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Entropy Maximization for Partially Observable Markov Decision
Processes

Yagiz Savas ¥, Michael Hibbard

Abstract—We study the problem of synthesizing a controller
that maximizes the entropy of a partially observable Markov de-
cision process (POMDP) subject to a constraint on the expected
total reward. Such a controller minimizes the predictability of an
agent’s trajectories to an outside observer while guaranteeing the
completion of a task expressed by a reward function. Focusing
on finite-state controllers (FSCs) with deterministic memory tran-
sitions, we show that the maximum entropy of a POMDP is lower
bounded by the maximum entropy of the parameteric Markov chain
(pMC) induced by such FSCs. This relationship allows us to recast
the entropy maximization problem as a so-called parameter synthe-
sis problem for the induced pMC. We then present an algorithm to
synthesize an FSC that locally maximizes the entropy of a POMDP
over FSCs with the same number of memory states. In a numerical
example, we highlight the benefit of using an entropy-maximizing
FSC compared with an FSC that simply finds a feasible policy for
accomplishing a task.

Index Terms—Autonomous systems, entropy, stochastic pro-
cesses.

|. INTRODUCTION

The information-theoretic concept of entropy [1] quantifies the un-
certainty of outcomes in a random variable. We consider a sequential
decision-making framework of partially observable Markov decision
processes (POMDPs) in which an entropy-based reward is introduced
in addition to the classical state-dependent reward. Specifically, we
seek an entropy-maximizing controller that ensures the expected state-
dependent reward remains above a given threshold. Intuitively, the
entropy reward promotes the unpredictability of the controlled process
to an observer. Therefore, the POMDP formulation considered provides
aframework for sequential decision-making in stochastic environments
with imperfect information and nondeterministic choices, where a task
should be accomplished unpredictably.

A POMDP controller resolves the nondeterminism and induces a
stochastic process whose unpredictability we quantify by defining the
entropy as the joint entropy of a sequence of random variables [2], [3].
Our main objective is to synthesize a controller that induces a pro-
cess whose realizations accumulate rewards most unpredictably to
an outside observer. Controller synthesis problems for POMDPs are

Manuscript received 16 May 2021; revised 31 December 2021; ac-
cepted 7 June 2022. Date of publication 16 June 2022; date of cur-
rent version 5 December 2022. This work was supported in part by
the AFRL under Grant FA9550-19-1-0169, in part by the DARPA un-
der Grant D19AP00004, Grant D19AP00078, and Grant FOA-AFRL-
AFOSR-2019-0003, and in part by the NSF under Grant 1944318.
Recommended by Associate Editor R. Jain. (Yagiz Savas and Michael
Hibbard contributed equally to this work.) (Corresponding author: Yagiz
Savas.)

The authors are with the Department of Aerospace Engineering
and Engineering Mechanics, Oden Institute for Computational En-
gineering and Sciences, University of Texas at Austin, Austin, TX
78712 USA (e-mail: yagiz.savas@utexas.edu; mwhibbard@utexas.edu;
ttanaka@utexas.edu; utopcu@utexas.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAC.2022.3183564.

Digital Object Identifier 10.1109/TAC.2022.3183564

, Bo Wu

, Takashi Tanaka ““, and Ufuk Topcu

notoriously hard to solve. Optimal controllers must often use the full
observation history, which makes searching for them undecidable in
the infinite-horizon case and PSPACE-complete in the finite-horizon
case [4], [5]. For computational tractability, controllers are often re-
stricted to finite states representing finite observation memory [6].
Furthermore, in contrast to classical POMDP problems with deter-
ministic optimal controllers, problems adopting information-theoretic
performance criteria typically admit randomized controllers specifying
probability distributions for action selection.

We synthesize a randomized finite-state controller (FSC) for a
POMDP that specifies a probability distribution over actions for each
memory state [7]. Particularly, we consider the entropy maximization
problem over all FSCs with a fixed number of memory states. A key
observation is that one can use a parameteric Markov chain (pMC) to
succinctly represent the product between a POMDP and the set of all
FSCs with a fixed number of memory states [8], [9]. By restricting
our attention to FSCs with deterministic memory transitions, we recast
the POMDP controller synthesis problem as a so-called parameter
synthesis problem for a pMC whose entropy we aim to maximize.
We first derive a system of recursive equations for entropy maximiza-
tion and prove that the maximum entropy of a pMC induced from a
POMDP by FSCs with deterministic memory transitions lower bounds
the POMDP’s maximum entropy. Furthermore, we introduce a specific
FSC memory transition function using which one can monotonically
increase the entropy of the induced stochastic processes by increasing
the number of memory states in the FSC. Finally, we present an algo-
rithm, based on a nonlinear optimization problem (NLP), to synthesize
FSCs that maximize the entropy of a pMC subject to expected reward
constraints.

Related work: A preliminary version of this article appeared in [10],
where we present solutions for entropy maximization over FSCs with
a specific memory transition function and the same number of memory
states. This extended version includes detailed proofs for all theoretical
results, a NLP formulating the entropy maximization over all determin-
istic FSCs with the same number of memory states, and a new numerical
example. We refer the interested reader to [10] for further numerical
examples.

Recently, we showed in [3] that an entropy-maximizing controller
for a fully observable MDP can be synthesized efficiently by solving
a convex optimization problem. Moreover, we established that for an
MDP with finite maximum entropy, it is sufficient to focus only on
memoryless controllers to induce a process with maximum entropy. It
is known [11] that synthesizing a controller accumulating a desired level
of total reward in a POMDP is, in general, intractable. Therefore, partial
observability in the system model dramatically changes the complexity
of the problem. As a result, in this article, we focus on FSCs and present
a NLP with bilinear constraints to synthesize entropy-maximizing
controllers for POMDPs.

In POMDPs, entropy has often been used for active sensing applica-
tions [12]-[14], where an agent seeks to select actions that decrease its
uncertainty by taking actions that minimize the entropy of a probability
distribution. Such a distribution typically expresses the agent’s belief on
the task-relevant aspects of the environment. Here, we consider an agent
that aims to maximize the entropy of its true state trajectories instead of
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minimizing the entropy of its final belief distribution. Therefore, despite
the similarity of the information-theoretic measures considered, the
problem studied in this article and the developed solution approach sig-
nificantly differ from the ones investigated in active sensing literature.

In the reinforcement learning literature, the entropy of a controller
has been used as a regularization term in an agent’s objective to balance
the tradeoff between exploration and exploitation [15]. As discussed
in [16], using a controller with high entropy, an agent can learn various
ways of completing a task, leading to a greater robustness when sub-
sequently fine-tuned to specific scenarios. The aforementioned work
concerns the synthesis of a controller that balances the accumulated
reward and the entropy of the induced process in a fully observable
setting. Here, we aim to synthesize a controller that maximizes the en-
tropy in a partially observable setting while ensuring the accumulation
of a desired level of total reward.

A range of solution techniques exist for POMDP controller synthe-
sis using FSCs. For deterministic FSCs, existing approaches include
branch-and-bound method [6], automaton learning-based method [17],
and expectation—maximization [18], which all focus on finding an
optimal transition structure for the FSC. As for randomized FSCs,
in addition to the transition structure, one also needs to optimize
the probabilistic transition probabilities between FSC states and the
action selection probabilities. To this end, researchers propose so-
lutions using policy iteration [7], [19], [20], gradient descent [21],
and nonlinear optimization [22], [23]. However, these results only
consider state-dependent reward optimization or the satisfaction of a
given specification. In contrast, we consider the synthesis of FSCs for
entropy maximization, which is a nonlinear objective that requires a
new optimization formulation as well as solution techniques.

Contribution: This article has four main contributions. First, we
derive a system of recursive equations, the fixed-point of which cor-
responds to the maximum entropy of a POMDP. Second, by restricting
attention to FSCs with deterministic memory transitions, we prove
that the maximum entropy of the induced pMC is a lower bound
on the maximum entropy of the POMDP. Third, we present a NLP
whose solution provides a controller maximizing the entropy of the
POMDP over all deterministic FSCs with the same number of memory
states. Finally, for deterministic FSCs, we propose a specific memory
transition function that increases the entropy of the induced stochastic
process with respect to an increasing number of memory states.

Il. PRELIMINARIES

We denote the power set and cardinality of a set S by 25 and |S|, re-
spectively. The set of all probability distributions on a finite set S, i.e., all
functions f : S —[0,1] such that 3 __¢ f(s) =1, is denoted by A(S).
For a sequence {X;,t € N}, a subsequence (X, Xgi1,...,X;) is
denoted by X}. The subsequence (X1, Xo, ..., X;) is simply denoted
by X'

A. Partially Observable Markov Decision Processes

Definition 1: A POMDP is a tuple M = (S, sr, A, P, Z,0, R)
where S is a finite set of states, s; € S is a unique initial state, A is a
finite set of actions, P : S x A — A(S) is a transition function, Z is
a finite set of observations, O : S — A(Z) is an observation function,
and R : S x A — R is areward function.

For simplicity, we assume that all actions a € A are available in
all states s € S. For the ease of notation, we denote the transition
probability P(s'|s, a) and the observation probability O(z|s) by Ps 4 o
and O ., respectively.

For a POMDP M, the corresponding fully observable MDP M ¢, is
obtained by setting Z = S and O, s =1 forall s € S.

A system history of length t € N for a POMDP M is a se-
quence h' = (sr,ay, S2,0az,83,...,8;) of states and actions such

that Ps, o ,s,,, >0 for all kK € N. We denote the set of all sys-
tem histories of length ¢ by H'. For any system history h' =
(sr,a1,82,...,8;) of length ¢, there is an associated observation
history o' = (z1, a1, 22, . .., z) of length t € N where O,, ., >0 for
all k£ € N. Note that there are, in general, multiple observation histories
that are admissible for a given system history h*. Finally, we denote the
set of all observation histories of length ¢ by O?.

Definition 2: A controller  : Useny OF — A(A) is a mapping from
observation histories to distributions over actions. For a POMDP M,
we denote the set of all controllers by IT(M).

The probability with which the controller 7 takes the action a € A
upon receiving the history o' € O is denoted by 7 (a|o?).

B. Entropy of Stochastic Processes

The entropy of a random variable X with a countable support X" and
probability mass function (pmf) p(x) is
=-2 pl

zeX
We use the convention that Olog 0 =0. Let (X1, X5) be a pair of

random variables with the joint pmf p(x1, x2) and the support X x X.
The joint entropy of (X1, X5) is

H(X17X2 Z Z 131,132 Ing(xl,xz) 2)

r1EX zoeX

) log p(x (D

and the conditional entropy of X5 given X is

H(X|X1) == > > pl

x1EX x2€X

p(x1, 22) log p(wa]xy). (3)

The definitions of the joint and conditional entropy extend to collections
of k € N random variables, as shown in [1]. A discrete stochastic
process X is a discrete time-indexed sequence of random variables,
e, X={X, e X:teN}L

Definition 3 ([24]): The entropy of a stochastic process X is

H(X) = lim H(Xy, Xa,...,X,). @)
t—o0

The above-mentioned definition is different from the entropy rate
of a stochastic process, which is defined as lim; ., tH (X*) when
the limit exists [1]. The limit in (4) either converges to a nonnegative
number or diverges to positive infinity [24].

ForaPOMDP M, acontroller 7 € II(M) induces a discrete stochas-
tic process {S; € S : t € N} in which each S; is a random variable
over the state space S. We denote the entropy of a POMDP M under a
controller m € II(M) by H™(M).

[Il. PROBLEM STATEMENT

We consider an agent whose behavior is modeled as a POMDP and
an outside observer whose objective is to infer the states occupied by the
agent in the future from the states occupied in the past. Being aware of
the observer’s objective, the agent aims to minimize the predictability of
its future states while ensuring that the expected total reward it collects
exceeds a specified threshold.

We measure the predictability of the agent’s future states by the
entropy of the underlying stochastic process. The rationale behind this
choice can be better understood by recalling (see, e.g., Th. 2.5.1in [1])
that, for an arbitrary controller = € II(M), the identity

H™(S1,82,...,Sy) = H™(SY|S* Y ) + H™(S*")  (5)
holds for any NV € N and ¢ < N. Therefore, by maximizing the value
of the left-hand side of (5), one maximizes the entropy of all future
sequences (S, . .., Sy) for any given sequence (Si,...,S; 1).

We consider an agent with infinite decision horizon whose aim is
to randomize its infinite length state trajectories. When the decision
horizon is infinite, the total reward collected by the agent, as well as
the entropy of the underlying stochastic process, may be infinite [3],
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[25]. A common approach to ensure the finiteness of the solution in
infinite horizon models is to discount the collected rewards and the
gained entropy in the future [26]-[28]. Accordingly, note that

5 8) = H(S1) + Y H™(S|S"™")  (6)

t=2

lim ILITF(Sl7 Sg, ..
t—o0
we treat each term H™(S;|S*"!) as a virtual entropy reward for the
agent. Note that H™(S,) = H™ (S,) for any 7, @’ € ITI(M) since the
initial state distribution in a POMDP is fixed. By discounting the future
rewards R(S;, A;) as well as the virtual entropy reward H™ (S;|S*1),
we define the main problem as follows.
Problem 1 (Entropy maximization): For a POMDP M, a discount
factor 8 €[0,1), and a reward threshold I' € R, synthesize a controller
7* € II(M) that solves the following problem:

Zﬁt—QHw(St‘St—l)

maximize (7a)

mell(M) i

subject to: E™ [Z BTIR(S;, Ay)| >T. (7b)
t=1

For 3 € [0, 1), the existence of a policy that satisfies the constraint
(7b) is, in general, undecidable [4]. Hence, the synthesis of globally
optimal controllers that solve the entropy maximization problem is,
in general, intractable. In what follows, we restrict our attention to
FSCs and present a method to synthesize FSCs that are local optimal
solutions to the entropy maximization problem among all FSCs with
fixed number of memory states and fixed memory transition functions.

IV. RECURSIVE EQUATIONS FOR ENTROPY MAXIMIZATION

In this section, we derive the system of recursive equations for the
entropy maximization objective in (7a).

For a given system history ht = (s;, a1, $2,a2, 83, ..., S¢), let the
sequences s' = (sy, S2,...,5;) and a’ = (ay,as,...,a;) be the cor-
responding state and action histories of length ¢, respectively. We denote
the set of all state and action histories of length ¢ by SH* and AH",
respectively. It can be shown that, for a POMDP M under a controller
7 € II(M), the realization probability Pr™ (s***|s*) of the state history
sttt € SH'™ for a given st € SH is

¢
Prw(5t+1‘3t) = Z H “k(ak|hk)PStvatvst+1' ®)

ateApt k=1

In the previous equation, h* are prefixes of h* from which the state
sequence s’ is obtained, and p, : H* — A(A) is a mapping such that

pe(alht) == > w(alo")Pr(o’|ht). )
oteO?
We note that, for ¢ =1, we have Pr(o' = z;|h') = O
t >2, Pr(o*|h') can be recursively written as
Pr(o'|h") = Og, 2, Psy_ 1 ay1,5,Pr(0" HRTH). (10)
For a given controller 7 € I1(M) and a constant N € N, let V7, :
SH' — R be the value function such that, for all t < N

N-1

Vi (s') = > BF P H™(Skqa|SF, 8" = s").

k=t
Lemma I1: ForaPOMDP M, a controller m € II(IM), and a constant
N € N, the value function V;7y, defined in (11), satisfies the equality

Vi (s') = H™(S141|S" = s")

+8 Y

stHlespt+t

forallt < N and s* € SH*.

s7,21» and for all

11

P (s sV, (™) (12)

Proof of all technical results are provided in Appendix A. Fort < N,
let V,*y : SH' — R be a function such that

sup  Vy(s"). (13)

;N(St) =
7ell(M)

Using Lemma 1, together with the principle of optimality [25, Ch. 4],
we conclude that, for all ¢ < N and s* € SH*

Vin(s) = sup [H7(Sials' =)
well(M)
+8 Y PV N[ (14)
sthlesyttl

Then, the summation in (6), together with the definition of the value
function in (11), implies that, for any N € N, we have

N
sup STHHNSIST) = Viasn). ()

mell(M) ;5
Since VtTfN, defined in (11), is monotonically nondecreasing in N
forall m € TI(M), i.e., V7y; = V", we have

(16)

sup lim V;"y(s") = lim

up i sup Vi (s")
S o0

N=00 rer(m)

for all s € SH'. Therefore, by taking the limits of both sides in (15),
we conclude that

sup 251_2Hﬁ(5t\5t_1) = J\lflglx Vin (s1).

mell(M) ;5

an

The derivations mentioned previously show that an agent having
access to state histories s’ can synthesize an entropy-maximizing
controller by recursively computing the values V" (s*) via dynamic
programming. In a POMDP, only observation histories are available
to the agent; hence, the previous derivations cannot be directly used
for controller synthesis. In the next section, we consider FSCs and
present a tractable controller synthesis method by utilizing the results of
Lemma 1.

V. ENTROPY MAXIMIZATION OVER FSCs

Optimal controllers solving the entropy maximization problems may,
in general, use the complete system history to determine the next
action to perform. A common approach to overcome intractability is to
restrict attention to FSCs whose memory states represent (potentially
insufficient) statistics of the system histories [6], [7]. Accordingly, we
focus on FSCs with a fixed number of memory states and develop
methods to synthesize locally optimal controllers within this restricted
domain.

Definition4: ForaPOMDP M, a k-finite-state controller (k-FSC) is
atuple C = (Q,q1,7,0), where Q@ = {q1,qq, - . ., qx } is a finite set of
memory states, ¢g; € Q is the initial memory state, v : @ x Z — A(A)
is a decision function, and § : @ x Z x A — 3A(Q) is a memory
transition function. We denote the collection of all k-FSCs by F,(M).

In Fig. 1, we present an illustration of k-FSCs. For a POMDP, a
k-FSC induces a Markov chain (MC), which is an MDP with a single
available action, i.e., |A| =1. It is shown in [23] that the set of all
MCs that can be induced by a k-FSC is the set of all well-defined
instantiations of a parameteric MC (pMC). Therefore, without loss of
generality, one can work on that pMC to synthesize an instantiation,
which corresponds to the MC induced by an entropy-maximizing FSC.
In the following sections, we reformulate the entropy maximization
problem over k-FSCs as another optimization problem over pMCs.

A. Parameteric MCs

We develop solutions to entropy maximization problems through the
use of pMCs.
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Fig. 1. lllustration of FSCs. In a memory state ¢, the agent receives
an observation z, chooses an action a based on the decision function
~(alg, z), and transitions to a memory state ¢’ based on the transition
function §(¢'|g, z,a). The functions v and § are design variables, and
their outcomes are indicated with dashed lines. Solid lines represent
deterministic transitions.

Definition 5: For a POMDP M and a constant k£ € N, the induced
pMCis a tuple Dy i = (Smk, S1,M,k> VM, k> Py, i R, i) where

1) Smp =8 x{1,2,..., k} is the finite set of states,

2) srme = (sr, 1) is the initial state,

3) Vmr = {74*|z € Z,q€ Q,a€ A} U

{0572 € 2,9,q' € Qa € A}
is the finite set of parameters,

4) Pag 0 Smr — A(Swm,k) is a transition function such that
Pavr((s)d) | (s,0) =2 2,ca PUs/d) | (s,q),a) for all
<$aq>a <87/ q/> S SM,ka where P : SM,k x A — A(SM,k) is a
mapping such that

P(s) q) | (5,0),0) i= 3 Oz Py 4 057
z€Z
5) Rm,k((s,q),a) == R(s,a)foralls € S,qg € Q,anda € A.
An MC can be obtained from an induced pMC by instantiating the
parameters Vi, i, in a way that the resulting transition function is well
defined. Formally, a well-defined instantiation for V; 1, is a function u
: Vi —[0,1] such that, foralla € A, ¢ € Q,and z € Z

Zu('yg’z) =1 and Z u(057%) = 1.
acA q'cQ
Applying a well-defined instantiation u to the induced pMC Dy 1,

denoted D1k [u], replaces each parameteric transition probability
Py, by Py - Let T, . denote the set of all well-defined instantia-
tions for a pMC Dy .. For an induced pMC Dy 4, every instantiation
u € YT, describes a k-FSC C,, € F,(M) [23]. Thus, we can syn-
thesize all admissible MCs that can be induced from a POMDP M by a
k-FSC C € F;, (M) through well-defined instantiations u over Vng k.
In Fig. 2, we provide an example to illustrate the derivation of Dyg . [u]
from a given M and C,,.

(18)

B. Reformulation Over pMCs

Recall that we are interested in maximizing the entropy of the state
sequence of a given POMDP M. As can be seen from Fig. 2, the number
of states that are reachable from the initial state of a pMC Dy, s,
in general, larger than that of the POMDP M. It is known [1] that the
maximum entropy of a random variable increases as the cardinality of
its support increases. Hence, by appropriately choosing the transition
probabilities in the example given in Fig. 2, it is possible to construct a
well-defined instantiation Dy, [u] whose entropy of state sequences is
higher than the maximum entropy of the state sequences of the POMDP
M. This observation implies that, in general, the maximum entropy of
a POMDP M is not an upper bound on the maximum entropy of the
induced pMC Dqy .

The maximum entropy of Dyg j is, in general, higher than that of
M due to the stochasticity introduced to the process by the parameters
d5>*. To synthesize an entropy-maximizing k-FSC for a POMDP M

using the induced pMC Du 5, we impose restrictions on the memory
transition function of the k£-FSCs. For each memory state ¢ € Q in a
given k-FSC, let
Suce(q) :=1{¢ € Q:(¢|q,2,a) >0,z € Z,a € A}.

Definition 6: A deterministic k-FSC C = (Q, q1,7,9) is a k-FSC
such that for all ¢ € Q, |Succ(g)| = 1. We denote the set of all deter-
ministic k&-FSCs by F¥(M).

For a k-FSC C € F(M), letuc : V. — R be the correspond-
ing instantiation of the induced pMC Dy, ;; such that

uc(v4?) = (alg,2) and uc(dy”*) == 0(q'q, 2, a).

Moreover, let T4, denote the set of all well-defined instantia-
tions uc that corresponds to a deterministic k-FSC C. Noting that
Dk [uc] is a stochastic process, we denote its sequence of states by
(S™ k1, SM,k,2, - - -)- Moreover, for a given state S 1, we denote
the one-step entropy of D x[uc] by H“C (Sn k¢ |Sn,k,t—1)-

Proposition 1: For a given POMDP M, a controller C € F3(M),
and constants ¢, k € N, we have

HC(S,|S"™ 1) = H" (Smpe,e| SMk,e-1)- (19)

Proposition 1 shows that the local entropy gained in a POMDP M
under a deterministic k-FSC C is equal to the local entropy gained in
D x[uc]. Note that, since the memory states g are explicitly repre-
sented in the states (s, g) of Dyg x[uc], local entropy in Dy g [uc]
depends only on the state occupied in the previous step.

Proposition 1, together with the definition of the induced pMC,
implies that, for any C € F(M)

Ce€ar max =2 (G, S5t 20a
8 o ;5 (SilS*1) (20a)
subject to: E€' [Z BTIR(S, A)| >T

t=1
if and only if (20b)

- t—2 77U
uc €arg max Y B PH"(Sn ke Snak.e-1) (21a)

ueT‘;\“}i,k —

subject to: E* [Zﬁth(sM,k,t,At) >T. (21b)

t=1

The following result is due to the fact that Fi'(M) C II1(M) and
shows that the maximum entropy of the pMC induced from FSCs
with deterministic memory transitions is upper bounded by that of the
corresponding POMDP.

Corollary 1: Let G7 and G} be the optimal values of the problems
given in (7a), (7b), (21a), and (21b), respectively. We have G > G3.

C. FSC Synthesis: Optimization Problem

We now present a NLP to synthesize a deterministic k-FSC that
maximizes the entropy of a POMDP over all deterministic k-FSCs.

Recall that for a POMDP M and a constant k£ >0, the induced
pMC Dy i represents all possible MCs that can be induced from
M by a k-FSC. Moreover, Proposition 1 implies that the maximum
entropy of Dag is equal to the maximum entropy of M if one
restricts attention to k-FSCs with deterministic memory transitions.
In what follows, we formulate an optimization problem to synthesize a
well-defined instantiation v for the pMC Dy 5, such that the entropy
of the MC Dy i, [u] is maximized over all MCs Dy [u/] for which
Pﬁ,k(@,’ q) | (s,q)) >0 forasingle ¢ € Q.

To restrict the search space to FSCs with deterministic memory
transitions, we introduce the following constraints:

u(@7) €401} and 7% u(ay) € {0, 12]A]}L

z€Z acA
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Fig. 2.

lllustration of an MC Dx  [u] (right-hand side) induced from a POMDP M (left-hand side) by a k-FSC C,, (middle). Note that the number

of states in Dy, [u] is larger than M due to the stochasticity in the memory transition function 4.

Intuitively, the above-mentioned constraints ensure the transition to a
single successor memory state regardless of the received observation
and the taken action. We note that the second integer constraint can
be implemented as | Z||.A| equality constraints. Finally, the abovemen-
tioned constraints do not prevent the agent from randomizing its actions.
The agent can still randomize its actions at a given state s € S by
instantiating the parameters yZ** appropriately.

For notational simplicity, let s denote an arbitrary state (s,t) €
Sm, k. Let L* : Sy — R be the local entropy function such that,
foralls € Snm

L'(s):=— > Plyu(s'ls)log Py (s]s)-

S’ESM,k

(22)

Note that we have L*“(s) = H*(Sm,k,¢|Sm k,t-1 =s) for any t €
N. Hence, L“(s) corresponds to the local entropy reward gained in
the MC Du i [u] from the state s. Recalling the equivalence given in
(19), the local entropy function L" allows us to transfer the results of
Section IV, which are obtained for a POMDP M, to the pMC Dy 1.
Specifically, by defining variables v € RISM.k! it can be shown that
the maximum entropy (21a) of Dy, i is the unique fixed point of the
system of equations

v(s) = max {L“(s)+/3 > P&,k(sws)u(s’)} (23)

ueTn s'eSm, k
and equal to v(sy) := v(s;,m,k). Hence, the maximum entropy (21a)
of Dy, can be computed by finding the maximum v(s;) that satisfies

v(s) S L)+ B > Pu,(ss)v(s) Vs € Smr.

s'€Sm, k

In the abovementioned inequality, both Py , (s'[s) and v(s") are vari-
ables. Hence, standard methods, e.g., value iteration, cannot be used to
compute v(s); instead, one needs to solve a NLP, which we present
shortly, for the computation of v(s).

Let R" : Sm,ix — R be the expected immediate rewards on Dy
such that, for all s € Sm i

R'(s):= Y > Pss,a)R(s,a)

s'eSpm  a€A

(24)

where P* : Snp % A — A(Sm,x) is defined by replacing parameters
7&* and 6, in (18) with their corresponding instantiations u(v*)
and u( 62,’2’”). Then, the problem in (21a) and (21b) can be formulated
as a NLP as follows:

maximize
v,u,m

v(sr) (252)

subject to:

v(s) SLU(s)+B D>, Piu(s|s)v(s) VseSmui (25b)
s’ESMJC
n(s) SRYs)+B Y Pup(sls)n(s) Vs€Suxr (250)
s'eSm,k
n(sr) >T (25d)
u(5>) € {0,1}, Y u(dy ) =1 (25¢)
qeQ
0<u(y@*) <1, > u(P®) =1 (25¢)
acA
D> u(dh) e {0, 2] Al} (25¢)

z€Z acA

In the above-mentioned optimization problem, the variable 7(s) de-
notes the expected reward collected by starting from the state s € Sy, k.-
It follows from [25] that the constraint (25d) ensures that a solution u*
to the above problem collects an expected total reward exceeding the
threshold I'.

Recall that the transition function Py, of the MC Dy g [u],
which results from the instantiation u of the pMC Dy 1, is given by
Py (8']8) = X aca P (s'|s,a), where

PY(s'[s,a) :=Y " Os. Pog o uly®) u(65*)

zE€EZ

(26)

s = (s,q), and s’ = (s, ¢). Therefore, the problem in (25a)—(25g)
involves nonlinear constraints in (25b) where three variables are multi-
plied with each other. Even though certain relaxation techniques, e.g.,
McCormick envelopes [29], can be used to replace the constraints in
(25b) with specific bilinear constraints, finding an optimal solution to
the resulting NLP remains as a challenge due to binary constraints in
(25e).

For practical purposes, instead of computing a globally optimal
solution, one can aim to obtain a locally optimal solution to the problem
in (25a)—~(25g) after setting the instantiation u(5Z,’Z’“) of memory
transitions to a constant. In the next section, we provide a method
to obtain a local optimal solution to the problem in (7a) and (7b) over
all £-FSCs with a specific deterministic transition function.
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D. FSC Synthesis: A Solution Approach

In this section, we consider the entropy maximization problems over
k-FSCs with a specific deterministic transition function and present
an algorithm to synthesize a controller which locally maximizes the
entropy of a given POMDP.

We first set the variables u(ég,’z’“) in the problem (252)—(25g) to
constants such that they satisfy the constraint in (25¢). This operation
is equivalent to restricting the search space in (7a) and (7b) to k-FSCs
with a specific deterministic transition function, where the transition
function satisfies 6(q'|q, z,a) = u(0;,~). The resulting optimization
problem has decision variables v(s), 7(s), and u(v$*), i.e., u(67"%)
is not a variable anymore. We can obtain a locally optimal solution to
the resulting problem using a variant of the convex—concave procedure
(CCP) [30]. In particular, we employ penalty CCP, which is introduced
in [31] and used in the context of pMCs in [8].

The penalty CCP algorithm takes five inputs: a threshold con-
stant € >0, initial penalty constant 7, >0, multiplication factor p >1,
maximum penalty constant Tp,.x, and initial estimates o(s), 7jo(s),
and 1o (2 *) for the variables v(s), n(s), and u(y?*), respectively.
Moreover, for each iteration k£ € Z_ of the algorithm, we recursively
define 7441 := min{ {7k, Tmax |-

Let v denote an arbitrary tuple (s, q, z,a) € Smp X Q X Z X A.
For each v, we introduce two new variables ®, ,, >0 and ®, , >0.
The introduced variables are typically referred to as slack variables
and quantify the infeasibility of the constraints in (25b) and (25¢) [31].
In particular, when > (@, + @, ) =0, the output of the penalty
CCP algorithm becomes feasible for the problem in (25a)-(25g).

Ateach iteration k € Z_, we first convexify the constraints in (25b)
and (25¢) (explained in the following). We then solve the resulting
convex optimization problem by replacing the objective function (25a)
with

maximize
vyu,m

v(sr) — Tk Z(q)"!" +D,y).

v
Intuitively, the second term in the above-mentioned objective function
is a penalty term, which encourages the algorithm to output feasible
solutions for the original problem in (25a)—(25g).

Let Val, be the optimal value of the problem described previously.
We terminate the algorithm if |Val, — Valy_1| < € and the optimal
solution satisfies (P, v + ®, ) =0; otherwise, we set the optimal
decision variables v*(s), n*(s), and u* (% *) for the current iteration
as the estimates Dy 1(8), fr+1(s), and 41 (72 *) for the successive
iteration, and solve the resulting optimization problem. The procedure
explained previously has no theoretical convergence guarantees to a fea-
sible solution [31], i.e., a solution that satisfies (P, v + ®,,) =0.
However, any feasible solution that is obtained through the above proce-
dure is guaranteed to be locally optimal for the problem in (25a)—(25g).
In practice, we observe that the penalty CCP usually converges to a
feasible solution.

We now explain the convexification procedure for the constraint
in (25b); the convexification of (25c) is performed by following the
same procedure. Note that the last term on the right-hand side of (25b)
is the summation of bilinear terms c(s, s, a, z, u)v(s')u(y%*) where
c(s, s,' a, z,u) is a constant such that

C(S, 57/ a, z, u) = O.s,z Ps,a,s’ u((s;;;z,a).

With an abuse of notation, we denote ¢(s, s, a, z, u) by c. As explained
in [8], a bilinear function f(z,y) = 2Cxy, where C is a constant, can
be written as a difference of convex functions f(x,y) = fi1(z,y) —
fo(z,y), where fi(z,y) = C(z +y)* and fa(z,y) = C(z® +¢?).
Since we have a constraint of the form 0< L“(s) + f(z,y) in (25b),
we linearize the function f; (z, y) around the point 7, (s) and 4y, (y2'%).
The resulting expression then becomes concave in the variables v/(s’)
and u(vy2*). Therefore, the resulting problem becomes a convex opti-
mization problem.

E (LlJ
22 —{7(alqi, 22) 22 —{y(algx, 22)
~ S
as —

>y \
{y 1 / { a1 —

Fig. 3. lllustration of the proposed deterministic k-FSC structure. Re-
gardless of the received observations and taken actions, the controller
transitions from the memory state ¢; to g;41 for all < < k, and, finally,
stays in the state gy, indefinitely.

E. FSC Synthesis: A Monotonocity Result

In the previous section, we presented an algorithm to solve the prob-
lem in (25a)—(25g), which requires one to set the variables u(ég;z’“) to
constants that satisfy the constraint in (25e). In this section, we present
a particular memory transition function which has a monotonocity
property. That is, under this memory transition function, by increasing
the number of memory states, one can only increase the optimal value
of the optimization problem in (7a)—(7b).

For a POMDP M, consider a k-FSC C = (Q, q1,7,6) with the
memory transition function & : Q@ x Z x A — A(Q) such that

VeeZ,ae A, 1<i<k
VzeZ,ac A
otherwise.

é(qi-l»l ‘qlv Z, CL) =1

é(qkl(Ika 2 ll) =1

6(q1|q]7 Z, a) =0
We present an illustration of the k-FSC described previously in Fig. 3.
Intuitively, the transition function ¢ represents a finite horizon memory.
In the first k—1 steps, the agent summarizes the set H® of system
histories using the memory state ¢; and makes a decision based on
the decision function v(al|g;, z). For the rest of the process, the agent
stays in the memory state g, and follows a memoryless strategy by
making stationary decisions based on y(a|qx, 2).

Let F5 (M) C Fi(M) be the set of k-FSCs whose memory tran-

sition function is given in (27). In addition, let

27)

o0

max Y BTPHO(S,[S).

CeFL, (M) 5

Ek:,max =

Lemma 2: For all j <k, we have Ej max < Ei max-

The abovementioned monotonocity result establishes that, by fixing
the memory transition function to & given in (27), one can obtain
nondecreasing maximum entropy values by increasing the number of
memory states in the k-FSC. We note that such a monotonocity result
hold due to the specific structure of the transition function & and may
not hold if one considers transition functions other than §.

Using the result of Lemma 2, we can obtain a practical algorithm
to synthesize an entropy-maximizing controller as follows. First, fix
the number of memory states to an initial value k. Then, by setting
w(6%%*) = 6(¢'|q, 2, a), find a local optimal solution to the problem
in (25a)—(25g). Next, set the number of memory states to k-1, solve the
resulting problem, and compare the optimal value of the problem with
the previous result. Repeat this procedure until the percent increase in
the optimal value is below a predetermined threshold.

VI. A NUMERICAL EXAMPLE

We now provide a numerical example to demonstrate an application
of the proposed method to motion planning. We use the MOSEK [32]
solver with the CVX [33] interface to solve the convex optimization
problems. To improve the approximation of exponential cone con-
straints, we use the CVXQUAD [34] package.
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Fig. 4. Motion planning example. (Left-hand side) Grid world with 100
states and 36 observations. The agent starts from the brown state and
aims to reach the green state. (Right-hand side) Partition of a room with
respect to the agent’s observation function.

0.5

Fig. 5. Expected number of times the agent visits each state under the
synthesized controllers. (Left-hand side) Entropy-maximizing controller.
(Right-hand side) Controller synthesized by the approach given in [8].

We consider an agent that aims to reach a target in an adversarial
environment. We model the environment as a 10x 10 grid world, as
shown in Fig. 4 (left-hand side), that consists of four rooms and four
doors using which the agent can transition between the rooms. The
rooms are numbered clockwise starting from the bottom left corner,
and the doors are numbered clockwise starting from the door between
room 1 and room 4. Finally, the thick black lines represent the walls.

The agent observes its current room and its relative position to the
doors (36 total observations, 9 in each room). We illustrate the partition
of a room with respect to the agent’s observation function in Fig. 4
(right-hand side). For example, if the agent is at the bottom left corner
of the environment, its observation is room 1, below door 1, left of
door 2. In Fig. 4 (left-hand side), the brown and green states are the
agent’s initial and target state, respectively. We set the discount factor
to B =0.9, and the expected total reward threshold to I' = 32, i.e.,
the agent must reach the target state in at most 12 steps, which is the
minimum number of steps to reach the target from the initial state.
Hence, the agent can follow only the shortest trajectory to the target.

We focus on 1-FSCs and synthesize two controllers for the agent.
We synthesize the first controller using the proposed approach based
on the convex—concave procedure. For comparison, we also synthesize
a controller by solving a feasibility problem given in [8]. In Fig. 5, we
demonstrate the expected number of times the agent visits each state
under the synthesized controllers. As can be seen from Fig. 5, under
the entropy-maximizing controller, the agent reaches the target state
by passing through room 1 and room 3 with equal probability, which
minimizes the predictability of the room it visits to an outside observer
by maximizing the entropy of its trajectories. On the other hand, under
the controller synthesized by the feasibility approach, the agent always
passes through room 1. Hence, it becomes trivial for an outside observer
to predict the agent’s trajectory.

VII. CONCLUSION

We studied the synthesis of a controller that, from a given POMDP,
induces a stochastic process with maximum entropy among the ones
whose realizations accumulate a certain level of expected reward. By
restricting our attention to FSCs with deterministic memory transitions,

we recast the entropy maximization problem as a so-called parameter
synthesis problem for pMCs. We present a NLP for the synthesis of an
FSC that maximizes the entropy of a POMDP over all FSCs with the
same number of memory states and deterministic memory transitions.
Considering the intractability of finding a global optimal solution to
the presented optimization problem, we proposed a convex—concave
procedure approach to obtain a local optimal solution after setting the
memory transition of FSCs to a fixed structure.

APPENDIX
Proof of Lemma 1: For any t < N, we have

N-1
Vin () =H"(Sea|S'=5")+ > B TH™ (Skia|Sy, S =s")
k=t+4+1

since the random variable S is a part of the sequence S*. The last term
in the previous equation satisfies

Hﬂ(sk+l|sf75t = Hﬁ(5k+1|55+275t+1>5t = St)

since SF = (S, Si41,5F,5). Moreover, the term on the left-hand side
of the previous equality satisfies

H™ (Sk41]SF 2, St41, 8" = s') = H™(Sk41]SF, Sig1, 5" = s)

since the introduced conditioning on (S;, S;11) does not change the
entropy as the random variable S, is already included in the condi-
tioning, and the value of the random variable S, is already fixed to s;.
Using the definition of conditional entropy [1, Ch. 2]

H™ (Sk41]SF, Seq1, S* = s)
= > Pr(Sip1 = s141[S" = 8" ) H (Skya|SF, S = s'F1).
st41€S

Note that, under the policy 7, Pr(S;11 = s;11|S? = s?) is equal to the
realization probability Pr™(s'*1|s'). Furthermore, Pr™(s'*!|s') >0
for a given state history s+ € SH'*! ifand only if s'™! = (st, 5441)
where s;11 € S. As a result, we have

V;&TN(St) = HW(St+1|St = St)

N-1
+ Z 5k—t Z Pr™ (St+1‘st)

k=t+1 sttlespt+1
X H™(Spy1|SF, S = st (28a)
= H™(Sy41]St = s')
N-1
+ > P(stsh) YO gt
st+lesHt+l k=t+1
X H™(Sjy1|SF, S = st (28b)
= H™(Sy41]S" = s%)
+p Z Pr7 (s sV N (s (280)

st+1 eSHt+l

where (28b) follows from the fact that the expression Pr™(st*+1|st)
does not depend on k, and (28c) follows from the definition of the
value function V;"y (s*). |
Proof of Proposition 1: The result follows from the fact that the
controller C only allows deterministic memory transitions and that
D,k [uc] is an MC. By the definition of conditional entropy [1]

HC(S,|StY) = Z PrC(s,, s 1) log Pré(s,|s1). (29)

steSHt
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Note that the summation on the right-hand side of the abovementioned
equation is over state histories. For any given state history s?, there is a
corresponding memory history (q1,qz, - - -, q:), where g € Q, for the
controller C. Let M?H® denote the set of all possible memory histories
of length ¢ € N. Then, by the law of total probability

PrC(St‘St—l) — Z PI.C(St’qt‘qt—l7 St—l)PrC(qt—l|st—l).
qte MH?

Since the memory transitions are deterministic under C € Fa¢*(M),
by recursively expanding the right-hand side of the previous equality,
it can be observed that PrC (gt !|s*"1) =1 for a given state history
realization s*~!. Since for each state history realization s’ on the
POMDP M under the controller C, there is a unique state his-
tory realization ({s1,q1),(S2,q2),-..,(st,q:)) on the instantiation
D x[uc] of the induced pMC Doy, we have HC(S;|St 1) =
H “C(Ska,t|Sl’§Z}k). Finally, since the instantiation Dyg , [uc] con-
stitutes an MC, as a result of the Markov property [1], we have
H"S(Snp e Sip ) = HC (SM k.| Snk.e-1)- |

Proof of Lemma 2: We prove the claim by showing that, for any
k € N, wehave Fr_1 max < E max-

Consider an arbitrary (k—1)-FSC C € Fj,_; (M) with the decision
function . Let k-FSC C' € F;,(M) be such that its decision
function ' satisfies ~'(a|q:,2) = v(a|g:,2) for i =1,...,k—1,
and +'(alqx, z) = v(algx-1,2). Note that the state sequences in M
under the controllers C and C' are the same. This is true since we
can explicitly write down the decisions taken by the agent under the
controllers C and C’, thanks to the specific transition function given
in (27). In particular, the sequence of decisions under the controller

C is (v(ala,2),v(algz; 2), - .., v(algr-1,2),v(alge-1,2), - ),
and the sequence of decisions under the controller C' is
(’yl(a"ql? Z)7 7’(““127 Z)? R 77’(G|Qk7 Z)»’Y’(‘”Qka Z)? .. -), which

are the same by construction. Hence, the state sequences induced by
these decision sequences are the same. Consequently, we have

o0 o]

Zﬁt72HC(St|St71) — Zﬂt72HC/(St|Stfl).

t=2 t=2

Since, for an arbitrary (k—1)-FSC C € F_1 (M), there exists a k-FSC
C’ € F1(M) that achieves the same entropy of state sequences in M,
we conclude that Ey 1 max < Ek max- n
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