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Abstract—In this letter, we consider a Linear Quadratic
Gaussian (LQG) control system where feedback occurs
over a noiseless binary channel and derive lower bounds
on the minimum communication cost (quantified via
the channel bitrate) required to attain a given control
performance. We assume that at every time step an encoder
can convey a packet containing a variable number of
bits over the channel to a decoder at the controller. Our
system model provides for the possibility that the encoder
and decoder have shared randomness, as is the case in
systems using dithered quantizers. We define two extremal
prefix-free requirements that may be imposed on the mes-
sage packets; such constraints are useful in that they allow
the decoder, and potentially other agents to uniquely iden-
tify the end of a transmission in an online fashion. We then
derive a lower bound on the rate of prefix-free coding in
terms of directed information; in particular we show that a
previously known bound still holds in the case with shared
randomness. We generalize the bound for when prefix con-
straints are relaxed, and conclude with a rate-distortion
formulation.

Index Terms—Information theory and control, control
over communications.

[. INTRODUCTION

N THIS letter, we derive and analyze lower bounds on
Ithe minimum bitrate of feedback communication required
to obtain a given LQG control performance. We consider the
setting of variable-length coding; at each discrete time instant
an encoder that can fully observe the plant conveys a packet
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containing a variable number of bits to a decoder co-located
with the controller. Various prefix constraints can be imposed
on the packets; these allow the decoder, and perhaps other
agents, to uniquely identify the end of each codeword given
varying degrees of common knowledge/side information (SI).
Prefix constraints are useful when a communication medium
is shared; upon detecting the end one user’s codeword, other
users can identify the channel as free-to-use.

We assume that the packets are conveyed over a noise-
less, error-free communication channel. The bounds we derive
for noiseless channels are useful even when considering real-
world noisy channels. They can be compared directly with
an appropriate notion of the “real” channel’s capacity. If
our lower bound exceeds this capacity, the desired control
performance is not achievable. Likewise, if source-channel
separation is imposed on the design of the communication
architecture, our lower bounds apply to the optimal source
codec (encoder/decoder pair) design.

We allow for the possibility that the encoder and decoder
have access to shared randomness; namely an IID sequence
of exogenous random variables that are revealed causally to
both the encoder and decoder. Shared randomness of this
nature arises in settings where the encoder and decoder use
dithered quantization. In dithered quantization, randomness is
intentionally introduced into the quantization process to make
the quantization error more amenable to analysis. In partic-
ular, dithered quantization has been used to design schemes
for minimum bitrate LQG control (cf. [1], [2]). While these
achievability approaches are often compared to known lower
bounds that apply without shared randomness, in this letter
we clarify that these lower bounds do not change even when
a dither signal is available.

Recently, [3] demonstrated that the proofs of the lower
bounds to which the achievability approaches in [1] and [2]
were compared are invalid when the encoder and decoder
share randomness. The proof of the lower bound in [1] is cor-
rected in [3]. In this letter, we formalize two extremal prefix
constraints. These notions have been conflated in the prior
literature. We correct the proof of the lower bound in [2]
using a novel proof technique. We show that for all the pre-
fix constraints we consider and irrespective of the marginal
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distribution of the shared randomness, the channel bitrate is
lower bounded by the time-average directed information (DI)
from the state vector to the control input. Notably, this is
the same lower bound that applies without shared random-
ness [4], [5], demonstrating that systems employing dithered
quantization are subject to the same fundamental lower bounds
as systems without dithering [4]. While our result is consistent
with [3], we believe our proof is simpler.

The bitrate of lossless source coding can be reduced by
relaxing prefix constraints [6]. We show how the derived
lower bounds change upon lifting prefix constraints and con-
clude with a rate distortion formulation, specialized to the
case of time-invariant plants and an infinite horizon, following
from [4]. As our lower bound is proved in the finite horizon,
other relevant rate distortion formulations can be derived from,
e.g., [4] and [7]. A brief literature review now follows.

A. Literature Review

Our work follows from the problem formulation of [1],
which considered a SISO LQG control system where feedback
measurements were conveyed from an encoder to a decoder
over a noiseless binary channel. In the variable length setting
and enforcing a prefix constraint on the packets, [1] derived
a lower bound for the time-average expected channel bitrate
in terms of Massey’s DI [8]. Given a constraint on the LQG
cost, [1] showed that the lower bound is nearly achievable
when the encoder and decoder share access to a common dither
signal. In [2] and [4], the work in [1] was extended to MIMO
plants. In particular, [4] developed a rate-distortion formulation
in terms of semidefinite programming; a semidefinite program
(SDP) was derived to compute the tradeoff between the mini-
mum DI and LQG cost. The achievability of the lower bound,
again assuming dithering, was demonstrated in [2]. Analytical
lower bounds on the relevant DI as a function of the maximum
tolerable LQG cost were developed in [5]. It was also shown
that the entropy rate of an innovations quantizer approaches
this bound without the use of dithering. Notably, [5] gener-
alized the entropy lower-bound for prefix-free coding to the
setting without prefix constraints (see also [6]).

We consider a setup where the encoder and decoder share
randomness. This is in contrast to a setup where the decoder
can access a more traditional notion of SI, namely a random
variable correlated with the plant’s state vector. The impact
of this latter notion of SI on the communication/LQG cost
tradeoff was investigated in [9], [10], [11], and [12]. In par-
ticular, these works consider linear/Gaussian observations of
the plant available at the decoder. Rate distortion formula-
tions were considered in [9], [10], and [11], meanwhile an
achievability approach (assuming noiseless SI also available
at the encoder) was given in [12]. We will show that shared
randomness does not affect lower bounds on bitrate.

The lower bound on bitrate derived in [1] purported to apply
to quantization/coding schemes with shared dither sequences
at the encoder and decoder. A flaw in the proof of the
bound from [1] was recently discovered by [3]. The proof
was revised using new DI data processing inequalities derived
in [13]. In our letter, while we prove a lower bound similar

to that in [3], our problem formulation and proof techniques
differ significantly. The data processing inequalities in [13]
apply to general feedback systems consisting of deterministic
causal stages, where system blocks are randomized through
exogenous inputs. We consider an alternative formulation, and
prove that a data processing inequality holds under natural
conditional independence assumptions between the system
variables. Our lower bound then follows directly.

B. Our Contributions

In summary, the contributions of this letter are:

1) we define two different prefix constraints that can
be imposed on the feedback packets. In prior work,
these constraints have been used somewhat ambiguously.
Namely, we define a strict as well as a relaxed con-
straint and show that they are subject to the same lower
bound. We highlight the operational significance of these
constraints in control systems;

2) when the encoder and decoder share randomness, we
derive a DI data processing inequality directly from
the factorization of the joint distribution of the system
variables. This inequality proves that for two extremal
notions of what it means to be “prefix-free”, the DI
lower bound from [2] holds even when the encoder
and decoder share randomness. Following from [5]
and [6], we generalize the bound to codecs without
prefix constraints.

The lower bounds lead to a rate distortion formulation, which,
following from [4], can be written as an SDP.

C. Notation

We denote constant scalars and vectors in lowercase x,
scalar and vector random variables in boldface x, and matri-
ces by capital letters X. The set of finite-length binary strings
is denoted {0, 1}*. We use H for the entropy of a discrete
random variable and I for mutual information (MI). time
domain sequences, let {x;} denote (Xp,Xp,...). We let XZ
denote (X4,...,Xp) if b > a, and let xg. Given {x;} we
define the shifted sequence {Xt+} by {X,+} by (0, xg, X1, ...).
For {a;, by, ¢;}, Massey’s causally conditioned DI is defined
by (cf. [8])

T—1
1@~ > " ") =) 1@ b b o). (1)
t=0

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system model under consideration is depicted in
Figure 1. We consider a general MIMO plant with a feed-
back model where communication takes place over a noiseless
binary channel. We assume that a time-invariant plant is
fully observable to an sensor/encoder block, which conveys a
binary codeword a; € {0, 1}* over the channel to a combined
decoder/controller. Upon receipt of the decoder/controller
designs the control input. We denote the state vector as
x; € R™ and the control input as u, € R¥. We assume
that the u, € R¥. We assume that the sensor/encoder and
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Fig. 1. The factorization in (5b) states that both the shared dither
and the process noise are drawn independently given all prior encoder
and control actions. The factorization in (5a) provides that the code-
word at time t can be drawn from some distribution that depends on its
prior observations of the state and dither sequence, as well as its past
actions. Likewise, the control input can be drawn randomly given its the
decoder’s observations of received codewords, the dither, and its past
actions.

decoder/controller share access to a common random dither
signal, {d;}. The dither is assumed to be IID over time. Note
that this system model includes systems where a dither is
unavailable as a special case (e.g., we could always set d; =0
for all ). The process noise W > O,x,. We assume that
xg ~ N(0, Xp) for some Xy > 0, and that {w;}, {d,}, and xg
are mutually independent. Given a sequence of system matri-
ces Ay € R™ and feedback gain matrices B, € R™ " for
t > 0 the plant dynamics are given by plant dynamics are
given by

X1 = AX; + Boug + Wy ()

We assume that the sensor/encoder and the decoder/controller
are stochastic; i.e., that they can use randomized strategies.1
The sensor/encoder policy is assumed to be a sequence of
causally conditioned kernels given by

Pp[a™||d*™, x*] = {Pg[a;a’" !, d', x'] for r € No}.  (3)

Likewise, the corresponding decoder/controller policy is given
by the sequence of causally conditioned kernels

Pclu™[[a™, d*] = {Pclu|a’, d', '] for 1 € No}.  (4)

By (2), for all 1, X' is a deterministic function of xg, u'~! and

w'~!. We assume that the one-step transition kernels between
a;, d;, d;, u;, and w;, factorize for all r > 0 as

1 t t
Plast1, usg]a’, dul, wh, xo]

t qt+1 t+1 t+1 qt+1 .t
= Pglasi]a’, d x T Pclug 2, @t u'], and (Sa)
t t t t
Plasr1, de1, w1, weprla', d' w', wi, xg]

= Plag1, uggla’, ' u', W', xo]Plde 1 TP[Wig1]. (5b)

Implications of these factorization are discussed in Fig. 1.
The length of the binary codewords {a;} provides a notion
of communication cost. This is motivated by a scenario where
measurements from a remote sensor platform are conveyed
over wireless to control a plant. In general, minimizing the
necessary bitrate from the remote platform to the controller
minimizes the amount of physical layer resources that must
be allocated to the particular link. The problem of interest
is to minimize this bitrate subject to a constraint on the LQG

1E.g., the encoder can draw the codeword randomly given its input.

control performance. In this letter, we are concerned primarily
with deriving lower bounds on the bitrate.

At every time #, we require a, to satisfy a prefix constraint.
This allows the decoder (and possibly other agents sharing
the same communication network) to uniquely identify the
end of the transmission from the encoder. For a € {0, 1}*, let
£(a) denote the length of a in bits. The allows us to derive
simple lower-bounds on E[£¢(a;)]. We are interested in the
optimization

T
1
inf —— E[4(a
Jnf TH; [€(a,)]
T
st Sl + Il <y, ©
T+1 pre

where Q > 0, R > 0, and y is the maximum tolerable LQG
cost. The minimization is over admissible sensor/encoder and
decoder/controller policies described by (3) and (4). In [4],
it was shown that, for policies without additive dithering, (6)
is lower-bounded by an SDP (technically a log-determinant
optimization) where a particular DI is minimized over the
space of linear/Gaussian policies. In the sequel, we show that
this lower bound still holds for architectures with additive
dither satisfying (3)-(5).

[1l. LOWER BOUNDS

We now derive lower bounds on the rate of prefix-free cod-
ing within the feedback loops of Fig. 1. These bounds apply
irrespective of the marginal distribution of the dither signal d;,
and thus also apply to systems without dithering.

A. Directed Information Lower Bound

We first formally define various prefix constraints that may
be imposed on the codeword a,. We consider two distinct
notions, and same lower bound applies to both. We first require
that, at every time ¢, a, is a codeword from a prefix-free
code that can be decoded by any decoder with knowledge
of the marginal distribution P,,. Assumption 1 formalizes this
constraint. Assumption 1 formalizes this constraint.

Constraint 1: For all distinct ay, ap € {0, 1}* with Py, [a, =
a1] > 0 and Py,[a; = a2] > 0, a; is not a prefix of a; and ay
and vice-versa.

Assumption 1 was used, implicitly, as the notion “prefix-
free” in proofs of lower bounds in [1] and [2]. Assumption 1
ensures that the decoder can uniquely identify the end of the
codeword without relying on its knowledge of the previously
received codewords a’~!, its previously designed control
inputs u'~!, and the common randomness d’ it shares with
the encoder. However, Assumption 1 is perhaps too restric-
tive; at time ¢ both the encoder and the decoder have access
to some common knowledge, including a’~! and d’. While
information known only to the encoder cannot reduce the min-
imum codeword length, information known to the decoder
can. We consider prefix-free codes that are instantaneous with
respect to realizations of the random variables known to the
decoder in Assumption 2.
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The virtual encoder produces the codeword ¢; given access to a; and realizations of (al~", df, u'=1). The virtual (', df, ui=1), the

virtual encoder reconstruct a; exactly, ensuring equivalent control performance in the original system. The virtual codewords ¢; must also satisfy
Assumption 2. Notably, the virtual encoder has access to more side information than the sensor/encoder (cf. Fig. 1).

Constraint 2: For any realizations (a’~! d’,u’"!) =
(@', d', u~"), for all distinct aj,ap € {0, 1}* with
Paja-t.ar w118 = ar|@~ 1 d' ™) = @1 d" u'"H] > 0
Poja-1.ar w118 = ao] @1, A u'™h) = (@, d' ' ~)] > 0,
Poja-t.ar w18 = ao] @71, A u'™h) = (@ d', u'")] > 0,
ay is not a prefix of a; and vice-versa.

This requirement ensures that given the knowledge of a’~!,
d’, and u'~! the decoder can uniquely identify the end of the
codeword. While of the codeword. While Assumption 2 is
somewhat relaxed in comparison to Assumption 1, the imple-
mentation of a coding scheme under Assumption 2 is likely
more cumbersome with respect to that of Assumption 1. Under
codewords without considering realizations of (a’~!, d’, u~1),
whereas under Assumption 2 this is not necessarily the case.
In fact, an implication of Assumption 2 is that the encoder and
decoder may need to agree on infinitely many codebooks. The
notion “prefix-free” used in the achievability notion “prefix-
free” used in the achievability architectures of [1] and [2]
do not satisfy Assumption 1, but do satisfy Assumption 2.
In [1] and [2], the codewords are prefix-free given the shared
dither signal. The following lower bound applies under either
Assumption 1 or 2.

Theorem 1: In a system conforming to Fig. 1 and (5)
with fixed encoder and decoder policies such that either
Assumption 1 or 2 is satisfied at every ¢, the time-average
expected codeword length satisfies

T

_ SR S
T+D ;maatn 2 G =D

(7

Theorem 1 follows from Lemmas 1 and 2, stated presently.
Lemma 1: If a, satisfies either of the prefix-free conditions
outlined in Assumptions 1 or 2, we have

1
———I(x" — a’||d",ul). (8)

1 T
T ;me(ao] = T

Proof: We first derive a bound on the codeword length
under Assumption 1. Assume that the encoder and decoder
policies are fixed and conform to Assumption 1. Consider
information source with a range in {0, 1}*. Define the iden-
tity map C! : {0, 1}* — {0, 1}* such that for all a € {0, 1}*,
C'(a) = a. By Assumption 1, at every time 7, C' is
a lossless, prefix-free source code for a;. Thus, we have
(cf. [14, Th. 5.3.1])

E[¢(a)] = E[¢(C'(a))]
> H(a,)

€))
(10)

> H(aja’ !, d",u’"1,)
> I(a; x|’ !, ', u'™h)

(1)
(12)

where (9) follows since C! is an identify map, (10) follows
from the fact that C! is a prefix-free code for a, and thus
has an expected length lower bounded by the entropy of a;.
Equation (11) follows from the fact that conditioning reduces
entropy. reduces entropy. Finally, (12) follows from subtracting
the (nonnegative) discrete conditional entropy H (a,|a’_1, d’,
from (11) and applying the definition of MI. the definition
of MI.

The logic leading to (10) does not hold if Assumption 1 is
relaxed to Assumption 2. However, under Assumption 2, the
lower bound (12) still holds. To show this, we analyze system
model that is “more-generous” than Fig. 1. First, assume that
the sensor/encoder and decoder/controller policies are fixed
such that the Assumption 2 at every ¢. With the sensor/encoder
and decoder/controller policies fixed, decoder/controller poli-
cies fixed, consider modifying the system model of Fig. |
by inserting a second ‘“virtual” (hypothetical), deterministic
lossless source codec between the original encoder/sensor and
decoder/controller. Fig. 2 gives an overview of this modifi-
cation. Note that, by sensor/encoder does not have access to
u'~!, however the virtual encoder does. At every time f, we
allow the virtual encoder to produce the codeword ¢; given
a, and realizations of realizations of that, given realizations of
@@~!, u'~!, d") and the codeword c¢;, the virtual decoder repro-
duce a; exactly. We require that the codewords {c;} also satisfy
Assumption 2 (replacing a; with the virtual codeword c¢;).

Fix the realizations (a'~!, d’,u’"!) = (&', d', W) and
consider and consider encoding a, into ¢,. Define the vir-
tual encoder function mapping a; to ¢, given the realizations

by Cuy—t giy-1 @ {0,1} — {0, 1}*. Define the decoder
function D1 g -1 @ {0,1}* — {0, 1}*. By assumption,
Dat—l’dt’ut—l(Catflydt’ut—l(a[)) = ay. Assume Catfl’dt’utfl is

chosen to minimize E[£(¢c;)]. Thus,

El¢@)l@~",d" u™h) = @', d"u ]

> Ele(enl@! duh = @ du ], (13)
since choosing both Cji-1 4 -1 and Dji-1 g -1 to be identity
(i.e., choosing ¢; = a,) ensures that the decoder recovers a,
and that the {c;} satisfy Assumption 2. Since the prefix con-
straint in Assumption 2 applies for all realizations, we can
lower bound E[£(¢/)|a’"! =41, d' = d',u~! = "] using
the standard Kraft-McMillan inequality based proof. For any
realizations (a1, d', u'~!) and choice of code Cpu—1 gt i1
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we have (cf. [14, Th. 5.3.1])
E[e(e)|@ ", d",u™ Y = @, d, u ")
> H(al@ ™ d v = @ d ). a4
Taking the expectation of (13) and (14) with respect to the

joint measure (a’~!, d’,u’"!") over realizations allows us to
proceed as in (9). We have

E[¢(a;)] > E[€(c)] (15)
> H(aJa™ !, d',u"Hu'™) (16)
> [(a; xa’™ !, d, u ™, (17)

where (15) is by taking expectations over realizations
in (13), (16) follows likewise from (14), and (17) follows as
in (12).

Summing the identical bounds in (12) and (17) over ¢ =
{0, ..., T} and applying the definition of causally conditioned
DI from (1) proves (8). |

Lemma 2 lower bounds the DI in Lemma 1 by a DI
amenable to the rate-distortion formulations in [4] and [7].

Lemma 2: In the system model of Figure 1, we have

1" — aljja’,ul ") > 1" — ul). (18)
Proof: Let

¢ =Ix";a0a™ ! d u ™ — I uu' ™ (19)

and note that summing the ¢, at applying (1) gives
1" — aljd",ul ™ —1x” — ul) = XT:@. (20)

i=0
We first demonstrate that
Ix';5a0a~!, d' u'™h

= I(x; (a5, dy, upla™ ! d ! u . 1)

Via the chain rule, I(xX’;(a;, d;u)la~!,d~ 1wl =
I(x';ulal, d,u ™) + I(x';u)a’, d, u'"")+ By (5), d; is
independent of (a’~!,d~ ', u~! x") @@ !, d ! u ! x) so
I(x';d/a’ ="', d~ !, u~!) = 0. Likewise, (5) induces the
Markov chain (x’—(a’, d’, w'~!)—u,) (e.g., the control action at
time ¢ is independent of the past states given the information at
the decoder) and so I(x'; u;|a’, d’, uw’~!) = 0. Substituting (21)
in (19) gives

¢ = 1(X'; (a, dy, up) 2™ d ™ u ™) — 1(x; uyu' ™)
=I(x; (@', d)u') — I(x'; @@ d
=I(x; (@', d)u) — 1" @ dTH'h

(22)
(23)
Equality (22) follows via expanding I(x’; (a’, d’, u,)[u’"!) via
chain rule two different ways to show that
I @7 d D + 15 (@, dy wpla™! L d e
= I(x';uu™") + 1(x; @', d)|u), (24)
and then adding right hand side and subtracting the left hand
side of (24) from the preceding equation. For + > 1, (23)
follows since by the chain rule I(x'; (a’~!,d""Hju'~!) =
I @ L d ™+ 1k @ d T X,
However, by the system model (5) we have the

Markov  chain  ((@” !, d"" 1)
Ix; @, d Hu =, x~') = 0. When + = 0, we
have I(x'; @', dHuw~!" = 0 and so we adopt
the convention that and so we adopt the conven-
tion that I(x~!'; @ !,dHju') = 0. We can then
apply (23) to telescope the sum in (20). This gives
S L o¢ = 1x"; @”, d")[u”). Substituting this into (20) and
applying the non-negativity of MI proves (18). |
Theorem 1 is immediate upon combining Lemmas 1 and 2.
We now briefly discuss how the lower bound in Theorem 1
can be modified if we do not require that the codewords a,
conform to prefix constraints. While prefix constraints can
be useful in settings where multiple agents access a shared
communication medium, they may be overly restrictive, in
particular for the point-to-point case when the encoder and
decoder share a common clock signal. The prefix constraints
allowed us to use the entropy lower bounds in (10) and (14)
respectively, but lifting them permits a reduction in expected
bitrate [5], [6]. Define the function #(x) : Rt — Rt via
0(x) = x+ (1 +x)logy(1 + x) — xlog,(x). It can be shown
that 6(x) is strictly increasing and concave. Thus, the inverse
6~! : Rt — R exists, is strictly increasing, and is convex.
Assume that in the setting of Lemma 1, we lift the prefix
constraints and simply assume that a; € {0, 1}* for all 7. Let ¢
be a discrete random variable. By [6, eq. (13)], if the support
of ¢ is mapped bijectively to the set of finite-length binary
strings, the expected length of the string is greater than or
equal to sensor/encoder and decoder/controller policies. As a;
is already a finite-length binary string, we have via [6, eq. (13)]

xLa ) - x)

El¢(a)] > 6~ (H(ay)). 25)
Since 671 is increasing, we have by (11)-(12) that
6~ (H@) = 07 (Ias ¥a ™" ' w ™). 6)

Combining (25) and (26) gives the lower bound E[£(a;)] >
6~ 1(I(a; x'|a’"!, @', w'~1)), which applies when prefix con-
straints are relaxed. Let R, = I(a,;; x/|a’~!, d/, u’~!). By the
By the convexity of 6! and Jensen’s inequality, taking the
time average gives

T -1 T
6~ (R R
(Ry) > 6! Z t @7
“ T+1 ‘—~ T+1
i=0 i=0
T-1
> 67! (I(XT > a’lid’ )> (28)
T+1
T T
20_1<I(x —u )) 29)
T+1

where (28) is the definition of DI and (29) follows from
the fact that #~! is increasing and the DI data processing
inequality in Lemma 2. Thus, if the prefix constraints in either
Assumption 1 or 2 are relaxed, we have

T T T
> Elea)] = 67! (’—(X —u )).
i=0

(30)

(T+ 1) T+1

The next section motivates a rate-distortion optimization seek-
ing to minimize the time-average DI lower bound from (7)
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subject to constraints on control performance. As 67! is
increasing and convex, (30) makes this meaningful even when
prefix constraints are relaxed.

B. Rate Distortion Formulation

We reexamine the optimization proposed in (6) in light of
the converse result obtained in Theorem 1. We assume a time-
invariant plant, e.g., A, = A and B; = B, where (A, B) are
stabilizable to ensure finite-control cost is attainable. Define
the infinite-horizon generalization of (6) via

. . T

infpg pelimsupr_ o 757 3o EL¢(a1)]

S Bl I+ lF] _
T+1 —

L=

s.t.  limsupy_, o
Defining {Pg, Pc} via (3) and (4), Theorem 1 gives
infpg pclim supy_, o TLHI x! — u’)

o Bl lp+HIulz) _
T+1 =Y

L > €2y

s.t. limsupy_, o

We can relax the optimization problem in (31) by expanding
these policy spaces. Note that both the control and commu-
nication costs involve only {x;,u;}. By the system model,
we have the factorization Pyr 7 x,u’] Pyr ur x",u’]
= [T o P XeWor. 1] Pyt g [wfu'=!, x7].
In a sense, this follows from causality. The kernels
{Px;ju,_y,x,_ [Xslu,—1, X,—1]} are time-invariant and fixed by
the plant model. Meanwhile, the kernels of the form
Py, a1 xt [w,u’ !, x] are induced by the encoder and con-
troller policies. Let Pyx denote the set of Pyx denote the
set of all sequences of {Py,y1 v [u,Ju’~!, x']}. Note that Pyx
contains all kernels that can be induced by encoder and con-
troller policies satisfying (3) and (4). Consider the induced by
encoder and controller policies satisfying (3) and (4). Consider
the optimization

infp, limsupy_, o, TLHI(XT —ul)

= . o Bl 113+ lu i3]
s.t. hmsupT%ooz'_0 ;—HQ <y

(32)

As the domain of optimization in (32) is expanded with respect
to that on the right-hand side of (31), we have R < L*.

The optimization in (32) is the subject of [4]. While, a pri-
ori, the optimization in (32) is over an infinite-dimensional
policy space, [4] demonstrated that the minimum in (32)
could be computed by a finite dimensional log-determinant
optimization. Let S be a stabilizing solution to the dis-
crete algebraic Riccati equation ATSA — § — ATSB(BTSB +
R)"'BTSA+Q =0, let K = —(BTSB + R)"'BTSA, and let
©® = KT(BTSB+R)K. It can be shown (cf. [4, Sec. IV.B]) that
the optimization in (32) is equivalent to

infp r cgmxm %(— log, det IT 4 log, det W)
P,IT-0
s.t. Tr(®P) + Tr(WS) <y

P <APAT + W
P-TI PAT
AP

APAT + W:| = 0.
The optimization (33) is convex and amenable to solution via
standard libraries [4].

R = (33)

V. CONCLUSION

In [1], [2] prefix-free coding schemes that conform to
Assumption 2 were shown to nearly achieve the communi-
cation cost for systems with a shared uniform dither sequence
at the encoder and decoder. Likewise, bounds on the quan-
tizer output entropy from [5] (not assuming dithering) can be
used to demonstrate the existence of a scheme conforming to
Assumption 1 that approximately achieves the lower bound in
the high communication rate/strict control cost regime.

The prefix constraints discussed in this letter apply “at time
t’ in the sense that both definitions allow different prefix-
free codebooks to be used at every time ¢. For example,
under Assumption 1 there is nothing preventing a codeword
at time ¢ + 1 from being a prefix of some codeword at
time . Likewise, proofs of the achievability results in [2], [5]
imply the codebook is time-varying. Enforcing a time-invariant
prefix constraint could enable more computationally efficient
communication resource sharing in a network scenario; the
end of the codeword can be detected by comparing received
transmissions against a time-invariant list. Likewise, a fully
time-invariant source coding scheme (e.g., where both the
quantizer and the mapping from quantizations to prefix-free
codewords is itself time-invariant) eliminates the need to
update codebooks at every timestep and reduces the computa-
tional complexity of both encoders and decoders. Bounds for
time-invariant codecs are an opportunity for future work.
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