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Sequential Source Coding for Stochastic
Systems Subject to Finite Rate Constraints

Photios A. Stavrou

Abstract—In this article, we revisit the sequential source-
coding framework to analyze fundamental performance lim-
itations of discrete-time stochastic control systems subject
to feedback data-rate constraints in finite-time horizon. The
basis of our results is a new characterization of the lower
bound on the minimum total-rate achieved by sequential
codes subject to a total (across time) distortion constraint
and a computational algorithm that allocates optimally the
rate-distortion, for a given distortion level, at each instant
of time and any fixed finite-time horizon. The idea behind
this characterization facilitates the derivation of analyti-
cal, nonasymptotic, and finite-dimensional lower and up-
per bounds in two control-related scenarios: a) A parallel
time-varying Gauss—Markov process with identically dis-
tributed spatial components that are quantized and trans-
mitted through a noiseless channel to a minimum mean-
squared error decoder; and b) a time-varying quantized lin-
ear quadratic Gaussian (LQG) closed-loop control system,
with identically distributed spatial components and with
a random data-rate allocation. Our nonasymptotic lower
bound on the quantized LQG control problem reveals the
absolute minimum data-rates for (mean square) stability
of our time-varying plant for any fixed finite-time horizon.
We supplement our framework with illustrative simulation
experiments.

Index Terms—Finite-time horizon, quantization, reverse-
waterfilling, sequential causal coding, stochastic systems.

[. INTRODUCTION

NE of the fundamental characteristics of networked con-
O trol systems (NCSs) [1] is the existence of an imperfect
communication network between computational and physical
entities. In such setups, an analytical framework to assess
impacts of communication and data-rate limitations on the
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control performance is strongly required. In this article, we
adopt information-theoretic tools to analyze such requirements.
Specifically, we consider sequential coding of correlated sources
initially introduced by [2] (see also [3]), which is a generaliza-
tion of the successive refinement source-coding problem [4],
[5]. In successive refinement, source coding is performed in
(time) stages and the goal is to “refine” the description of the
source with every new stage when more information is available.
Sequential coding differs from successive refinement in that at
the second stage, encoding involves describing a correlated (in
time) source as opposed to improving the description of the
same source. To accomplish this task, sequential coding encom-
passes a spatio-temporal coding method. In addition, sequential
coding is a temporally zero-delay coding paradigm since both
encoding and decoding must occur in real time. The resulting
zero-delay coding approach should not be confused with other
existing works on zero-delay coding, see, e.g., [6]-[11], because
itrelies on the use of a spatio-temporal coding approach whereas
the aforementioned papers rely solely on temporal coding
approaches.

A. Literature Review on Sequential Source Coding

In what follows, we provide a detailed literature review on
sequential source coding. To shed more light on the historical
route of this coding paradigm, we distinguish the work of [2]
(see also [12], [13]) with the work of [3] because although
their results complement each other, their underlining motivation
has been different. Indeed, Viswanathan and Berger [2] initi-
ated this coding approach targeting video-coding applications,
whereas Tatikonda [3] aimed to develop a framework for delay-
constrained systems and to study the communication theory in
classical closed-loop control setups.

Sequential Coding Via [2]: The authors of [2] characterized
the minimum achievable rate-distortion region for two tem-
porally correlated random variables (RVs) with each being a
vector of spatially independent and identically distributed (IID)
processes (also called “frames”), subject to a coupled average
distortion criterion. In the last decade, sequential coding ap-
proach of [2] was further studied in [12]-[14]. Ma and Ishwar
[12] used an extension of [2] to three time instants subject
to a per-time distortion constraint to investigate the effect of
sequential coding when possible coding delays occur within
a multi-input—-multi-output system. Around the same time,
Yang et al. [13] generalized [2] to a finite number of time instants.
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Compared to [2], [12], their spatio-temporal source process is
correlated over time, whereas each frame is spatially jointly
stationary and totally ergodic subject to a per-time average
distortion criterion. More recently, Yang et al. [ 14] drew connec-
tions between sequential causal coding and predictive sequential
causal coding, that is, for (first-order) Markov sources subject to
a single-letter fidelity constraint, sequential causal coding and
sequential predictive coding coincide. For three time instants
of an IID vector source containing jointly Gaussian correlated
processes (not necessarily Markov), an explicit expression of the
minimum achievable sum-rate for a per-time mean-squared error
(MSE) distortion is obtained in [15]. Inspired by the framework
of [2], [12], Khina et al. [16] derived fundamental performance
limitations in control-related applications. In particular, they
considered a multitrack system that tracks several parallel time-
varying Gauss—Markov processes with IID spatial components
conveyed over a single shared wireless communication link
(possibly prone to packet drops) to a minimum mean-squared
error (MMSE) decoder. In their Gauss—Markov multitracking
scenario, they provided lower and upper bounds in finite-time
and in the per-unit time asymptotic limit for the distortion-rate
region of time-varying Gauss—Markov sources subject to a
mean-squared error (MSE) distortion constraint. Their lower
bound is characterized by a forward-in time-distortion allocation
algorithm operating with fixed data-rates at each time instant for
a finite time horizon whereas their upper bound is obtained by
means of a differential pulse-code modulation (DPCM) scheme
using entropy-coded dithered quantization (ECDQ) with one-
dimensional lattice constrained by uniform data rates across
time. Subsequently, they used these bounds in a scalar-valued
quantized linear quadratic Gaussian (LQG) closed-loop control
problem to find similar bounds on the minimum cost of control.

Sequential Coding Via [3]: Tatikonda in his Ph.D thesis [3,
Ch. 5] (see also [17]) studied sequential source coding in the
context of delay-constrained and control-related applications.
Therein an information theoretic quantity called sequential rate
distortion function (RDF) was introduced that is attributed to
the prior works of Gorbunov and Pinsker [18], [19]. Using the
sequential RDF, Tatikonda er al. [20] studied the performance
analysis and synthesis of a multidimensional fully observable
time-invariant Gaussian closed-loop control system when a
memoryless communication link exists between a stochastic
linear plant and a controller and the performance criterion is the
classical linear quadratic cost. The use of sequential RDF (also
encountered as nonanticipative or causal RDF in the literature)
in filtering applications is stressed in Refs. [21]-[23]. Analytical
suboptimal expressions of lower and upper bounds for the setup
of [20], including the cases where a linear fully observable time-
invariant plant is driven by IID non-Gaussian noise processes or
when the system is modeled by time-invariant partially observ-
able Gaussian processes, are derived in [24]. Tanaka et al. [25],
[26] studied the performance analysis and synthesis of a linear
fully observable and partially observable Gaussian closed-loop
control problem when the performance criterion is the linear
quadratic cost. Moreover, they showed that one can derive lower
bounds in finite time and in the per-unit time asymptotic limit
by casting the problems as semidefinite representable and thus

numerically computable by known solvers. An achievability
bound on the asymptotic limit using a DPCM-based ECDQ
scheme that uses one-dimensional quantizer at each dimension
was also proposed. Lower and upper bounds for a general
closed-loop control system subject to asymptotically average
total data-rate constraints across the time are also investigated
in [27], [28]. The lower bounds are obtained using sequential
coding and directed information [29], whereas the upper bounds
are obtained via a sequential ECDQ scheme using scalar quan-
tizers.

B. Contributions

In this article, we first revisit the sequential coding framework
developed by [2], [3], [12], [13] to obtain the following new
results.

1) Analytical, nonasymptotic, and finite-dimensional lower
and upper bounds on the minimum achievable total-rates (per-
dimension) for a multitrack communication scenario similar
to the one considered in [16]. However, compared to [16],
which derived distortion-rate bounds via forward recursions
with given data rates across a finite time horizon, here we derive
alower bound subject to a dynamic reverse-waterfilling solution
in which we only require a given distortion threshold D > 0
(Theorem 1). We also implement the solution in Algorithm 1.
The idea to obtain our lower bound is subsequently used to derive
an upper bound on the minimum achievable total-rates (per
dimension) using a sequential DPCM-based ECD(Q) scheme
that is constrained by total-rates for a fixed finite-time horizon.
For the specific rate constraint, we use the dynamic reverse-
waterfilling algorithm obtained from our lower bound to allocate
the rate and the MSE distortion at each time instant for the whole
finite-time horizon. This rate constraint is the fundamental dif-
ference compared to similar upper bounds derived in [16, Th. 6]
and [27, Corollary 5.2] (see also [11], [28]) that restrict their
transmit rates to have either fixed rates that are averaged across
the time horizon or that are asymptotically averaged across the
time.

2) We obtain analogous bounds to 1) on the minimum
achievable total (across time) cost-rate function of control (per-
dimension) for a networked control system (NCS) with time-
varying quantized LQG closed-loops operating with data-rate
obtained subject to a solution of a reverse-waterfilling algorithm
(Theorems 3 and 4).

Discussion of the Contributions and Additional Results: The
nonasymptotic lower bound in 1) is obtained because for parallel
processes, all involved matrices in the characterization of the cor-
responding optimization problem commute by pairs [30, p. 5];
thus, they are simultaneously diagonalizable by an orthogonal
matrix [30, Th. 21.13.1] and the resulting optimization prob-
lem simplifies to one that resembles scalar-valued processes.
The upper bound in 1) is obtained because we are able to
employ a lattice quantizer [31] using a quantization scheme
with existing performance guarantees such as the DPCM-
based ECDQ scheme and using existing approximations from
quantization theory for high-dimensional but possibly finite-
dimensional quantizers with an MSE performance criterion
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(see, e.g., [32]). The nonasymptotic bounds derived in 2)
are obtained using the so-called “weak separation principle”
of quantized LQG control (for details, see Section IV) and
well-known information theoretic inequalities. Interestingly, our
lower bound in 2) also reveals the minimum allowable data rates
at each time instant to ensure (mean square) stability of the plant
(see e.g., [33] for the definition) using nonuniform rate-
distortion allocation for the specific NCS (Remark 6). Finally,
for every bound in this article, we explain how to recover known
results for the steady-state solution (see Corollaries 1-4).

This article is organized as follows. In Section II, we give an
overview of known results on sequential coding. In Section III,
we derive nonasymptotic bounds and their corresponding per-
unit time asymptotic limits for a quantized state estimation prob-
lem. In Section IV, we use the results of Section III and the weak
separation principle to derive nonasymptotic bounds and their
corresponding per-unit time asymptotic limits for a quantized
LQG closed-loop control problem. We draw conclusions and
discuss open questions in Section V.

Notation: R £ (—o00,00), Ny ={1,2,...}, and N =
{1,...,n}, n € Ny, respectively. Let X be a finite-dimensional
Euclidean space and B(X) be the Borel o-algebra on X. An
RV X defined on some probability space (€2, F,P) is a map
X : Q +— X. The probability distribution of an RV X with real-
ization X = x on X is denoted by P x = p(x). The conditional
distribution of an RV Y with realization Y = y, given X = x,
is denoted by Qy|x = q(y|r). We denote the sequence of
one-sided RVs by X, ; = (Xs, Xiy1,..., X;),t <, (t,5) €
N; x Ny, and their values by z; ; € Xy ; = xi:txk. We de-
note the sequence of ordered RV's with ith spatial components by
X £ >80 that X i 1s a vector of dimension “z,” and their values by
ai;eXi, 2 Xi Xi, where X§ £ (Xk( ),...Xp()). The
notation X < Y <« Z denotes a Markov Chain (MC), which
means that p(x|y, z) = p(z|y). We denote the diagonal of a
square matrix by diag(-) and the p x p identity matrix by I,,.
If A € RP*P, we denote by A = 0 (respectively, A > 0) a pos-
itive semidefinite matrix (respectively positive definite matrix).
We denote the determinant and trace of some square matrix
A € RP*P by |A| and trace(A), respectively. We denote by
h(z) (resp. h(z|y)) the differential entropy of a distribution
p(x) (resp. p(x|y)). We denote D(P||Q) the relative entropy
of probability distributions P and Q). We denote by E{-} the
expectation operator and || - ||2 the Euclidean norm. When we
say “total” distortion, “total-rate,” or “total-cost,” we mean with
respect to time. Similarly, by referring to “average total,” we
mean normalized over the total time horizon.

73R

[I. KNOWN RESULTS ON SEQUENTIAL CODING

In this section, we give an overview of the sequential causal
coding [3, Ch. 5], [2], [12], [13].

In the following analysis, we consider processes for a fixed
time-span ¢t € N7, i.e., (X1, ..., X,). Following [12], [13], we
assume that the sequences of RVs are defined on alphabet spaces
with finite cardinality. Nevertheless, these can be extended
following, for instance, the techniques employed in [34] to

continuous alphabet spaces as well (i.e., Gaussian processes)
with MSE distortion constraints.
First, we use some definitions (with slight modifications to
ease the readability of the article) from [12, §II] and [13, §I].
Definition 1: (Sequential Causal Coding) A spatial order
p sequential causal code C, for the (joint) vector source
(XV, X5, ..., XP)is formally defined by a sequence of encoder

(p) ( fq(lp)

and decoder pairs ( fl(p ). a’), - . ¢y such that
X {0,1)" — {0,1)"

s XP % 0,1} x

t—1 times

P01 xox 0,1 — YP te N (1)

t times

where {0, 1}* denotes the set of all binary sequences of finite
length satisfying the property that at each time instant ¢, the
range of {f; : t € NJ'} given any ¢ — 1 binary sequences is an
instantaneous code. The encoded and reconstructed sequences
of {X} : t € N{'}aregivenby Sy = f;(X7,,S1,4-1),withS; €
St € {0,1}*, and Y} = g,(S1,4), respectively, with cardinality
card(Y;) < oo for any ¢. The expected rate in bits per symbol
at each time instant (normalized over the spatial components) is
defined as

» ElS|

Tt s te N? (2)
where |S;| denotes the length of the binary sequence S;.

Distortion Criterion: For each ¢ € N7, we consider a total
(in dimension) single-letter distortion criterion. This means that
the distortion between X} and Y” is measured by a func-
tiond; : XV x Y/ — [0, oo) with maximum distortion dj"®* =
max,r » dy(xy,y;) < oo such that

P

di(a?, ) 2 %dext(i),yt(i)). 3

i=1
The average distortion is defined as
p
E {d,(XP,Y))} 2 = Z {de(X:(), 2 (i)} . 4
Definition 2: (Achievability) A rate-distortion tuple (Rq ,,
Di,) 2 (Riy,...,Ry,Dy,...,D,) for any is said to be
achievable for a given sequential causal codlng system if for

all € > 0, there exists a sequential code {( ft ) te NP}
such that there exists P for which

«, ”

Tt S Rt+6
E{d(X?,Y")} <D;4¢ D, >0,VteN" (5

holds Vp > P. Moreover, let the set of all achievable rate-
distortion tuples (Ri ,,D1,) be denoted by R*. Then, the
minimum total-rate required to achieve the distortion tuple

(D1, Do, ...,D,)is defined by
RO n) = inf R;. 6
qum( ) (R1,n7D1,n)€R* tzzl t ( )
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Source Model: The finite alphabet source randomly gener-
ates symbols X7, =}, € XY according to the following
temporally correlated joint probability mass function (PMF):

(@t ) = @_yp(21(3), - ., 2 (D)) (@)

where the joint process {(X1(i),...,X,(4))};_, is identi-
cally distributed. This means that for each ¢+ = 1,...,p, the
temporally correlated joint process (X1 (7),..., X, (7)) is in-
dependent of every other temporally correlated joint process
(X1(4),...,X,(4)), such that i # j. Furthermore, each tem-
porally correlated joint process (X1 (i), ..., X, (i)) is spatially
identically distributed.

Achievable Rate-Distortion Regions and Minimum Achiev-
able Total Rate: Next, we characterize the achievable rate-
distortion regions and the minimum achievable total rate for
the source model (7) with distortion constraint (4).

The following lemma is given in [13, Theorem 5].

Lemma I: (Achievable Rate-Distortion Region) Consider the
source model (7) with the average distortion of (4). Then, the
“spatially” single-letter characterization of the rate-distortion
region (R ,,, Dy ) is given by

RUD — {(Rl,n,Dl,n) 3S10-1, Y10, {9:() iy

s.t. Ry > I(Xy;51) (initial time)
R > I(X14:SelS1o1), t=2,...,n— 1,
R, > I(X1 ,;Y,|S1,n-1) (terminal time)
Dy > E{d(X;,Y;)}, t € N
Y1 =0g1(51), Vi = 9:(S14), t=2,...,n—1
S1 ¢ (X1) & Xoy

St (X1,6,510-1) < Xigaim, t=2,...,n — 1} (3)

where {S] 5,—1, Yl,n} are the auxiliary (encoded) and reproduc-
tion RVs, respectively, taking values in some finite alphabet
spaces {S1,-1, Y1}, and {g.(+) : ¢t € NJ'} are deterministic
functions.

Remark 1: (On Lemma 1) In the characterization of Lemma
1, we exclude the spatial index because the rate and distortion
regions are normalized with the total number of spatial compo-
nents. Following [12], [13], Lemma 1 gives a set RP that is
convex and closed (this can be shown by trivially generalizing
the time-sharing and continuity arguments of [12, Appendix
C2] to n time-steps). This in turn means that R* = RID (see,
e.g., [13, Theorem 5]). Thus, (6) can be reformulated to the
following problem:

n
o JAN .
Rowi®(Dia) & - min o Z R;. ©)

Next, we state a lemma (without a proof) that gives a lower
bound on RID:°P(Dy ,,). The derivation of the proof can be
found, for instance, in [3, Theorem 5.3.1, Lemma 5.4.1], [27,
Theorem 4.1], [12, Corollary 1.1].

Lemma 2: (Lower Bound on (9)) For any p sufficiently large,
the following lower bound holds:

RHD,Op(DLn) Z RHD (Dl,n)

sum sum

[I>

I(X10 Y1) (10)

min
E{d:(X:,Y:)}<Dy, teNp
YieX1Xon,
Yier(X1,6,Y1,6-1)0 X410, t=2,...,n—1

where I(X1,,; Y1) = >/ I(X1,4; Y¢|Y1,¢-1) is a variant of
directed information [29], [35] obtained by the conditional in-
dependence constraints imposed in the constraint set of (10).

The lower bound in Lemma 2 can be found in the literature
by the name nonanticipatory e-entropy and sequential or nonan-
ticipative RDF.

Remark 2: (When do we achieve the lower bound in (10)?)
In [13, Theorem 4], they showed via an algorithmic approach
(see also [13, Theorem 5] for an equivalent proof via a direct
and converse coding theorem) that Lemma 2 is achieved with
equality if the number of IID spatial components tends to
infinity, i.e., p — 0o, which also means that the optimal mini-
mizer or “test-channel” at each time instant in (10) corresponds
precisely to the distribution generated by a sequential encoder,
ie, Sy =Y, for any t € N (see also [12, Corollary 1.1]).
In other words, the equality holds if the encoder (or quantizer
for continuous alphabet sources) simulates exactly the corre-
sponding “test-channel” distribution of (10). This claim was
demonstrated via an application example for jointly Gaussian
RVs and per-time MSE distortion in [12, Corollary 1.2] and
also stated as a corollary referring to an “ideal” DPCM-based
MSE quantizer in [12, Corollary 1.3]. In general, however, for
any p < oo, the equality in (10) is not achievable.

Next, we state the generalization of Lemma 2 when the con-
strained set is subject to an average total distortion constraint de-
finedas 1 Y1 | E{d,(X;,Y;)} < DwithE{d,(X;,Y;)} given
in (4). This lemma was derived in [3, Theorem 5.3.1 and Lemma
5.4.1].

Lemma 3: (Generalization of Lemma 2) For any p sufficiently
large, the following lower bound holds:

RHD,op (D) > RHD (D)

sum sum
= min
2t B{de(X+,Y:)}<D, teNy
Ylﬁ(Xl)HXQYn,
Yier(X1,6,Y1,0-1) ¢ X 41,0, teNZT?

I(X1,;Y1,). (1D

Clearly, one can use the same methodology applied in [13,
Ths. 4 and 5] to demonstrate that the lower bound in (11)
is achieved once p — oo (see the discussion in Remark 2).
However, we once again point out that in general, (11) is a lower
bound on the minimum achievable rates achieved by causal
sequential codes.

Information Structures: Next, we state a few well-known
structural results related to the bounds in Lemmas 2 and 3.
Specifically, if the temporally correlated joint PMF in (7)
follows a finite-order Markov process, then, the description in
Lemma 1 and the corresponding bounds in Lemmas 2 and 3
can be simplified following, for instance, the framework of [6],
[17], [23]. For the important special case of first-order Markov
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Fig. 1.

Multitrack state estimation system model.

process, (8) simplifies to

RHD’l = {(R1,7L7D1,7L) ElSl,n—laYl,'m {gt()}?:l

s.t. Ry > I(X7y;S1) (initial time)
Ry > I(Xy;S¢S1,4-1), t =2,...,n
R, > I(X,;Y,|S1 n-1) (terminal time),
Dy > E{di(X:, Y1)}, t € N}
Yi=0g1(51), Yo =q(S1,4), t=2,....n
S1 ¢ (X1) & Xoy

-1

-1

St > (X, S14-1) & (Xl,tlaXt—i-l,n)}- (12)

Using (12), the minimum achievable total-rate in turn can be
simplified as follows:

IID,op,1
Rsum

Dy,) 2 i R. (13
(D1,n) (Rl,n,pﬂr)lennmt; . (13)

In addition, from (13), we can simplify (10) and (11), accord-
ingly. In the sequel of the article, we only consider average
total MSE distortion constraint to obtain our results, and for
this reason, we give its simplification below

11D, op,1 1D, 1
Rsum ( ) Rsum ( )
A .
= L —n min I(le; Yl,n)
7 i1 B{de(X¢,Y1)}<D, teNy
Y19X1<—>X2'n,
Y (X, Y1 0-1)0 (X e-15 Xeg1,n), t=2,..,n—1

(14)

where I(X1,03 Y1) = >0 I(X; Ye|Ya,e1).

[ll. APPLICATION IN QUANTIZED STATE ESTIMATION

In this section, we apply the framework of Section II to a state
estimation problem and obtain new results in such applications.
The setup is similar to [16, Section II] where a multitrack system
estimates several “parallel” Gaussian processes over a single
shared communication link as illustrated in Fig. 1. However,
in contrary to the result of [16, Theorem 1] which derives a
dynamic forward in time recursion of a distortion-rate allocation
algorithm when the rate is given at each time instant, here we
derive a dynamic rate-distortion reverse-waterfilling algorithm
operating forward in time for which we only consider a given
distortion threshold D > 0.

We start with the description of the problem.

State process: Consider p-parallel time-varying Gauss—
Markov processes with IID spatial components as follows:

I’t(Z) = Q_1T¢— 1( )ert 1( )7 = Nf, te Nin (15)

where x1(i) = 1 is given, with z; ~ N(0;03 ); the non-
random coefficient oy € R is known at each time step ¢, and
{wi(i) = wy : i € NI}, wy ~N(0;02,), is an independent
Gaussian noise process at each ¢, independent of 1, Vi € NY.
Clearly, (15) can be compactly written as a vector or frame as
follows:

Xy = A 1 Xy 1+ Wiy, Xy = given, t € Ny (16)

where A; 1 = diag(ay_1,...,4-1) € RP*P, X, € RP, and
the independent Gaussian noise process Wy € RP ~ N(0;
Sw, ), where Sy, = diag(o? o%,) > 0 € RP*? indepen-
dent of the initial state X.

Observer/Encoder: At the observer, the spatially IID time-
varying RP-valued Gauss—Markov processes are collected into
a frame X, € RP and mapped using sequential coding with
encoded sequence

CRTERRER)

Sy = fi(X1,4, S1,-1) 17)

where at ¢t = 1, we assume S; = f1(X1),and R, = Eft‘ is the

expected rate (per dimension) at each time instant ¢ transmitted
through the noiseless link.

MMSE Decoder: The data packet S; is received using the
following reconstructed sequence:

Y, = g(S1.4)

where at t = 1, we have Y7 = ¢1(51).
Distortion: We consider the average total MSE distortion
normalized over all spatial components as follows:

(18)

1 n

=3 Dy with D, Yil13}. (19)
n

t=1

1
- ;E{HXt -

Performance: The performance of the system (per dimension)
for a given D > 0 can be cast as follows:

RHD op, 1(D) _

sum mll’l

(f1t’ ge): t=
Zt 1 Dt<D

(20)

ZRt

The next theorem is our first main result in this article. It
derives a lower bound on the performance of Fig. 1 by means of
a dynamic reverse-waterfilling algorithm.

Theorem 1: (Lower Bound on (20)) For the multitrack system
in Fig. 1, the minimum achievable total-rate for any “n” and
any p, however large, is RID:o»1(D) = "7 | R{® with the

minimum achievable rate-distortion at each time 1nstant (per
dimension) given by some R;® > Rj such that

A
ti=stn (5)

where A; £ at 1D + O’ - and D, is the distortion at each
time instant evaluated based on a dynamic reverse-waterfilling

2
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algorithm operating forward in time as follows:

a J& il & <Ay
Dt_{xt it & > 22)
with >~} | Dy = nD, and
L1+ 1), v enNnt
¢ =% < ) : (23)

1

@,t:n

where 6 > 0isthe Lagrangian multiplier tuned to obtain equality
' Dy =nD, b2 £ 55 and D € (0,00).

Proof. See Appendlx A ]

Next we remark some technical observations on Theorem 1
and draw connections with [12, Corollary 1.2].

Remark 3: (On Theorem 1) 1) The optimization problem in
the derivation of Theorem 1 suggests that (A, Sy, , A, Ay)
commute by pairs [30, p. 5] because they are all scalar ma-
trices. This means that they are simultaneously diagonalizable
by an orthogonal matrix [30, Theorem 21.13.1] (in this case,
the orthogonal matrix is the identity matrix and thus can be
omitted from the optimization problem). 2) Theorem 1 extends
the result of [12, Corollary 1.2] which found an explicit ex-
pression of the minimum total rate ) ;" ; R; for n = 3 subject
to a per-time MSE distortion, to a similar problem constrained
by an average total distortion that we solve using a dynamic
reverse-waterfilling algorithm for any fixed finite-time horizon.

Implementation of the Dynamic Reverse-Waterfilling: A way
to implement the dynamic reverse-waterfilling algorithm of The-
orem 1 is proposed in [36, Algorithm 1]. A different algorithm
using the bisection method (for details, see, e.g., [37, Chapter
2.1]) is proposed in Algorithm 1. This method guarantees linear
convergence. On the other hand, [36, Algorithm 1] requires a
specific proportionality gain factor v € (0, 1] chosen appropri-
ately at each time instant that affects the rate of convergence and
it does not guarantee global convergence of the algorithm.

A. Steady-State Solution of Theorem 1

In this subsection, we briefly discuss the steady-state case
of the lower bound obtained in Theorem 1. To do it, first,
we restrict the state process of our setup to be time-invariant,
which means that in (15), the coefficients a; 1 = «, V¢ and

wy ~ N(0;02), Vt,orsimilarly, in (16), the matrix A, 1 = A =
diag(ay,...,a),Vt and Wy ~ N(0; ), Ve, where Xy =
diag(ab o ,Ufﬂ) > 0. We also define the steady-state average
total rate and distortion as follows:

1
R £ limsup — ZRt, D, £ limsup — ZDt

n—soo T n—300

(24)

Steady-State Performance: For p-parallel time-invariant Gauss—
Markov processes (per dimension), the minimum achievable
steady-state performance of the multitrack system of Fig. | can
be cast as follows:

RIID op,1

sum,ss

(D) = R

min
(fe, ge): t=1,.
D.<D

00>

(25)

Algorithm 1: Dynamic Reverse-Waterfilling Algorithm.

Initialize: number of time-steps n; distortion level D;
error tolerance ¢; nominal minimum and maximum
value of 0, i.e., Gmi“ = (0 and 6™2* = 21D, initial
variance A1 = o2 , values a; and o2, , of (15).

Set =1/2D; ﬂag =0.

while flag = 0 do

fort =1:ndo
Compute &; according to (23).
Compute D, according to (22).
if t < n then
Compute A; 41 according to A1 £ oDy + 02,
end if
end for
if 13" Dy — D > e then
Set f™in = 4.
else
Set ™a* = ¢,
end if
if emax .

Compute 6 =
else
flag + 1
end if
end while
Output: {D; : t € N}, {X; : t € N}'}, for a given
distortion level D.

g™in > < then
(9min+9max)
=

Under the previous assumptions, one can obtain a lower bound
on the minimum achievable steady-state total rate subject to
steady-state total distortion constraint. This result is equivalent
to having the minimum achievable steady-state total rate subject
to a fixed (uniform) distortion budget, i.e., D; = D, Vt. In what
follows, we state this result without a proof because it follows
using similar steps to [16, Corollary 2] or [24, Theorem 9].
Corollary 1: (Lower Bound on (25)) The minimum achiev-
able steady-state performance of (25), under a steady-state total
distortion constraint Dy, < D for any p, however larger, is
bounded from below by RIID-oP-1(D) > R* such that

sum,ss
2
Tuw
D

where R 2 lim, . % >iq R;. Consequently, assuming
D, = D, Vt, achieves (26) as n — .

Remark 4: (On Corollary 1) 1) The steady-state lower bound
of Corollary 1 corresponds precisely to the solution of the time-
invariant scalar-valued Gauss—Markov processes with per-time
MSE distortion constraint derived in [20, (14)] and to the solu-
tion of stationary Gauss-Markov processes with MSE distortion
constraint derived in [38, Theorem 3], [18, (1.43)]. 2) In Fig. 2
, we illustrate the behavior of the average total rate obtained
in Theorem 1 versus (vs.) the average total rate obtained using
uniform distortion allocation vs. the steady-state lower bound
of (26), as a function of t. We observe that although the three
lines seem to meet really fast, they do not coincide. In fact, for

1
R = 3 logs (a2 + (26)
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2 ‘5 o Torem 1 Aerer Yer 2EXeq 150}
= = average total rate using uniform distortion allocation| i H |
—Steady-state lower bound via (26) - +y
N /] X (1)=a, 1%, 4 (1)+w, (1) A B o X V(1)
151 ) t t1 t:l t1 X eR? Xy /ﬂ(ﬁ» Decoder|Y; € R’ t:
- AN 06242 - - - - - . Quantizer * /MMSE .
£ N 0522 X, (P)= 1, 1 (P W, 4 (P) s e{0.1]} ¥y(p)
g b |
4 hEF N 5000 .
L EEE S 2! Fig. 3. DPCM of parallel processes.
05 T g
° l‘)r'/ : 1 : 2 : 3 4
10 10 10 10 10 ini H
¢ (tme units) Combining (27) and (28), we obtain
Fig. 2. Comparison of the average total rate of Theorem 1 vs. average X =Y =X, - Vs (29)

total rate with uniform distortion vs. the lower bound of Corollary 1, as
a function of ¢. For this simulation, we considered D = 2 and (a, ¢2)) =
(1.5,0.5).

a reasonable precision error (i.e., of order 10~9), the lines will
converge in the asymptotic limit as Corollary 1 suggests. The
starting point of the plot obtained using Theorem 1 depends on
the initial value of ;.

B. Upper Bounds on the Minimum Achievable Total-Rate

In this section, we employ a sequential causal DPCM-
based scheme using pre-/post-filtered ECDQ (for details on
this scheme, see, e.g., [31, Chapter 5]) that ensures standard
performance guarantees (achievable upper bounds) on the min-
imum achievable sum-rate RID:oP-1(D) ="  R/® of the
multitrack setup of Fig. 1. The reason for the choice of this
quantization scheme is twofold. First, it can be implemented
in practice and, second, it allows to find analytical achievable
bounds and approximations on finite-dimensional quantizers
which generate near-Gaussian quantization noise and Gaussian
quantization noise for infinite dimensional quantizers [39].

We first describe the sequential causal DPCM scheme using
an MMSE quantizer for parallel time-varying Gauss—Markov
processes. Then, we bound the rate performance of such scheme
using ECDQ and vector quantization followed by memoryless
entropy coding. This can be seen as a generalization of [12,
Corollary 1.2] to any finite time when the rate is nonuniformly
allocated at each time instant.

DPCM Scheme: At each time instant ¢, the encoder or inno-
vations’ encoder performs the linear operation

Xi =Xy =AY 27
where at ¢ =1, we have )?1 =X; and also Y, ; 2
E{X;_1|S1,+-1}, i.e., an estimate of X;_; given the previous
quantized symbols S ;1. Then, by means of a RP-valued
MMSE quantizer that operates at a rate (per dimension) R;, we
generate the quantized reconstruction Y; of the residual source
Xy denoted by Y; =Y, — A, 1Y, 1. Afterwards, we send S;
over the channel (the corresponding data packet to Y3). At the
decoder, we receive S; and recover the quantized symbol Y; of
X;. Then, we generate the estimate Y; using the linear operation

V=Y, 4+ A 1Y . (28)

MSE Performance: From (29), we see that the error betwq:n X
and Y; is equal to the quantization error introduced by X; and
Y;. This also means that the MSE distortion (per dimension) at
each instant of time satisfies
1 2 1 T T2
Dy = —E{[|X; - Y3[[3} = —E{|[X; — Y{[3}. (30)
p p
A pictorial view of the DPCM scheme is given in Fig. 3.

The following theorem is another main result.

Theorem 2: (Upper Bound to RIID:°P:1( D)) Suppose that in
(20), we apply a sequential causal DPCM-based ECDQ with
a lattice quantizer. Then, the minimum achievable total rate
RLD-op.1(D) = 3% | R{®, where at each time instant R;” is
upper bounded as follows:

1 1
R® < Ri+ 3 log, (271'er)—|—};, Vt, (bits/dimension)
(31

where R} is obtained from Theorem 1, % log,(27eG,,) is the
divergence of the quantization noise from Gaussianity; G, is
the dimensionless normalized second moment of the lattice [31,
Definition 3.2.2]; and % is the additional cost due to having
prefix-free (instantaneous) coding.

Proof: See Appendix B.

Next, we remark some technical comments on Theorem 2.l

Remark 5: (On Theorem 2) 1) Theorem 2 allows a nonuni-
form rate at each time instant for a finite-time horizon while
it achieves the MMSE distortion at each time step ¢. This
is because our DPCM-based ECDQ scheme makes use of
the dynamic reverse-waterfilling algorithm of Theorem 1. This
general rate-constraint is the new input of our bound compared to
similar existing bounds in the literature (see, e.g., [16, Theorem
6, Remark 16], [27, Corollary 5.2], [11, Theorem 5]) that assume
fixed (uniform) rates averaged across the time. 2) Recently,
in [16], [24], it is pointed out that for discrete-time processes,
one can assume in the ECDQ coding scheme the clocks of the
entropy encoder and the entropy decoder to be synchronized,
thus, eliminating the additional rate-loss due to prefix-free cod-
ing, i.e., % in (31) can be removed.

Steady-State Performance: If we restrict the system model
to be time-invariant (per dimension) similar to §III-A, we can
obtain the following upper bound on (25).

Corollary 2: (Upper Bound on (25)) Suppose that in (20), we
apply a sequential causal DPCM-based ECDQ with a lattice
quantizer assuming the system is time-invariant and D; = D,
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Vt. Then, RID-oP-1(D) = RO is upper bounded as follows:

1 1
RP < R + 3 log, (2meG)) + — (bits/dimension)  (32)
p

where R’ is given by (26).

Proof: This follows from Theorem 2 and Corollary 1. ]

We note that Corollary 2 is a known result derived in several
papers in the past, such as those discussed in Remark 5, 1).

Computational Aspects of Theorem 2 for High-Dimensional
Systems: Unfortunately, finding G, in (31) for good high-
dimensional quantizers of possibly finite dimension is currently
an open problem (although it can be approximated for any
dimension using, for example, product lattices [32]). For this
reason, next we bring to spotlight some existing computable
bounds to the achievable upper bound of Theorem 2 for any
high-dimensional lattice quantizer. These bounds were derived
as a consequence of a main result by Zador (see, e.g., [32]),
namely, it is possible to reduce the MSE distortion normalized
per dimension using higher dimensional quantizers. Toward
this end, Zador introduced a lower bound on G, using the
dimensionless normalized second moment of a p-dimensional
sphere, hereinafter denoted by G(.S,,), for which it holds that

1 p »
G(Sy) = ———T (£ +1)
(5) (p+2)m \2 +
where I'(+) is the gamma function. Moreover, G, and G(S,) are
connected via the following inequalities:
1 (@) ()

— < <
2me _G(Sp)_G

(33)

(e) 1

VST (34)

where (a), (b) holds with equality for p — oo; (¢) holds with
equality if p = 1. Note that in [32, (82)], there is also an upper
bound on G, due to Zador, i.e.,

1 _/p 2 2
Gpg—r(fﬂ) F(1+).
pm \2 p

In Fig. 4, we illustrate two plots using the bounds derived in
Theorems 1 and 2 for two different scenarios. In Fig. 4(a), we
choose t = {1,...,20}, a; € (0,1.5), 02, =1,and D =1, t0
illustrate the gap between the nonuniform rate-distortion alloca-
tion obtained via the lower bound (21) and the upper bound (31)
when the latter is approximated with the best known quantizer
up to 24 dimensions, i.e., Leech lattice quantizer (for details, see,
e.g., [32, Table 2.3]). For this experiment, the gap between the
two bounds is approximately 0.126 bits/dimension. In Fig. 4(b),
we assume the same values for (ay, ait , D), whereas the quan-
tization is performed for 500 dimensions. We observe that the
achievable bounds obtained via (33) and (35) are quite tight (they
have a gap of approximately 0.0014 bits/dimension) whereas the
gap between the lower bound (21) with the achievable upper
bound (31) approximated by (33) is 0.0097 bits/dimension,
and the one approximated by (35) is approximately 0.011
bits/dimension. Compared to the first experiment where p = 24,
the gap between the bounds on the minimum achievable rate
R;® is considerably decreased because we increase the number
of dimensions in the system. Moreover, when the number of
dimensions in the system increases, the gap between (21) and the

(35)

4 Leech Lattice Quantizer Ay (p = 24)
T T T T

: .
— Lower bound on R via (21)
— Upper bound on R{” via (32)

0.8

Gap~ 0.126 bits/dimension

Rt (bits/dimension)

2 4 6 8 10 12 14 16 18 20
t (time units)

(a)

. High Dimensional Quantization (p = 500)
T T T T T T T T T
Gap~ 0.0097 bits/dimension [ Upper bound on R’ via the approximation of (35)
” via the approximation of (33)
ia (21) ]

Gap~ 0.011 bits/dimension

139 14 141 142 7

Rt (bits/dimension)

10 12 14 16 18 20
t (time units)
(b)
Fig. 4. Bounds on the minimum achievable total rate.
W, eRP P X, eR?
t »| Stochastic Linear Plant t ,
Xt a9 = Atxt + BtUt + Wt
A
Ut er?y
\ A\
Decoder/ | _ pRt Observer
Controller | 5, < (0, 1’ /Encoder
Fig. 5. Closed-loop control system model.

high-dimensional approximations of (31) will become arbitrary
small. The two bounds will coincide as p — o0, because then,
the gap of coding noise from Gaussianity goes to zero (see,
e.g., [40], [39, Lemma 1]), which implies that (33) is equal to
(35) (see, e.g.,[32, (83)]).

IV. APPLICATION IN NCSs

In this section, we use sequential coding in the NCS setup of
Fig. 5 by applying the results obtained in Section III. We first
describe each component of Fig. 5.

Plant: Consider p parallel time-varying controlled Gauss—
Markov processes as follows:

$t+1(i) = Oétl‘t(i) + ,Btut(Z) + wt(i), 1€ N:f, t e N? (36)

where x1(i) = x; is given with z; ~ N(0; 021), Vi; the non-
random coefficients (o, 5;) € R are known to the system with
(a, Be) # 0,Vt; {uy(4) : © € NP} is the controlled process with
ug(7) # ue(0), forany (i, £) € N7 {w;(i) = wy : i € NV} isan
independent Gaussian noise process such that w; ~ N (0; afw ),
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ait > 0, independent of =, Vi. Again, similar to Section III,
(36) can be compactly written as

Xt+1 = AtXt -+ BtUt + Wt,Xl = given,t c NI" (37)
where A; = diag(ay, ..., a:) € RP*P, By = diag(ft, ..., Bt)
e RP*P, U, € RP, Wy € R? ~ N(0;Zw,), XZw, =
diag(o2, ,...,0%,) = 0 is an independent Gaussian noise

process independent of X;. In this setup, the plant is fully
observable for the observer that acts as an encoder but not for
the controller due to the quantization noise (coding noise).

Observer/Encoder: At the encoder, the controlled process is
collected into a frame X; € R? from the plant and encoded as
follows:

Sy = fi(X1,4, S1,-1)

where at ¢t = 1, we have S; = f1(X1), and R; = % is the
rate at each time instant ¢ available for transmission via the
noiseless channel. In the design of Fig. 5, the channel is noiseless
and the controller/decoder are deterministic mappings; thus, the
observer/encoder implicitly has access to past control signals
Uii—1 € Uy

Decoder/Controller: The data packet S; is received by the
controller using the following reconstructed sequence:

Uy = gt(Sl,t)~

Following (39), when the sequence S, is available at the
decoder/controller, all past control signals Uy +—1 are completely
specified.

Quadratic Cost: The cost of control (per dimension) is defined
as

(38)

(39)

n—1

1 ~ ~ -

LQGy, = B {Z (XTQuX, + UFNL) + XanXn}
t=1

(40)

where @t = diag(Q¢...,Q:) = 0, @t €RP*? and N, =
diag(Ny, ..., Ny) = 0, N, € RP*P, are designing parameters
that penalize the state variables or the control signals.
Performance: The performance of Fig. 5 (per dimension) can
be cast to a finite-time horizon-quantized LQG control problem
subject to the joint design of quantizer/controller as follows:

Do P (R) = min LQG, .. (41)
(ft, g¢): t=1,....,n ’
LS5 Ri<R

Iterative Encoder/Controller Design: In general, as (41) sug-
gests, the optimal performance of the system in Fig. 5 is achieved
when the encoder/controller pair is designed jointly. This is a
quite challenging task, especially when the channel is noisy
because information structure is non-nested in such cases (for
details, see, e.g., [41]). There are examples, however, where the
separation principle applies and the task comes much easier.
More precisely, the so-called certainty equivalent controller
remains optimal if the estimation errors are independent of
previous control commands (i.e., dual effect is absent) [42].
In our case, the optimal control strategy will be a certainty
equivalence controller if we assume a fixed sequence of encoders

{ff: t € NI} and the corresponding quantizer follows a pre-
dictive quantizer policy (similar to the DPCM-based ECDQ
scheme proposed in Section IlI-B), i.e., at each time instant, it
subtracts the effect of the previous control signals at the encoder
and adds them at the decoder (see, e.g., [43, Proposition 3], [44],
[45, Section III]). Moreover, the separation principle will also be
optimal if we consider an MMSE estimate of the state (similar
to what we have established in Section III), and an encoder
that minimizes a distortion for state estimation at the controller.
The resulting separation principle is termed “weak separation
principle” [44] as it relies on the fixed (given) quantization
policies. This is different from the well-known full separation
principle in the classical LQG stochastic control problem [46]
where the problem separates naturally into a state estimator and
a state feedback controller without any loss of optimality. The
previous analysis is described by a modified version of (41) as
follows:

IID,op 1ID,op,ws __ .
Fsum (R) § Fsum — N min
(f’i’ ge): t=1,...,n
n
w2t TSR

LQG,,. (42)

Next, we state the solution of (42) in the form of a lemma. The
derivation of the proof can be found in [20], [44], [45].

Lemma4: (Weak Separation Principle for Fig. 5) The optimal
controller that minimizes (41) is given by

U =-LE{X,S1.:} (43)

where E{X;|S;,} are the fixed quantized state estimates

obtained from the estimation problem in Section III; ft =
diag(Ly, ..., L) € RP is the optimal LQG control (feedback)
gain obtained as follows:

B = N -1 -
Li= (BiKea + N) B A, (44)

and K; = diag(K, ...
ward recursions
K, = A} (fftﬂ — Ky B} (B} Ky + Nt)ilkﬂ-l) + Qs
(45)

,K;) > 0 is obtained using the back-

with K, 1 = 0. Moreover, this controller achieves a minimum
linear quadratic cost of
n

%Z {trace(ZWtf(t)

t=1

FHD,Op,ws _

sum

+ trace(A, B, LKy 1 B{|| X, — Yt||§})}
(46)

where E{||X; — Y;||3} is the MMSE distortion obtained using
any quantization (coding) in the control/estimation system.

Before we prove one main result of the article, we define the
instantaneous cost of control as follows:

LQG® £ 1 {trace(ZWt]?t)
p

+ trace(A, B L Ky B[ X; — mg})}, te NI (@7)

Next, we use Lemma 4 to derive a lower bound on (42).
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Theorem 3: (Lower bound on (42)) For fixed coding poli-
cies, the minimum total-cost of control (per dimension) of
(42) for any “n” and any p, however large, is ['LID:op-ws —

1 LQGP, w1th LQG;® > LQG; such that

LQG; = o2, Ko+ i Li K1 D(Ry) (48)
where D(Ry) is given by
; n-1
D(R) A 7 vt € Nj (49)
2 2R;, v, fort=n

with the pair (D(R;), R;) given by (21)-(23).

Proof: See Appendix C. |

The following remark on Theorem 3 reveals a new major
result related to the absolute minimum rates at each instant of
time for a mean square stabilizable system.

Remark 6: (On Theorem 3) The expression of the lower
bound in Theorem 3 can be reformulated for any n, and any
p, to the equivalent expression of the total rate-cost function,
denoted hereinafter by >} ;| R(LQG;), as follows:

B L K, 0
B Ly Ky 1 ),teN{‘l

R(LQG:) 10g2 ( LQG* — o2 Kt
t wy
(50)

with R(LQG;,) = R}, as it is independent of LQG),. Inter-
estingly, one can observe that by substituting in (50) the per-
dimension version of (44), we obtain

R(LQGY)
Bt Kii o,
:%logQ o? 1—1—11(3@%% (51)
BE Kiiion,
:% log,(a2) +log, | 1+ L(ST% (52)

The bound in (52) extends the result of [24, (16)] from uniform
(fixed) data rates to nonuniform rates at each instant of time
because the rate-cost function is obtained using an allocation of
LQG; due to the nonuniform rate allocation of the quantized
state estimation problem of Theorem 1. Additionally, the ex-
pression in (52) reveals an interesting observation regarding the
absolute minimum data rates for mean square stability of the
plant (per dimension), i.e., sup, E{(z;)?} < o (see, e.g., [33,
(25)] for the definition) for any fixed finite-time horizon. In
particular, (52) suggests that for unstable time-varying plants
with arbitrary disturbances modeled as in (37), and provided that
at each time instant the cost of control (per dimension) is with
communication constraints, i.e., LQG] > 01201 K (the derivation
without communication constraints is well known as the sepa-
ration principle holds without a loss and LQG; = o2, K, Yt
[46]), the minimum possible rates at each time instant ¢, namely,
R(LQGY), cannot be lower than log, |ay|, when || > 1. This
result extends known observations obtained for time-invariant
plants (see, e.g., [24, Remark 1]) to parallel and (possibly un-
bounded) time-varying plants for any fixed finite-time horizon.

Next, we use Theorem 2 to find an upper bound on I'LID-op,ws
Theorem 4: (Upper Bound on (42)) Suppose that in the sys-
tem of Fig. 5, the fixed coding policies are obtained using the
predictive coding scheme via sequential causal DPCM-based
ECDQ coding scheme with an RP-valued lattice quantizer
described in Theorem 2. Then, ['lID.opws = 5™ T,QGyP for

any n, and any p, with the instantaneous cost of control {LQG; :
t € N~ '} (per dimension) to be upper bounded as follows:

1 2
LQGS? <02 Ki + i LiKiiq j,Lp (27T16Gp)awt
' 228" — 47 (2meG)ad
(53)
whereas, att = n, LQGSP = o2 K, and Ry? is bounded above
as in (31).
Proof: See Appendix D. |

Remark 7: (On Theorem 4) For infinitely large spatial com-
ponents, i.e., p — o0, the upper bound in (53) approaches the
lower bound in Theorem 3 because G — 5. (see, e.g, [39,
Lemma 1]). Moreover, one can easily obtaln the equivalent
inverse problem of the total rate-cost function for the upper
bound in (53) similar to Remark 6.

Next, we note the main technical difference of the new results
obtained in Theorems 3 and 4 compared to existing results in
the literature.

Remark 8: (Connections to Existing Works) 1) Our bounds
on LQG cost extend similar bounds derived in [16, Ths. 7
and 8] to nonuniform rate constraints for any fixed finite-time
horizon. Such constraints require the use of the dynamic reverse-
waterfilling optimization algorithm derived in Theorem 1. In
contrast, the uniformrate constraint assumed in [ 16, Ths. 7 and 8]
does not require a similar optimization technique because at each
instant of time, the transmit rate is the same. Another structural
difference compared to [16, Ths. 7 and 8] is that in our bound,
we decouple the dependency of D;_; at each time instant and
that is why we are able to obtain the major result of Remark 6. 2)
Clearly, our results extend the steady-state bounds on LQG cost
obtained in [25], [27], [28] to nonasymptotic bounds constrained
by nonuniform rates for any fixed finite-time horizon.

Steady-State Solution of Theorems 3 and 4.: Next, we dis-
cuss the steady-state case of the bounds derived in The-
orems 3 and 4 using the following assumptions: (Al) re-
stricts the controlled process (37) to be time-invariant,
which means that A, = A = diag(a,...,a) e RP*P, B, =
B:dlag(@,ﬁ) c RP*P W, € RP NN(O,EV[/), YXw =
diag(a?,...,02) = 0, Vt; (A2) restricts the design parameters
that penalize the control cost (40) to also be time-invariant,
ie., Q; = diag(Q,...,Q), N, = diag(N,...,N); (A3) fixes
D; = D, Vt. We denote the steady state value of the total cost
of control (per dimension) as follows:

LQG, = limsup — Z LQG,.

n——m>00

(54)

Steady-State Performance: The minimum achievable steady-
state performance (per dimension) of the quantized LQG control
problem of Fig. 5 under the weak separation principle can be cast
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as follows:
Tomids™ = min  LQG.. (55)
(ft7 gt)? t=1,...,00
Ro<R

00

In the next two corollaries, we state the lower and upper bounds
on (55). These bounds stem from the Assumptions (A1)-(A3)
and Corollaries 1 and 2.

Corollary 3: (Lower Bound on (55)) The minimum achiev-
able steady-state performance of (55), under Assumptions (A1)—
(A3), for any p, is such that T1ID-oP-ws > [,QG* | where

sum,ss

0.2

where LQG?, £ lim,, o = 37 | LQG]
aBK
L= ——— 57
B2K. + N 7)
and K, is the positive solution of the quadratic equation
B Ko+ (1 —a*)N — f2Q) Koo — QN =0 (58)
given by the formula
1 — B
Ky = — 2 4+ 482QN — 59
27 (\/f +462Q f) (59)

with f = (1 — a?)N — B2Q.

Corollary 4: (Upper Bound on (55)) The minimum achiev-
able steady-state performance of (55), under Assumptions (A1)—
(A3), for any p, is upper bounded as follows:

4v (2meGyp)o2,
2R _ 43 (2meGp)a?

where RZP is upper bounded by (32) and K, L are given by
(59) and (57), respectively.

We omit the derivation of the proofs for Corollaries 3 and 4
because they follow using similar arguments to previous papers
(see, e.g., [20, Section V], [47, Section 6] for the lower bound
and [16], [27], [28] for the upper bound). The upper bound is
also similar to the one obtained in [25] albeit their space-filling
term is obtained differently.

FIIDopws <0_ Koo"‘aﬁLooKoo

sum,ss

V. EPILOGUE AND OPEN QUESTIONS

We revisited the sequential coding of correlated sources with
independent spatial components to use it in the derivation of
nonasymptotic, finite-dimensional lower and upper bounds for
two application examples in stochastic systems. Our applica-
tion examples included a parallel time-varying quantized state-
estimation problem subject to a total MSE distortion constraint
and a parallel time-varying quantized LQG closed-loop control
system with linear quadratic cost. For the latter, its lower bound
revealed the absolute minimum rates for mean square stability
of the plant at each time instant under nonuniform rates for any
fixed finite-time horizon.

There are various open questions that stem from the results
of this article. For instance, it would be interesting to explore
strong structural properties on matrices (A;, Yw,, Ay, Ay) in
the derivation of Theorem 1, which will allow its extension to

more general cases of time-varying multivariate Gauss—Markov
processes. Another question not addressed in this article is
whether the nonasymptotic lower bounds derived in Theorems
1 and 3 can be extended to linear Markov models driven by
additive independent non-Gaussian noise processes. Finally, of
interest is the extension of our setup to take into account noiseless
communication links prone to packet drops.

APPENDIX A
PROOF OF THEOREM 1

Using (14), we obtain
REP (D) 2 RURA(D)
1 n
= min - ZI(X:&; Y;|Y1,t—1)~
iy E{IX.-vil3}<D. P i

Y1 X1 X2 5,
Y (Xe,Y1,0m1) (X101 X o4 1,m)

(60)

It is easy to see that the RHS term in (60) corresponds precisely
to the sequential or NRDF obtained for parallel Gauss—Markov
processes with a total MSE distortion constraint which is a sim-
ple generalization of the scalar-valued problem that has already
been studied in [36]. Therefore, using the analysis of [36], we
can obtain

RHD 1( )

sum

@ min Z{ (Xe[Yi-1) — h(Xe[Y14)}

contraint in (60) p

® 1 : n 1 ™
- 5 Ati%?I?ENf' Z max |:07 5 10g2 <|At|
%%Z:;l trace (A¢)<D

At
= —1 61
Dt>r511{1€Nn Zmax { 089 <Dt)] (61)
- Zt 1D1<D

where (a) follows by deﬁnition; (b) follows from the fact
that  A(Xy|Y141) = 10g2(27re) |A;| where A; = diag
(Ay .- ) € RPXP w1th r=a? Dy 1 +o02 and that
h(Xe| Y1) =

10g2(27re)p|At| where A; = diag(Dy,...,D;) € RP*P for
D € [0, 00). The optimization problem of (61) is already solved
in [36, Theorem 2] and is given by (21)—(23).

We-17°

APPENDIX B
PROOF OF THEOREM 2

In this article, we bound the rate performance of the DPCM
scheme described in Section III-B at each time instant, for
any fixed finite time n, using an ECDQ scheme that utilizes
the forward Gaussian test-channel realization that achieves the
lower bound of Theorem 1. The scheme relies on the replacement
of the quantization noise with an additive Gaussian noise with
the same second moments (see e.g., [48] or [31, Chapter 5] and
the references therein). First, note that the Gaussian test-channel
linear realization of the lower bound in Theorem 1 is known to
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be [36]
Y, = H X, + (I, — H) Ay 1Yy + H2Vi, Vi ~ N(0; A)
(62)
where H; 2 1, — ANt =0, A, 2 diag(Dy,...,Dy) =

0, Ay = diag(rs, ... A¢) = 0.

Pre-/Post-Filtered ECDQ With Multiplicative Factors for Par-
allel Sources: [48] First, consider a p-dimensional lattice quan-
tizer Qp [32] such that E{Z, Z]} = Sy, Bye > 0, where Z; €
R? is arandom dither vector (shared randomness) generateg both
at the encoder/decoder independent of the input signals X; and
the previous realizations of the dither, uniformly distributed over
the basic Voronoi cell of the p-dimensional lattice quantizer (),
such that V¢ ~ Uni f(0; Xy, ). At the encoder, the lattice quan-
tizer quantizes Ht% )?t + Z;,thatis, Qp(Ht% )?t + Z;), where )?t
is given by (27). Then, the encoder applies entropy coding to the
output of the quantizer and transmits the output of the entropy
coder. At the decoder, the coded bits are received and the output
of the quantizer is reconstructed, i.e., Qp(Ht% )A(t + Z;). Then,
it generates an estimate by subtracting Z; from the quantizer’s
output and multiplies the result by ®; as follows:

Y: = 0(Qp(HY Ko + Z4) — Z) (63)

1
where &, = H?. The coding rate at each time instant of the
conditional entropy of the MSE quantizer is given by

H(Q,|Z) = I(H*X;; HE X, + V)
W (HER; HYX, + V) + DV VL)
~D(H X, + VE||HEX, + V)

() N .
< I(H=Xy; HE X, + Vi) + D(VE| V)

(c)

< I(H¥X, H}X, + Vi) + glog(Qwer)

A
I

21X YilVier) + Slog(2meGy) (64
where V¢ € R? is the (uniform) coding noise in the ECDQ
scheme and V4 is the corresponding Gaussian counterpart; (a)
follows because the two random vectors V¢, V; have the same
second moments, and hence we can use the identity D(z||z’) =
h(z") — h(z); (b) follows because D(H)?t + Vf||H)?t +
Vi) > 0; (c) follows because the divergence of the coding noise
from Gaussianity is less than or equal to £ log(27meGy,) [39],
where G, is the dimensionless normalized second moment of
the lattice [31, Definition 3.2.2]; (d) follows from data pro-
cessing properties, i.e., I(Xy; Y;|Y1,-1) « I(Xy;Yi|Yi1) ()
I()/ft; }/}t) (=) I(H%)/(\'t; H3X, + Vi), where (x) follows from
the realization of (62), () follows from the fact that X and Y,
[obtained by (28)] are independent of Y;_1, and (x * *) follows
from (27), (62), and the fact that H 3 is an invertible operation.
Since we assume joint (memoryless) entropy coding with lattice
quantizers, then, the total coding rate per dimension is obtained

as follows[49, Chapter 5.4]:

S B8 < IS g,z +1)

t=1 p p t=1

(6) 1 & n
<5 S I(XyYilYie 1) + 7 log(2meGy) +
t=1

log(27reG )+ (65)

(f 1
D53 o
t=
where (e) follows from (64); (f) follows from the derivation of
Theorem 1. The derivation is complete once we minimize both

sides of the inequality in (65) with the appropriate constraint
sets.

\AI

APPENDIX C
PROOF OF THEOREM 3

Note that from (46), we obtain

n
FIID,op,ws _ Z LQG?p
t=1
- Z {trace S, Ky)
t 1

+trace(A B LK B{IX, - Vil 3D }

Z {trace Sw, Ky)

—~

ll

>
+trace(A B LK B{I|X, — B{Xi[S10H3H }

trace(EWtf(t) + trace <AtBtZtI~(t+1

L 2n(X,8101=58101) | o-2R;
ESMI{MQP (Xe|S1,e-1=51,0-1) | 9—2R;

Z { trace(EWtIN{t) + trace (AtBtZtI?H_l

2%h(Xt‘Sl,t—1)2_2R; } ) }
e
(d)

> Z { K A B L K1 D( R*

t=1

Z LQG; (66)

t=1

where (a) follows from the fact that Y; is S; ;-measurable and
the MMSE is obtained for Y; = E{X;|S1,}; (b) follows from
the fact that E{||X; — E{X:|S1.:}|13}) = EgLH{E{HXt -
E{X;|S1:}|[3[S1,0-1 = S1,;-1}}, where Eg {-} is the
expectation with respect to some vector S 1,+—1 thatis distributed
similarly to Sj; 1, also from the MSE inequality in [49,
Theorem 17.3.2] and, finally, from the fact that R; > 0, where
R; = %{h*(Xt|Y1,t,1) — h*(Xy|Y1,)} (see the derivation of
Theorem 1, 1)) with h*(X;|Y1,-1), h*(X:|Y1,) being the
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minimized values in (61); (¢) follows from Jensen’s inequal-
; ; _ 2h(X|S1,0-1=51,1-1)

ity [49, Theorem 2.6.2], i.e., Eg , {27 >

25 MXelS10), (d) follows from the fact that {h(X;|S1:-1) =

h(At lXt 1 ‘|‘Bt lUt 1 +Wt 1|Slt 1) te Nn} is
completely specified from the independent Gaussian noise
process {W;_1:t€ NI} because {U;_1 = ¢:(S11-1):
t € NI'} [see (39)] are constants conditioned on S ;.

Therefore, h(X;|S1,-1) is conditionally Gaussian, thus
equivalent to  h(X;|Y1,-1). This further means that
21 9% W(X:|Y1+-1)9—-2R; > 1 22h (XelY1,0-1)9-2R; *) 21

e e

25 logy (2me)P|AG| (*:*) IIllIl{Df} =
because h*(X;|Y1,) = 1 logy(2me)P|A;| and (x*) follows
because A} = diag(min{D;}, ..., min{D;}).

It remains to find D(R;) at each time instant in (66). To do so,
we reformulate the solution of the dynamic reverse-waterfilling
solution in (21) as follows:

Sow-
t=1

1 0
= Q{M

D(R;), where (x) follows

RHD 1

sum

nR =

1 — At
Z 1 -t
2 (5)

—
initial step
+ ZlogQ (ozt ) log, D } 67)
final step

From (67), we observe that at each time instant, the rate Rj is a
function of only one distortion D, since we have now decoupled
the correlation with D;_ 1. Moreover, we can assume without loss
of generality, the initial step is zero because it is independent
of Dy. Thus, from (67), we can find at each time instant, a
D; € (0,00) such that the rate is R; € [0, 00). Since the rate
distortion problem is equivalent to the distortion rate problem
(see, e.g., [49, Chapter 10]), we can immediately compute the
total distortion rate function, denoted by DHD.1 (R), as follows:

n n—1 2
DD, L(R) 2 Z " Z Tw —2R;,
sum - D R 722Rx o —|— 2 . (68)
t=1 t=1

Substituting D(R}) at each time instant in (66), the result
follows. This completes the proof.

APPENDIX D
PROOF OF THEOREM 4

Note that from Lemma 4, (46), we obtain

n

_1! Z {trace(ZW,f(t)

t=1

IID,op,ws
1_‘sum

+ traCG(AtBtZt.[?t+1E{‘ |Xt — }/;g| ‘3})}

1 n
; Z {trace EWth) + trace(AtBtLthHD(R ))}
t=1
1

(a) & 47 (2reGp)os,
< Z on, Ko+ i L Ky —— ( T p)%w,

1 2217 — 4 (2meGp )
+ 0y, Kn (69)

where (a) follows because we can use Theorem 2, (31), to
reformulate {R] : ¢ € NJ'} similar to (67) (in the derivation
of Theorem 3) so that we decouple the dependence on D;_;
at each time step. Finally, for each R;* ¢t =1,2...,n— 1, in
(31), we solve with respect to the equivalent inverse problem of
the distortion rate function, i.e., D(R;"), which gives

4> (27reG Jou,
22RY _ 4% (27reG ya?

D(R{®) < ,te Np~ L (70)

Observe that the last step ¢ = n is not needed because in (46),
we have K,, .1 = 0. This completes the article.
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