) under the
projection map Fj : X, — X X T7=F is a compact set of Hausdorff dimension
at most j — 2. It follows from Lemma 4.4 that the form QAdtFTI AL . Adt is
exact in a neighborhood U of F;(S;11), given a neighborhood V' of F;(S;j41)
which is compact in U we can find a form (2; which is cohomologous to
QAdtFTEA L. Adt and vanishes in V. Pulling back we see that 0; = F*Q;
vanishes in a neighborhood of S;;1 and is cohomologous to © A WEHEA LA
wl. We let uj4+1 be the map gotten by integrating W/t and consider its
restriction to ;1. Since ujy1 is in L? with respect to the weight Pj+2, We
see that pj11 = u;j11pj42 is integrable on ¥ q. It then follows from the
coarea formula that we can find a regular value ¢ of w41 in Rj41 so that
;jl(t) has finite pj41-weighted
volume and satisfies |, s ©; = 5. We can then solve the minimization problem

the hypersurface S; C X411 given by S; = u

for the p; 1-weighted volume among integer multiplicity rectifiable currents
T with support in 41, with no boundary in R;11, and with T(0;) = s. A
minimizer for this problem gives us XJ; and completes the inductive step for
the existence. ([

REMARK 4.1. The existence proof above does not specify the homol-
ogy class of the minimizers even if the minimizers are smooth since we are
minimizing among cycles for which the integral of ©; is fixed. In general
there may be homology classes for which the integral of ©; vanishes. We
have chosen the class to do the minimization in order to avoid a precise
discussion of the homology of the singular spaces in which we are working.
In the following we give a more precise existence theorem which specifies the
homology classes and allows them to be general integral homology classes,
possibly torsion classes.

We now formulate and prove a more general existence theorem for mini-
mal k slicings. In the theorem we let [%,,] denote the fundamental homology
class in H, (X, Z) and, for a cohomology class a € HP(¥,,,Z), we let aN[X,,]
denote its Poincaré dual in H,_,(M,Z).

THEOREM 4.6. Let 3, be a smooth oriented manifold of dimension n
and let k be an integer with 1 <k <mn —1. Let a',...,a™ % be cohomology
classes in HY(X,,7), and suppose that & *na”*1n...NnalN[X,] #0
in Hy(Xp,Z). There exists a partially reqular minimal k slicing with 3;
representing the homology class ™7 N ...Nal N[S,)].

PROOF. Assume that we are given a partially regular A-bounded mini-
mal (k+1)-slicing which represents a1, ..., a,_r—1. We thus have the weight
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function pgy1 defined on ¥4 1 which we use to produce ¥j. From the partial
regularity the singular set Sgy1 of ¥i4+1 has Hausdorff dimension at most
k—2.

We consider the class of integer multiplicity rectifiable currents which
are relative cycles in Hy (3, Sp41,7Z); that is, for any k—1 form 6 of compact
support in 311 \ Sg+1 we have T'(df) = 0. Because the set Si11 has zero
k —1 dimensional Hausdorff measure we have Hy(%,,,Z) = Hi(2,, Sp+1,Z).
This follows because a current which is a relative cycle T in 3, \ Sky1 is
also a cycle in 3, since 0T is zero since it is unchanged by adding a set of
k — 1 measure zero.

We use pg1 weighted volume to set up a minimization problem. We
consider the class of relative cycles T' with support contained in ¥ 1 which
have finite weighted mass; that is, T = (S, ©,{) where Sy is a countably
k-rectifiable set, © a up-measurable integer valued function on Sy, and £ a
pr-measurable map from Sy, to AR such that £(x) is a unit simple vector
for pg a.e. x € Si. Such a k-current Ty, is pgy1-finite if

Volp,..(Tk) E/S Pr+1|0©| dpg, < oo.
k

Since we have already constructed ¥ so that it is A-bounded we have

/ Pr+1 dpgr1 < A
DI

Now we can find a smooth closed hypersurface Hj which is Poincaré dual
to ag, and we may perturb it and use the coarea formula in a standard way
to arrange that ¥, = Yg+1 N Hy is a smooth embedded submanifold away
from Siy1 and

/ Pr+1 dpg < c.
Py
In particular the associated current Ty = (X4, 1,£) (where £ is the oriented
unit tangent plane of ¥j) is pg 1-finite and is a competitor in our variational
problem.

The standard theory of integral currents now allows us to construct a
minimizer for our variational problem which gives us the next slice X3 which
could be disconnected and with integer multiplicity. Thus ¥ represents the

homology class a"~*N...Na'N[%,]. This completes the proof of Theorem 4.6.
O

5. Application to scalar curvature problems

In this section we prove two theorems for manifolds with positive scalar
curvature. The first of these is for compact manifolds and the second is the
Positive Mass Theorem for asymptotically flat manifolds. Our first theorem
which we will need to prove the Positive Mass Theorem is the following.
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THEOREM b5.1. Let My be any closed oriented n-manifold. The manifold
M = Mi#T"™ does not have a metric of positive scalar curvature.

PRrROOF. Such a manifold M has admits a map F' : M — T" of degree
1, and so by Theorem 2.4 there exists a closed minimal 1-slicing of M in
contradiction to Theorem 2.7. U

We also prove the following more general theorem.

THEOREM 5.2. Assume that M is a compact oriented n-manifold with a
metric of positive scalar curvature. If oy, ..., oo are classes in H'(M,Z)
with the property that the class oo given by oo = ap—oNap—3N...a1N[M] €
Hy(M,7Z) is nonzero, then the class oo can be represented by a sum of smooth
two spheres. If a,—1 is any class in HI(M, Z), then we must have ay,—1Noy =
0. In particular, if M has classes o, . .., ap—1 with ap—1N...NarN[M] # 0,
then M cannot carry a metric of positive scalar curvature.

PRrOOF. By the existence and regularity results of Sections 3 and 4, there
is a minimal 2-slicing so that s € o9 is regular and satisfies the eigenvalue
bound of Theorem 2.6. Choosing ¢ = 1 on any given component of >5 and
applying the Gauss-Bonnet theorem we see that each component must be
topologically S2.

In particular it follows that for any other o, 1 € H'(M, Z) we have that
ap—1 N oy is a class in Hy(39,Z), and therefore is zero. O

We now prove a Riemannian version of the positive mass theorem. As-
sume that M is a complete manifold with the property that there is a com-
pact subset K C M such that M ~ K is a union of a finite number of
connected components each of which is an asymptotically flat end. This
means that each of the components is diffeomorphic to the exterior of a
compact set in R” and admits asymptotically flat coordinates !, ..., 2" in
which the metric g;; satisfies

(5.1)
gij = 6ij + O(|2| "), |2[|0gi;| + |2[*|0%gi;| = O(|=|7P), |R| = O(|=|79)

where p > (n —2)/2 and ¢ > n. Under these assumptions the ADM mass is
well defined by the formula (see [Sc] for the n dimensional case)

m = e [ St = g delo)

cr 1’7]

where S, is the euclidean sphere in the x coordinates, w,_1 = Vol(S"~1(1)),
and the unit normal and volume integral are with respect to the euclidean
metric. We may now state the Positive Mass Theorem.

THEOREM 5.3. Assume that M is an asymptotically flat manifold with
R > 0. For each end it is true that the ADM mass is nonnegative. Further-
more, if any of the masses is zero, then M is isometric to R™.
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PROOF. The theorem can be reduced to the case when there is a single
end by capping off the other ends keeping the scalar curvature nonnegative.
We will show only that m > 0, and the equality statement can be derived
from this (see [SY2]). We will reduce the proof to the compact case using
results of [SY3] and an observation of J. Lohkamp.

PROPOSITION 5.4. If the mass of M is negative, there is a metric of
nonnegative scalar curvature on M which is euclidean outside a compact
set. This produces a metric of positive scalar curvature on a manifold M
which is gotten by replacing a ball in T™ by the interior of a large ball in M.

PROOF. Results of [SY3] and [Sc| imply that if m < 0 we can construct
a new metric on M with nonnegative scalar curvature, negative mass, and
which is conformally flat and scalar flat near infinity. In particular, we have
g = u*("=2§ near infinity where u is a euclidean harmonic function which
is asymptotic to 1. Thus u has the expansion

m
u(z) =1+ W + O(|31:|1 ")

where m is the mass. Now we use an observation of Lohkamp. Since m < 0,
we can choose 0 < g2 < €1 and o sufficiently large so that we have u(x) <
1 —¢; for |z| = 0 and u(z) > 1 — &9 for |z| > 20. If we define v(x) = u(x)
for |z| < o and v(x) = min{l — g9, u(x)} for |x| > o, then we see that v(x)
is weakly superharmonic for |z| > o, so may be approximated by a smooth
superharmonic function with v(z) = u(x) for |x| < o and v(z) =1 — &4 for
|x| sufficiently large. The metric which agrees with the original inside S,
and is given by v¥(=2)§ outside then has nonnegative scalar curvature and
is euclidean near infinity.

By extending this metric periodically we then produce a metric on M
with nonnegative scalar curvature which is not Ricci flat. Therefore the
metric can be perturbed to have positive scalar curvature. U

Using this result the theorem follows from Theorem 5.2 since the stan-
dard 1-forms on T™ can be pulled back to M to produce the ai,...,q,_1
of that theorem. This completes the proof of Theorem 5.3. U
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