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Sequential Source Coding for Stochastic
Systems Subject to Finite Rate Constraints
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Abstract—In this article, we revisit the sequential source-
coding framework to analyze fundamental performance lim-
itations of discrete-time stochastic control systems subject
to feedback data-rate constraints in finite-time horizon. The
basis of our results is a new characterization of the lower
bound on the minimum total-rate achieved by sequential
codes subject to a total (across time) distortion constraint
and a computational algorithm that allocates optimally the
rate-distortion, for a given distortion level, at each instant
of time and any fixed finite-time horizon. The idea behind
this characterization facilitates the derivation of analyti-
cal, nonasymptotic, and finite-dimensional lower and up-
per bounds in two control-related scenarios: a) A parallel
time-varying Gauss–Markov process with identically dis-
tributed spatial components that are quantized and trans-
mitted through a noiseless channel to a minimum mean-
squared error decoder; and b) a time-varying quantized lin-
ear quadratic Gaussian (LQG) closed-loop control system,
with identically distributed spatial components and with
a random data-rate allocation. Our nonasymptotic lower
bound on the quantized LQG control problem reveals the
absolute minimum data-rates for (mean square) stability
of our time-varying plant for any fixed finite-time horizon.
We supplement our framework with illustrative simulation
experiments.

Index Terms—Finite-time horizon, quantization, reverse-
waterfilling, sequential causal coding, stochastic systems.

I. INTRODUCTION

O
NE of the fundamental characteristics of networked con-

trol systems (NCSs) [1] is the existence of an imperfect

communication network between computational and physical

entities. In such setups, an analytical framework to assess

impacts of communication and data-rate limitations on the
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control performance is strongly required. In this article, we

adopt information-theoretic tools to analyze such requirements.

Specifically, we consider sequential coding of correlated sources

initially introduced by [2] (see also [3]), which is a generaliza-

tion of the successive refinement source-coding problem [4],

[5]. In successive refinement, source coding is performed in

(time) stages and the goal is to “refine” the description of the

source with every new stage when more information is available.

Sequential coding differs from successive refinement in that at

the second stage, encoding involves describing a correlated (in

time) source as opposed to improving the description of the

same source. To accomplish this task, sequential coding encom-

passes a spatio-temporal coding method. In addition, sequential

coding is a temporally zero-delay coding paradigm since both

encoding and decoding must occur in real time. The resulting

zero-delay coding approach should not be confused with other

existing works on zero-delay coding, see, e.g., [6]–[11], because

it relies on the use of a spatio-temporal coding approach whereas

the aforementioned papers rely solely on temporal coding

approaches.

A. Literature Review on Sequential Source Coding

In what follows, we provide a detailed literature review on

sequential source coding. To shed more light on the historical

route of this coding paradigm, we distinguish the work of [2]

(see also [12], [13]) with the work of [3] because although

their results complement each other, their underlining motivation

has been different. Indeed, Viswanathan and Berger [2] initi-

ated this coding approach targeting video-coding applications,

whereas Tatikonda [3] aimed to develop a framework for delay-

constrained systems and to study the communication theory in

classical closed-loop control setups.

Sequential Coding Via [2]: The authors of [2] characterized

the minimum achievable rate-distortion region for two tem-

porally correlated random variables (RVs) with each being a

vector of spatially independent and identically distributed (IID)

processes (also called “frames”), subject to a coupled average

distortion criterion. In the last decade, sequential coding ap-

proach of [2] was further studied in [12]–[14]. Ma and Ishwar

[12] used an extension of [2] to three time instants subject

to a per-time distortion constraint to investigate the effect of

sequential coding when possible coding delays occur within

a multi-input–multi-output system. Around the same time,

Yang et al. [13] generalized [2] to a finite number of time instants.
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Compared to [2], [12], their spatio-temporal source process is

correlated over time, whereas each frame is spatially jointly

stationary and totally ergodic subject to a per-time average

distortion criterion. More recently, Yang et al. [14] drew connec-

tions between sequential causal coding and predictive sequential

causal coding, that is, for (first-order) Markov sources subject to

a single-letter fidelity constraint, sequential causal coding and

sequential predictive coding coincide. For three time instants

of an IID vector source containing jointly Gaussian correlated

processes (not necessarily Markov), an explicit expression of the

minimum achievable sum-rate for a per-time mean-squared error

(MSE) distortion is obtained in [15]. Inspired by the framework

of [2], [12], Khina et al. [16] derived fundamental performance

limitations in control-related applications. In particular, they

considered a multitrack system that tracks several parallel time-

varying Gauss–Markov processes with IID spatial components

conveyed over a single shared wireless communication link

(possibly prone to packet drops) to a minimum mean-squared

error (MMSE) decoder. In their Gauss–Markov multitracking

scenario, they provided lower and upper bounds in finite-time

and in the per-unit time asymptotic limit for the distortion-rate

region of time-varying Gauss–Markov sources subject to a

mean-squared error (MSE) distortion constraint. Their lower

bound is characterized by a forward-in time-distortion allocation

algorithm operating with fixed data-rates at each time instant for

a finite time horizon whereas their upper bound is obtained by

means of a differential pulse-code modulation (DPCM) scheme

using entropy-coded dithered quantization (ECDQ) with one-

dimensional lattice constrained by uniform data rates across

time. Subsequently, they used these bounds in a scalar-valued

quantized linear quadratic Gaussian (LQG) closed-loop control

problem to find similar bounds on the minimum cost of control.

Sequential Coding Via [3]: Tatikonda in his Ph.D thesis [3,

Ch. 5] (see also [17]) studied sequential source coding in the

context of delay-constrained and control-related applications.

Therein an information theoretic quantity called sequential rate

distortion function (RDF) was introduced that is attributed to

the prior works of Gorbunov and Pinsker [18], [19]. Using the

sequential RDF, Tatikonda et al. [20] studied the performance

analysis and synthesis of a multidimensional fully observable

time-invariant Gaussian closed-loop control system when a

memoryless communication link exists between a stochastic

linear plant and a controller and the performance criterion is the

classical linear quadratic cost. The use of sequential RDF (also

encountered as nonanticipative or causal RDF in the literature)

in filtering applications is stressed in Refs. [21]–[23]. Analytical

suboptimal expressions of lower and upper bounds for the setup

of [20], including the cases where a linear fully observable time-

invariant plant is driven by IID non-Gaussian noise processes or

when the system is modeled by time-invariant partially observ-

able Gaussian processes, are derived in [24]. Tanaka et al. [25],

[26] studied the performance analysis and synthesis of a linear

fully observable and partially observable Gaussian closed-loop

control problem when the performance criterion is the linear

quadratic cost. Moreover, they showed that one can derive lower

bounds in finite time and in the per-unit time asymptotic limit

by casting the problems as semidefinite representable and thus

numerically computable by known solvers. An achievability

bound on the asymptotic limit using a DPCM-based ECDQ
scheme that uses one-dimensional quantizer at each dimension

was also proposed. Lower and upper bounds for a general

closed-loop control system subject to asymptotically average

total data-rate constraints across the time are also investigated

in [27], [28]. The lower bounds are obtained using sequential

coding and directed information [29], whereas the upper bounds

are obtained via a sequential ECDQ scheme using scalar quan-

tizers.

B. Contributions

In this article, we first revisit the sequential coding framework

developed by [2], [3], [12], [13] to obtain the following new

results.

1) Analytical, nonasymptotic, and finite-dimensional lower

and upper bounds on the minimum achievable total-rates (per-

dimension) for a multitrack communication scenario similar

to the one considered in [16]. However, compared to [16],

which derived distortion-rate bounds via forward recursions

with given data rates across a finite time horizon, here we derive

a lower bound subject to a dynamic reverse-waterfilling solution

in which we only require a given distortion threshold D > 0
(Theorem 1). We also implement the solution in Algorithm 1.

The idea to obtain our lower bound is subsequently used to derive

an upper bound on the minimum achievable total-rates (per

dimension) using a sequential DPCM-based ECDQ scheme

that is constrained by total-rates for a fixed finite-time horizon.

For the specific rate constraint, we use the dynamic reverse-

waterfilling algorithm obtained from our lower bound to allocate

the rate and theMSE distortion at each time instant for the whole

finite-time horizon. This rate constraint is the fundamental dif-

ference compared to similar upper bounds derived in [16, Th. 6]

and [27, Corollary 5.2] (see also [11], [28]) that restrict their

transmit rates to have either fixed rates that are averaged across

the time horizon or that are asymptotically averaged across the

time.

2) We obtain analogous bounds to 1) on the minimum

achievable total (across time) cost-rate function of control (per-

dimension) for a networked control system (NCS) with time-

varying quantized LQG closed-loops operating with data-rate

obtained subject to a solution of a reverse-waterfilling algorithm

(Theorems 3 and 4).

Discussion of the Contributions and Additional Results: The

nonasymptotic lower bound in 1) is obtained because for parallel

processes, all involved matrices in the characterization of the cor-

responding optimization problem commute by pairs [30, p. 5];

thus, they are simultaneously diagonalizable by an orthogonal

matrix [30, Th. 21.13.1] and the resulting optimization prob-

lem simplifies to one that resembles scalar-valued processes.

The upper bound in 1) is obtained because we are able to

employ a lattice quantizer [31] using a quantization scheme

with existing performance guarantees such as the DPCM-

based ECDQ scheme and using existing approximations from

quantization theory for high-dimensional but possibly finite-

dimensional quantizers with an MSE performance criterion
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(see, e.g., [32]). The nonasymptotic bounds derived in 2)

are obtained using the so-called “weak separation principle”

of quantized LQG control (for details, see Section IV) and

well-known information theoretic inequalities. Interestingly, our

lower bound in 2) also reveals the minimum allowable data rates

at each time instant to ensure (mean square) stability of the plant

(see e.g., [33] for the definition) using nonuniform rate-

distortion allocation for the specific NCS (Remark 6). Finally,

for every bound in this article, we explain how to recover known

results for the steady-state solution (see Corollaries 1–4).

This article is organized as follows. In Section II, we give an

overview of known results on sequential coding. In Section III,

we derive nonasymptotic bounds and their corresponding per-

unit time asymptotic limits for a quantized state estimation prob-

lem. In Section IV, we use the results of Section III and the weak

separation principle to derive nonasymptotic bounds and their

corresponding per-unit time asymptotic limits for a quantized

LQG closed-loop control problem. We draw conclusions and

discuss open questions in Section V.

Notation: R � (−∞,∞), N1 � {1, 2, . . .}, and N
n
1 �

{1, . . . , n}, n ∈ N1, respectively. Let X be a finite-dimensional

Euclidean space and B(X) be the Borel σ-algebra on X. An

RV X defined on some probability space (Ω,F ,P) is a map

X : Ω �→ X. The probability distribution of an RVX with real-

ization X = x on X is denoted by PX ≡ p(x). The conditional

distribution of an RV Y with realization Y = y, given X = x,

is denoted by QY |X ≡ q(y|x). We denote the sequence of

one-sided RVs by Xt,j � (Xt, Xt+1, . . . , Xj), t ≤ j, (t, j) ∈

N1 × N1, and their values by xt,j ∈ Xt,j � ×j
k=tXk. We de-

note the sequence of orderedRVswith ith spatial components by

Xi
t,j , so thatXi

t,j is a vector of dimension “i,” and their values by

xi
t,j ∈ X

i
t,j � ×j

k=tX
i
k, where X

i
k � (Xk(1), . . .Xk(i)). The

notation X ↔ Y ↔ Z denotes a Markov Chain (MC), which

means that p(x|y, z) = p(x|y). We denote the diagonal of a

square matrix by diag(·) and the p× p identity matrix by Ip.

If A ∈ R
p×p, we denote by A 	 0 (respectively, A 
 0) a pos-

itive semidefinite matrix (respectively positive definite matrix).

We denote the determinant and trace of some square matrix

A ∈ R
p×p by |A| and trace(A), respectively. We denote by

h(x) (resp. h(x|y)) the differential entropy of a distribution

p(x) (resp. p(x|y)). We denote D(P ||Q) the relative entropy

of probability distributions P and Q. We denote by E{·} the

expectation operator and || · ||2 the Euclidean norm. When we

say “total” distortion, “total-rate,” or “total-cost,” we mean with

respect to time. Similarly, by referring to “average total,” we

mean normalized over the total time horizon.

II. KNOWN RESULTS ON SEQUENTIAL CODING

In this section, we give an overview of the sequential causal

coding [3, Ch. 5], [2], [12], [13].

In the following analysis, we consider processes for a fixed

time-span t ∈ N
n
1 , i.e., (X1, . . . , Xn). Following [12], [13], we

assume that the sequences ofRVs are defined on alphabet spaces

with finite cardinality. Nevertheless, these can be extended

following, for instance, the techniques employed in [34] to

continuous alphabet spaces as well (i.e., Gaussian processes)

with MSE distortion constraints.

First, we use some definitions (with slight modifications to

ease the readability of the article) from [12, §II] and [13, §I].

Definition 1: (Sequential Causal Coding) A spatial order

p sequential causal code Cp for the (joint) vector source

(Xp
1 , X

p
2 , . . . , X

p
n) is formally defined by a sequence of encoder

and decoder pairs (f
(p)
1 , g

(p)
1 ), . . . , (f

(p)
n , g

(p)
n ) such that

f
(p)
t : X

p
1,t × {0, 1}∗ × . . .× {0, 1}∗︸ ︷︷ ︸

t−1 times

−→ {0, 1}∗

g
(p)
t : {0, 1}∗ × . . .× {0, 1}∗︸ ︷︷ ︸

t times

−→ Y
p
t , t ∈ N

n
1 (1)

where {0, 1}∗ denotes the set of all binary sequences of finite

length satisfying the property that at each time instant t, the

range of {ft : t ∈ N
n
1 } given any t− 1 binary sequences is an

instantaneous code. The encoded and reconstructed sequences

of {Xp
t : t ∈ N

n
1 } are given bySt = ft(X

p
1,t, S1,t−1), withSt ∈

St ⊂ {0, 1}∗, and Y p
t = gt(S1,t), respectively, with cardinality

card(Yt) < ∞ for any t. The expected rate in bits per symbol

at each time instant (normalized over the spatial components) is

defined as

rt �
E|St|

p
, t ∈ N

n
1 (2)

where |St| denotes the length of the binary sequence St.

Distortion Criterion: For each t ∈ N
n
1 , we consider a total

(in dimension) single-letter distortion criterion. This means that

the distortion between Xp
t and Y p

t is measured by a func-

tiondt : X
p
t × Y

p
t −→ [0,∞)with maximum distortiondmax

t =
maxxp

t ,y
p
t
dt(x

p
t , y

p
t ) < ∞ such that

dt(x
p
t , y

p
t ) �

1

p

p∑

i=1

dt(xt(i), yt(i)). (3)

The average distortion is defined as

E {dt(X
p
t , Y

p
t )} �

1

p

p∑

i=1

E {dt(Xt(i), Yt(i))} . (4)

Definition 2: (Achievability) A rate-distortion tuple (R1,n,

D1,n) � (R1, . . . , Rn, D1, . . . , Dn) for any “n” is said to be

achievable for a given sequential causal coding system if for

all ε > 0, there exists a sequential code {(f
(p)
t , g

(p)
t ) : t ∈ N

n
1 }

such that there exists P for which

rt ≤ Rt + ε

E {dt(X
p
t , Y

p
t )} ≤ Dt + ε, Dt ≥ 0, ∀t ∈ N

n
1 (5)

holds ∀p ≥ P . Moreover, let the set of all achievable rate-

distortion tuples (R1,n, D1,n) be denoted by R∗. Then, the

minimum total-rate required to achieve the distortion tuple

(D1, D2, . . . , Dn) is defined by

Rop
sum(D1,n) � inf

(R1,n,D1,n)∈R∗

n∑

t=1

Rt. (6)
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Source Model: The finite alphabet source randomly gener-

ates symbols Xp
1,n = xp

1,n ∈ X
p
1,n according to the following

temporally correlated joint probability mass function (PMF):

p(xp
1,n) � ⊗p

i=1p(x1(i), . . . , xn(i)) (7)

where the joint process {(X1(i), . . . , Xn(i))}
p
i=1 is identi-

cally distributed. This means that for each i = 1, . . . , p, the

temporally correlated joint process (X1(i), . . . , Xn(i)) is in-

dependent of every other temporally correlated joint process

(X1(j), . . . , Xn(j)), such that i �= j. Furthermore, each tem-

porally correlated joint process (X1(i), . . . , Xn(i)) is spatially

identically distributed.

Achievable Rate-Distortion Regions and Minimum Achiev-

able Total Rate: Next, we characterize the achievable rate-

distortion regions and the minimum achievable total rate for

the source model (7) with distortion constraint (4).

The following lemma is given in [13, Theorem 5].

Lemma 1: (Achievable Rate-Distortion Region) Consider the

source model (7) with the average distortion of (4). Then, the

“spatially” single-letter characterization of the rate-distortion

region (R1,n, D1,n) is given by

RIID =

{
(R1,n, D1,n)

∣∣∣∣∣∃S1,n−1, Y1,n, {gt(·)}
n
t=1

s.t. R1 ≥ I(X1;S1) (initial time)

Rt ≥ I(X1,t;St|S1,t−1), t = 2, . . . , n− 1,

Rn ≥ I(X1,n;Yn|S1,n−1) (terminal time)

Dt ≥ E {dt(Xt, Yt)} , t ∈ N
n
1

Y1 = g1(S1), Yt = gt(S1,t), t = 2, . . . , n− 1

S1 ↔ (X1) ↔ X2,n

St ↔ (X1,t, S1,t−1) ↔ Xt+1,n, t = 2, . . . , n− 1

}
(8)

where {S1,n−1, Y1,n} are the auxiliary (encoded) and reproduc-

tion RVs, respectively, taking values in some finite alphabet

spaces {S1,n−1,Y1,n}, and {gt(·) : t ∈ N
n
1 } are deterministic

functions.

Remark 1: (On Lemma 1) In the characterization of Lemma

1, we exclude the spatial index because the rate and distortion

regions are normalized with the total number of spatial compo-

nents. Following [12], [13], Lemma 1 gives a set RIID that is

convex and closed (this can be shown by trivially generalizing

the time-sharing and continuity arguments of [12, Appendix

C2] to n time-steps). This in turn means that R∗ = RIID (see,

e.g., [13, Theorem 5]). Thus, (6) can be reformulated to the

following problem:

RIID,op
sum (D1,n) � min

(R1,n,D1,n)∈RIID

n∑

t=1

Rt. (9)

Next, we state a lemma (without a proof) that gives a lower

bound on RIID,op
sum (D1,n). The derivation of the proof can be

found, for instance, in [3, Theorem 5.3.1, Lemma 5.4.1], [27,

Theorem 4.1], [12, Corollary 1.1].

Lemma 2: (Lower Bound on (9)) For any p sufficiently large,

the following lower bound holds:

RIID,op
sum (D1,n) ≥ RIID

sum(D1,n)

� min
E{dt(Xt,Yt)}≤Dt, t∈Nn

1

Y1↔X1↔X2,n,

Yt↔(X1,t,Y1,t−1)↔Xt+1,n, t=2,...,n−1

I(X1,n;Y1,n) (10)

where I(X1,n;Y1,n) =
∑n

t=1 I(X1,t;Yt|Y1,t−1) is a variant of

directed information [29], [35] obtained by the conditional in-

dependence constraints imposed in the constraint set of (10).

The lower bound in Lemma 2 can be found in the literature

by the name nonanticipatory ε-entropy and sequential or nonan-

ticipative RDF.

Remark 2: (When do we achieve the lower bound in (10)?)

In [13, Theorem 4], they showed via an algorithmic approach

(see also [13, Theorem 5] for an equivalent proof via a direct

and converse coding theorem) that Lemma 2 is achieved with

equality if the number of IID spatial components tends to

infinity, i.e., p −→ ∞, which also means that the optimal mini-

mizer or “test-channel” at each time instant in (10) corresponds

precisely to the distribution generated by a sequential encoder,

i.e., St = Yt, for any t ∈ N
n
1 (see also [12, Corollary 1.1]).

In other words, the equality holds if the encoder (or quantizer

for continuous alphabet sources) simulates exactly the corre-

sponding “test-channel” distribution of (10). This claim was

demonstrated via an application example for jointly Gaussian

RVs and per-time MSE distortion in [12, Corollary 1.2] and

also stated as a corollary referring to an “ideal” DPCM-based

MSE quantizer in [12, Corollary 1.3]. In general, however, for

any p < ∞, the equality in (10) is not achievable.

Next, we state the generalization of Lemma 2 when the con-

strained set is subject to an average total distortion constraint de-

fined as 1
n

∑n
t=1 E{dt(Xt, Yt)} ≤ D withE{dt(Xt, Yt)} given

in (4). This lemma was derived in [3, Theorem 5.3.1 and Lemma

5.4.1].

Lemma 3: (Generalization of Lemma 2) For any p sufficiently

large, the following lower bound holds:

RIID,op
sum (D) ≥ RIID

sum(D)

= min
1
n

∑n
t=1 E{dt(Xt,Yt)}≤D, t∈Nn

1

Y1↔(X1)↔X2,n,

Yt↔(X1,t,Y1,t−1)↔Xt+1,n, t∈N
n−1
2

I(X1,n;Y1,n). (11)

Clearly, one can use the same methodology applied in [13,

Ths. 4 and 5] to demonstrate that the lower bound in (11)

is achieved once p −→ ∞ (see the discussion in Remark 2).

However, we once again point out that in general, (11) is a lower

bound on the minimum achievable rates achieved by causal

sequential codes.

Information Structures: Next, we state a few well-known

structural results related to the bounds in Lemmas 2 and 3.

Specifically, if the temporally correlated joint PMF in (7)

follows a finite-order Markov process, then, the description in

Lemma 1 and the corresponding bounds in Lemmas 2 and 3

can be simplified following, for instance, the framework of [6],

[17], [23]. For the important special case of first-order Markov
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Fig. 1. Multitrack state estimation system model.

process, (8) simplifies to

RIID,1 =

{
(R1,n, D1,n)

∣∣∣∣∣∃S1,n−1, Y1,n, {gt(·)}
n
t=1

s.t. R1 ≥ I(X1;S1) (initial time)

Rt ≥ I(Xt;St|S1,t−1), t = 2, . . . , n− 1

Rn ≥ I(Xn;Yn|S1,n−1) (terminal time),

Dt ≥ E {dt(Xt, Yt)} , t ∈ N
n
1

Y1 = g1(S1), Yt = gt(S1,t), t = 2, . . . , n− 1

S1 ↔ (X1) ↔ X2,n

St ↔ (Xt, S1,t−1) ↔ (X1,t−1, Xt+1,n)

}
. (12)

Using (12), the minimum achievable total-rate in turn can be

simplified as follows:

RIID,op,1
sum (D1,n) � min

(R1,n,D1,n)∈RIID,1

n∑

t=1

Rt. (13)

In addition, from (13), we can simplify (10) and (11), accord-

ingly. In the sequel of the article, we only consider average

total MSE distortion constraint to obtain our results, and for

this reason, we give its simplification below

RIID,op,1
sum (D) ≥ RIID,1

sum (D)

� min
1
n

∑n
t=1 E{dt(Xt,Yt)}≤D, t∈Nn

1

Y1↔X1↔X2,n,

Yt↔(Xt,Y1,t−1)↔(X1,t−1, Xt+1,n), t=2,...,n−1

I(X1,n;Y1,n)

(14)

where I(X1,n;Y1,n) =
∑n

t=1 I(Xt;Yt|Y1,t−1).

III. APPLICATION IN QUANTIZED STATE ESTIMATION

In this section, we apply the framework of Section II to a state

estimation problem and obtain new results in such applications.

The setup is similar to [16, Section II] where a multitrack system

estimates several “parallel” Gaussian processes over a single

shared communication link as illustrated in Fig. 1. However,

in contrary to the result of [16, Theorem 1] which derives a

dynamic forward in time recursion of a distortion-rate allocation

algorithm when the rate is given at each time instant, here we

derive a dynamic rate-distortion reverse-waterfilling algorithm

operating forward in time for which we only consider a given

distortion threshold D > 0.

We start with the description of the problem.

State process: Consider p-parallel time-varying Gauss–

Markov processes with IID spatial components as follows:

xt(i) = αt−1xt−1(i) + wt−1(i), i ∈ N
p
1 , t ∈ N

n
1 (15)

where x1(i) ≡ x1 is given, with x1 ∼ N (0;σ2
x1
); the non-

random coefficient αt ∈ R is known at each time step t, and

{wt(i) ≡ wt : i ∈ N
p
1}, wt ∼ N (0;σ2

wt
), is an independent

Gaussian noise process at each t, independent of x1, ∀i ∈ N
p
1 .

Clearly, (15) can be compactly written as a vector or frame as

follows:

Xt = At−1Xt−1 +Wt−1, X1 = given, t ∈ N
n
2 (16)

where At−1 = diag(αt−1, . . . , αt−1) ∈ R
p×p, Xt ∈ R

p, and

the independent Gaussian noise process Wt ∈ R
p ∼ N (0;

ΣWt
), whereΣWt

= diag(σ2
wt
, . . . , σ2

wt
) 
 0 ∈ R

p×p indepen-

dent of the initial state X1.

Observer/Encoder: At the observer, the spatially IID time-

varying R
p-valued Gauss–Markov processes are collected into

a frame Xt ∈ R
p and mapped using sequential coding with

encoded sequence

St = ft(X1,t, S1,t−1) (17)

where at t = 1, we assume S1 = f1(X1), and Rt =
E|St|
p

is the

expected rate (per dimension) at each time instant t transmitted

through the noiseless link.

MMSE Decoder: The data packet St is received using the

following reconstructed sequence:

Yt = gt(S1,t) (18)

where at t = 1, we have Y1 = g1(S1).
Distortion: We consider the average total MSE distortion

normalized over all spatial components as follows:

1

n

n∑

t=1

Dt with Dt �
1

p
E
{
||Xt − Yt||

2
2

}
. (19)

Performance: The performance of the system (per dimension)

for a given D > 0 can be cast as follows:

RIID,op,1
sum (D) = min

(ft, gt): t=1,...,n
1
n

∑n
t=1 Dt≤D

n∑

t=1

Rt. (20)

The next theorem is our first main result in this article. It

derives a lower bound on the performance of Fig. 1 by means of

a dynamic reverse-waterfilling algorithm.

Theorem 1: (Lower Bound on (20)) For the multitrack system

in Fig. 1, the minimum achievable total-rate for any “n” and

any p, however large, is RIID,op,1
sum (D) =

∑n
t=1 R

op
t with the

minimum achievable rate-distortion at each time instant (per

dimension) given by some Rop
t ≥ R∗

t such that

R∗
t =

1

2
log2

(
λt

Dt

)
(21)

where λt � α2
t−1Dt−1 + σ2

wt−1
and Dt is the distortion at each

time instant evaluated based on a dynamic reverse-waterfilling
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algorithm operating forward in time as follows:

Dt �

{
ξt if ξt ≤ λt

λt if ξt > λt
, ∀t (22)

with
∑n

t=1 Dt = nD, and

ξt =

⎧
⎨
⎩

1
2b2t

(√
1 +

2b2t
θ

− 1

)
, ∀t ∈ N

n−1
1

1
2θ , t = n

(23)

where θ > 0 is the Lagrangian multiplier tuned to obtain equality∑n
t=1 Dt = nD, b2t �

α2
t

σ2
wt

, and D ∈ (0,∞).

Proof: See Appendix A. �

Next we remark some technical observations on Theorem 1

and draw connections with [12, Corollary 1.2].

Remark 3: (On Theorem 1) 1) The optimization problem in

the derivation of Theorem 1 suggests that (At,ΣWt
,∆t,Λt)

commute by pairs [30, p. 5] because they are all scalar ma-

trices. This means that they are simultaneously diagonalizable

by an orthogonal matrix [30, Theorem 21.13.1] (in this case,

the orthogonal matrix is the identity matrix and thus can be

omitted from the optimization problem). 2) Theorem 1 extends

the result of [12, Corollary 1.2] which found an explicit ex-

pression of the minimum total rate
∑n

t=1 R
∗
t for n = 3 subject

to a per-time MSE distortion, to a similar problem constrained

by an average total distortion that we solve using a dynamic

reverse-waterfilling algorithm for any fixed finite-time horizon.

Implementation of the Dynamic Reverse-Waterfilling: A way

to implement the dynamic reverse-waterfilling algorithm of The-

orem 1 is proposed in [36, Algorithm 1]. A different algorithm

using the bisection method (for details, see, e.g., [37, Chapter

2.1]) is proposed in Algorithm 1. This method guarantees linear

convergence. On the other hand, [36, Algorithm 1] requires a

specific proportionality gain factor γ ∈ (0, 1] chosen appropri-

ately at each time instant that affects the rate of convergence and

it does not guarantee global convergence of the algorithm.

A. Steady-State Solution of Theorem 1

In this subsection, we briefly discuss the steady-state case

of the lower bound obtained in Theorem 1. To do it, first,

we restrict the state process of our setup to be time-invariant,

which means that in (15), the coefficients αt−1 ≡ α, ∀t and

wt ∼ N (0;σ2
w), ∀t, or similarly, in (16), the matrixAt−1 ≡ A =

diag(α, . . . , α), ∀t and Wt ∼ N (0; ΣW ), ∀t, where ΣW =
diag(σ2

w, . . . , σ
2
w) 
 0. We also define the steady-state average

total rate and distortion as follows:

R∞ � lim sup
n−→∞

1

n

n∑

t=1

Rt, D∞ � lim sup
n−→∞

1

n

n∑

t=1

Dt. (24)

Steady-State Performance: For p-parallel time-invariant Gauss–

Markov processes (per dimension), the minimum achievable

steady-state performance of the multitrack system of Fig. 1 can

be cast as follows:

RIID,op,1
sum,ss (D) = min

(ft, gt): t=1,...,∞
D∞≤D

R∞. (25)

Algorithm 1: Dynamic Reverse-Waterfilling Algorithm.

Initialize: number of time-steps n; distortion level D;

error tolerance ε; nominal minimum and maximum

value of θ, i.e., θmin = 0 and θmax = 1
2D ; initial

variance λ1 = σ2
x1

, values at and σ2
wt

of (15).

Set θ = 1/2D; flag = 0.

while flag = 0 do

for t = 1 : n do

Compute ξt according to (23).

Compute Dt according to (22).

if t < n then

Compute λt+1 according to λt+1 � α2
tDt + σ2

wt
.

end if

end for

if 1
n

∑
Dt −D ≥ ε then

Set θmin = θ.

else

Set θmax = θ.

end if

if θmax − θmin ≥ ε
n

then

Compute θ = (θmin+θmax)
2 .

else

flag ← 1
end if

end while

Output: {Dt : t ∈ N
n
1 }, {λt : t ∈ N

n
1 }, for a given

distortion level D.

Under the previous assumptions, one can obtain a lower bound

on the minimum achievable steady-state total rate subject to

steady-state total distortion constraint. This result is equivalent

to having the minimum achievable steady-state total rate subject

to a fixed (uniform) distortion budget, i.e., Dt = D, ∀t. In what

follows, we state this result without a proof because it follows

using similar steps to [16, Corollary 2] or [24, Theorem 9].

Corollary 1: (Lower Bound on (25)) The minimum achiev-

able steady-state performance of (25), under a steady-state total

distortion constraint D∞ ≤ D for any p, however larger, is

bounded from below by RIID,op,1
sum,ss (D) ≥ R∗

∞, such that

R∗
∞ =

1

2
log2

(
α2 +

σ2
w

D

)
(26)

where R∗
∞ � limn−→∞

1
n

∑n
t=1 R

∗
t . Consequently, assuming

Dt = D, ∀t, achieves (26) as n −→ ∞.

Remark 4: (On Corollary 1) 1) The steady-state lower bound

of Corollary 1 corresponds precisely to the solution of the time-

invariant scalar-valued Gauss–Markov processes with per-time

MSE distortion constraint derived in [20, (14)] and to the solu-

tion of stationary Gauss-Markov processes with MSE distortion

constraint derived in [38, Theorem 3], [18, (1.43)]. 2) In Fig. 2

, we illustrate the behavior of the average total rate obtained

in Theorem 1 versus (vs.) the average total rate obtained using

uniform distortion allocation vs. the steady-state lower bound

of (26), as a function of t. We observe that although the three

lines seem to meet really fast, they do not coincide. In fact, for
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Fig. 2. Comparison of the average total rate of Theorem 1 vs. average
total rate with uniform distortion vs. the lower bound of Corollary 1, as
a function of t. For this simulation, we considered D = 2 and (α, σ2

w
) =

(1.5, 0.5).

a reasonable precision error (i.e., of order 10−9), the lines will

converge in the asymptotic limit as Corollary 1 suggests. The

starting point of the plot obtained using Theorem 1 depends on

the initial value of λ1.

B. Upper Bounds on the Minimum Achievable Total-Rate

In this section, we employ a sequential causal DPCM-

based scheme using pre-/post-filtered ECDQ (for details on

this scheme, see, e.g., [31, Chapter 5]) that ensures standard

performance guarantees (achievable upper bounds) on the min-

imum achievable sum-rate RIID,op,1
sum (D) =

∑n
t=1 R

op
t of the

multitrack setup of Fig. 1. The reason for the choice of this

quantization scheme is twofold. First, it can be implemented

in practice and, second, it allows to find analytical achievable

bounds and approximations on finite-dimensional quantizers

which generate near-Gaussian quantization noise and Gaussian

quantization noise for infinite dimensional quantizers [39].

We first describe the sequential causal DPCM scheme using

an MMSE quantizer for parallel time-varying Gauss–Markov

processes. Then, we bound the rate performance of such scheme

using ECDQ and vector quantization followed by memoryless

entropy coding. This can be seen as a generalization of [12,

Corollary 1.2] to any finite time when the rate is nonuniformly

allocated at each time instant.

DPCM Scheme: At each time instant t, the encoder or inno-

vations’ encoder performs the linear operation

X̂t = Xt −At−1Yt−1 (27)

where at t = 1, we have X̂1 = X1 and also Yt−1 �

E{Xt−1|S1,t−1}, i.e., an estimate of Xt−1 given the previous

quantized symbols S1,t−1. Then, by means of a R
p-valued

MMSE quantizer that operates at a rate (per dimension) Rt, we

generate the quantized reconstruction Ŷt of the residual source

X̂t denoted by Ŷt = Yt −At−1Yt−1. Afterwards, we send St

over the channel (the corresponding data packet to Ŷt). At the

decoder, we receive St and recover the quantized symbol Ŷt of

X̂t. Then, we generate the estimate Yt using the linear operation

Yt = Ŷt +At−1Yt−1. (28)

Fig. 3. DPCM of parallel processes.

Combining (27) and (28), we obtain

Xt − Yt = X̂t − Ŷt. (29)

MSE Performance: From (29), we see that the error between Xt

and Yt is equal to the quantization error introduced by X̂t and

Ŷt. This also means that the MSE distortion (per dimension) at

each instant of time satisfies

Dt =
1

p
E{||Xt − Yt||

2
2} =

1

p
E{||X̂t − Ŷt||

2
2}. (30)

A pictorial view of the DPCM scheme is given in Fig. 3.

The following theorem is another main result.

Theorem 2: (Upper Bound to RIID,op,1
sum (D)) Suppose that in

(20), we apply a sequential causal DPCM-based ECDQ with

a lattice quantizer. Then, the minimum achievable total rate

RIID,op,1
sum (D) =

∑n
t=1 R

op
t , where at each time instant Rop

t is

upper bounded as follows:

Rop
t ≤ R∗

t+
1

2
log2 (2πeGp)+

1

p
, ∀t, (bits/dimension)

(31)

where R∗
t is obtained from Theorem 1, 1

2 log2(2πeGp) is the

divergence of the quantization noise from Gaussianity; Gp is

the dimensionless normalized second moment of the lattice [31,

Definition 3.2.2]; and 1
p

is the additional cost due to having

prefix-free (instantaneous) coding.

Proof: See Appendix B.

Next, we remark some technical comments on Theorem 2.�

Remark 5: (On Theorem 2) 1) Theorem 2 allows a nonuni-

form rate at each time instant for a finite-time horizon while

it achieves the MMSE distortion at each time step t. This

is because our DPCM-based ECDQ scheme makes use of

the dynamic reverse-waterfilling algorithm of Theorem 1. This

general rate-constraint is the new input of our bound compared to

similar existing bounds in the literature (see, e.g., [16, Theorem

6, Remark 16], [27, Corollary 5.2], [11, Theorem 5]) that assume

fixed (uniform) rates averaged across the time. 2) Recently,

in [16], [24], it is pointed out that for discrete-time processes,

one can assume in the ECDQ coding scheme the clocks of the

entropy encoder and the entropy decoder to be synchronized,

thus, eliminating the additional rate-loss due to prefix-free cod-

ing, i.e., 1
p

in (31) can be removed.

Steady-State Performance: If we restrict the system model

to be time-invariant (per dimension) similar to §III-A, we can

obtain the following upper bound on (25).

Corollary 2: (Upper Bound on (25)) Suppose that in (20), we

apply a sequential causal DPCM-based ECDQ with a lattice

quantizer assuming the system is time-invariant and Dt = D,
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∀t. Then, RIID,op,1
sum,ss (D) = Rop

∞ is upper bounded as follows:

Rop
∞ ≤ R∗

∞ +
1

2
log2 (2πeGp) +

1

p
(bits/dimension) (32)

where R∗
∞ is given by (26).

Proof: This follows from Theorem 2 and Corollary 1. �

We note that Corollary 2 is a known result derived in several

papers in the past, such as those discussed in Remark 5, 1).

Computational Aspects of Theorem 2 for High-Dimensional

Systems: Unfortunately, finding Gp in (31) for good high-

dimensional quantizers of possibly finite dimension is currently

an open problem (although it can be approximated for any

dimension using, for example, product lattices [32]). For this

reason, next we bring to spotlight some existing computable

bounds to the achievable upper bound of Theorem 2 for any

high-dimensional lattice quantizer. These bounds were derived

as a consequence of a main result by Zador (see, e.g., [32]),

namely, it is possible to reduce the MSE distortion normalized

per dimension using higher dimensional quantizers. Toward

this end, Zador introduced a lower bound on Gp using the

dimensionless normalized second moment of a p-dimensional

sphere, hereinafter denoted by G(Sp), for which it holds that

G(Sp) =
1

(p+ 2)π
Γ
(p
2
+ 1

) 2
p

(33)

where Γ(·) is the gamma function. Moreover, Gp and G(Sp) are

connected via the following inequalities:

1

2πe

(a)

≤ G(Sp)
(b)

≤ Gp

(c)

≤
1

12
(34)

where (a), (b) holds with equality for p −→ ∞; (c) holds with

equality if p = 1. Note that in [32, (82)], there is also an upper

bound on Gp due to Zador, i.e.,

Gp ≤
1

pπ
Γ
(p
2
+ 1

) 2
p

Γ

(
1 +

2

p

)
. (35)

In Fig. 4, we illustrate two plots using the bounds derived in

Theorems 1 and 2 for two different scenarios. In Fig. 4(a), we

choose t = {1, . . . , 20}, at ∈ (0, 1.5), σ2
wt

= 1, and D = 1, to

illustrate the gap between the nonuniform rate-distortion alloca-

tion obtained via the lower bound (21) and the upper bound (31)

when the latter is approximated with the best known quantizer

up to 24 dimensions, i.e., Leech lattice quantizer (for details, see,

e.g., [32, Table 2.3]). For this experiment, the gap between the

two bounds is approximately 0.126 bits/dimension. In Fig. 4(b),

we assume the same values for (at, σ
2
wt
, D), whereas the quan-

tization is performed for 500 dimensions. We observe that the

achievable bounds obtained via (33) and (35) are quite tight (they

have a gap of approximately 0.0014 bits/dimension) whereas the

gap between the lower bound (21) with the achievable upper

bound (31) approximated by (33) is 0.0097 bits/dimension,

and the one approximated by (35) is approximately 0.011

bits/dimension. Compared to the first experiment where p = 24,

the gap between the bounds on the minimum achievable rate

Rop
t is considerably decreased because we increase the number

of dimensions in the system. Moreover, when the number of

dimensions in the system increases, the gap between (21) and the

Fig. 4. Bounds on the minimum achievable total rate.

Fig. 5. Closed-loop control system model.

high-dimensional approximations of (31) will become arbitrary

small. The two bounds will coincide as p −→ ∞, because then,

the gap of coding noise from Gaussianity goes to zero (see,

e.g., [40], [39, Lemma 1]), which implies that (33) is equal to

(35) (see, e.g.,[32, (83)]).

IV. APPLICATION IN NCSS

In this section, we use sequential coding in the NCS setup of

Fig. 5 by applying the results obtained in Section III. We first

describe each component of Fig. 5.

Plant: Consider p parallel time-varying controlled Gauss–

Markov processes as follows:

xt+1(i) = αtxt(i) + βtut(i) + wt(i), i ∈ N
p
1 , t ∈ N

n
1 (36)

where x1(i) ≡ x1 is given with x1 ∼ N (0;σ2
x1
), ∀i; the non-

random coefficients (αt, βt) ∈ R are known to the system with

(αt, βt) �= 0, ∀t; {ut(i) : i ∈ N
p
1} is the controlled process with

ut(i) �= ut(
), for any (i, 
) ∈ N
p
1 ; {wt(i) ≡ wt : i ∈ N

p
1} is an

independent Gaussian noise process such that wt ∼ N (0;σ2
wt
),
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σ2
wt

> 0, independent of x1, ∀i. Again, similar to Section III,

(36) can be compactly written as

Xt+1 = AtXt +BtUt +Wt, X1 = given, t ∈ N
n
1 (37)

where At = diag(αt, . . . , αt) ∈ R
p×p, Bt = diag(βt, . . . , βt)

∈ R
p×p, Ut ∈ R

p, Wt ∈ R
p ∼ N (0; ΣWt

), ΣWt
=

diag(σ2
wt
, . . . , σ2

wt
) 
 0 is an independent Gaussian noise

process independent of X1. In this setup, the plant is fully

observable for the observer that acts as an encoder but not for

the controller due to the quantization noise (coding noise).

Observer/Encoder: At the encoder, the controlled process is

collected into a frame Xt ∈ R
p from the plant and encoded as

follows:

St = ft(X1,t, S1,t−1) (38)

where at t = 1, we have S1 = f1(X1), and Rt =
E|St|
p

is the

rate at each time instant t available for transmission via the

noiseless channel. In the design of Fig. 5, the channel is noiseless

and the controller/decoder are deterministic mappings; thus, the

observer/encoder implicitly has access to past control signals

U1,t−1 ∈ U1,t−1.

Decoder/Controller: The data packet St is received by the

controller using the following reconstructed sequence:

Ut = gt(S1,t). (39)

Following (39), when the sequence S1,t is available at the

decoder/controller, all past control signalsU1,t−1 are completely

specified.

Quadratic Cost: The cost of control (per dimension) is defined

as

LQG1,n �
1

p
E

{
n−1∑

t=1

(
XT

t Q̃tXt + UT
t ÑtUt

)
+XT

nQ̃nXn

}

(40)

where Q̃t = diag(Qt . . . , Qt) 	 0, Q̃t ∈ R
p×p and Ñt =

diag(Nt, . . . , Nt) 
 0, Ñt ∈ R
p×p, are designing parameters

that penalize the state variables or the control signals.

Performance: The performance of Fig. 5 (per dimension) can

be cast to a finite-time horizon-quantized LQG control problem

subject to the joint design of quantizer/controller as follows:

ΓIID,op
sum (R) = min

(ft, gt): t=1,...,n
1
n

∑n
t=1 Rt≤R

LQG1,n. (41)

Iterative Encoder/Controller Design: In general, as (41) sug-

gests, the optimal performance of the system in Fig. 5 is achieved

when the encoder/controller pair is designed jointly. This is a

quite challenging task, especially when the channel is noisy

because information structure is non-nested in such cases (for

details, see, e.g., [41]). There are examples, however, where the

separation principle applies and the task comes much easier.

More precisely, the so-called certainty equivalent controller

remains optimal if the estimation errors are independent of

previous control commands (i.e., dual effect is absent) [42].

In our case, the optimal control strategy will be a certainty

equivalence controller if we assume a fixed sequence of encoders

{f ∗
t : t ∈ N

n
1 } and the corresponding quantizer follows a pre-

dictive quantizer policy (similar to the DPCM-based ECDQ
scheme proposed in Section III-B), i.e., at each time instant, it

subtracts the effect of the previous control signals at the encoder

and adds them at the decoder (see, e.g., [43, Proposition 3], [44],

[45, Section III]). Moreover, the separation principle will also be

optimal if we consider an MMSE estimate of the state (similar

to what we have established in Section III), and an encoder

that minimizes a distortion for state estimation at the controller.

The resulting separation principle is termed “weak separation

principle” [44] as it relies on the fixed (given) quantization

policies. This is different from the well-known full separation

principle in the classical LQG stochastic control problem [46]

where the problem separates naturally into a state estimator and

a state feedback controller without any loss of optimality. The

previous analysis is described by a modified version of (41) as

follows:

ΓIID,op
sum (R) ≤ ΓIID,op,ws

sum = min
(f ∗

t , gt): t=1,...,n
1
n

∑n
t=1 Rt≤R

LQG1,n. (42)

Next, we state the solution of (42) in the form of a lemma. The

derivation of the proof can be found in [20], [44], [45].

Lemma 4: (Weak Separation Principle for Fig. 5) The optimal

controller that minimizes (41) is given by

Ut = −LtE {Xt|S1,t} (43)

where E{Xt|S1,t} are the fixed quantized state estimates

obtained from the estimation problem in Section III; L̃t =
diag(Lt, . . . , Lt) ∈ R

p is the optimal LQG control (feedback)

gain obtained as follows:

L̃t =
(
B2

t K̃t+1 + Ñt

)−1

BtK̃t+1At (44)

and K̃t = diag(Kt, . . . ,Kt) 	 0 is obtained using the back-

ward recursions

K̃t = A2
t

(
K̃t+1 − K̃t+1B

2
t (B

2
t K̃t+1 + Ñt)

−1K̃t+1

)
+ Q̃t

(45)

with K̃n+1 = 0. Moreover, this controller achieves a minimum

linear quadratic cost of

ΓIID,op,ws
sum =

1

p

n∑

t=1

{
trace(ΣWt

K̃t)

+ trace(AtBtL̃tK̃t+1E{||Xt − Yt||
2
2})

}

(46)

where E{||Xt − Yt||
2
2} is the MMSE distortion obtained using

any quantization (coding) in the control/estimation system.

Before we prove one main result of the article, we define the

instantaneous cost of control as follows:

LQGop
t �

1

p

{
trace(ΣWt

K̃t)

+ trace(AtBtL̃tK̃t+1E{||Xt − Yt||
2
2})

}
, t ∈ N

n
1 . (47)

Next, we use Lemma 4 to derive a lower bound on (42).
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Theorem 3: (Lower bound on (42)) For fixed coding poli-

cies, the minimum total-cost of control (per dimension) of

(42), for any “n” and any p, however large, is ΓIID,op,ws
sum =∑n

t=1 LQGop
t , with LQGop

t ≥ LQG∗
t such that

LQG∗
t = σ2

wt
Kt + αtβtLtKt+1D(R∗

t) (48)

where D(R∗
t) is given by

D(R∗
t) �

{
σ2
wt

2
2R∗

t−α2
t

, ∀t ∈ N
n−1
1

2−2R∗
n , for t = n

(49)

with the pair (D(R∗
t), R

∗
t) given by (21)–(23).

Proof: See Appendix C. �

The following remark on Theorem 3 reveals a new major

result related to the absolute minimum rates at each instant of

time for a mean square stabilizable system.

Remark 6: (On Theorem 3) The expression of the lower

bound in Theorem 3 can be reformulated for any n, and any

p, to the equivalent expression of the total rate-cost function,

denoted hereinafter by
∑n

t=1 R(LQG∗
t), as follows:

R(LQG∗
t) =

1

2
log2

(
α2
t +

αtβtLtKt+1σ
2
wt

LQG∗
t − σ2

wt
Kt

)
, t ∈ N

n−1
1

(50)

with R(LQG∗
n) ≡ R∗

n as it is independent of LQG∗
n. Inter-

estingly, one can observe that by substituting in (50) the per-

dimension version of (44), we obtain

R(LQG∗
t)

=
1

2
log2

⎛
⎜⎝α2

t

⎛
⎜⎝1 +

β2
t K2

t+1σ
2
wt

β2
t K2

t+1
+Nt

LQG∗
t −σ2

wt
Kt

⎞
⎟⎠

⎞
⎟⎠ (51)

=
1

2

⎡
⎢⎣log2(α2

t ) + log2

⎛
⎜⎝1 +

β2
t K2

t+1σ
2
wt

β2
t K2

t+1
+Nt

LQG∗
t −σ2

wt
Kt

⎞
⎟⎠

⎤
⎥⎦ . (52)

The bound in (52) extends the result of [24, (16)] from uniform

(fixed) data rates to nonuniform rates at each instant of time

because the rate-cost function is obtained using an allocation of

LQG∗
t due to the nonuniform rate allocation of the quantized

state estimation problem of Theorem 1. Additionally, the ex-

pression in (52) reveals an interesting observation regarding the

absolute minimum data rates for mean square stability of the

plant (per dimension), i.e., supt E{(xt)
2} < ∞ (see, e.g., [33,

(25)] for the definition) for any fixed finite-time horizon. In

particular, (52) suggests that for unstable time-varying plants

with arbitrary disturbances modeled as in (37), and provided that

at each time instant the cost of control (per dimension) is with

communication constraints, i.e.,LQG∗
t > σ2

wt
Kt (the derivation

without communication constraints is well known as the sepa-

ration principle holds without a loss and LQG∗
t = σ2

wt
Kt, ∀t

[46]), the minimum possible rates at each time instant t, namely,

R(LQG∗
t), cannot be lower than log2 |αt|, when |αt| > 1. This

result extends known observations obtained for time-invariant

plants (see, e.g., [24, Remark 1]) to parallel and (possibly un-

bounded) time-varying plants for any fixed finite-time horizon.

Next, we use Theorem 2 to find an upper bound onΓIID,op,ws
sum .

Theorem 4: (Upper Bound on (42)) Suppose that in the sys-

tem of Fig. 5, the fixed coding policies are obtained using the

predictive coding scheme via sequential causal DPCM-based

ECDQ coding scheme with an R
p-valued lattice quantizer

described in Theorem 2. Then, ΓIID,op,ws
sum =

∑n
t=1 LQGop

t for

any n, and any p, with the instantaneous cost of control {LQGt :
t ∈ N

n−1
1 } (per dimension) to be upper bounded as follows:

LQGop
t ≤ σ2

wt
Kt + αtβtLtKt+1

4
1
p (2πeGp)σ

2
wt

22R
op
t − 4

1
p (2πeGp)α2

t

(53)

whereas, at t = n,LQGop
n = σ2

wn
Kn andRop

t is bounded above

as in (31).

Proof: See Appendix D. �

Remark 7: (On Theorem 4) For infinitely large spatial com-

ponents, i.e., p −→ ∞, the upper bound in (53) approaches the

lower bound in Theorem 3 because G∞ −→ 1
2πe (see, e.g, [39,

Lemma 1]). Moreover, one can easily obtain the equivalent

inverse problem of the total rate-cost function for the upper

bound in (53) similar to Remark 6.

Next, we note the main technical difference of the new results

obtained in Theorems 3 and 4 compared to existing results in

the literature.

Remark 8: (Connections to Existing Works) 1) Our bounds

on LQG cost extend similar bounds derived in [16, Ths. 7

and 8] to nonuniform rate constraints for any fixed finite-time

horizon. Such constraints require the use of the dynamic reverse-

waterfilling optimization algorithm derived in Theorem 1. In

contrast, the uniform rate constraint assumed in [16, Ths. 7 and 8]

does not require a similar optimization technique because at each

instant of time, the transmit rate is the same. Another structural

difference compared to [16, Ths. 7 and 8] is that in our bound,

we decouple the dependency of Dt−1 at each time instant and

that is why we are able to obtain the major result of Remark 6. 2)

Clearly, our results extend the steady-state bounds on LQG cost

obtained in [25], [27], [28] to nonasymptotic bounds constrained

by nonuniform rates for any fixed finite-time horizon.

Steady-State Solution of Theorems 3 and 4: Next, we dis-

cuss the steady-state case of the bounds derived in The-

orems 3 and 4 using the following assumptions: (A1) re-

stricts the controlled process (37) to be time-invariant,

which means that At ≡ A = diag(α, . . . , α) ∈ R
p×p, Bt ≡

B = diag(β, . . . , β) ∈ R
p×p, Wt ∈ R

p ∼ N (0; ΣW ), ΣW =
diag(σ2

w, . . . , σ
2
w) 
 0, ∀t; (A2) restricts the design parameters

that penalize the control cost (40) to also be time-invariant,

i.e., Q̃t ≡ diag(Q, . . . , Q), Ñt ≡ diag(N, . . . , N); (A3) fixes

Dt ≡ D, ∀t. We denote the steady-state value of the total cost

of control (per dimension) as follows:

LQG∞ = lim sup
n−→∞

1

n

n∑

t=1

LQGt. (54)

Steady-State Performance: The minimum achievable steady-

state performance (per dimension) of the quantizedLQG control

problem of Fig. 5 under the weak separation principle can be cast
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as follows:

ΓIID,op,ws
sum,ss = min

(f ∗
t , gt): t=1,...,∞

R∞≤R

LQG∞. (55)

In the next two corollaries, we state the lower and upper bounds

on (55). These bounds stem from the Assumptions (A1)–(A3)

and Corollaries 1 and 2.

Corollary 3: (Lower Bound on (55)) The minimum achiev-

able steady-state performance of (55), under Assumptions (A1)–

(A3), for any p, is such that ΓIID,op,ws
sum,ss ≥ LQG∗

∞, where

LQG∗
∞ = σ2

wK∞ + αβL∞K∞
σ2
w

22R∗
∞ − α2

(56)

where LQG∗
∞ � limn−→∞

1
n

∑n
t=1 LQG∗

t

L∞ =
αβK∞

β2K∞ +N
(57)

and K∞ is the positive solution of the quadratic equation

β2K∞ +
(
(1− α2)N − β2Q

)
K∞ −QN = 0 (58)

given by the formula

K∞ =
1

2β2

(√
f̄2 + 4β2QN − f̄

)
(59)

with f̄ = (1− α2)N − β2Q.

Corollary 4: (Upper Bound on (55)) The minimum achiev-

able steady-state performance of (55), under Assumptions (A1)–

(A3), for any p, is upper bounded as follows:

ΓIID,op,ws
sum,ss ≤ σ2

wK∞ + αβL∞K∞
4

1
p (2πeGp)σ

2
w

22R
op
∞ − 4

1
p (2πeGp)α2

where Rop
∞ is upper bounded by (32) and K∞, L∞ are given by

(59) and (57), respectively.

We omit the derivation of the proofs for Corollaries 3 and 4

because they follow using similar arguments to previous papers

(see, e.g., [20, Section V], [47, Section 6] for the lower bound

and [16], [27], [28] for the upper bound). The upper bound is

also similar to the one obtained in [25] albeit their space-filling

term is obtained differently.

V. EPILOGUE AND OPEN QUESTIONS

We revisited the sequential coding of correlated sources with

independent spatial components to use it in the derivation of

nonasymptotic, finite-dimensional lower and upper bounds for

two application examples in stochastic systems. Our applica-

tion examples included a parallel time-varying quantized state-

estimation problem subject to a total MSE distortion constraint

and a parallel time-varying quantized LQG closed-loop control

system with linear quadratic cost. For the latter, its lower bound

revealed the absolute minimum rates for mean square stability

of the plant at each time instant under nonuniform rates for any

fixed finite-time horizon.

There are various open questions that stem from the results

of this article. For instance, it would be interesting to explore

strong structural properties on matrices (At,ΣWt
,∆t,Λt) in

the derivation of Theorem 1, which will allow its extension to

more general cases of time-varying multivariate Gauss–Markov

processes. Another question not addressed in this article is

whether the nonasymptotic lower bounds derived in Theorems

1 and 3 can be extended to linear Markov models driven by

additive independent non-Gaussian noise processes. Finally, of

interest is the extension of our setup to take into account noiseless

communication links prone to packet drops.

APPENDIX A
PROOF OF THEOREM 1

Using (14), we obtain

RIID,op,1
sum (D) ≥ RIID,1

sum (D)

= min
1
n

1
p

∑n
t=1 E{||Xt−Yt||22}≤D,

Y1↔X1↔X2,n,

Yt↔(Xt,Y1,t−1)↔(X1,t−1,Xt+1,n)

1

p

n∑

t=1

I(Xt;Yt|Y1,t−1).

(60)

It is easy to see that the RHS term in (60) corresponds precisely

to the sequential or NRDF obtained for parallel Gauss–Markov

processes with a total MSE distortion constraint which is a sim-

ple generalization of the scalar-valued problem that has already

been studied in [36]. Therefore, using the analysis of [36], we

can obtain

RIID,1
sum (D)

(a)
= min

contraint in (60)

1

p

n∑

t=1

{h(Xt|Y1,t−1)− h(Xt|Y1,t)}

(b)
=

1

p
min

∆t	0, t∈Nn
1

1
n

1
p

∑n
t=1 trace (∆t)≤D

n∑

t=1

max

[
0,

1

2
log2

(
|Λt|

|∆t|

)]

= min
Dt≥0, t∈Nn

1
1
n

∑n
t=1 Dt≤D

n∑

t=1

max

[
0,

1

2
log2

(
λt

Dt

)]
(61)

where (a) follows by definition; (b) follows from the fact

that h(Xt|Y1,t−1) =
1
2 log2(2πe)

p|Λt| where Λt = diag
(λt, . . . λt) ∈ R

p×p with λt = α2
t−1Dt−1 + σ2

wt−1
, and that

h(Xt|Y1,t) =
1
2

log2(2πe)
p|∆t| where ∆t = diag(Dt, . . . , Dt) ∈ R

p×p for

D ∈ [0,∞). The optimization problem of (61) is already solved

in [36, Theorem 2] and is given by (21)–(23).

APPENDIX B
PROOF OF THEOREM 2

In this article, we bound the rate performance of the DPCM
scheme described in Section III-B at each time instant, for

any fixed finite time n, using an ECDQ scheme that utilizes

the forward Gaussian test-channel realization that achieves the

lower bound of Theorem 1. The scheme relies on the replacement

of the quantization noise with an additive Gaussian noise with

the same second moments (see e.g., [48] or [31, Chapter 5] and

the references therein). First, note that the Gaussian test-channel

linear realization of the lower bound in Theorem 1 is known to

Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 30,2024 at 16:37:09 UTC from IEEE Xplore.  Restrictions apply. 



STAVROU et al.: SEQUENTIAL SOURCE CODING FOR STOCHASTIC SYSTEMS SUBJECT TO FINITE RATE CONSTRAINTS 3833

be [36]

Yt = HtXt + (Ip −Ht)At−1Yt−1 +H
1
2Vt, Vt ∼ N (0;∆t)

(62)

where Ht � Ip −∆tΛ
−1
t 	 0, ∆t � diag(Dt, . . . , Dt) 


0, Λt = diag(λt, . . . λt) 
 0.

Pre-/Post-Filtered ECDQ With Multiplicative Factors for Par-

allel Sources: [48] First, consider a p-dimensional lattice quan-

tizerQp [32] such thatE{ZtZ
T
t } = ΣV c

t
,ΣV c

t

 0, whereZt ∈

R
p is a random dither vector (shared randomness) generated both

at the encoder/decoder independent of the input signals X̂t and

the previous realizations of the dither, uniformly distributed over

the basic Voronoi cell of the p-dimensional lattice quantizer Qp

such that V c
t ∼ Unif(0; ΣV c

t
). At the encoder, the lattice quan-

tizer quantizesH
1
2

t X̂t + Zt, that is,Qp(H
1
2

t X̂t + Zt), where X̂t

is given by (27). Then, the encoder applies entropy coding to the

output of the quantizer and transmits the output of the entropy

coder. At the decoder, the coded bits are received and the output

of the quantizer is reconstructed, i.e., Qp(H
1
2

t X̂t + Zt). Then,

it generates an estimate by subtracting Zt from the quantizer’s

output and multiplies the result by Φt as follows:

Yt = Φt(Qp(H
1
2

t X̂t + Zt)− Zt) (63)

where Φt = H
1
2

t . The coding rate at each time instant of the

conditional entropy of the MSE quantizer is given by

H(Qp|Zt) = I(H
1
2 X̂t;H

1
2 X̂t + V c

t )

(a)
= I(H

1
2 X̂t;H

1
2 X̂t + Vt) +D(V c

t ||Vt)

−D(H
1
2 X̂t + V c

t ||H
1
2 X̂t + Vt)

(b)

≤ I(H
1
2 X̂t;H

1
2 X̂t + Vt) +D(V c

t ||Vt)

(c)

≤ I(H
1
2 X̂t;H

1
2 X̂t + Vt) +

p

2
log(2πeGp)

(d)
= I(Xt;Yt|Y1,t−1) +

p

2
log(2πeGp) (64)

where V c
t ∈ R

p is the (uniform) coding noise in the ECDQ
scheme and Vt is the corresponding Gaussian counterpart; (a)
follows because the two random vectors V c

t , Vt have the same

second moments, and hence we can use the identity D(x||x′) =

h(x′)− h(x); (b) follows because D(HX̂t + V c
t ||HX̂t +

Vt) ≥ 0; (c) follows because the divergence of the coding noise

from Gaussianity is less than or equal to p
2 log(2πeGp) [39],

where Gp is the dimensionless normalized second moment of

the lattice [31, Definition 3.2.2]; (d) follows from data pro-

cessing properties, i.e., I(Xt;Yt|Y1,t−1)
(∗)
= I(Xt;Yt|Yt−1)

(∗∗)
=

I(X̂t; Ŷt)
(∗∗∗)
= I(H

1
2 X̂t;H

1
2 X̂t + Vt), where (∗) follows from

the realization of (62), (∗∗) follows from the fact that X̂t and Ŷt

[obtained by (28)] are independent of Yt−1, and (∗ ∗ ∗) follows

from (27), (62), and the fact that H
1
2 is an invertible operation.

Since we assume joint (memoryless) entropy coding with lattice

quantizers, then, the total coding rate per dimension is obtained

as follows[49, Chapter 5.4]:

n∑

t=1

E|St|

p
≤

1

p

n∑

t=1

(H(Qp|Zt) + 1)

(e)

≤
1

p

n∑

t=1

I(Xt;Yt|Y1,t−1) +
n

2
log(2πeGp) +

n

p

(f)
=

1

2p

n∑

t=1

log2
|Λt|

|∆t|
+

n

2
log(2πeGp) +

n

p
(65)

where (e) follows from (64); (f) follows from the derivation of

Theorem 1. The derivation is complete once we minimize both

sides of the inequality in (65) with the appropriate constraint

sets.

APPENDIX C
PROOF OF THEOREM 3

Note that from (46), we obtain

ΓIID,op,ws =

n∑

t=1

LQGop
t

=
1

p

n∑

t=1

{
trace(ΣWt

K̃t)

+ trace(AtBtL̃tK̃t+1E{||Xt − Yt||
2
2})

}

(a)

≥
1

p

n∑

t=1

{
trace(ΣWt

K̃t)

+ trace(AtBtL̃tK̃t+1E{||Xt −E{Xt|S1,t}||
2
2})

}

(b)

≥
1

p

n∑

t=1

{
trace(ΣWt

K̃t) + trace

(
AtBtL̃tK̃t+1

ES̄1,t−1

{
1

2πe
2

2
p
h(Xt|S1,t−1=S̄1,t−1)

}
2−2R∗

t

)}

(c)

≥
1

p

n∑

t=1

{
trace(ΣWt

K̃t) + trace

(
AtBtL̃tK̃t+1

{
1

2πe
2

2
p
h(Xt|S1,t−1)2−2R∗

t

})}

(d)

≥
n∑

t=1

{
σ2
wt
Kt + αtβtLtKt+1D(R∗

t)
}
�

n∑

t=1

LQG∗
t (66)

where (a) follows from the fact that Yt is S1,t-measurable and

the MMSE is obtained for Yt = E{Xt|S1,t}; (b) follows from

the fact that E{||Xt −E{Xt|S1,t}||
2
2}) = ES̄1,t−1

{E{||Xt −

E{Xt|S1,t}||22|S1,t−1 = S̄1,t−1}}, where ES̄1,t
{·} is the

expectation with respect to some vector S̄1,t−1 that is distributed

similarly to S1,t−1, also from the MSE inequality in [49,

Theorem 17.3.2] and, finally, from the fact that R∗
t ≥ 0, where

R∗
t =

1
p
{h∗(Xt|Y1,t−1)− h∗(Xt|Y1,t)} (see the derivation of

Theorem 1, 1)) with h∗(Xt|Y1,t−1), h∗(Xt|Y1,t) being the
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minimized values in (61); (c) follows from Jensen’s inequal-

ity [49, Theorem 2.6.2], i.e., ES̄1,t−1
{2

2
p
h(Xt|S1,t−1=S̄1,t−1)} ≥

2
2
p
h(Xt|S1,t−1); (d) follows from the fact that {h(Xt|S1,t−1) =

h(At−1Xt−1 +Bt−1Ut−1 +Wt−1|S1,t−1) : t ∈ N
n
2 } is

completely specified from the independent Gaussian noise

process {Wt−1 : t ∈ N
n
2 } because {Ut−1 = gt(S1,t−1) :

t ∈ N
n
2 } [see (39)] are constants conditioned on S1,t−1.

Therefore, h(Xt|S1,t−1) is conditionally Gaussian, thus

equivalent to h(Xt|Y1,t−1). This further means that

1
2πe2

2
p

h(Xt|Y1,t−1)2−2R∗
t ≥ 1

2πe2
2
p
h∗(Xt|Y1,t−1)2−2R∗

t
(�)
= 1

2πe

2
1
p
log2(2πe)

p|∆∗
t|

(��)
= min{Dt} ≡ D(R∗

t), where (�) follows

because h∗(Xt|Y1,t) =
1
2 log2(2πe)

p|∆∗
t | and (��) follows

because ∆∗
t = diag(min{Dt}, . . . ,min{Dt}).

It remains to findD(R∗
t) at each time instant in (66). To do so,

we reformulate the solution of the dynamic reverse-waterfilling

solution in (21) as follows:

nR ≡ RIID,1
sum =

n∑

t=1

R∗
t ≡

1

2

n∑

t=1

log2

(
λt

Dt

)

=
1

2

{
�
�
�
���

0
log2(λ1)︸ ︷︷ ︸
initial step

+

n−1∑

t=1

log2

(
α2
t +

σ2
wt

Dt

)
− log2 Dn︸ ︷︷ ︸

final step

}
. (67)

From (67), we observe that at each time instant, the rate R∗
t is a

function of only one distortion Dt since we have now decoupled

the correlation withDt−1. Moreover, we can assume without loss

of generality, the initial step is zero because it is independent

of D0. Thus, from (67), we can find at each time instant, a

Dt ∈ (0,∞) such that the rate is R∗
t ∈ [0,∞). Since the rate

distortion problem is equivalent to the distortion rate problem

(see, e.g., [49, Chapter 10]), we can immediately compute the

total distortion rate function, denoted by DIID,1
sum (R), as follows:

DIID,1
sum (R) �

n∑

t=1

D(R∗
t) =

n−1∑

t=1

σ2
wt

22R
∗
t − α2

t

+ 2−2R∗
n . (68)

Substituting D(R∗
t) at each time instant in (66), the result

follows. This completes the proof.

APPENDIX D
PROOF OF THEOREM 4

Note that from Lemma 4, (46), we obtain

ΓIID,op,ws
sum =

1

p

n∑

t=1

{
trace(ΣWt

K̃t)

+ trace(AtBtL̃tK̃t+1E{||Xt − Yt||
2
2})

}

=
1

p

n∑

t=1

{
trace(ΣWt

K̃t) + trace(AtBtL̃tK̃t+1D(Rop
t ))

}

(a)

≤
n−1∑

t=1

{
σ2
wt
Kt + αtβtLtKt+1

4
1
p (2πeGp)σ

2
wt

22R
op
t − 4

1
p (2πeGp)α2

t

}

+ σ2
wn

Kn (69)

where (a) follows because we can use Theorem 2, (31), to

reformulate {R∗
t : t ∈ N

n
1 } similar to (67) (in the derivation

of Theorem 3) so that we decouple the dependence on Dt−1

at each time step. Finally, for each Rop
t , t = 1, 2 . . . , n− 1, in

(31), we solve with respect to the equivalent inverse problem of

the distortion rate function, i.e., D(Rop
t ), which gives

D(Rop
t ) ≤

4
1
p (2πeGp)σ

2
wt

22R
op
t − 4

1
p (2πeGp)α2

t

, t ∈ N
n−1
1 . (70)

Observe that the last step t = n is not needed because in (46),

we have Kn+1 = 0. This completes the article.
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