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Abstract—In this letter, we consider a Linear Quadratic
Gaussian (LQG) control system where feedback occurs
over a noiseless binary channel and derive lower bounds
on the minimum communication cost (quantified via
the channel bitrate) required to attain a given control
performance. We assume that at every time step an encoder
can convey a packet containing a variable number of
bits over the channel to a decoder at the controller. Our
system model provides for the possibility that the encoder
and decoder have shared randomness, as is the case in
systems using dithered quantizers. We define two extremal
prefix-free requirements that may be imposed on the mes-
sage packets; such constraints are useful in that they allow
the decoder, and potentially other agents to uniquely iden-
tify the end of a transmission in an online fashion. We then
derive a lower bound on the rate of prefix-free coding in
terms of directed information; in particular we show that a
previously known bound still holds in the case with shared
randomness. We generalize the bound for when prefix con-
straints are relaxed, and conclude with a rate-distortion
formulation.

Index Terms—Information theory and control, control
over communications.

I. INTRODUCTION

I
N THIS letter, we derive and analyze lower bounds on

the minimum bitrate of feedback communication required

to obtain a given LQG control performance. We consider the

setting of variable-length coding; at each discrete time instant

an encoder that can fully observe the plant conveys a packet
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containing a variable number of bits to a decoder co-located

with the controller. Various prefix constraints can be imposed

on the packets; these allow the decoder, and perhaps other

agents, to uniquely identify the end of each codeword given

varying degrees of common knowledge/side information (SI).

Prefix constraints are useful when a communication medium

is shared; upon detecting the end one user’s codeword, other

users can identify the channel as free-to-use.

We assume that the packets are conveyed over a noise-

less, error-free communication channel. The bounds we derive

for noiseless channels are useful even when considering real-

world noisy channels. They can be compared directly with

an appropriate notion of the “real” channel’s capacity. If

our lower bound exceeds this capacity, the desired control

performance is not achievable. Likewise, if source-channel

separation is imposed on the design of the communication

architecture, our lower bounds apply to the optimal source

codec (encoder/decoder pair) design.

We allow for the possibility that the encoder and decoder

have access to shared randomness; namely an IID sequence

of exogenous random variables that are revealed causally to

both the encoder and decoder. Shared randomness of this

nature arises in settings where the encoder and decoder use

dithered quantization. In dithered quantization, randomness is

intentionally introduced into the quantization process to make

the quantization error more amenable to analysis. In partic-

ular, dithered quantization has been used to design schemes

for minimum bitrate LQG control (cf. [1], [2]). While these

achievability approaches are often compared to known lower

bounds that apply without shared randomness, in this letter

we clarify that these lower bounds do not change even when

a dither signal is available.

Recently, [3] demonstrated that the proofs of the lower

bounds to which the achievability approaches in [1] and [2]

were compared are invalid when the encoder and decoder

share randomness. The proof of the lower bound in [1] is cor-

rected in [3]. In this letter, we formalize two extremal prefix

constraints. These notions have been conflated in the prior

literature. We correct the proof of the lower bound in [2]

using a novel proof technique. We show that for all the pre-

fix constraints we consider and irrespective of the marginal
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distribution of the shared randomness, the channel bitrate is

lower bounded by the time-average directed information (DI)

from the state vector to the control input. Notably, this is

the same lower bound that applies without shared random-

ness [4], [5], demonstrating that systems employing dithered

quantization are subject to the same fundamental lower bounds

as systems without dithering [4]. While our result is consistent

with [3], we believe our proof is simpler.

The bitrate of lossless source coding can be reduced by

relaxing prefix constraints [6]. We show how the derived

lower bounds change upon lifting prefix constraints and con-

clude with a rate distortion formulation, specialized to the

case of time-invariant plants and an infinite horizon, following

from [4]. As our lower bound is proved in the finite horizon,

other relevant rate distortion formulations can be derived from,

e.g., [4] and [7]. A brief literature review now follows.

A. Literature Review

Our work follows from the problem formulation of [1],

which considered a SISO LQG control system where feedback

measurements were conveyed from an encoder to a decoder

over a noiseless binary channel. In the variable length setting

and enforcing a prefix constraint on the packets, [1] derived

a lower bound for the time-average expected channel bitrate

in terms of Massey’s DI [8]. Given a constraint on the LQG

cost, [1] showed that the lower bound is nearly achievable

when the encoder and decoder share access to a common dither

signal. In [2] and [4], the work in [1] was extended to MIMO

plants. In particular, [4] developed a rate-distortion formulation

in terms of semidefinite programming; a semidefinite program

(SDP) was derived to compute the tradeoff between the mini-

mum DI and LQG cost. The achievability of the lower bound,

again assuming dithering, was demonstrated in [2]. Analytical

lower bounds on the relevant DI as a function of the maximum

tolerable LQG cost were developed in [5]. It was also shown

that the entropy rate of an innovations quantizer approaches

this bound without the use of dithering. Notably, [5] gener-

alized the entropy lower-bound for prefix-free coding to the

setting without prefix constraints (see also [6]).

We consider a setup where the encoder and decoder share

randomness. This is in contrast to a setup where the decoder

can access a more traditional notion of SI, namely a random

variable correlated with the plant’s state vector. The impact

of this latter notion of SI on the communication/LQG cost

tradeoff was investigated in [9], [10], [11], and [12]. In par-

ticular, these works consider linear/Gaussian observations of

the plant available at the decoder. Rate distortion formula-

tions were considered in [9], [10], and [11], meanwhile an

achievability approach (assuming noiseless SI also available

at the encoder) was given in [12]. We will show that shared

randomness does not affect lower bounds on bitrate.

The lower bound on bitrate derived in [1] purported to apply

to quantization/coding schemes with shared dither sequences

at the encoder and decoder. A flaw in the proof of the

bound from [1] was recently discovered by [3]. The proof

was revised using new DI data processing inequalities derived

in [13]. In our letter, while we prove a lower bound similar

to that in [3], our problem formulation and proof techniques

differ significantly. The data processing inequalities in [13]

apply to general feedback systems consisting of deterministic

causal stages, where system blocks are randomized through

exogenous inputs. We consider an alternative formulation, and

prove that a data processing inequality holds under natural

conditional independence assumptions between the system

variables. Our lower bound then follows directly.

B. Our Contributions

In summary, the contributions of this letter are:

1) we define two different prefix constraints that can

be imposed on the feedback packets. In prior work,

these constraints have been used somewhat ambiguously.

Namely, we define a strict as well as a relaxed con-

straint and show that they are subject to the same lower

bound. We highlight the operational significance of these

constraints in control systems;

2) when the encoder and decoder share randomness, we

derive a DI data processing inequality directly from

the factorization of the joint distribution of the system

variables. This inequality proves that for two extremal

notions of what it means to be “prefix-free”, the DI

lower bound from [2] holds even when the encoder

and decoder share randomness. Following from [5]

and [6], we generalize the bound to codecs without

prefix constraints.

The lower bounds lead to a rate distortion formulation, which,

following from [4], can be written as an SDP.

C. Notation

We denote constant scalars and vectors in lowercase x,

scalar and vector random variables in boldface x, and matri-

ces by capital letters X. The set of finite-length binary strings

is denoted {0, 1}∗. We use H for the entropy of a discrete

random variable and I for mutual information (MI). time

domain sequences, let {xt} denote (x0, x1, . . . ). We let x
b
a

denote (xa, . . . , xb) if b ≥ a, and let x
b
0. Given {xt} we

define the shifted sequence {x+
t } by {x+

t } by (0, x0, x1, . . . ).

For {at, bt, ct}, Massey’s causally conditioned DI is defined

by (cf. [8])

I(aT−1 → b
T−1||cT−1) =

T−1
∑

t=0

I(at; bt|b
t−1, c

t). (1)

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system model under consideration is depicted in

Figure 1. We consider a general MIMO plant with a feed-

back model where communication takes place over a noiseless

binary channel. We assume that a time-invariant plant is

fully observable to an sensor/encoder block, which conveys a

binary codeword at ∈ {0, 1}∗ over the channel to a combined

decoder/controller. Upon receipt of the decoder/controller

designs the control input. We denote the state vector as

xt ∈ R
m and the control input as ut ∈ R

u. We assume

that the ut ∈ R
u. We assume that the sensor/encoder and
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Fig. 1. The factorization in (5b) states that both the shared dither
and the process noise are drawn independently given all prior encoder
and control actions. The factorization in (5a) provides that the code-
word at time t can be drawn from some distribution that depends on its
prior observations of the state and dither sequence, as well as its past
actions. Likewise, the control input can be drawn randomly given its the
decoder’s observations of received codewords, the dither, and its past
actions.

decoder/controller share access to a common random dither

signal, {dt}. The dither is assumed to be IID over time. Note

that this system model includes systems where a dither is

unavailable as a special case (e.g., we could always set dt
a.s.
= 0

for all t). The process noise W ≻ 0m×m. We assume that

x0 ∼ N (0, X0) for some X0 	 0, and that {wt}, {dt}, and x0

are mutually independent. Given a sequence of system matri-

ces At ∈ R
m×m and feedback gain matrices Bt ∈ R

m×u for

t ≥ 0 the plant dynamics are given by plant dynamics are

given by

xt+1 = Atxt + Btut + wt. (2)

We assume that the sensor/encoder and the decoder/controller

are stochastic; i.e., that they can use randomized strategies.1

The sensor/encoder policy is assumed to be a sequence of

causally conditioned kernels given by

PE[a∞||d∞, x
∞] = {PE[at|a

t−1, d
t, x

t] for t ∈ N0}. (3)

Likewise, the corresponding decoder/controller policy is given

by the sequence of causally conditioned kernels

PC[u∞||a∞, d
∞] = {PC[ut|a

t, d
t, u

t−1] for t ∈ N0}. (4)

By (2), for all t, x
t is a deterministic function of x0, u

t−1, and

w
t−1. We assume that the one-step transition kernels between

at, dt, dt, ut, and wt, factorize for all t ≥ 0 as

P[at+1, ut+1|a
t, d

t+1, u
t, w

t, x0]

= PE[at+1|a
t, d

t+1, x
t+1]PC[ut+1|a

t+1, d
t+1, u

t], and (5a)

P[at+1, dt+1, ut+1, wt+1|a
t, d

t, u
t, w

t, x0]

= P[at+1, ut+1|a
t, d

t, u
t, w

t, x0]P[dt+1]P[wt+1]. (5b)

Implications of these factorization are discussed in Fig. 1.

The length of the binary codewords {at} provides a notion

of communication cost. This is motivated by a scenario where

measurements from a remote sensor platform are conveyed

over wireless to control a plant. In general, minimizing the

necessary bitrate from the remote platform to the controller

minimizes the amount of physical layer resources that must

be allocated to the particular link. The problem of interest

is to minimize this bitrate subject to a constraint on the LQG

1E.g., the encoder can draw the codeword randomly given its input.

control performance. In this letter, we are concerned primarily

with deriving lower bounds on the bitrate.

At every time t, we require at to satisfy a prefix constraint.

This allows the decoder (and possibly other agents sharing

the same communication network) to uniquely identify the

end of the transmission from the encoder. For a ∈ {0, 1}∗, let

ℓ(a) denote the length of a in bits. The allows us to derive

simple lower-bounds on E[ℓ(at)]. We are interested in the

optimization

inf
E, C

1

T + 1

T
∑

t=0

E[ℓ(at)]

s.t.
1

T + 1

T
∑

t=0

E[‖xt+1‖
2
Q + ‖ut‖

2
R] ≤ γ, (6)

where Q 	 0, R ≻ 0, and γ is the maximum tolerable LQG

cost. The minimization is over admissible sensor/encoder and

decoder/controller policies described by (3) and (4). In [4],

it was shown that, for policies without additive dithering, (6)

is lower-bounded by an SDP (technically a log-determinant

optimization) where a particular DI is minimized over the

space of linear/Gaussian policies. In the sequel, we show that

this lower bound still holds for architectures with additive

dither satisfying (3)-(5).

III. LOWER BOUNDS

We now derive lower bounds on the rate of prefix-free cod-

ing within the feedback loops of Fig. 1. These bounds apply

irrespective of the marginal distribution of the dither signal dt,

and thus also apply to systems without dithering.

A. Directed Information Lower Bound

We first formally define various prefix constraints that may

be imposed on the codeword at. We consider two distinct

notions, and same lower bound applies to both. We first require

that, at every time t, at is a codeword from a prefix-free

code that can be decoded by any decoder with knowledge

of the marginal distribution Pat . Assumption 1 formalizes this

constraint. Assumption 1 formalizes this constraint.

Constraint 1: For all distinct a1, a2 ∈ {0, 1}∗ with Pat [at =

a1] > 0 and Pat [at = a2] > 0, a1 is not a prefix of a2 and a2

and vice-versa.

Assumption 1 was used, implicitly, as the notion “prefix-

free” in proofs of lower bounds in [1] and [2]. Assumption 1

ensures that the decoder can uniquely identify the end of the

codeword without relying on its knowledge of the previously

received codewords a
t−1, its previously designed control

inputs u
t−1, and the common randomness d

t it shares with

the encoder. However, Assumption 1 is perhaps too restric-

tive; at time t both the encoder and the decoder have access

to some common knowledge, including a
t−1 and d

t. While

information known only to the encoder cannot reduce the min-

imum codeword length, information known to the decoder

can. We consider prefix-free codes that are instantaneous with

respect to realizations of the random variables known to the

decoder in Assumption 2.
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Fig. 2. The virtual encoder produces the codeword ct given access to at and realizations of (at−1, dt , ut−1). The virtual (at−1, dt , ut−1), the
virtual encoder reconstruct at exactly, ensuring equivalent control performance in the original system. The virtual codewords ct must also satisfy
Assumption 2. Notably, the virtual encoder has access to more side information than the sensor/encoder (cf. Fig. 1).

Constraint 2: For any realizations (at−1, d
t, u

t−1) =

(at−1, dt, ut−1), for all distinct a1, a2 ∈ {0, 1}∗ with

Pat|at−1,dt,ut−1 [at = a1|(a
t−1, d

t, u
t−1) = (at−1, dt, ut−1)] > 0

Pat|at−1,dt,ut−1 [at = a2|(a
t−1, d

t, u
t−1) = (at−1, dt, ut−1)] > 0,

Pat|at−1,dt,ut−1 [at = a2|(a
t−1, d

t, u
t−1) = (at−1, dt, ut−1)] > 0,

a1 is not a prefix of a2 and vice-versa.

This requirement ensures that given the knowledge of a
t−1,

d
t, and u

t−1 the decoder can uniquely identify the end of the

codeword. While of the codeword. While Assumption 2 is

somewhat relaxed in comparison to Assumption 1, the imple-

mentation of a coding scheme under Assumption 2 is likely

more cumbersome with respect to that of Assumption 1. Under

codewords without considering realizations of (at−1, d
t, u

t−1),

whereas under Assumption 2 this is not necessarily the case.

In fact, an implication of Assumption 2 is that the encoder and

decoder may need to agree on infinitely many codebooks. The

notion “prefix-free” used in the achievability notion “prefix-

free” used in the achievability architectures of [1] and [2]

do not satisfy Assumption 1, but do satisfy Assumption 2.

In [1] and [2], the codewords are prefix-free given the shared

dither signal. The following lower bound applies under either

Assumption 1 or 2.

Theorem 1: In a system conforming to Fig. 1 and (5)

with fixed encoder and decoder policies such that either

Assumption 1 or 2 is satisfied at every t, the time-average

expected codeword length satisfies

1

(T + 1)

T
∑

i=0

E[ℓ(at)] ≥
1

(T + 1)
I(xT → u

T). (7)

Theorem 1 follows from Lemmas 1 and 2, stated presently.

Lemma 1: If at satisfies either of the prefix-free conditions

outlined in Assumptions 1 or 2, we have

1

(T + 1)

T
∑

i=0

E[ℓ(at)] ≥
1

(T + 1)
I(xT → a

T ||dT , u
T
+). (8)

Proof: We first derive a bound on the codeword length

under Assumption 1. Assume that the encoder and decoder

policies are fixed and conform to Assumption 1. Consider

information source with a range in {0, 1}∗. Define the iden-

tity map CI : {0, 1}∗ → {0, 1}∗ such that for all a ∈ {0, 1}∗,

CI(a) = a. By Assumption 1, at every time t, CI is

a lossless, prefix-free source code for at. Thus, we have

(cf. [14, Th. 5.3.1])

E[ℓ(at)] = E[ℓ(CI(at))] (9)

≥ H(at) (10)

≥ H(at|a
t−1, d

t, u
t−1, ) (11)

≥ I(at; x
t|at−1, d

t, u
t−1) (12)

where (9) follows since CI is an identify map, (10) follows

from the fact that CI is a prefix-free code for at and thus

has an expected length lower bounded by the entropy of at.

Equation (11) follows from the fact that conditioning reduces

entropy. reduces entropy. Finally, (12) follows from subtracting

the (nonnegative) discrete conditional entropy H(at|a
t−1, d

t,

from (11) and applying the definition of MI. the definition

of MI.

The logic leading to (10) does not hold if Assumption 1 is

relaxed to Assumption 2. However, under Assumption 2, the

lower bound (12) still holds. To show this, we analyze system

model that is “more-generous” than Fig. 1. First, assume that

the sensor/encoder and decoder/controller policies are fixed

such that the Assumption 2 at every t. With the sensor/encoder

and decoder/controller policies fixed, decoder/controller poli-

cies fixed, consider modifying the system model of Fig. 1

by inserting a second “virtual” (hypothetical), deterministic

lossless source codec between the original encoder/sensor and

decoder/controller. Fig. 2 gives an overview of this modifi-

cation. Note that, by sensor/encoder does not have access to

u
t−1, however the virtual encoder does. At every time t, we

allow the virtual encoder to produce the codeword ct given

at and realizations of realizations of that, given realizations of

(at−1, u
t−1, d

t) and the codeword ct, the virtual decoder repro-

duce at exactly. We require that the codewords {ct} also satisfy

Assumption 2 (replacing at with the virtual codeword ct).

Fix the realizations (at−1, d
t, u

t−1) = (at−1, dt, ut−1) and

consider and consider encoding at into ct. Define the vir-

tual encoder function mapping at to ct given the realizations

by Cat−1,dt,ut−1 : {0, 1}∗ → {0, 1}∗. Define the decoder

function Dat−1,dt,ut−1 : {0, 1}∗ → {0, 1}∗. By assumption,

Dat−1,dt,ut−1(Cat−1,dt,ut−1(at)) = at. Assume Cat−1,dt,ut−1 is

chosen to minimize E[ℓ(ct)]. Thus,

E[ℓ(at)|(a
t−1, d

t, u
t−1) = (at−1, dt, ut−1)]

≥ E[ℓ(ct)|(a
t−1, d

t, u
t−1) = (at−1, dt, ut−1)], (13)

since choosing both Cat−1,dt,ut−1 and Dat−1,dt,ut−1 to be identity

(i.e., choosing ct = at) ensures that the decoder recovers at

and that the {ct} satisfy Assumption 2. Since the prefix con-

straint in Assumption 2 applies for all realizations, we can

lower bound E[ℓ(ct)|a
t−1 = at−1, d

t = dt, u
t−1 = ut−1] using

the standard Kraft-McMillan inequality based proof. For any

realizations (at−1, dt, ut−1) and choice of code Cat−1,dt,ut−1 ,
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we have (cf. [14, Th. 5.3.1])

E[ℓ(ct)|(a
t−1, d

t, u
t−1) = (at−1, dt, ut−1)]

≥ H
(

at|(a
t−1, d

t, u
t−1) = (at−1, dt, ut−1)

)

. (14)

Taking the expectation of (13) and (14) with respect to the

joint measure (at−1, d
t, u

t−1) over realizations allows us to

proceed as in (9). We have

E[ℓ(at)] ≥ E[ℓ(ct)] (15)

≥ H(at|a
t−1, d

t, u
t−1)ut−1) (16)

≥ I(at; x
t|at−1, d

t, u
t−1), (17)

where (15) is by taking expectations over realizations

in (13), (16) follows likewise from (14), and (17) follows as

in (12).

Summing the identical bounds in (12) and (17) over t =

{0, . . . , T} and applying the definition of causally conditioned

DI from (1) proves (8).

Lemma 2 lower bounds the DI in Lemma 1 by a DI

amenable to the rate-distortion formulations in [4] and [7].

Lemma 2: In the system model of Figure 1, we have

I(xT → a
T ||dT , u

T−1
+ ) ≥ I(xT → u

T). (18)

Proof: Let

φt = I(xt; at|a
t−1, d

t, u
t−1) − I(xt; ut|u

t−1) (19)

and note that summing the φt at applying (1) gives

I(xT → a
T ||dT , u

T−1
+ ) − I(xT → u

T) =

T
∑

i=0

φt. (20)

We first demonstrate that

I(xt; at|a
t−1, d

t, u
t−1)

= I(xt; (at, dt, ut)|a
t−1, d

t−1, u
t−1). (21)

Via the chain rule, I(xt; (at, dt, ut)|a
t−1, d

t−1, u
t−1) =

I(xt; ut|a
t, d

t, u
t−1) + I(xt; ut|a

t, d
t, u

t−1)+ By (5), dt is

independent of (at−1, d
t−1, u

t−1, x
t) (at−1, d

t−1, u
t−1, x

t) so

I(xt; dt|a
t−1, d

t−1, u
t−1) = 0. Likewise, (5) induces the

Markov chain (xt−(at, d
t, u

t−1)−ut) (e.g., the control action at

time t is independent of the past states given the information at

the decoder) and so I(xt; ut|a
t, d

t, u
t−1) = 0. Substituting (21)

in (19) gives

φt = I(xt; (at, dt, ut)|a
t−1, d

t−1, u
t−1) − I(xt; ut|u

t−1)

= I(xt; (at, d
t)|ut) − I(xt; (at−1, d

t−1)|ut−1) (22)

= I(xt; (at, d
t)|ut) − I(xt−1; (at−1, d

t−1)|ut−1) (23)

Equality (22) follows via expanding I(xt; (at, d
t, ut)|u

t−1) via

chain rule two different ways to show that

I(xt; (at−1, d
t−1)|ut−1) + I(xt; (at, dt, ut)|a

t−1, d
t−1, u

t−1)

= I(xt; ut|u
t−1) + I(xt; (at, d

t)|ut), (24)

and then adding right hand side and subtracting the left hand

side of (24) from the preceding equation. For t ≥ 1, (23)

follows since by the chain rule I(xt; (at−1, d
t−1)|ut−1) =

I(xt−1; (at−1, d
t−1)|ut−1) + I(xt; (at−1, d

t−1)|ut−1, x
t−1).

However, by the system model (5) we have the

Markov chain ((at−1, d
t−1) − (xt−1, u

t−1) − xt)

I(xt; (at−1, d
t−1)|ut−1, x

t−1) = 0. When t = 0, we

have I(xt; (at−1, d
t−1)|ut−1) = 0 and so we adopt

the convention that and so we adopt the conven-

tion that I(x−1; (a−1, d
−1)|u−1) = 0. We can then

apply (23) to telescope the sum in (20). This gives
∑T

i=0 φt = I(xT ; (aT , d
T)|uT). Substituting this into (20) and

applying the non-negativity of MI proves (18).

Theorem 1 is immediate upon combining Lemmas 1 and 2.

We now briefly discuss how the lower bound in Theorem 1

can be modified if we do not require that the codewords at

conform to prefix constraints. While prefix constraints can

be useful in settings where multiple agents access a shared

communication medium, they may be overly restrictive, in

particular for the point-to-point case when the encoder and

decoder share a common clock signal. The prefix constraints

allowed us to use the entropy lower bounds in (10) and (14)

respectively, but lifting them permits a reduction in expected

bitrate [5], [6]. Define the function θ(x) : R
+ → R

+ via

θ(x) = x + (1 + x) log2(1 + x) − x log2(x). It can be shown

that θ(x) is strictly increasing and concave. Thus, the inverse

θ−1 : R
+ → R

+ exists, is strictly increasing, and is convex.

Assume that in the setting of Lemma 1, we lift the prefix

constraints and simply assume that at ∈ {0, 1}∗ for all t. Let c

be a discrete random variable. By [6, eq. (13)], if the support

of c is mapped bijectively to the set of finite-length binary

strings, the expected length of the string is greater than or

equal to sensor/encoder and decoder/controller policies. As at

is already a finite-length binary string, we have via [6, eq. (13)]

E[ℓ(at)] ≥ θ−1(H(at)). (25)

Since θ−1 is increasing, we have by (11)-(12) that

θ−1(H(at)) ≥ θ−1
(

I(at; x
t|at−1, d

t, u
t−1)

)

. (26)

Combining (25) and (26) gives the lower bound E[ℓ(at)] ≥

θ−1(I(at; x
t|at−1, d

t, u
t−1)), which applies when prefix con-

straints are relaxed. Let Rt = I(at; x
t|at−1, d

t, u
t−1). By the

By the convexity of θ−1 and Jensen’s inequality, taking the

time average gives

T
∑

i=0

θ−1(Rt)

T + 1
≥ θ−1

(

T
∑

i=0

Rt

T + 1

)

(27)

≥ θ−1

(

I(xT → a
T ||dT , u

T−1
+ )

T + 1

)

(28)

≥ θ−1

(

I(xT → u
T)

T + 1

)

(29)

where (28) is the definition of DI and (29) follows from

the fact that θ−1 is increasing and the DI data processing

inequality in Lemma 2. Thus, if the prefix constraints in either

Assumption 1 or 2 are relaxed, we have

1

(T + 1)

T
∑

i=0

E[ℓ(at)] ≥ θ−1

(

I(xT → u
T)

T + 1

)

. (30)

The next section motivates a rate-distortion optimization seek-

ing to minimize the time-average DI lower bound from (7)
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subject to constraints on control performance. As θ−1 is

increasing and convex, (30) makes this meaningful even when

prefix constraints are relaxed.

B. Rate Distortion Formulation

We reexamine the optimization proposed in (6) in light of

the converse result obtained in Theorem 1. We assume a time-

invariant plant, e.g., At = A and Bt = B, where (A, B) are

stabilizable to ensure finite-control cost is attainable. Define

the infinite-horizon generalization of (6) via

L
∗ =

{

inf E, C lim supT→∞
1

T+1

∑T
t=0 E[ℓ(at)]

s.t. lim supT→∞

∑T
t=0 [‖xt+1‖

2
Q
+‖ut‖

2
R]

T+1 ≤ γ.

Defining {PE,PC} via (3) and (4), Theorem 1 gives

L
∗ ≥

{

inf E, C lim supT→∞
1

T+1 I(xT → u
T)

s.t. lim supT→∞

∑T
t=0 [‖xt+1‖

2
Q+‖ut‖

2
R]

T+1 ≤ γ.
(31)

We can relax the optimization problem in (31) by expanding

these policy spaces. Note that both the control and commu-

nication costs involve only {xi, ui}. By the system model,

we have the factorization PxT ,uT [xT , u
T ] PxT ,uT [xT , u

T ]

=
∏T

t=0 Pxt|ut−1,xt−1 [xt|ut−1, xt−1] Put|ut−1,xt [ut|u
t−1, x

t].

In a sense, this follows from causality. The kernels

{Pxt|ut−1,xt−1[xt|ut−1, xt−1]} are time-invariant and fixed by

the plant model. Meanwhile, the kernels of the form

Put|ut−1,xt [ut|u
t−1, x

t] are induced by the encoder and con-

troller policies. Let Pu||x denote the set of Pu||x denote the

set of all sequences of {Put|ut−1,xt [ut|u
t−1, x

t]}. Note that Pu||x

contains all kernels that can be induced by encoder and con-

troller policies satisfying (3) and (4). Consider the induced by

encoder and controller policies satisfying (3) and (4). Consider

the optimization

R =

{

inf
u||x

lim supT→∞
1

T+1 I(xT → u
T)

s.t. lim supT→∞

∑T
t=0 [‖xt+1‖

2
Q+‖ut‖

2
R]

T+1 ≤ γ.
(32)

As the domain of optimization in (32) is expanded with respect

to that on the right-hand side of (31), we have R ≤ L∗.

The optimization in (32) is the subject of [4]. While, a pri-

ori, the optimization in (32) is over an infinite-dimensional

policy space, [4] demonstrated that the minimum in (32)

could be computed by a finite dimensional log-determinant

optimization. Let S be a stabilizing solution to the dis-

crete algebraic Riccati equation ATSA − S − ATSB(BTSB +

R)−1BTSA + Q = 0, let K = −(BTSB + R)−1BTSA, and let

� = KT(BTSB+R)K. It can be shown (cf. [4, Sec. IV.B]) that

the optimization in (32) is equivalent to

R =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

infP,�,∈ m×m

P,�	0

1
2 (− log2 det � + log2 det W)

s.t. Tr(�P) + Tr(WS) ≤ γ

P 
 APAT + W
[

P − � PAT

AP APAT + W

]

	 0.

(33)

The optimization (33) is convex and amenable to solution via

standard libraries [4].

IV. CONCLUSION

In [1], [2] prefix-free coding schemes that conform to

Assumption 2 were shown to nearly achieve the communi-

cation cost for systems with a shared uniform dither sequence

at the encoder and decoder. Likewise, bounds on the quan-

tizer output entropy from [5] (not assuming dithering) can be

used to demonstrate the existence of a scheme conforming to

Assumption 1 that approximately achieves the lower bound in

the high communication rate/strict control cost regime.

The prefix constraints discussed in this letter apply “at time

t” in the sense that both definitions allow different prefix-

free codebooks to be used at every time t. For example,

under Assumption 1 there is nothing preventing a codeword

at time t + 1 from being a prefix of some codeword at

time t. Likewise, proofs of the achievability results in [2], [5]

imply the codebook is time-varying. Enforcing a time-invariant

prefix constraint could enable more computationally efficient

communication resource sharing in a network scenario; the

end of the codeword can be detected by comparing received

transmissions against a time-invariant list. Likewise, a fully

time-invariant source coding scheme (e.g., where both the

quantizer and the mapping from quantizations to prefix-free

codewords is itself time-invariant) eliminates the need to

update codebooks at every timestep and reduces the computa-

tional complexity of both encoders and decoders. Bounds for

time-invariant codecs are an opportunity for future work.
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