Check for
Updates

Faster Walsh-Hadamard and Discrete Fourier Transforms from
Matrix Non-rigidity

Josh Alman
Columbia University
USA
josh@cs.columbia.edu

ABSTRACT

We give algorithms with lower arithmetic operation counts for both
the Walsh-Hadamard Transform (WHT) and the Discrete Fourier
Transform (DFT) on inputs of power-of-2 size N.

For the WHT, our new algorithm has an operation count of
%N log N + O(N). To our knowledge, this gives the first improve-
ment on the N'log N operation count of the simple, folklore Fast
Walsh-Hadamard Transform algorithm.

For the DFT, our new FFT algorithm uses %N log N+O(N) real
arithmetic operations. Our leading constant 14—5 = 3.75 improves on
the leading constant of 5 from the Cooley-Tukey algorithm from
1965, leading constant 4 from the split-radix algorithm of Yavne
from 1968, leading constant % =3.777 ... from a modification of
the split-radix algorithm by Van Buskirk from 2004, and leading
constant 3.76875 from a theoretically optimized version of Van
Buskirk’s algorithm by Sergeev from 2017.

Our new WHT algorithm takes advantage of a recent line of work
on the non-rigidity of the WHT: we decompose the WHT matrix as
the sum of a low-rank matrix and a sparse matrix, and then analyze
the structures of these matrices to achieve a lower operation count.
Our new DFT algorithm comes from a novel reduction, showing
that parts of the previous best FFT algorithms can be replaced by
calls to an algorithm for the WHT. Replacing the folklore WHT
algorithm with our new improved algorithm leads to our improved
FFT.

CCS CONCEPTS

« Theory of computation — Design and analysis of algo-
rithms; Algebraic complexity theory; « Mathematics of comput-
ing — Computation of transforms.

KEYWORDS

Fourier Transform, Hadamard Transform, Matrix Rigidity

ACM Reference Format:

Josh Alman and Kevin Rao. 2023. Faster Walsh-Hadamard and Discrete
Fourier Transforms from Matrix Non-rigidity. In Proceedings of the 55th
Annual ACM Symposium on Theory of Computing (STOC °23), June 20-23,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC °23, June 20-23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9913-5/23/06...$15.00
https://doi.org/10.1145/3564246.3585188

455

Kevin Rao

Columbia University
USA
kevinrao99@gmail.com

2023, Orlando, FL, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3564246.3585188

1 INTRODUCTION

Two of the most important and widely-used linear transforms are
the Discrete Fourier Transform (DFT) and the Walsh-Hadamard
Transform (WHT). In addition to their breadth of applications,
these transforms can be computed quickly: They can be applied to
a vector of length N using only O(N log N) arithmetic operations,
for instance, using the split-radix Fast Fourier Transform (FFT)
algorithm [26] and the folklore fast Walsh-Hadamard transform,
which make use of the recursive definitions of these transforms.

Determining how much these algorithms can be sped up is an
important question in both practice and theory. This is typically
phrased as determining the smallest ‘leading constant’ ¢ such that
they can be computing using (¢ + 0(1))N log N arithmetic opera-
tions (where log denotes the base 2 logarithm). In practice, even
modest improvements to ¢ can be impactful; the current best al-
gorithm for the DFT, which improves the leading constant from
the split-radix algorithm by slightly over 5%, is implemented to-
day in software libraries that have been widely deployed [12]".
In theory, it is popularly conjectured that an operation count of
Q(Nlog N) is necessary to compute these transforms, i.e., that one
cannot achieve arbitrarily small values of ¢ for either of these trans-
forms, but this conjecture is still open. One piece of evidence for
this conjecture is that there haven’t been many improvements to
these constants: prior to this work there have been only three FFT
improvements since the original Cooley-Tukey algorithm [8] over
50 years ago, and there has never been an improvement over the
folklore algorithm for the WHT.

In this paper, we give improved algorithms, leading to smaller
leading constants, for both the WHT and the DFT on inputs of
power-of-two size. Our new algorithm for the WHT makes use
of a recent line of work on the matrix rigidity of the WHT, and
our new algorithm for the DFT uses a novel reduction to the WHT.
Our approach for the DFT is quite different from prior Fast Fourier
Transform (FFT) improvements: We focus on decreasing the number
of additions and subtractions used by the algorithms, whereas prior
improvements focused on the ‘twiddle factor’ multiplications.

ITo see it in action, see lines 162 - 239 in fftw-3.3.10/genfft/fft.ml of the
fftw-3.3.10 package [12].

STOC ’23, June 20-23, 2023, Orlando, FL, USA

1.1 WHT Result

Let N be a power of 2, and let F be any field. The N x N WHT
matrix, Hy, is defined recursively by

HZZ[I l],andHNZ[HN/Z

Hnyo
1 —l HN/Z

—Hny/2

for N > 4. The goal of the WHT is, given as input a vector x € FN,
to compute the vector y = Hyx. We focus on F whose characteristic
is not 2, since the problem is trivial in such fields.

The folklore fast Walsh-Hadamard transform algorithm follows
directly from this recursive definition: Letting Ty (N) denote the
number of arithmetic operations used in computing Hyx, we get
the base case Ty (2) = 2, and the recurrence Ty (N) = 2Ty (N/2)+N,
which yield Ty (N) = Nlog N.

In particular, it gives a leading constant of 1, and to our knowl-
edge, no algorithm using fewer arithmetic operations was previ-
ously known. Our first main result improves this constant from 1
to 23/24 < 0.96.

TuEOREM 1.1. For any fieldF, givenx € FN for N a power of 2, we
can compute Hyx using at most %NlogN + %Nﬁeld operations.

Furthermore, our algorithm only uses fairly simple field oper-
ations: %N log N + %N additions and subtractions, iN log N
“divide by 2" operations, and N — 1 “multiply by a power of 2" oper-
ations where the power of 2 is at most N. When working over the
reals in a typical computer architecture, these division and multi-
plication operations can be implemented using ‘bit shifts’ which
are substantially faster than a general addition or multiplication
operation.

In the full version of the paper, we also give an alternative al-
gorithm which uses %N log N + O(N) additions and subtractions,
%N log N “divide by 2” operations, and N “multiply by a power of 2"
operations. Although this alternative algorithm does not use fewer
total operations than the folklore Fast Walsh-Hadamard Transform,
it does use fewer when “divide by 2” operations are ignored, and
may be even faster in certain settings.

The main idea behind our new algorithm is to take advantage of
the matrix non-rigidity of the matrix Hy. A matrix M is called rigid
if it is impossible to change a ‘small’ number of its entries to make it
have ‘low’ rank?. Rigidity was introduced by Valiant [24] to prove
lower bounds on the complexity of multiplying matrices like Hy by
input vectors. Valiant showed that if M is rigid, then one cannot
multiply M by an input vector using O(N) arithmetic operations in
an O(log N)-depth arithmetic circuit. (All the algorithms discussed
in this paper can be seen as O(log N)-depth arithmetic circuits.)
Hence, proving that Hy or a similar matrix is rigid would be a first
step toward proving that Q(N log N) operations are required to
multiply it by a vector.

However, a recent line of work [4, 5, 7, 10, 11, 15] has proved
that many matrices, including the WHT [5] and DFT [11] matrices,
are not rigid. A formal converse to Valiant’s result is not known,
and in particular, it is not immediate that this leads to improved
algorithms for any of these matrices. Nonetheless, we design our
faster algorithm for the WHT by making use of a rigidity upper

2See the surveys [16, 21] for a formal definition and a discussion of many applications
of rigidity throughout theoretical computer science.

456

Josh Alman and Kevin Rao

Table 1: History of the best FFT algorithms, for N a power of
2. For all these algorithms, a leading constant of ¢ means the
algorithm uses cN log N + O(N) real operations, where the O
hides a modest constant.

Algorithm Leadln'g constant of
operation count

Cooley-Tukey [8] 5

Split Radix (SR) [26] 4

11\/;3)d1ﬁed Split Radix (MSR) [6, 14, 34/9 = 39777 ..

“Theoretically Optimized" Split | 3.76875

Radix [22]

This paper 15/4 =3.75

bound from recent work of one of the authors [4], combined with
new observations about the structure of changes one makes to Hy
to reduce its rank.

1.2 DFT Result

The DFT matrix is defined over the complex numbers C. Let wp =
¢/N ¢ C denote the Nth root of unity, with i = V=1.The Nx N
DFT matrix, Fyy € CN*N | is given by, for a,b € {0,1,...,N — 1},
Cla,b] = a)l‘{]'b . The goal of the DFT is, given as input a vector
x € CN, to compute the vector y = Fyx. We focus here on the case
where N is a power of 2.

FFT algorithms (for the DFT) have customarily been measured
by the number of real operations they perform, rather than number
of complex operations, to correspond more closely with costs in
real computer architectures. In other words, the problem we solve
is: We are given as input 2N real numbers, corresponding to the
real and imaginary parts of the entries of x € CN, the goal is to
output 2N real numbers equal to the real and imaginary parts of
the entries of y = Fyx, and we count the number of real arithmetic
operations performed. For example, we add complex numbers using
2 real additions, and multiply two complex numbers using 6 real
operations (4 multiplications and 2 additions).

Table 1 summarizes the history of the best FFT algorithms. The
classic Cooley-Tukey algorithm [8] achieves a leading constant of
5, and a few years later in 1968, Yavne [26] introduced the ‘split-
radix’ (SR) variant on Cooley-Tukey which improves the constant
to 4. Over thirty years later, in 2004, Van Buskirk publicly posted
software [25] which improved on the operation count of SR using
a ‘Modified Split-Radix’ (MSR) approach. By the year 2007, three
different groups independently gave theoretical analyses of Van
Buskirk’s algorithm (or equivalent variants on it), proving its cor-
rectness and formally showing that it achieved a leading constant
of 34/9 =3.777 ... [6, 14, 17]. As mentioned above, this MSR algo-
rithm is used in widely-deployed systems today [12]. More recently,
in 2017, Sergeev [22] showed that the operation-saving technique
of MSR could be applied more effectively in the limit as the ‘base cir-
cuit’ of the algorithm gets larger and larger, improving the constant
to 3.76875.

Our second main result improves the constant to 15/4 = 3.75:

Faster Walsh-Hadamard and Discrete Fourier Transforms from Matrix Non-rigidity

THEOREM 1.2. Givenx € CN for N a power of 2, we can compute
Fnx using at most 1TleogN - %N +0(N%3) real operations.

Furthermore, similar to Theorem 1.1, some of the operations in
Theorem 1.2 are simple multiplications or divisions by small powers
of 2 which could be implemented with fast ‘bit shifts’: %N log N
are “divide by 2” operations, and N — 1 are “multiply by a power of
2” operations.

At a high level, the prior improvements beyond Cooley-Tukey fo-
cused on the number of real operations used for multiplying inputs
by ‘twiddle factor’ complex numbers throughout the algorithm.
They noticed that the operation counts could be reduced by taking
advantage of symmetries in the twiddle factors. For example, a key
observation of SR is that, given two complex numbers a and b, one
can simultaneously compute both a - b and a - b* using only 8 real
operations (where b* denotes the complex conjugate of b), whereas
multiplying a by two arbitrary complex numbers in general is done
with 12 real operations.

Our improvement focuses instead on the additions and subtrac-
tions used to combine the recursive calls at each layer of these
algorithms. We show how to rearrange the order that computations
are performed in, so that many of these additions and subtractions
can be replaced by a reduction to the WHT. We show:

LEMMA 1.1. Suppose the WHT of a vector x € RN for N a power of
2 can be performed using cN log N + O(N) real operations. Then, the

DFT of a vectory € CN can be performed using (%c + %) NlogN +
O(N) real operations.

In particular, setting ¢ = 1 (from the folklore fast Walsh-Hadamard
transform) in Lemma 1.1 recovers the leading constant 34/9 achieved
by MSR, but using our improved ¢ = 23/24 from Theorem 1.1 yields
the leading constant 15/4 which we state in Theorem 1.2. By the na-
ture of our reduction, our new FFT algorithm is faster (in operation
count or in practice) on input size N whenever our algorithm from
Theorem 1.1 for the WHT is faster for input size N/8. (Indeed, on
input size N, our FFT algorithm involves computing many WHTs
of size N/8 and smaller.)

Although the WHT and DFT matrices differ in critical ways,
they have similar recursive structures, and it is natural to wonder
whether there is a formal connection showing that an improvement
to either one gives an improvement for the other. To our knowledge,
our Lemma 1.1 is the first such connection.

1.3 Verification Code

We have implemented the algorithms for Theorem 1.1 and Theo-
rem 1.2, which can be used to verify their correctness and operation
counts. Our implementation is available at code.joshalman.com/
WHT-and-FFT-from-Non-Rigidity.

1.4 Other Related Work

Barriers for the DFT. All known algorithms for the DFT, including
ours, use Q(N log N) arithmetic operations, but it remains an open
question to prove that an algorithm using o(N log N) operations
is impossible. A number of previous works have shown barrier re-
sults: if one places some restrictions on the structure and properties
of FFT algorithms, then Q(N log N) operations are required. For

457

STOC ’23, June 20-23, 2023, Orlando, FL, USA

example, Morgenstern [18] proved a %N log N lower bound for the
complexity of FFT algorithms with coefficients (the fixed complex
numbers that one multiplies by throughout the algorithm) of mag-
nitude at most 1. Works by Papadimitriou [20] and by Haynal and
Haynal [13] give Q(N log N) lower bounds by making assumptions
about the ‘flow graph’ of the FFT algorithm, requiring, among other
things, that there is a unique path in this graph from any input to
any output. Pan [19] similarly gives an Q(N log N) lower bound
assuming the flow graph is ‘asynchronous’.

The Cooley-Tukey algorithm conforms to all of these assump-
tions, and SR conforms to all but the asynchronicity assumption.
The MSR algorithm does not conform to these assumptions, and
our new FFT algorithm introduces new ideas which further vio-
late them. We use real coefficients of magnitude as large as N (the
“multiply by powers of 2” operations discussed earlier); these are
larger than the coefficients used in the MSR algorithm, which were
only slightly super-constant. Nonetheless, we use our coefficients
in such a way that on the same inputs, the largest intermediate
values one computes using our algorithm, MSR, and SR are roughly
the same.®> Our new WHT algorithm, which we use as a subroutine
in our DFT algorithm, makes use of an algebraic identity which
computes and combines multiple intermediate values that depend
on many of the inputs. This results in a flow graph where each
input has many paths to each output.

A more recent line of work by Ailon [1-3] gives an Q(N log N)
lower bound for WHT algorithms that don’t have Q(n) different
‘ill-conditioned’ intermediate steps. Our new WHT algorithm starts
with ©(n) steps of multiplying inputs by large powers of 2, which
are each much more ill-conditioned than is required by the barriers.

In other words, the new ideas behind our improved algorithm
seemingly require further violations of the assumptions that are
known to lead to Q(N log N) lower bounds. This suggests that
new barriers are needed, but also that studying techniques that
overcome these barriers more carefully may help lead to further
improvements.

Matrix Rigidity and Linear Circuits. Our faster WHT algorithm
uses a rigidity decomposition recently given by [4, Lemma 4.6]
for the matrix Hg. The prior work [4] used this and other rigidity
decompositions to give a smaller constant-depth circuit for the
WHT in a different model of computation, called the ‘linear circuit
model’. The linear circuit model differs from our setting in how it
measures complexity. While we count the number of arithmetic
operations used by an algorithm, linear circuits make use of ‘linear
gates’ which may compute arbitrary linear combinations of their
inputs, and they only count the total number of input wires to
their gates. In particular, in that model, adding two inputs has a
cost of 2 (since an addition gate would have 2 input wires), but
multiplying by scalars is free. For example, replacing an addition of
complex numbers with a multiplication would decrease the cost in
the linear circuit model (where multiplications are free), but would
not change the number of arithmetic operations that we count, and
would even increase the cost when we are counting real operations

3Notably, our large coefficients are all powers of 2 which are simple to determine,
and the time to compute the other ‘twiddle factors’ used by our algorithm is nearly
identical to MSR.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

(since complex multiplications are computed with 6 real operations,
but additions use only 2).

Because of the differences in these models, our algorithms do
not translate into improved linear circuits, and the algorithms of [4]
do not give improved arithmetic operation counts. Notably, in the
prior work [4], only the number of entries which are changed in the
rigidity decomposition seems to matter, whereas we also need to
analyze the pattern of these changes. The prior work [4] ultimately
designs its best linear circuit by making use of a different rigid-
ity decomposition for the matrix Hy¢ (which strictly improves on
the circuit they design using their decomposition of Hg), whereas,
despite some effort, we have not been able to design an improved al-
gorithm with a decomposition of Hy¢ rather than the decomposition
of Hg that we use.

Although it is known that the DFT is not rigid [11], we do not
explicitly use this fact in our FFT algorithm. We only use the non-
rigidity of the WHT, and then reduce the DFT to the WHT. Making
use of the non-rigidity of the DFT is an exciting, open direction.

2 TECHNICAL OVERVIEW

We begin by giving an overview of our new algorithm for the DFT.
We show how to rewrite and rearrange the computations involved
in the MSR algorithm so that subcomputations can be extracted
which are equivalent to the WHT. We will then give an overview
of our new WHT algorithm based on a non-rigidity decomposition
of the WHT matrix.

2.1 Improving the Split-Radix Algorithm

The main idea behind our new FFT algorithm is to start with the
MSR algorithm and perform a number of steps where its computa-
tions are rewritten or rearranged. In this overview, we will instead
show how to apply these rewrites and rearrangements to the sim-
pler SR algorithm. Since the MSR algorithm has a very similar
overall structure (just with some complicated details inserted), we
ultimately apply the same steps we outline here to obtain our final
algorithm.

We start with the split-radix FFT algorithm (for the unfamiliar
reader, see the full version of the paper for a derivation of this
algorithm; for completeness, we rederive both SR and MSR there):

Algorithm 1 Split-Radix FFT

1: procedure FFT(x) — yo 1, N—1 >x e CN
2 Ae FFT(x[2/1)0) »AeCN/2
3 B<—FFT(x[4j+1]j.":/04‘1) > B e CN/4
& Ce FFT(x[4j - 113417 »CeCN/M
5 forke€[0,1,...N/4—1] do

6: Y — Ar + w]]i]Bk + w;[kck

7: YkeN/4 < Akenya — 108 By + io fCr

8 kN2 — Ak — (0K By + 0 ¥ Cy)

9 Yks3N /4 — AkeNya + 10K B — io FCr

10: end for

11: end procedure

Josh Alman and Kevin Rao

We can equivalently view this algorithm in the following recur-
sive matrix form:

F(x) = FNIT TINx

[IN/4 Dy D}
_ IN/4 —iDn iDI/V
Inj Dy -Dj
Iy Dy —iD
[4 N/2-1
Fny2 x[21]i={)
X F x[4i + 1) 24
N/4 ai - V/a1
Fyyal] 14— 1

Here, ITjy is a permutation matrix which reorders the entries of
x so that the subvectors in the algorithm, to which we will re-
cursively apply the FFT, appear contiguously for the sake of clar-
ity.! Dy, Dy € CN/4XN/4 are the diagonal matrices given by

Dy 1) j] = @} and D}, [, j] = 0y for j € {0,...N/4-1}.
We now will explain our new idea that modifies this algorithm
(as well as the MSR algorithm) to get a speedup. At each step, we
write all changes from the previous algorithm in blue.
We begin by focusing on lines 6 - 9 from the split-radix algorithm.

Take, for example, line 6.
Y — A + o8By + orFCr

The important observation here is that since wjlﬁ] and wl_\]k are

complex conjugates, they are identical except for a negated imag-
inary part. We will take advantage of this to rewrite the line in a
convenient way; let @ be any complex number and «* be its com-
plex conjugate. We will use the following algebraic rearrangement
of the split-radix algorithm’s computations (inspired by similar ma-
nipulations used in work on radix-3 FFT algorithms, e.g., [9, 23]).

LEmMA 2.1. Let A, B, C, a be complex numbers written as

A=a+di, B=b+blii C=c+ci

a=r+r'i, o« =r—ri
for real numbers a,a’,b,b’,c,c’,r,r’. Then,
A+ (aB+a*C) =[a+ (r(b+c)+r'(c' =b))]
+[a"+ (b +c")+1r'(b-c))]i.

ProoF. Starting with our substitution,
A+aB+a*C=(a+a’ i)+ (r+r'i)(b+bi)+ (r—r'i)(c+ci)
=a+rb—r'b +rc+r'c’
+ad'i+rbi+r'bi+rci—r'ci
=la+(r(b+c)+r'(c" = b"))]

+[a"+(r(+c)+r'(b-c))]i. m]

We will analogously rewrite lines 7 through 9 via a similar cal-
culation:

4Note that permutation matrices can be applied to an input vector without any arith-
metic operations, by simply reordering the entries. In other words, the Iy matrix will
only implicitly be implemented in any actual algorithm by the way the algorithms
access their input, and thus does not add any computational complexity.

Faster Walsh-Hadamard and Discrete Fourier Transforms from Matrix Non-rigidity

COROLLARY 2.1. Analogously,
—(@B+a*C) =[a— (r(b+c) +r'(c’' =b"))]
+[a =@ +c)+r(b=-0)]i,
=[a+ (' (b+c)+r(b’ =c))]
+[a" + (' (b" +c") +r(c—b))]i,
=[a- (' (b+c)+r(b =)
+a = +c)+r(c-Db))]i

A—-i(aB-a*C)

A+i(aB-a*C)

We use these four results and substitution to rewrite the split-
radix algorithm as

Algorithm 2 Split-Radix FFT (Rewritten)

1: procedure FFT(x) — yo1,.. N-1 >x eCN
2 Ae FFT([2/1)0) »AeCN/2
5 B <—FFT(x[4]+1]N/4 b > B e CN/4
& C<—FFT(x[]—1]1‘”4 b »CeCN/M
5: for k € [0, N/4—1]do
6: a+a’i,z+z’i,b+b’i,c+c’i — A, AgiN/a Br Cie
7: r+rli <—a)§]
8: Y ¢« la+r(b+c)+r'(c’=0b")]
+a@ +r(b’+c)+r'(b-0)]i

9 YkaNja — lz+1'(b+c)+r(b" —c')]

+[2/+r' (b +c)+r(c=Db)]i
10: Yranjz — la=—r(b+c)—r'(c" = b")]

+[a —r(b’+c")-r'(b-o0)]i
11 Ykssnja — [z=1"(b+c)—r(" ~c")]

+[2" =r' (b’ +c") = r(c-b)li
12: end for

13: end procedure

Observe that instead of depending on A, B, C, the output of the
FFT function (i.e., the quantities calculated on lines 8 through 11)
can now be thought of as depending on a,a’,b + ¢,b” + ¢/,b —
¢, b’ — ¢/, which in turn depend only on A, B + C, B — C (where
addition and subtraction of vectors is done entry-wise). In other
words, the computations in lines 8 through 11 depend on B + C =

FFT(x[4]+l]N/4 ")+FFT (x[4j-1]Y)"") and B-C = FFT (x[4j+
1]?]7/04 1) — FFT(x[4j]N/4 l) which by the linearity of the

FFT, are equivalent to FFT (x[4]) + l]N/4 Ly x[4j —]N/4 1) and

FFT(x[4]+1]N/4 ! x[4j -]N/4 1) Thus, we can replace the
lines
B FFT(x[4j+ 11}
C « FFT(x[4 J—1]N/4 b
with
XB «— x[4j + I]N/4 ! +x[4j - 1]?”04_1
xC<—x[4]+1]N/4 U x[4) - 1]?’/04 !
B « FFT(xp)
C « FFT(x¢)

459

STOC ’23, June 20-23, 2023, Orlando, FL, USA

and substitute b for every instance of b + ¢, b’ for every instance
of b’ + ¢’, ¢ for every instance of b — ¢, and ¢’ for every instance of
b’ — ¢/, to get

Algorithm 3 Split-Radix FFT (Intermediate modifications)

1: procedure FFT(x) — yo 1, N-1 >x eCN
2)qz;(—x[4]+l]N/4 1+x[4j—1]§\7:/04_1

5 xXe (—X[4]+1]N/4 U x[4) - 1]%‘*‘1

& A&FFT(x[Z]]N/Z b »AeCN/2
5. B« FFT(xp) >BeCN/M
6 Ce FFT(x”C) »>CeCN/M
7: fork€[0,1,...N/4-1] do

8 a+alz+21b+b’1c+cz<—Ak,Ak+N/4,Bk,Ck

9: r+ r i« (J)J]i]

10: yp — [a+ (r(b) +r'(=c"))] + [a’ + (r(b”) + 1" (0))]i
11 Yeanja — L2+ (7 (B)+r(c)]+[2/+ (' (B) +r(=E))]i
12 Yeanjz — La=(r(B)+r/(=¢)]+[a' = (r(b)+7' ())]i
13: Yeasnya — 2= (7 (B)+r(N]+[2/ = (r' (b)) +r(=E))]i
14: end for

15: end procedure

In this form, each layer of our recursive algorithm first does
some additions and subtractions on the input, then makes recursive
calls to the FFT function, then finally manipulates the results of
those calls. We can now reorder the operations in the algorithm, so
that it first does the additions and subtractions in lines 2 and 3 in
all of the recursive calls before performing lines 10 - 13 in any of
the recursive calls. Our key insight is that if we combine all of these
additions and subtractions together and do them simultaneously,
there is a faster way to compute that resulting transformation by
making use of our faster algorithm for the WHT.

To explain this idea more precisely, it will help to look again at
the matrix form of the algorithm. Namely, Fyx = (F, NHJ_Vl) (T x)
can be factored as the product

-IN/4 Rp iR;:
Ins R —iRg| |/
Injs -Rp —iR}, [FN/4]
IN/4 —R;; lRF FN/4
TWN
[N/2-1
Iy x[2il Ly
X L L x[4i+ 104!
[N/4 N/4] 41 /4 1
IN/4 _IN/4 [1=]
HLn
where Rr and R’ are diagonal matrices of reals with Rp[j, j] +
iRL1j, j1 = a)] 5

Notice that the middle two matrices in this factorization (the matrix with recursive
calls and HL) commute. This is exactly the observation made earlier about the linearity
of the FFT.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Now we can see that in each level of our recursion we get a
“twiddle matrix" TWy to the left of our recursive calls and a “WHT-
looking matrix" HLy to the right of our recursive calls. Hence,
when computing Algorithm 3, we effectively multiply x on the left
by a number of HL matrices (corresponding to all the additions and
subtractions of lines 2 and 3 in all the recursive calls) followed by a
number of of TW matrices (corresponding to all the manipulations
of lines 10 - 13 in all the recursive calls).

Thusfar, we have only rearranged computations of the split-radix
algorithm, and one can verify that our current algorithm still has
an identical operation count as the normal split-radix. Our improve-
ment now comes from a new approach for simultaneously multiply-
ing the input by all of the HL matrices. Let Hy; € {~1,0, 1}VXN be
the linear transform corresponding to applying all the HL matrices
to the input x of length N. HJ; is thus recursively defined with base

1
cases H| = [l] and Hj = [1] and the recursion

Hy
H, =
N Hy,, Hy,
’ 4
HN/4 _HN/4

In particular, from this recursive definition, we observe that H 1/\1
can be written as a permutation of a direct sum of WHT matrices
(see the full version of the paper for a proof), giving our reduction
of the DFT to the WHT via this family of H” matrices. We can thus
apply our new faster algorithm for the WHT (which we describe
next) in order to get an improved operation count for Hy; and thus
for the entire DFT®.

To summarize, after computing the transformation H’ on the
input, we recursively call the proper twiddle matrices on the proper
subsets of the input. The final result is:

Algorithm 4 Final Split-Radix FFT (with the full “Walsh-Hadamard
Uprooting" trick)

1: procedure TW(x) — yo1,.. N-1 >x eCN
2 A TW[2)NET » A CN/2
5 B<—TW(x[4j+1]§i/04‘1) > B e CN/M4
& CeTw[4-1N »CeCN/M
5: forke[O,l,...N/fL—Nl] do

6 a+a'i,z+2'i,b+b"i,é+c'i — Ag, Aginya Br. Cr

7: r+r'i — a)llil

B g la+ (r(B) + 1/ (=e")] + [a" + (r(B) + 7 (@))]i

9 Ykenja — (24 (B)+r(c")]+ 2+ (r/ (b)) +r(=0))]i
10: Yk+N/2 < [a—(r(b)~+r’(—c~’))]+[a’—(r({v')+r’(5))]i
11: YraN/a < [z= (' (B)+r(c")]+[2" = (r' (b") +1(=C))]i
12: end for

13: end procedure
>x eCN

15: y «— TW(H'(x))
16: end procedure

% Applying the folklore WHT algorithm instead will simply give the exact same opera-
tion count as the SR FFT algorithm.

460

Josh Alman and Kevin Rao

For our overall running time analysis, we have Trpr(N) =
Trr (N) + Try (N).” The straightforward algorithm for H’ would
yield Ty (N) %Nlog N, but since H’ is a direct sum of WHT
matrices and (below) we improve the leading constant for comput-
ing the WHT by a factor of 23, we ultimately improve the leading

24
constant for computing H’ from % to 2.2 =

5 %51 = %. In the full version
of the paper, we perform this analysis more carefully and show
that Ty (N) < %NlogN + f—gN +0(N%8). All that remains is to
calculate Tty (N).

In order to implement TW using as few operations as possible,
we compute each of rb—r'¢ b’ + &b +rel, r'b —ré exactly
once, and then use each of the results twice. Overall, this and the
operations to combine with a, @’, z, z’ total to 20 real operations on
vectors of length N /4 per iteration of our loop, or 20(N/4) = 5N
real operations total for one call of TW (x) for length N input x. This
gives us the recurrence Tty (N) = SN+Try (N/2)+2Tryw (N /4) =
%ON log N + O(N). This is the same operation count as SR achieves
for the corresponding part of its calculations. Combining with
Tir (N) gives Tppr(N) = $2Nlog N + O(N) ~ 3.972Nlog N +
O(N), an improvement over the 4N log N operation count of split-
radix. In the full version of the paper, we apply the same ideas to the
MSR algorithm to improve its operation count instead and obtain
the lower order terms of the operation count.

2.2 TFaster Walsh-Hadamard Transform

The starting point for our new algorithm for the WHT is the fol-
lowing decomposition of the matrix Hg as the sum of a low-rank
matrix and a sparse matrix, which was introduced by [4, Lemma
4.6]:

1 1 1 1 1 1 1 1

1 -1 1 -1 1 -1 1 -1

11 -1 -1 1 1 -1 -1

Hy = 1 -1 -1 1 1 -1 -1 1| _

1 1 1 1 -1 -1 -1 -1

1 -1 1 -1 -1 1 -1 1

1 1 -1 -1 -1 -1 1 1

1 -1 -1 1 -1 1 1 -1
11 1 1 1 1 1 1 o0 0o 00 0 00
1-1-1-1-1-1-1-1] [0 0 2 0 2 0 2 0
1-1-1-1-1-1-1-1] |0 2 0 0 2 2 0 0
I-1-1-1-1-1-1-1f 10 0 0 22 0 0 2
1-1-1-1-1-1-1-1| [0 2 2 2 0 0 0 0
1-1-1-1-1-1-1-1] |0 0 2 0 0 2 0 2
1-1-1-1-1-1-1-1| [0 2 0 0 0 0 2 2
1-1-1-1-1-1-1-1] [0 0 0 2 0 2 2 0

low rank sparse

Intuitively, we will use this decomposition because low rank
and sparse matrices can be multiplied by a vector using few op-
erations. Suppose we wanted to multiply Hg times a length 8 in-
put [a,b,c,d, e, f, g, h]. For the low rank matrix we compute tot =
(b+c+d+e+f+g+h) one time and then simply compute a + tot
(the desired first output entry) and a — tot (the desired output for

"Here we use the notation that T4 (N) is the operation count for applying algorithm
A to an input vector of length N.

Faster Walsh-Hadamard and Discrete Fourier Transforms from Matrix Non-rigidity

Algorithm 5 Fast WHT from Non-rigidity of Hg

1: procedure Hg(x,k) >y »k € N » This algorithm returns
2kH(x)
2 if N < 4 then Scale the inputs by 2, use the folklore

N -log N operation WHT, and end procedure
3: end if
& ae HIYE k)

=0 >a,b,cde,f,g hare length N/8
vectors.

5 b<—H(x[]]N_/:I/;, k+1)
3N/8-1
¢ ¢ HE[PD 16/4,k+1)
N/2-1
o de HDI G e+ 1)
8: e — H(x[]]jN]\/;j;l, k+1)
N/4—
o f e HEUIN s k+D)
7N /8-1
w0 g H&l 3/N/4, k+1)
11: h<—H(x[]]] N k+1)
12: By «—b+c > Addition done entry-wise
13: By « d+h
14: Bs (—f+g
15: tot < Bi+By+B3+e >Sotot=b+c+d+e+f+g+h
16: tot « tot/2 > Scalar division, done over all entries
17: dif f « a—tot
18: D «—diff+d
19: E —diff+e
20: H «—diff+h
21: y[']ﬁ\l/og_l «— a+tot
22: y[]]j.\]:/:]/;&E+c+g
13N/8
2 y[]]jzl\/]/4l<—E+b+f
4 N/2-1
24: y[]]].=/3N/8 «— E+B;
25yl < D+Bi
13N /4—
26: y[J]j:S/N/; —H+c+f
47N /8~1
27: y[]]j=3/N/4<—H+b+g
28: y[j]j.‘[:;}v/g — D+Bs

29: end procedure

all 7 other entries), for a total of 8 operations. For the sparse matrix,
we can perform only 2 additions then double the result for each
of the 7 nonzero rows, for a total of 21 operations. Including the
8 additions to add the results of these two matrices together, this
would give an operation count of 37 for computing Hg.

This is a larger operation count than we are aiming for; the fast
Walsh-Hadamard transform uses only 24 operations. A key insight
is that while computing these two matrices separately and adding
the results is quite costly, we can reuse computations between the
two. This allows us to save on computing each matrix and also on
combining their results. For example, in the process of computing
tot we start by adding b + c, a value which is also used to compute
the 5th row of our sparse matrix, so we can do that addition only
once across the two matrices. Using observations like this, we get
down to an operation count of 29.

461

STOC ’23, June 20-23, 2023, Orlando, FL, USA

This is still worse than the baseline of 24 operations for comput-
ing Hg. Our last main observation is that 7 out of these 29 operations
are multiplying each of the inputs b through h by 2. To reduce the
cost of these multiplications, we take a hint from a key idea be-
hind the MSR algorithm for the DFT and ask: what if those inputs,
which are the outputs from recursive calls, were already scaled
up by a factor of 2? If instead of [a,b,c,d, e, f, g, h] we received
[a, 2b, 2¢, 2d, 2e, 2f, 2g, 2h] as input, now we can eliminate seven

“multiply by 2" operations and only divide one time on the sum

2b+2c+2d+2e+2f + 29+ 2h to get tot. In total, this would reduce
the number of operations by 6, down from 29 to 23.

To achieve this, we observe that 2H (x) = H(2x) by the linearity
of the WHT, so we can “push down" the issue of multiplying by
2 into the recursive call. When we’ve reached the base case of
our recursion, all of the “multiply by 2" operations that have been
pushed down finally accumulate and we multiply one time by a
power of 2, thus turning many “multiply by 2" operations into a
few “divide by 2" operations and a single “multiply by 2¥ for some
k" operation. This ultimately gives us Algorithm 5 based on using
Hjg as our recursive step.

See the full version of the paper where we explain the intu-
ition and derivation of Algorithm 5 in more detail. There, we cal-
culate that the operation count of this algorithm is %N log N +
% (log N mod 3) + N — 1. The leading constant % comes directly
from our improvement from 24 to 23 operations for computing Hs.

ACKNOWLEDGEMENTS

We would like to thank Nir Ailon, Chi-Ning Chou, Sandeep Silwal,
and anonymous reviewers for helpful comments on an earlier draft
and Igor Sergeev for answering our questions about his algorithm
in [22]. This research was supported in part by NSF Grant CCF-
2238221 and a grant from the Simons Foundation (Grant Number
825870 JA).

REFERENCES
n

Nir Ailon. 2013. A lower bound for fourier transform computation in a linear
model over 2x2 unitary gates using matrix entropy. arXiv preprint arXiv:1305.4745
(2013).

Nir Ailon. 2014. An n\log n Lower Bound for Fourier Transform Computation
in the Well Conditioned Model. arXiv preprint arXiv:1403.1307 (2014).

Nir Ailon. 2015. Tighter fourier transform lower bounds. In Automata, Languages,
and Programming: 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July
6-10, 2015, Proceedings, Part I. Springer, 14-25.

Josh Alman. 2021. Kronecker products, low-depth circuits, and matrix rigidity. In
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing.
772-785.

Josh Alman and Ryan Williams. 2017. Probabilistic rank and matrix rigidity. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing.
641-652.

Daniel J Bernstein. 2007. The tangent FFT. In International Symposium on Applied
Algebra, Algebraic Algorithms, and Error-Correcting Codes. Springer, 291-300.
Vishwas Bhargava, Sumanta Ghosh, Mrinal Kumar, and Chandra Kanta Mohapa-
tra. 2022. Fast, algebraic multivariate multipoint evaluation in small characteristic
and applications. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing. 403-415.

James W Cooley and John W Tukey. 1965. An algorithm for the machine cal-
culation of complex Fourier series. Mathematics of computation 19, 90 (1965),
297-301.

Eric Dubois and A Venetsanopoulos. 1978. A new algorithm for the radix-3
FFT. IEEE Transactions on Acoustics, Speech, and Signal Processing 26, 3 (1978),
222-225.

Zeev Dvir and Benjamin L Edelman. 2019. Matrix Rigidity and the Croot-Lev-Pach
Lemma. Theory Of Computing 15, 8 (2019), 1-7.

[2]

[3

[4]

[5]

G

7

(8]

[9]

(10]

STOC ’23, June 20-23, 2023, Orlando, FL, USA

[11] Zeev Dvir and Allen Liu. 2020. Fourier and Circulant Matrices are Not Rigid.
Theory Of Computing 16, 20 (2020), 1-48.

[12] Matteo Frigo and Steven G Johnson. 1998. FFTW: An adaptive software archi-
tecture for the FFT. In Proceedings of the 1998 IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), Vol. 3.
IEEE, 1381-1384.

[13] Steve Haynal and Heidi Haynal. 2011. Generating and searching families of
FFT algorithms. Journal on Satisfiability, Boolean Modeling and Computation 7, 4
(2011), 145-187.

[14] Steven G Johnson and Matteo Frigo. 2006. A modified split-radix FFT with
fewer arithmetic operations. IEEE Transactions on Signal Processing 55, 1 (2006),
111-119.

[15] Bohdan Kivva. 2021. Improved upper bounds for the rigidity of Kronecker
products. arXiv preprint arXiv:2103.05631 (2021).

[16] Satyanarayana V Lokam et al. 2009. Complexity lower bounds using linear
algebra. Foundations and Trends® in Theoretical Computer Science 4, 1-2 (2009),
1-155.

[17] T Lundy and James Van Buskirk. 2007. A new matrix approach to real FFTs and
convolutions of length 2 k. Computing 80, 1 (2007), 23-45.

[18] Jacques Morgenstern. 1973. Note on a lower bound on the linear complexity of
the fast Fourier transform. Journal of the ACM (JACM) 20, 2 (1973), 305-306.

462

[19

[20
[21
[22

[23

Josh Alman and Kevin Rao

Victor Ya Pan. 1986. The trade-off between the additive complexity and the
asynchronicity of linear and bilinear algorithms. Information processing letters
22,1 (1986), 11-14.

Christos H Papadimitriou. 1979. Optimality of the fast Fourier transform. Journal
of the ACM (JACM) 26, 1 (1979), 95-102.

C Ramya. 2020. Recent Progress on Matrix Rigidity—A Survey. arXiv preprint
arXiv:2009.09460 (2020).

Igor Sergeevich Sergeev. 2017. On the real complexity of a complex DFT. Problems
of Information Transmission 53, 3 (2017), 284-293.

Yoiti Suzuki, Toshio Sone, and Kenuti Kido. 1986. A new FFT algorithm of radix
3, 6, and 12. IEEE transactions on acoustics, speech, and signal processing 34, 2
(1986), 380-383.

Leslie G Valiant. 1977. Graph-theoretic arguments in low-level complexity.
In International Symposium on Mathematical Foundations of Computer Science.
Springer, 162-176.

James Van Buskirk. 2004. comp.dsp. Usenet posts.

R Yavne. 1968. An economical method for calculating the discrete Fourier trans-
form. In Proceedings of the December 9-11, 1968, fall joint computer conference,
part I. 115-125.

Received 2022-11-07; accepted 2023-02-06

