
Faster Walsh-Hadamard and Discrete Fourier Transforms from
Matrix Non-rigidity

Josh Alman

Columbia University

USA

josh@cs.columbia.edu

Kevin Rao

Columbia University

USA

kevinrao99@gmail.com

ABSTRACT
We give algorithms with lower arithmetic operation counts for both

the Walsh-Hadamard Transform (WHT) and the Discrete Fourier

Transform (DFT) on inputs of power-of-2 size 𝑁 .

For the WHT, our new algorithm has an operation count of

23

24
𝑁 log𝑁 +𝑂 (𝑁). To our knowledge, this gives the first improve-

ment on the 𝑁 log𝑁 operation count of the simple, folklore Fast

Walsh-Hadamard Transform algorithm.

For the DFT, our new FFT algorithm uses
15

4
𝑁 log𝑁 +𝑂 (𝑁) real

arithmetic operations. Our leading constant
15

4
= 3.75 improves on

the leading constant of 5 from the Cooley-Tukey algorithm from

1965, leading constant 4 from the split-radix algorithm of Yavne

from 1968, leading constant
34

9
= 3.777 . . . from a modification of

the split-radix algorithm by Van Buskirk from 2004, and leading

constant 3.76875 from a theoretically optimized version of Van

Buskirk’s algorithm by Sergeev from 2017.

Our newWHT algorithm takes advantage of a recent line of work

on the non-rigidity of the WHT: we decompose the WHT matrix as

the sum of a low-rank matrix and a sparse matrix, and then analyze

the structures of these matrices to achieve a lower operation count.

Our new DFT algorithm comes from a novel reduction, showing

that parts of the previous best FFT algorithms can be replaced by

calls to an algorithm for the WHT. Replacing the folklore WHT

algorithm with our new improved algorithm leads to our improved

FFT.

CCS CONCEPTS
• Theory of computation → Design and analysis of algo-
rithms; Algebraic complexity theory; •Mathematics of comput-
ing→ Computation of transforms.

KEYWORDS
Fourier Transform, Hadamard Transform, Matrix Rigidity

ACM Reference Format:
Josh Alman and Kevin Rao. 2023. Faster Walsh-Hadamard and Discrete

Fourier Transforms from Matrix Non-rigidity. In Proceedings of the 55th
Annual ACM Symposium on Theory of Computing (STOC ’23), June 20–23,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’23, June 20–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9913-5/23/06. . . $15.00

https://doi.org/10.1145/3564246.3585188

2023, Orlando, FL, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/

10.1145/3564246.3585188

1 INTRODUCTION
Two of the most important and widely-used linear transforms are

the Discrete Fourier Transform (DFT) and the Walsh-Hadamard

Transform (WHT). In addition to their breadth of applications,

these transforms can be computed quickly: They can be applied to

a vector of length 𝑁 using only 𝑂 (𝑁 log𝑁) arithmetic operations,

for instance, using the split-radix Fast Fourier Transform (FFT)

algorithm [26] and the folklore fast Walsh–Hadamard transform,

which make use of the recursive definitions of these transforms.

Determining how much these algorithms can be sped up is an

important question in both practice and theory. This is typically

phrased as determining the smallest ‘leading constant’ 𝑐 such that

they can be computing using (𝑐 + 𝑜 (1))𝑁 log𝑁 arithmetic opera-

tions (where log denotes the base 2 logarithm). In practice, even

modest improvements to 𝑐 can be impactful; the current best al-

gorithm for the DFT, which improves the leading constant from

the split-radix algorithm by slightly over 5%, is implemented to-

day in software libraries that have been widely deployed [12]
1
.

In theory, it is popularly conjectured that an operation count of

Ω(𝑁 log𝑁) is necessary to compute these transforms, i.e., that one

cannot achieve arbitrarily small values of 𝑐 for either of these trans-

forms, but this conjecture is still open. One piece of evidence for

this conjecture is that there haven’t been many improvements to

these constants: prior to this work there have been only three FFT

improvements since the original Cooley-Tukey algorithm [8] over

50 years ago, and there has never been an improvement over the

folklore algorithm for the WHT.

In this paper, we give improved algorithms, leading to smaller

leading constants, for both the WHT and the DFT on inputs of

power-of-two size. Our new algorithm for the WHT makes use

of a recent line of work on the matrix rigidity of the WHT, and

our new algorithm for the DFT uses a novel reduction to the WHT.

Our approach for the DFT is quite different from prior Fast Fourier

Transform (FFT) improvements:We focus on decreasing the number

of additions and subtractions used by the algorithms, whereas prior

improvements focused on the ‘twiddle factor’ multiplications.

1
To see it in action, see lines 162 - 239 in fftw-3.3.10/genfft/fft.ml of the

fftw-3.3.10 package [12].

455

STOC ’23, June 20–23, 2023, Orlando, FL, USA Josh Alman and Kevin Rao

1.1 WHT Result
Let 𝑁 be a power of 2, and let F be any field. The 𝑁 × 𝑁 WHT

matrix, 𝐻𝑁 , is defined recursively by

𝐻2 =

[
1 1

1 −1

]
, and 𝐻𝑁 =

[
𝐻𝑁 /2 𝐻𝑁 /2
𝐻𝑁 /2 −𝐻𝑁 /2

]
for 𝑁 ≥ 4. The goal of the WHT is, given as input a vector 𝑥 ∈ F𝑁 ,

to compute the vector𝑦 = 𝐻𝑁 𝑥 . We focus on Fwhose characteristic
is not 2, since the problem is trivial in such fields.

The folklore fast Walsh-Hadamard transform algorithm follows

directly from this recursive definition: Letting 𝑇𝐻 (𝑁) denote the
number of arithmetic operations used in computing 𝐻𝑁 𝑥 , we get

the base case𝑇𝐻 (2) = 2, and the recurrence𝑇𝐻 (𝑁) = 2𝑇𝐻 (𝑁 /2)+𝑁 ,

which yield 𝑇𝐻 (𝑁) = 𝑁 log𝑁 .

In particular, it gives a leading constant of 1, and to our knowl-

edge, no algorithm using fewer arithmetic operations was previ-

ously known. Our first main result improves this constant from 1

to 23/24 < 0.96.

Theorem 1.1. For any field F, given 𝑥 ∈ F𝑁 for 𝑁 a power of 2, we
can compute 𝐻𝑁 𝑥 using at most 23

24
𝑁 log𝑁 + 13

12
𝑁 field operations.

Furthermore, our algorithm only uses fairly simple field oper-

ations:
22

24
𝑁 log𝑁 + 1

12
𝑁 additions and subtractions,

1

24
𝑁 log𝑁

“divide by 2" operations, and 𝑁 − 1 “multiply by a power of 2" oper-

ations where the power of 2 is at most 𝑁 . When working over the

reals in a typical computer architecture, these division and multi-

plication operations can be implemented using ‘bit shifts’ which

are substantially faster than a general addition or multiplication

operation.

In the full version of the paper, we also give an alternative al-

gorithm which uses
7

8
𝑁 log𝑁 +𝑂 (𝑁) additions and subtractions,

1

8
𝑁 log𝑁 “divide by 2” operations, and𝑁 “multiply by a power of 2"

operations. Although this alternative algorithm does not use fewer

total operations than the folklore Fast Walsh-Hadamard Transform,

it does use fewer when “divide by 2” operations are ignored, and

may be even faster in certain settings.

The main idea behind our new algorithm is to take advantage of

the matrix non-rigidity of the matrix 𝐻𝑁 . A matrix𝑀 is called rigid
if it is impossible to change a ‘small’ number of its entries to make it

have ‘low’ rank
2
. Rigidity was introduced by Valiant [24] to prove

lower bounds on the complexity of multiplying matrices like 𝐻𝑁 by

input vectors. Valiant showed that if 𝑀 is rigid, then one cannot

multiply𝑀 by an input vector using𝑂 (𝑁) arithmetic operations in

an𝑂 (log𝑁)-depth arithmetic circuit. (All the algorithms discussed

in this paper can be seen as 𝑂 (log𝑁)-depth arithmetic circuits.)

Hence, proving that 𝐻𝑁 or a similar matrix is rigid would be a first

step toward proving that Ω(𝑁 log𝑁) operations are required to

multiply it by a vector.

However, a recent line of work [4, 5, 7, 10, 11, 15] has proved

that many matrices, including the WHT [5] and DFT [11] matrices,

are not rigid. A formal converse to Valiant’s result is not known,

and in particular, it is not immediate that this leads to improved

algorithms for any of these matrices. Nonetheless, we design our

faster algorithm for the WHT by making use of a rigidity upper

2
See the surveys [16, 21] for a formal definition and a discussion of many applications

of rigidity throughout theoretical computer science.

Table 1: History of the best FFT algorithms, for 𝑁 a power of
2. For all these algorithms, a leading constant of 𝑐 means the
algorithm uses 𝑐𝑁 log𝑁 +𝑂 (𝑁) real operations, where the 𝑂
hides a modest constant.

Algorithm Leading constant of
operation count

Cooley-Tukey [8] 5

Split Radix (SR) [26] 4

Modified Split Radix (MSR) [6, 14,

17]

34/9 = 3.7777 . . .

“Theoretically Optimized" Split

Radix [22]

3.76875

This paper 15/4 = 3.75

bound from recent work of one of the authors [4], combined with

new observations about the structure of changes one makes to 𝐻𝑁

to reduce its rank.

1.2 DFT Result
The DFT matrix is defined over the complex numbers C. Let 𝜔𝑁 :=

𝑒𝑖𝜋/𝑁 ∈ C denote the 𝑁 th root of unity, with 𝑖 =
√
−1. The 𝑁 × 𝑁

DFT matrix, 𝐹𝑁 ∈ C𝑁×𝑁 , is given by, for 𝑎, 𝑏 ∈ {0, 1, . . . , 𝑁 − 1},
𝐶 [𝑎, 𝑏] = 𝜔𝑎·𝑏

𝑁
. The goal of the DFT is, given as input a vector

𝑥 ∈ C𝑁 , to compute the vector 𝑦 = 𝐹𝑁 𝑥 . We focus here on the case

where 𝑁 is a power of 2.

FFT algorithms (for the DFT) have customarily been measured

by the number of real operations they perform, rather than number

of complex operations, to correspond more closely with costs in

real computer architectures. In other words, the problem we solve

is: We are given as input 2𝑁 real numbers, corresponding to the

real and imaginary parts of the entries of 𝑥 ∈ C𝑁 , the goal is to

output 2𝑁 real numbers equal to the real and imaginary parts of

the entries of 𝑦 = 𝐹𝑁 𝑥 , and we count the number of real arithmetic

operations performed. For example, we add complex numbers using

2 real additions, and multiply two complex numbers using 6 real

operations (4 multiplications and 2 additions).

Table 1 summarizes the history of the best FFT algorithms. The

classic Cooley-Tukey algorithm [8] achieves a leading constant of

5, and a few years later in 1968, Yavne [26] introduced the ‘split-

radix’ (SR) variant on Cooley-Tukey which improves the constant

to 4. Over thirty years later, in 2004, Van Buskirk publicly posted

software [25] which improved on the operation count of SR using

a ‘Modified Split-Radix’ (MSR) approach. By the year 2007, three

different groups independently gave theoretical analyses of Van

Buskirk’s algorithm (or equivalent variants on it), proving its cor-

rectness and formally showing that it achieved a leading constant

of 34/9 = 3.777 . . . [6, 14, 17]. As mentioned above, this MSR algo-

rithm is used in widely-deployed systems today [12]. More recently,

in 2017, Sergeev [22] showed that the operation-saving technique

of MSR could be applied more effectively in the limit as the ‘base cir-

cuit’ of the algorithm gets larger and larger, improving the constant

to 3.76875.

Our second main result improves the constant to 15/4 = 3.75:

456

Faster Walsh-Hadamard and Discrete Fourier Transforms from Matrix Non-rigidity STOC ’23, June 20–23, 2023, Orlando, FL, USA

Theorem 1.2. Given 𝑥 ∈ C𝑁 for 𝑁 a power of 2, we can compute
𝐹𝑁 𝑥 using at most 15

4
𝑁 log𝑁 − 223

108
𝑁 + 𝑜 (𝑁 0.8) real operations.

Furthermore, similar to Theorem 1.1, some of the operations in

Theorem 1.2 are simple multiplications or divisions by small powers

of 2 which could be implemented with fast ‘bit shifts’:
1

36
𝑁 log𝑁

are “divide by 2” operations, and 𝑁 − 1 are “multiply by a power of

2” operations.

At a high level, the prior improvements beyond Cooley-Tukey fo-

cused on the number of real operations used for multiplying inputs

by ‘twiddle factor’ complex numbers throughout the algorithm.

They noticed that the operation counts could be reduced by taking

advantage of symmetries in the twiddle factors. For example, a key

observation of SR is that, given two complex numbers 𝑎 and 𝑏, one

can simultaneously compute both 𝑎 · 𝑏 and 𝑎 · 𝑏∗ using only 8 real

operations (where 𝑏∗ denotes the complex conjugate of 𝑏), whereas

multiplying 𝑎 by two arbitrary complex numbers in general is done

with 12 real operations.

Our improvement focuses instead on the additions and subtrac-

tions used to combine the recursive calls at each layer of these

algorithms. We show how to rearrange the order that computations

are performed in, so that many of these additions and subtractions

can be replaced by a reduction to the WHT. We show:

Lemma 1.1. Suppose the WHT of a vector 𝑥 ∈ R𝑁 for 𝑁 a power of
2 can be performed using 𝑐𝑁 log𝑁 +𝑂 (𝑁) real operations. Then, the
DFT of a vector 𝑦 ∈ C𝑁 can be performed using

(
2

3
𝑐 + 28

9

)
𝑁 log𝑁 +

𝑂 (𝑁) real operations.

In particular, setting 𝑐 = 1 (from the folklore fastWalsh-Hadamard

transform) in Lemma 1.1 recovers the leading constant 34/9 achieved
by MSR, but using our improved 𝑐 = 23/24 from Theorem 1.1 yields

the leading constant 15/4 which we state in Theorem 1.2. By the na-

ture of our reduction, our new FFT algorithm is faster (in operation

count or in practice) on input size 𝑁 whenever our algorithm from

Theorem 1.1 for the WHT is faster for input size 𝑁 /8. (Indeed, on
input size 𝑁 , our FFT algorithm involves computing many WHTs

of size 𝑁 /8 and smaller.)

Although the WHT and DFT matrices differ in critical ways,

they have similar recursive structures, and it is natural to wonder

whether there is a formal connection showing that an improvement

to either one gives an improvement for the other. To our knowledge,

our Lemma 1.1 is the first such connection.

1.3 Verification Code
We have implemented the algorithms for Theorem 1.1 and Theo-

rem 1.2, which can be used to verify their correctness and operation

counts. Our implementation is available at code.joshalman.com/

WHT-and-FFT-from-Non-Rigidity.

1.4 Other Related Work
Barriers for the DFT. All known algorithms for the DFT, including

ours, use Ω(𝑁 log𝑁) arithmetic operations, but it remains an open

question to prove that an algorithm using 𝑜 (𝑁 log𝑁) operations
is impossible. A number of previous works have shown barrier re-

sults: if one places some restrictions on the structure and properties

of FFT algorithms, then Ω(𝑁 log𝑁) operations are required. For

example, Morgenstern [18] proved a
1

2
𝑁 log𝑁 lower bound for the

complexity of FFT algorithms with coefficients (the fixed complex

numbers that one multiplies by throughout the algorithm) of mag-

nitude at most 1. Works by Papadimitriou [20] and by Haynal and

Haynal [13] give Ω(𝑁 log𝑁) lower bounds by making assumptions

about the ‘flow graph’ of the FFT algorithm, requiring, among other

things, that there is a unique path in this graph from any input to

any output. Pan [19] similarly gives an Ω(𝑁 log𝑁) lower bound
assuming the flow graph is ‘asynchronous’.

The Cooley-Tukey algorithm conforms to all of these assump-

tions, and SR conforms to all but the asynchronicity assumption.

The MSR algorithm does not conform to these assumptions, and

our new FFT algorithm introduces new ideas which further vio-

late them. We use real coefficients of magnitude as large as 𝑁 (the

“multiply by powers of 2” operations discussed earlier); these are

larger than the coefficients used in the MSR algorithm, which were

only slightly super-constant. Nonetheless, we use our coefficients

in such a way that on the same inputs, the largest intermediate

values one computes using our algorithm, MSR, and SR are roughly

the same.
3
Our new WHT algorithm, which we use as a subroutine

in our DFT algorithm, makes use of an algebraic identity which

computes and combines multiple intermediate values that depend

on many of the inputs. This results in a flow graph where each

input has many paths to each output.

A more recent line of work by Ailon [1–3] gives an Ω(𝑁 log𝑁)
lower bound for WHT algorithms that don’t have Ω(𝑛) different
‘ill-conditioned’ intermediate steps. Our newWHT algorithm starts

with Θ(𝑛) steps of multiplying inputs by large powers of 2, which

are each much more ill-conditioned than is required by the barriers.

In other words, the new ideas behind our improved algorithm

seemingly require further violations of the assumptions that are

known to lead to Ω(𝑁 log𝑁) lower bounds. This suggests that
new barriers are needed, but also that studying techniques that

overcome these barriers more carefully may help lead to further

improvements.

Matrix Rigidity and Linear Circuits. Our faster WHT algorithm

uses a rigidity decomposition recently given by [4, Lemma 4.6]

for the matrix 𝐻8. The prior work [4] used this and other rigidity

decompositions to give a smaller constant-depth circuit for the

WHT in a different model of computation, called the ‘linear circuit

model’. The linear circuit model differs from our setting in how it

measures complexity. While we count the number of arithmetic

operations used by an algorithm, linear circuits make use of ‘linear

gates’ which may compute arbitrary linear combinations of their

inputs, and they only count the total number of input wires to

their gates. In particular, in that model, adding two inputs has a

cost of 2 (since an addition gate would have 2 input wires), but

multiplying by scalars is free. For example, replacing an addition of

complex numbers with a multiplication would decrease the cost in

the linear circuit model (where multiplications are free), but would

not change the number of arithmetic operations that we count, and

would even increase the cost when we are counting real operations

3
Notably, our large coefficients are all powers of 2 which are simple to determine,

and the time to compute the other ‘twiddle factors’ used by our algorithm is nearly

identical to MSR.

457

STOC ’23, June 20–23, 2023, Orlando, FL, USA Josh Alman and Kevin Rao

(since complex multiplications are computed with 6 real operations,

but additions use only 2).

Because of the differences in these models, our algorithms do

not translate into improved linear circuits, and the algorithms of [4]

do not give improved arithmetic operation counts. Notably, in the

prior work [4], only the number of entries which are changed in the

rigidity decomposition seems to matter, whereas we also need to

analyze the pattern of these changes. The prior work [4] ultimately

designs its best linear circuit by making use of a different rigid-

ity decomposition for the matrix 𝐻16 (which strictly improves on

the circuit they design using their decomposition of 𝐻8), whereas,

despite some effort, we have not been able to design an improved al-

gorithmwith a decomposition of𝐻16 rather than the decomposition

of 𝐻8 that we use.

Although it is known that the DFT is not rigid [11], we do not

explicitly use this fact in our FFT algorithm. We only use the non-

rigidity of the WHT, and then reduce the DFT to the WHT. Making

use of the non-rigidity of the DFT is an exciting, open direction.

2 TECHNICAL OVERVIEW
We begin by giving an overview of our new algorithm for the DFT.

We show how to rewrite and rearrange the computations involved

in the MSR algorithm so that subcomputations can be extracted

which are equivalent to the WHT. We will then give an overview

of our new WHT algorithm based on a non-rigidity decomposition

of the WHT matrix.

2.1 Improving the Split-Radix Algorithm
The main idea behind our new FFT algorithm is to start with the

MSR algorithm and perform a number of steps where its computa-

tions are rewritten or rearranged. In this overview, we will instead

show how to apply these rewrites and rearrangements to the sim-

pler SR algorithm. Since the MSR algorithm has a very similar

overall structure (just with some complicated details inserted), we

ultimately apply the same steps we outline here to obtain our final

algorithm.

We start with the split-radix FFT algorithm (for the unfamiliar

reader, see the full version of the paper for a derivation of this

algorithm; for completeness, we rederive both SR and MSR there):

Algorithm 1 Split-Radix FFT

1: procedure FFT(𝑥)→ 𝑦0,1,...𝑁−1 ⊲ 𝑥 ∈ C𝑁

2: 𝐴← 𝐹𝐹𝑇 (𝑥 [2 𝑗]𝑁 /2−1
𝑗=0

) ⊲ 𝐴 ∈ C𝑁 /2

3: 𝐵 ← 𝐹𝐹𝑇 (𝑥 [4 𝑗 + 1]𝑁 /4−1
𝑗=0

) ⊲ 𝐵 ∈ C𝑁 /4

4: 𝐶 ← 𝐹𝐹𝑇 (𝑥 [4 𝑗 − 1]𝑁 /4−1
𝑗=0

) ⊲ 𝐶 ∈ C𝑁 /4
5: for 𝑘 ∈ [0, 1, . . . 𝑁 /4 − 1] do
6: 𝑦𝑘 ← 𝐴𝑘 + 𝜔𝑘

𝑁
𝐵𝑘 + 𝜔−𝑘𝑁 𝐶𝑘

7: 𝑦𝑘+𝑁 /4 ← 𝐴𝑘+𝑁 /4 − 𝑖𝜔𝑘
𝑁
𝐵𝑘 + 𝑖𝜔−𝑘𝑁 𝐶𝑘

8: 𝑦𝑘+𝑁 /2 ← 𝐴𝑘 − (𝜔𝑘
𝑁
𝐵𝑘 + 𝜔−𝑘𝑁 𝐶𝑘)

9: 𝑦𝑘+3𝑁 /4 ← 𝐴𝑘+𝑁 /4 + 𝑖𝜔𝑘
𝑁
𝐵𝑘 − 𝑖𝜔−𝑘𝑁 𝐶𝑘

10: end for
11: end procedure

We can equivalently view this algorithm in the following recur-

sive matrix form:

𝐹 (𝑥) = 𝐹𝑁Π−1𝑁 Π𝑁 𝑥

=


𝐼𝑁 /4 𝐷𝑁 𝐷 ′

𝑁
𝐼𝑁 /4 −𝑖𝐷𝑁 𝑖𝐷 ′

𝑁
𝐼𝑁 /4 −𝐷𝑁 −𝐷 ′

𝑁
𝐼𝑁 /4 𝑖𝐷𝑁 −𝑖𝐷 ′

𝑁


×


𝐹𝑁 /2 [

𝐹𝑁 /4
𝐹𝑁 /4

]


𝑥 [2𝑖]𝑁 /2−1
𝑖=0

𝑥 [4𝑖 + 1]𝑁 /4−1
𝑖=0

𝑥 [4𝑖 − 1]𝑁 /4−1
𝑖=0


Here, Π𝑁 is a permutation matrix which reorders the entries of

𝑥 so that the subvectors in the algorithm, to which we will re-

cursively apply the FFT, appear contiguously for the sake of clar-

ity.
4 𝐷𝑁 , 𝐷

′
𝑁
∈ C𝑁 /4×𝑁 /4 are the diagonal matrices given by

𝐷𝑁,𝑁 [𝑗, 𝑗] = 𝜔
𝑗

𝑁
and 𝐷 ′

𝑁,𝑁
[𝑗, 𝑗] = 𝜔

−𝑗
𝑁

for 𝑗 ∈ {0, . . . 𝑁 /4 − 1}.
We now will explain our new idea that modifies this algorithm

(as well as the MSR algorithm) to get a speedup. At each step, we

write all changes from the previous algorithm in blue.

We begin by focusing on lines 6 - 9 from the split-radix algorithm.

Take, for example, line 6.

𝑦𝑘 ← 𝐴𝑘 + 𝜔𝑘
𝑁 𝐵𝑘 + 𝜔−𝑘𝑁 𝐶𝑘

The important observation here is that since 𝜔𝑘
𝑁

and 𝜔−𝑘
𝑁

are

complex conjugates, they are identical except for a negated imag-

inary part. We will take advantage of this to rewrite the line in a

convenient way; let 𝛼 be any complex number and 𝛼∗ be its com-

plex conjugate. We will use the following algebraic rearrangement

of the split-radix algorithm’s computations (inspired by similar ma-

nipulations used in work on radix-3 FFT algorithms, e.g., [9, 23]).

Lemma 2.1. Let 𝐴, 𝐵,𝐶, 𝛼 be complex numbers written as

𝐴 = 𝑎 + 𝑎′𝑖, 𝐵 = 𝑏 + 𝑏 ′𝑖, 𝐶 = 𝑐 + 𝑐 ′𝑖
𝛼 = 𝑟 + 𝑟 ′𝑖, 𝛼∗ = 𝑟 − 𝑟 ′𝑖

for real numbers 𝑎, 𝑎′, 𝑏, 𝑏 ′, 𝑐, 𝑐 ′, 𝑟 , 𝑟 ′. Then,

𝐴 + (𝛼𝐵 + 𝛼∗𝐶) =[𝑎 + (𝑟 (𝑏 + 𝑐) + 𝑟 ′(𝑐 ′ − 𝑏 ′))]
+ [𝑎′ + (𝑟 (𝑏 ′ + 𝑐 ′) + 𝑟 ′(𝑏 − 𝑐))]𝑖 .

Proof. Starting with our substitution,

𝐴 + 𝛼𝐵 + 𝛼∗𝐶 =(𝑎 + 𝑎′𝑖) + (𝑟 + 𝑟 ′𝑖) (𝑏 + 𝑏 ′𝑖) + (𝑟 − 𝑟 ′𝑖) (𝑐 + 𝑐 ′𝑖)
=𝑎 + 𝑟𝑏 − 𝑟 ′𝑏 ′ + 𝑟𝑐 + 𝑟 ′𝑐 ′

+ 𝑎′𝑖 + 𝑟𝑏 ′𝑖 + 𝑟 ′𝑏𝑖 + 𝑟𝑐 ′𝑖 − 𝑟 ′𝑐𝑖
=[𝑎 + (𝑟 (𝑏 + 𝑐) + 𝑟 ′(𝑐 ′ − 𝑏 ′))]
+ [𝑎′ + (𝑟 (𝑏 ′ + 𝑐 ′) + 𝑟 ′(𝑏 − 𝑐))]𝑖 . □

We will analogously rewrite lines 7 through 9 via a similar cal-

culation:

4
Note that permutation matrices can be applied to an input vector without any arith-

metic operations, by simply reordering the entries. In other words, the Π𝑁 matrix will

only implicitly be implemented in any actual algorithm by the way the algorithms

access their input, and thus does not add any computational complexity.

458

Faster Walsh-Hadamard and Discrete Fourier Transforms from Matrix Non-rigidity STOC ’23, June 20–23, 2023, Orlando, FL, USA

Corollary 2.1. Analogously,

𝐴 − (𝛼𝐵 + 𝛼∗𝐶) =[𝑎 − (𝑟 (𝑏 + 𝑐) + 𝑟 ′(𝑐 ′ − 𝑏 ′))]
+ [𝑎′ − (𝑟 (𝑏 ′ + 𝑐 ′) + 𝑟 ′(𝑏 − 𝑐))]𝑖,

𝐴 − 𝑖 (𝛼𝐵 − 𝛼∗𝐶) =[𝑎 + (𝑟 ′(𝑏 + 𝑐) + 𝑟 (𝑏 ′ − 𝑐 ′))]
+ [𝑎′ + (𝑟 ′(𝑏 ′ + 𝑐 ′) + 𝑟 (𝑐 − 𝑏))]𝑖,

𝐴 + 𝑖 (𝛼𝐵 − 𝛼∗𝐶) =[𝑎 − (𝑟 ′(𝑏 + 𝑐) + 𝑟 (𝑏 ′ − 𝑐 ′))]
+ [𝑎′ − (𝑟 ′(𝑏 ′ + 𝑐 ′) + 𝑟 (𝑐 − 𝑏))]𝑖 .

We use these four results and substitution to rewrite the split-

radix algorithm as

Algorithm 2 Split-Radix FFT (Rewritten)

1: procedure FFT(𝑥)→ 𝑦0,1,...𝑁−1 ⊲ 𝑥 ∈ C𝑁

2: 𝐴← 𝐹𝐹𝑇 (𝑥 [2 𝑗]𝑁 /2−1
𝑗=0

) ⊲ 𝐴 ∈ C𝑁 /2

3: 𝐵 ← 𝐹𝐹𝑇 (𝑥 [4 𝑗 + 1]𝑁 /4−1
𝑗=0

) ⊲ 𝐵 ∈ C𝑁 /4

4: 𝐶 ← 𝐹𝐹𝑇 (𝑥 [4 𝑗 − 1]𝑁 /4−1
𝑗=0

) ⊲ 𝐶 ∈ C𝑁 /4
5: for 𝑘 ∈ [0, 1, . . . 𝑁 /4 − 1] do
6: 𝑎 + 𝑎′𝑖, 𝑧 + 𝑧′𝑖, 𝑏 + 𝑏 ′𝑖, 𝑐 + 𝑐 ′𝑖 ← 𝐴𝑘 , 𝐴𝑘+𝑁 /4, 𝐵𝑘 ,𝐶𝑘
7: 𝑟 + 𝑟 ′𝑖 ← 𝜔𝑘

𝑁
8: 𝑦𝑘 ← [𝑎 + 𝑟 (𝑏 + 𝑐) + 𝑟 ′(𝑐 ′ − 𝑏 ′)]

+[𝑎′ + 𝑟 (𝑏 ′ + 𝑐 ′) + 𝑟 ′(𝑏 − 𝑐)]𝑖
9: 𝑦𝑘+𝑁 /4 ← [𝑧 + 𝑟 ′(𝑏 + 𝑐) + 𝑟 (𝑏 ′ − 𝑐 ′)]

+[𝑧′ + 𝑟 ′(𝑏 ′ + 𝑐 ′) + 𝑟 (𝑐 − 𝑏)]𝑖
10: 𝑦𝑘+𝑁 /2 ← [𝑎 − 𝑟 (𝑏 + 𝑐) − 𝑟 ′(𝑐 ′ − 𝑏 ′)]

+[𝑎′ − 𝑟 (𝑏 ′ + 𝑐 ′) − 𝑟 ′(𝑏 − 𝑐)]𝑖
11: 𝑦𝑘+3𝑁 /4 ← [𝑧 − 𝑟 ′(𝑏 + 𝑐) − 𝑟 (𝑏 ′ − 𝑐 ′)]

+[𝑧′ − 𝑟 ′(𝑏 ′ + 𝑐 ′) − 𝑟 (𝑐 − 𝑏)]𝑖
12: end for
13: end procedure

Observe that instead of depending on 𝐴, 𝐵,𝐶 , the output of the

𝐹𝐹𝑇 function (i.e., the quantities calculated on lines 8 through 11)

can now be thought of as depending on 𝑎, 𝑎′, 𝑏 + 𝑐, 𝑏 ′ + 𝑐 ′, 𝑏 −
𝑐, 𝑏 ′ − 𝑐 ′, which in turn depend only on 𝐴, 𝐵 + 𝐶, 𝐵 − 𝐶 (where

addition and subtraction of vectors is done entry-wise). In other

words, the computations in lines 8 through 11 depend on 𝐵 +𝐶 =

𝐹𝐹𝑇 (𝑥 [4 𝑗+1]𝑁 /4−1
𝑗=0

)+𝐹𝐹𝑇 (𝑥 [4 𝑗−1]𝑁 /4−1
𝑗=0

) and 𝐵−𝐶 = 𝐹𝐹𝑇 (𝑥 [4 𝑗+
1]𝑁 /4−1

𝑗=0
) − 𝐹𝐹𝑇 (𝑥 [4 𝑗 − 1]𝑁 /4−1

𝑗=0
), which by the linearity of the

FFT, are equivalent to 𝐹𝐹𝑇 (𝑥 [4 𝑗 + 1]𝑁 /4−1
𝑗=0

+ 𝑥 [4 𝑗 − 1]𝑁 /4−1
𝑗=0

) and
𝐹𝐹𝑇 (𝑥 [4 𝑗 + 1]𝑁 /4−1

𝑗=0
− 𝑥 [4 𝑗 − 1]𝑁 /4−1

𝑗=0
). Thus, we can replace the

lines

𝐵 ← 𝐹𝐹𝑇 (𝑥 [4 𝑗 + 1]𝑁 /4−1
𝑗=0

)

𝐶 ← 𝐹𝐹𝑇 (𝑥 [4 𝑗 − 1]𝑁 /4−1
𝑗=0

)
with

˜𝑥𝐵 ← 𝑥 [4 𝑗 + 1]𝑁 /4−1
𝑗=0

+ 𝑥 [4 𝑗 − 1]𝑁 /4−1
𝑗=0

˜𝑥𝐶 ← 𝑥 [4 𝑗 + 1]𝑁 /4−1
𝑗=0

− 𝑥 [4 𝑗 − 1]𝑁 /4−1
𝑗=0

𝐵̃ ← 𝐹𝐹𝑇 (˜𝑥𝐵)
𝐶 ← 𝐹𝐹𝑇 (˜𝑥𝐶)

and substitute
˜𝑏 for every instance of 𝑏 + 𝑐 , ˜𝑏 ′ for every instance

of 𝑏 ′ + 𝑐 ′, 𝑐 for every instance of 𝑏 − 𝑐 , and ˜𝑐 ′ for every instance of

𝑏 ′ − 𝑐 ′, to get

Algorithm 3 Split-Radix FFT (Intermediate modifications)

1: procedure FFT(𝑥)→ 𝑦0,1,...𝑁−1 ⊲ 𝑥 ∈ C𝑁

2: ˜𝑥𝐵 ← 𝑥 [4 𝑗 + 1]𝑁 /4−1
𝑗=0

+ 𝑥 [4 𝑗 − 1]𝑁 /4−1
𝑗=0

3: ˜𝑥𝐶 ← 𝑥 [4 𝑗 + 1]𝑁 /4−1
𝑗=0

− 𝑥 [4 𝑗 − 1]𝑁 /4−1
𝑗=0

4: 𝐴← 𝐹𝐹𝑇 (𝑥 [2 𝑗]𝑁 /2−1
𝑗=0

) ⊲ 𝐴 ∈ C𝑁 /2

5: 𝐵̃ ← 𝐹𝐹𝑇 (˜𝑥𝐵) ⊲ 𝐵̃ ∈ C𝑁 /4
6: 𝐶 ← 𝐹𝐹𝑇 (˜𝑥𝐶) ⊲ 𝐶 ∈ C𝑁 /4
7: for 𝑘 ∈ [0, 1, . . . 𝑁 /4 − 1] do
8: 𝑎 + 𝑎′𝑖, 𝑧 + 𝑧′𝑖, ˜𝑏 + ˜𝑏 ′𝑖, 𝑐 + ˜𝑐 ′𝑖 ← 𝐴𝑘 , 𝐴𝑘+𝑁 /4, 𝐵̃𝑘 ,𝐶𝑘
9: 𝑟 + 𝑟 ′𝑖 ← 𝜔𝑘

𝑁

10: 𝑦𝑘 ← [𝑎 + (𝑟 (˜𝑏) + 𝑟 ′(− ˜𝑐 ′))] + [𝑎′ + (𝑟 (˜𝑏 ′) + 𝑟 ′(𝑐))]𝑖
11: 𝑦𝑘+𝑁 /4 ← [𝑧 + (𝑟 ′(˜𝑏) +𝑟 (˜𝑐 ′))] + [𝑧′+ (𝑟 ′(˜𝑏 ′) +𝑟 (−𝑐))]𝑖
12: 𝑦𝑘+𝑁 /2 ← [𝑎− (𝑟 (˜𝑏) +𝑟 ′(− ˜𝑐 ′))] + [𝑎′− (𝑟 (˜𝑏 ′) +𝑟 ′(𝑐))]𝑖
13: 𝑦𝑘+3𝑁 /4 ← [𝑧−(𝑟 ′(˜𝑏)+𝑟 (˜𝑐 ′))]+ [𝑧′−(𝑟 ′(˜𝑏 ′)+𝑟 (−𝑐))]𝑖

14: end for
15: end procedure

In this form, each layer of our recursive algorithm first does

some additions and subtractions on the input, then makes recursive

calls to the FFT function, then finally manipulates the results of

those calls. We can now reorder the operations in the algorithm, so

that it first does the additions and subtractions in lines 2 and 3 in

all of the recursive calls before performing lines 10 - 13 in any of

the recursive calls. Our key insight is that if we combine all of these

additions and subtractions together and do them simultaneously,

there is a faster way to compute that resulting transformation by

making use of our faster algorithm for the WHT.

To explain this idea more precisely, it will help to look again at

the matrix form of the algorithm. Namely, 𝐹𝑁 𝑥 = (𝐹𝑁Π−1
𝑁
) (Π𝑁 𝑥)

can be factored as the product


𝐼𝑁 /4 𝑅𝐹 𝑖𝑅′

𝐹
𝐼𝑁 /4 𝑅′

𝐹
−𝑖𝑅𝐹

𝐼𝑁 /4 −𝑅𝐹 −𝑖𝑅′
𝐹

𝐼𝑁 /4 −𝑅′
𝐹

𝑖𝑅𝐹

︸ ︷︷ ︸
𝑇𝑊𝑁


𝐹𝑁 /2 [

𝐹𝑁 /4
𝐹𝑁 /4

]
×


𝐼𝑁 /2 [

𝐼𝑁 /4 𝐼𝑁 /4
𝐼𝑁 /4 −𝐼𝑁 /4

]︸ ︷︷ ︸
𝐻𝐿𝑁


𝑥 [2𝑖]𝑁 /2−1

𝑖=0

𝑥 [4𝑖 + 1]𝑁 /4−1
𝑖=0

𝑥 [4𝑖 − 1]𝑁 /4−1
𝑖=0


where 𝑅𝐹 and 𝑅′

𝐹
are diagonal matrices of reals with 𝑅𝐹 [𝑗, 𝑗] +

𝑖𝑅′
𝐹
[𝑗, 𝑗] = 𝜔

𝑗

𝑁
.
5

5
Notice that the middle two matrices in this factorization (the matrix with recursive

calls and𝐻𝐿) commute. This is exactly the observation made earlier about the linearity

of the FFT.

459

STOC ’23, June 20–23, 2023, Orlando, FL, USA Josh Alman and Kevin Rao

Now we can see that in each level of our recursion we get a

“twiddle matrix"𝑇𝑊𝑁 to the left of our recursive calls and a “WHT-

looking matrix" 𝐻𝐿𝑁 to the right of our recursive calls. Hence,

when computing Algorithm 3, we effectively multiply 𝑥 on the left

by a number of 𝐻𝐿 matrices (corresponding to all the additions and

subtractions of lines 2 and 3 in all the recursive calls) followed by a

number of of 𝑇𝑊 matrices (corresponding to all the manipulations

of lines 10 - 13 in all the recursive calls).

Thusfar, we have only rearranged computations of the split-radix

algorithm, and one can verify that our current algorithm still has

an identical operation count as the normal split-radix. Our improve-

ment now comes from a new approach for simultaneously multiply-

ing the input by all of the 𝐻𝐿 matrices. Let 𝐻 ′
𝑁
∈ {−1, 0, 1}𝑁×𝑁 be

the linear transform corresponding to applying all the 𝐻𝐿 matrices

to the input 𝑥 of length 𝑁 .𝐻 ′
𝑁
is thus recursively defined with base

cases 𝐻 ′
1
=
[
1

]
and 𝐻 ′

2
=

[
1

1

]
and the recursion

𝐻 ′𝑁 =


𝐻 ′
𝑁 /2 [

𝐻 ′
𝑁 /4 𝐻 ′

𝑁 /4
𝐻 ′
𝑁 /4 −𝐻 ′

𝑁 /4

]
.

In particular, from this recursive definition, we observe that 𝐻 ′
𝑁

can be written as a permutation of a direct sum of WHT matrices

(see the full version of the paper for a proof), giving our reduction

of the DFT to the WHT via this family of 𝐻 ′ matrices. We can thus

apply our new faster algorithm for the WHT (which we describe

next) in order to get an improved operation count for 𝐻 ′
𝑁

and thus

for the entire DFT
6
.

To summarize, after computing the transformation 𝐻 ′ on the

input, we recursively call the proper twiddle matrices on the proper

subsets of the input. The final result is:

Algorithm 4 Final Split-Radix FFT (with the full “Walsh-Hadamard

Uprooting" trick)

1: procedure TW(𝑥)→ 𝑦0,1,...𝑁−1 ⊲ 𝑥 ∈ C𝑁

2: 𝐴← 𝑇𝑊 (𝑥 [2 𝑗]𝑁 /2−1
𝑗=0

) ⊲ 𝐴 ∈ C𝑁 /2

3: 𝐵̃ ← 𝑇𝑊 (𝑥 [4 𝑗 + 1]𝑁 /4−1
𝑗=0

) ⊲ 𝐵 ∈ C𝑁 /4

4: 𝐶 ← 𝑇𝑊 (𝑥 [4 𝑗 − 1]𝑁 /4−1
𝑗=0

) ⊲ 𝐶 ∈ C𝑁 /4
5: for 𝑘 ∈ [0, 1, . . . 𝑁 /4 − 1] do
6: 𝑎 + 𝑎′𝑖, 𝑧 + 𝑧′𝑖, ˜𝑏 + ˜𝑏 ′𝑖, 𝑐 + ˜𝑐 ′𝑖 ← 𝐴𝑘 , 𝐴𝑘+𝑁 /4, 𝐵̃𝑘 ,𝐶𝑘
7: 𝑟 + 𝑟 ′𝑖 ← 𝜔𝑘

𝑁

8: 𝑦𝑘 ← [𝑎 + (𝑟 (˜𝑏) + 𝑟 ′(− ˜𝑐 ′))] + [𝑎′ + (𝑟 (˜𝑏 ′) + 𝑟 ′(𝑐))]𝑖
9: 𝑦𝑘+𝑁 /4 ← [𝑧 + (𝑟 ′(˜𝑏) +𝑟 (˜𝑐 ′))] + [𝑧′+ (𝑟 ′(˜𝑏 ′) +𝑟 (−𝑐))]𝑖
10: 𝑦𝑘+𝑁 /2 ← [𝑎− (𝑟 (˜𝑏) +𝑟 ′(− ˜𝑐 ′))] + [𝑎′− (𝑟 (˜𝑏 ′) +𝑟 ′(𝑐))]𝑖
11: 𝑦𝑘+3𝑁 /4 ← [𝑧−(𝑟 ′(˜𝑏)+𝑟 (˜𝑐 ′))]+ [𝑧′−(𝑟 ′(˜𝑏 ′)+𝑟 (−𝑐))]𝑖
12: end for
13: end procedure
14: procedure FFT(𝑥)→ 𝑦0,1,...𝑁−1 ⊲ 𝑥 ∈ C𝑁
15: 𝑦 ← 𝑇𝑊 (𝐻 ′(𝑥))
16: end procedure

6
Applying the folklore WHT algorithm instead will simply give the exact same opera-

tion count as the SR FFT algorithm.

For our overall running time analysis, we have 𝑇𝐹𝐹𝑇 (𝑁) =

𝑇𝐻 ′ (𝑁) +𝑇𝑇𝑊 (𝑁).7 The straightforward algorithm for 𝐻 ′ would
yield 𝑇𝐻 ′ (𝑁) = 2

3
𝑁 log𝑁 , but since 𝐻 ′ is a direct sum of WHT

matrices and (below) we improve the leading constant for comput-

ing the WHT by a factor of
23

24
, we ultimately improve the leading

constant for computing𝐻 ′ from 2

3
to

2

3
· 23
24

= 23

36
. In the full version

of the paper, we perform this analysis more carefully and show

that 𝑇𝐻 ′ (𝑁) < 23

36
𝑁 log𝑁 + 25

12
𝑁 + 𝑜 (𝑁 0.8). All that remains is to

calculate 𝑇𝑇𝑊 (𝑁).
In order to implement 𝑇𝑊 using as few operations as possible,

we compute each of 𝑟 ˜𝑏 − 𝑟 ′ ˜𝑐 ′, 𝑟 ˜𝑏 ′ + 𝑟 ′𝑐, 𝑟 ′ ˜𝑏 + 𝑟 ˜𝑐 ′, 𝑟 ′ ˜𝑏 ′ − 𝑟𝑐 exactly
once, and then use each of the results twice. Overall, this and the

operations to combine with 𝑎, 𝑎′, 𝑧, 𝑧′ total to 20 real operations on

vectors of length 𝑁 /4 per iteration of our loop, or 20(𝑁 /4) = 5𝑁

real operations total for one call of𝑇𝑊 (𝑥) for length𝑁 input 𝑥 . This

gives us the recurrence𝑇𝑇𝑊 (𝑁) = 5𝑁 +𝑇𝑇𝑊 (𝑁 /2) +2𝑇𝑇𝑊 (𝑁 /4) =
10

3
𝑁 log𝑁 +𝑂 (𝑁). This is the same operation count as SR achieves

for the corresponding part of its calculations. Combining with

𝑇𝐻 ′ (𝑁) gives 𝑇𝐹𝐹𝑇 (𝑁) = 143

36
𝑁 log𝑁 + 𝑂 (𝑁) ≈ 3.972𝑁 log𝑁 +

𝑂 (𝑁), an improvement over the 4𝑁 log𝑁 operation count of split-

radix. In the full version of the paper, we apply the same ideas to the

MSR algorithm to improve its operation count instead and obtain

the lower order terms of the operation count.

2.2 Faster Walsh-Hadamard Transform
The starting point for our new algorithm for the WHT is the fol-

lowing decomposition of the matrix 𝐻8 as the sum of a low-rank

matrix and a sparse matrix, which was introduced by [4, Lemma

4.6]:

𝐻8 =



1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1


=



1 1 1 1 1 1 1 1

1 −1 −1 −1 −1 −1 −1 −1
1 −1 −1 −1 −1 −1 −1 −1
1 −1 −1 −1 −1 −1 −1 −1
1 −1 −1 −1 −1 −1 −1 −1
1 −1 −1 −1 −1 −1 −1 −1
1 −1 −1 −1 −1 −1 −1 −1
1 −1 −1 −1 −1 −1 −1 −1

︸ ︷︷ ︸
low rank

+



0 0 0 0 0 0 0 0

0 0 2 0 2 0 2 0

0 2 0 0 2 2 0 0

0 0 0 2 2 0 0 2

0 2 2 2 0 0 0 0

0 0 2 0 0 2 0 2

0 2 0 0 0 0 2 2

0 0 0 2 0 2 2 0

︸ ︷︷ ︸
sparse

Intuitively, we will use this decomposition because low rank

and sparse matrices can be multiplied by a vector using few op-

erations. Suppose we wanted to multiply 𝐻8 times a length 8 in-

put [𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ]. For the low rank matrix we compute 𝑡𝑜𝑡 =

(𝑏 + 𝑐 +𝑑 + 𝑒 + 𝑓 +𝑔 +ℎ) one time and then simply compute 𝑎 + 𝑡𝑜𝑡
(the desired first output entry) and 𝑎 − 𝑡𝑜𝑡 (the desired output for

7
Here we use the notation that𝑇𝐴 (𝑁) is the operation count for applying algorithm

𝐴 to an input vector of length 𝑁 .

460

Faster Walsh-Hadamard and Discrete Fourier Transforms from Matrix Non-rigidity STOC ’23, June 20–23, 2023, Orlando, FL, USA

Algorithm 5 Fast WHT from Non-rigidity of 𝐻8

1: procedure 𝐻8(𝑥, 𝑘)→ 𝑦 ⊲ 𝑘 ∈ N ⊲ This algorithm returns

2
𝑘𝐻 (𝑥)

2: if 𝑁 ≤ 4 then Scale the inputs by 2
𝑘
, use the folklore

𝑁 · log𝑁 operation WHT, and end procedure
3: end if
4: 𝑎 ← 𝐻 (𝑥 [𝑗]𝑁 /8−1

𝑗=0
, 𝑘) ⊲ 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ are length 𝑁 /8

vectors.

5: 𝑏 ← 𝐻 (𝑥 [𝑗]𝑁 /4−1
𝑗=𝑁 /8, 𝑘 + 1)

6: 𝑐 ← 𝐻 (𝑥 [𝑗]3𝑁 /8−1
𝑗=𝑁 /4 , 𝑘 + 1)

7: 𝑑 ← 𝐻 (𝑥 [𝑗]𝑁 /2−1
𝑗=3𝑁 /8, 𝑘 + 1)

8: 𝑒 ← 𝐻 (𝑥 [𝑗]5𝑁 /8−1
𝑗=𝑁 /2 , 𝑘 + 1)

9: 𝑓 ← 𝐻 (𝑥 [𝑗]3𝑁 /4−1
𝑗=5𝑁 /8, 𝑘 + 1)

10: 𝑔← 𝐻 (𝑥 [𝑗]7𝑁 /8−1
𝑗=3𝑁 /4, 𝑘 + 1)

11: ℎ ← 𝐻 (𝑥 [𝑗]𝑁−1
𝑗=7𝑁 /8, 𝑘 + 1)

12: 𝐵1 ← 𝑏 + 𝑐 ⊲ Addition done entry-wise

13: 𝐵2 ← 𝑑 + ℎ
14: 𝐵3 ← 𝑓 + 𝑔
15: 𝑡𝑜𝑡 ← 𝐵1 + 𝐵2 + 𝐵3 + 𝑒 ⊲ So 𝑡𝑜𝑡 = 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔 + ℎ
16: 𝑡𝑜𝑡 ← 𝑡𝑜𝑡/2 ⊲ Scalar division, done over all entries

17: 𝑑𝑖 𝑓 𝑓 ← 𝑎 − 𝑡𝑜𝑡
18: 𝐷 ← 𝑑𝑖 𝑓 𝑓 + 𝑑
19: 𝐸 ← 𝑑𝑖 𝑓 𝑓 + 𝑒
20: 𝐻 ← 𝑑𝑖 𝑓 𝑓 + ℎ
21: 𝑦 [𝑗]𝑁 /8−1

𝑗=0
← 𝑎 + 𝑡𝑜𝑡

22: 𝑦 [𝑗]𝑁 /4−1
𝑗=𝑁 /8 ← 𝐸 + 𝑐 + 𝑔

23: 𝑦 [𝑗]3𝑁 /8−1
𝑗=𝑁 /4 ← 𝐸 + 𝑏 + 𝑓

24: 𝑦 [𝑗]𝑁 /2−1
𝑗=3𝑁 /8 ← 𝐸 + 𝐵2

25: 𝑦 [𝑗]5𝑁 /8−1
𝑗=𝑁 /2 ← 𝐷 + 𝐵1

26: 𝑦 [𝑗]3𝑁 /4−1
𝑗=5𝑁 /8 ← 𝐻 + 𝑐 + 𝑓

27: 𝑦 [𝑗]7𝑁 /8−1
𝑗=3𝑁 /4 ← 𝐻 + 𝑏 + 𝑔

28: 𝑦 [𝑗]𝑁−1
𝑗=7𝑁 /8 ← 𝐷 + 𝐵3

29: end procedure

all 7 other entries), for a total of 8 operations. For the sparse matrix,

we can perform only 2 additions then double the result for each

of the 7 nonzero rows, for a total of 21 operations. Including the

8 additions to add the results of these two matrices together, this

would give an operation count of 37 for computing 𝐻8.

This is a larger operation count than we are aiming for; the fast

Walsh-Hadamard transform uses only 24 operations. A key insight

is that while computing these two matrices separately and adding

the results is quite costly, we can reuse computations between the

two. This allows us to save on computing each matrix and also on

combining their results. For example, in the process of computing

𝑡𝑜𝑡 we start by adding 𝑏 + 𝑐 , a value which is also used to compute

the 5th row of our sparse matrix, so we can do that addition only

once across the two matrices. Using observations like this, we get

down to an operation count of 29.

This is still worse than the baseline of 24 operations for comput-

ing𝐻8. Our last main observation is that 7 out of these 29 operations

are multiplying each of the inputs 𝑏 through ℎ by 2. To reduce the

cost of these multiplications, we take a hint from a key idea be-

hind the MSR algorithm for the DFT and ask: what if those inputs,

which are the outputs from recursive calls, were already scaled

up by a factor of 2? If instead of [𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ] we received

[𝑎, 2𝑏, 2𝑐, 2𝑑, 2𝑒, 2𝑓 , 2𝑔, 2ℎ] as input, now we can eliminate seven

“multiply by 2" operations and only divide one time on the sum

2𝑏 + 2𝑐 + 2𝑑 + 2𝑒 + 2𝑓 + 2𝑔 + 2ℎ to get 𝑡𝑜𝑡 . In total, this would reduce

the number of operations by 6, down from 29 to 23.

To achieve this, we observe that 2𝐻 (𝑥) = 𝐻 (2𝑥) by the linearity

of the WHT, so we can “push down" the issue of multiplying by

2 into the recursive call. When we’ve reached the base case of

our recursion, all of the “multiply by 2" operations that have been

pushed down finally accumulate and we multiply one time by a

power of 2, thus turning many “multiply by 2" operations into a

few “divide by 2" operations and a single “multiply by 2
𝑘
for some

𝑘" operation. This ultimately gives us Algorithm 5 based on using

𝐻8 as our recursive step.

See the full version of the paper where we explain the intu-

ition and derivation of Algorithm 5 in more detail. There, we cal-

culate that the operation count of this algorithm is
23

24
𝑁 log𝑁 +

𝑁
24
(log𝑁 mod 3) + 𝑁 − 1. The leading constant 23

24
comes directly

from our improvement from 24 to 23 operations for computing 𝐻8.

ACKNOWLEDGEMENTS
We would like to thank Nir Ailon, Chi-Ning Chou, Sandeep Silwal,

and anonymous reviewers for helpful comments on an earlier draft

and Igor Sergeev for answering our questions about his algorithm

in [22]. This research was supported in part by NSF Grant CCF-

2238221 and a grant from the Simons Foundation (Grant Number

825870 JA).

REFERENCES
[1] Nir Ailon. 2013. A lower bound for fourier transform computation in a linear

model over 2x2 unitary gates using matrix entropy. arXiv preprint arXiv:1305.4745
(2013).

[2] Nir Ailon. 2014. An n\log n Lower Bound for Fourier Transform Computation

in the Well Conditioned Model. arXiv preprint arXiv:1403.1307 (2014).

[3] Nir Ailon. 2015. Tighter fourier transform lower bounds. In Automata, Languages,
and Programming: 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July
6-10, 2015, Proceedings, Part I. Springer, 14–25.

[4] Josh Alman. 2021. Kronecker products, low-depth circuits, and matrix rigidity. In

Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing.
772–785.

[5] Josh Alman and Ryan Williams. 2017. Probabilistic rank and matrix rigidity. In

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing.
641–652.

[6] Daniel J Bernstein. 2007. The tangent FFT. In International Symposium on Applied
Algebra, Algebraic Algorithms, and Error-Correcting Codes. Springer, 291–300.

[7] Vishwas Bhargava, Sumanta Ghosh, Mrinal Kumar, and Chandra Kanta Mohapa-

tra. 2022. Fast, algebraic multivariate multipoint evaluation in small characteristic

and applications. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing. 403–415.

[8] James W Cooley and John W Tukey. 1965. An algorithm for the machine cal-

culation of complex Fourier series. Mathematics of computation 19, 90 (1965),

297–301.

[9] Eric Dubois and A Venetsanopoulos. 1978. A new algorithm for the radix-3

FFT. IEEE Transactions on Acoustics, Speech, and Signal Processing 26, 3 (1978),

222–225.

[10] Zeev Dvir and Benjamin L Edelman. 2019. Matrix Rigidity and the Croot-Lev-Pach

Lemma. Theory Of Computing 15, 8 (2019), 1–7.

461

STOC ’23, June 20–23, 2023, Orlando, FL, USA Josh Alman and Kevin Rao

[11] Zeev Dvir and Allen Liu. 2020. Fourier and Circulant Matrices are Not Rigid.

Theory Of Computing 16, 20 (2020), 1–48.

[12] Matteo Frigo and Steven G Johnson. 1998. FFTW: An adaptive software archi-

tecture for the FFT. In Proceedings of the 1998 IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), Vol. 3.
IEEE, 1381–1384.

[13] Steve Haynal and Heidi Haynal. 2011. Generating and searching families of

FFT algorithms. Journal on Satisfiability, Boolean Modeling and Computation 7, 4

(2011), 145–187.

[14] Steven G Johnson and Matteo Frigo. 2006. A modified split-radix FFT with

fewer arithmetic operations. IEEE Transactions on Signal Processing 55, 1 (2006),

111–119.

[15] Bohdan Kivva. 2021. Improved upper bounds for the rigidity of Kronecker

products. arXiv preprint arXiv:2103.05631 (2021).
[16] Satyanarayana V Lokam et al. 2009. Complexity lower bounds using linear

algebra. Foundations and Trends® in Theoretical Computer Science 4, 1–2 (2009),
1–155.

[17] T Lundy and James Van Buskirk. 2007. A new matrix approach to real FFTs and

convolutions of length 2 k. Computing 80, 1 (2007), 23–45.

[18] Jacques Morgenstern. 1973. Note on a lower bound on the linear complexity of

the fast Fourier transform. Journal of the ACM (JACM) 20, 2 (1973), 305–306.

[19] Victor Ya Pan. 1986. The trade-off between the additive complexity and the

asynchronicity of linear and bilinear algorithms. Information processing letters
22, 1 (1986), 11–14.

[20] Christos H Papadimitriou. 1979. Optimality of the fast Fourier transform. Journal
of the ACM (JACM) 26, 1 (1979), 95–102.

[21] C Ramya. 2020. Recent Progress on Matrix Rigidity–A Survey. arXiv preprint
arXiv:2009.09460 (2020).

[22] Igor Sergeevich Sergeev. 2017. On the real complexity of a complex DFT. Problems
of Information Transmission 53, 3 (2017), 284–293.

[23] Yoiti Suzuki, Toshio Sone, and Kenuti Kido. 1986. A new FFT algorithm of radix

3, 6, and 12. IEEE transactions on acoustics, speech, and signal processing 34, 2

(1986), 380–383.

[24] Leslie G Valiant. 1977. Graph-theoretic arguments in low-level complexity.

In International Symposium on Mathematical Foundations of Computer Science.
Springer, 162–176.

[25] James Van Buskirk. 2004. comp.dsp. Usenet posts.

[26] R Yavne. 1968. An economical method for calculating the discrete Fourier trans-

form. In Proceedings of the December 9-11, 1968, fall joint computer conference,
part I. 115–125.

Received 2022-11-07; accepted 2023-02-06

462

