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Abstract. Introduced by Erdős in 1950, a covering system of the integers is a finite col-

lection of arithmetic progressions whose union is the set Z. Many beautiful questions and

conjectures about covering systems have been posed over the past several decades, but un-

til recently little was known about their properties. Most famously, the so-called minimum

modulus problem of Erdős was resolved in 2015 by Hough, who proved that in every covering

system with distinct moduli, the minimum modulus is at most 1016.

In this paper we answer another question of Erdős, asked in 1952, on the number of

minimal covering systems. More precisely, we show that the number of minimal covering

systems with exactly n elements is

exp

((

4
√
τ

3
+ o(1)

)

n3/2

(log n)1/2

)

as n → ∞, where

τ =

∞
∑

t=1

(

log
t+ 1

t

)2

.

En route to this counting result, we obtain a structural description of all covering systems

that are close to optimal in an appropriate sense.

1. Introduction

A covering system is a finite collection of arithmetic progressions that covers1 the integers.

Erdős [5] initiated the study of covering systems in 1950, and since then numerous beautiful

questions have been asked about their properties (see, for example, [5–13, 20, 21]). Until

recently little progress had been made on these problems, but following groundbreaking

work of Filaseta, Ford, Konyagin, Pomerance and Yu [13] in 2007, a fundamental result was

obtained by Hough [16], who resolved a problem from the original paper of Erdős [5] by

proving that there do not exist covering systems with distinct moduli and arbitrarily large

minimum modulus. Building on his work, the authors of this paper [1, 2] recently made

further progress on several related open problems.

In this paper we will study another problem on covering systems, whose study was initiated

by Erdős [6] in 1952:

How many minimal covering systems of size n are there?

The first two authors were partially supported by NSF grant DMS 1600742, the third author was partially

supported by FAPERJ (Proc. E-26/202.993/2017) and CNPq (Proc. 304237/2016-7), and the fifth author

was supported by a Trinity Hall Research Studentship.
1We emphasize that we do not require the progressions to be disjoint. For related work on covering systems
with this additional property (sometimes called exactly covering systems), see for example [14, 15,19,23].



Erdős [6] gave a simple proof that there are only finitely many minimal2 covering systems of

size n, but the bound he obtained on their number was doubly exponential. A more reason-

able upper bound follows from a result of Simpson [22], who proved in 1985 (see Section 2)

that the largest modulus in a minimal covering system of size n is at most 2n−1. Note that

this bound is best possible, since A =
{

2i−1 (mod 2i) : i ∈ [n − 1]
}

∪
{

0 (mod 2n−1)
}

is a

minimal covering system, and that it easily implies that there are at most 2O(n2) minimal

covering systems of size n. We will show that there are in fact rather fewer such systems,

and we will moreover determine asymptotically the logarithm of their number. The main

aim of this paper is to prove the following theorem.

Theorem 1.1. The number of minimal covering systems of Z of size n is

exp

((

4
√
τ

3
+ o(1)

)

n3/2

(log n)1/2

)

(1)

as n → ∞, where

τ =
∞
∑

t=1

(

log
t+ 1

t

)2

.

We remark that proving a weaker upper bound, with a different constant in the exponent,

is significantly easier, and we will give a short proof of such a bound in Section 6. Let us

also note here that we will prove the lower bound under the additional restriction that the

moduli are distinct, and so the conclusion of Theorem 1.1 also holds for such systems.

In order to motivate the form of the formula (1), let us begin by describing a simple

construction that gives a slightly weaker lower bound. Let p1 < . . . < pk be the first k

primes, and for each i ∈ [k], choose pi − 1 arithmetic progressions A
(i)
1 , . . . , A

(i)
pi−1 with the

following properties: for each j ∈ [pi − 1], the modulus of A
(i)
j is divisible by pi and divides

Qi := p1 · · · pi, and A
(i)
j contains j ·Qi−1. It is not difficult to show that, for each such choice,

by adding the progression
{

0 (mod Qk)
}

we obtain a distinct minimal covering system of

size n =
∑k

i=1(pi − 1) + 1 ≈ k2 log k. Since we have 2i−1 choices for the progression A
(i)
j for

each i ∈ [k] and j ∈ [pi − 1], this implies that there are at least

k
∏

i=1

2(i−1)(pi−1) = exp
(

Ω
(

k3 log k
)

)

= exp

(

Ω
(

n3/2
)

(log n)1/2

)

minimal covering systems of Z of size n. In Section 5 we will describe a somewhat more

complicated construction that proves the lower bound in Theorem 1.1.

We will refer to collections of progressions as in the construction above as “frames” (see

Section 2 for a precise definition). The second main result of this paper, and the key step in

the proof of Theorem 1.1, will be a structural description of all “efficient” covering systems;

roughly speaking, we will show that every such covering system contains a large “approximate

frame”. The purpose of the next section is to state this structural theorem.

2A covering system A is minimal if no proper subset of it covers Z. Without this restriction there are
infinitely many covering systems of size 2, since we can take A = {Z, A} for any arithmetic progression A.
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2. The structure of efficient coverings

In this section we will state our main structural theorem. In order to do so, it will be

convenient to shift our attention to the following (slightly more general) geometric setting.

Let S1, . . . , Sk be finite sets with at least two elements and set SI :=
∏

i∈I Si for each I ⊆ [k].

If H = H1 × · · · × Hk ⊆ S[k] with each Hi either equal to Si or a singleton element of Si,

then we say that H is a hyperplane. We write F (H) := {i ∈ [k] : |Hi| = 1} for the fixed

coordinates of H, and F (A) :=
⋃

H∈A F (H) if A is a collection of hyperplanes. We will also

write H = [x1, . . . , xk], where xi ∈ Si ∪ {∗} for each i ∈ [k], and ∗ indicates that Hi = Si.

Definition 2.1. A simple frame centred at an element (s1, . . . , sk) ∈ S[k] (which we call the

axis), is a sequence (F1, . . . ,Fk), where Fi is a collection of |Si| − 1 hyperplanes of the form
[

x1, . . . , xi−1, a, ∗, · · · , ∗
]

, (2)

one for each a ∈ Si \ {si}, with xj ∈ {sj, ∗} for each j ∈ [i− 1].

A frame is obtained from a simple frame by permuting the order of the sets S1, . . . , Sk.

Observe that if (F1, . . . ,Fk) is a frame centred at (s1, . . . , sk), then the collection

A := F1 ∪ · · · ∪ Fk ∪
{

[s1, . . . , sk]
}

is a minimal cover of S[k]. Indeed, if we remove the hyperplane
[

x1, . . . , xi−1, a, ∗, · · · , ∗
]

from A, then the element (s1, . . . , si−1, a, si+1, . . . , sk) will be uncovered by the remaining

hyperplanes. Note that if we set Si = {0, . . . , pi − 1} for each i ∈ [k], then the construction

given in the introduction is equivalent to a frame centred at (0, . . . , 0). When we (for now

informally, but later on precisely) discuss frames in Z, we will always mean that each set

Si = {0, . . . , p − 1} for some prime p (these primes will not generally be distinct), and we

will map S1×· · ·×Sk into ZN , where N =
∏k

i=1 |Si|, using the Chinese Remainder Theorem

to identify ZN with the product of groups Zpγ , and then expanding base p.3 Note that

every arithmetic progression in Z corresponds to a hyperplane, but not every hyperplane

corresponds to an arithmetic progression if primes are repeated (see Sections 5 and 7).

The key idea behind the proof of Theorem 1.1 is the following (imprecise) conjecture:

“Almost every minimal covering system of Z of size n is close to a frame.”

We will not prove a result of this form; instead, we will use a slightly weaker notion, which

we call a δ-generalized frame. These objects differ from frames in two key ways: the fixed

elements “to the left” of i in a hyperplane H ∈ Fi are allowed to vary with i, and instead

of insisting that “all coordinates to the right are free” (as in (2)), we allow a few “small”

coordinates to be fixed (with the product of their sizes bounded by 1/δ).

The next definition is both important and somewhat technical, and we will need some

additional notation. Given a hyperplane H, we write Hi for its ith coordinate, and for any

I ⊆ [k] we will write HI =
∏

i∈I Hi for the hyperplane in SI obtained by restricting H to

the coordinates of I, and define µI(H) := |HI | · |SI |−1 when I 6= ∅, and µ∅(H) := 1.

3For example, (a0, a1, . . . , aγ−1) ∈ Zp × · · · × Zp corresponds to the element
∑γ−1

i=0
aip

i ∈ Zpγ .
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Definition 2.2 (δ-generalized frames). Let δ > 0, and let S1, . . . , Sk be finite sets with at

least two elements. A simple δ-generalized frame in S[k] is a sequence (F1, . . . ,Fk), where Fi

is a collection of at most |Si| − 1 hyperplanes, satisfying the following conditions. For each

i ∈ [k], there exists a set I(i) ⊇ {i + 1, . . . , k}, and for each j 6∈ I(i) ∪ {i}, there exists an

element sj(i) ∈ Sj, such that, for each H ∈ Fi,

i ∈ F (H), µI(i)(H) > δ and Hj ∈
{

sj(i), Sj

}

.

Moreover, if min
{

|Si|, |Sj|
}

> δ−1 and i 6= j, then Fi and Fj are disjoint. A δ-generalized

frame is obtained from a simple δ-generalized frame by permuting the sets S1, . . . , Sk.

We are now ready to state our main structural theorem for covering systems that contain

roughly (up to a constant factor) the same number of elements as a frame.

Theorem 2.3. For every C, ε > 0 there exists δ = δ(C, ε) > 0 so that for every collection

of finite sets S1, . . . , Sk with at least two elements, the following holds. If A is a minimal

cover of S[k] with hyperplanes such that F (A) = [k] and

|A| 6 C

k
∑

i=1

(

|Si| − 1
)

, (3)

then A contains a δ-generalized frame (F1, . . . ,Fk), with

k
∑

i=1

|Fi| > (1− ε)
k
∑

i=1

(

|Si| − 1
)

. (4)

The theorem above can be thought of as an inverse theorem for the following extremal

result of Simpson [22]. If A is a collection of arithmetic progressions, then we write lcm(A)

for the least common multiple of the moduli of the progressions in A.

Theorem 2.4 (Simpson’s theorem). If A is a minimal cover of S[k] with hyperplanes such

that F (A) = [k], then

|A| >
k
∑

i=1

(

|Si| − 1
)

+ 1.

In particular, if A is a minimal covering system of Z with lcm(A) = pγ11 · · · pγmm , then

|A| >
m
∑

i=1

γi
(

pi − 1
)

+ 1.

In the appendix, we will provide (for the reader’s convenience) a proof of Simpson’s theo-

rem. Let us also remark here that, while the form of the function δ(C, ε) will not matter for

our purposes, we will prove that Theorem 2.3 holds with δ = (ε/C)O(log(1/ε)).

In order to deduce Theorem 1.1 from Theorem 2.3, we will need to count δ-generalized

frames quite precisely, and show that there are relatively few choices for the remaining

elements; we will also need to show that there are few minimal covering systems that fail to

satisfy (3). These calculations are carried out in Sections 6 and 7.
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2.1. An outline of the proof of the structural theorem. The proof of Theorem 2.3
requires a few somewhat technical definitions, and to prepare the reader for these we will
begin by giving an outline of the argument. The idea is to construct a tree that encodes
the structure of the covering system by ‘exploring’ it coordinate by coordinate. To be more
precise, given a minimal cover A of S[k], let us choose a coordinate i ∈ [k] to explore, and
observe (see Section 3.2 for the details) that for each s ∈ Si we obtain a covering system of

S1 × · · · × Si−1 × {s} × Si+1 × · · · × Sk,

which we identify with S[k]\{i}. (Here the hyperplanes H ∈ A with Hi = Si appear in each
of the |Si| covering systems corresponding to coordinate i.) These covering systems may not
be minimal, but for each s ∈ Si we can take a minimal sub-covering As.
Now, some of the systems As may be trivial (i.e., may consist of a single hyperplane),

and when this occurs we are happy, because such hyperplanes can be used in the frame that
we are trying to construct. For the remaining elements s ∈ Si, we consider the set of fixed
coordinates F (As) of As, and observe (see Lemma 3.7) that every coordinate (except i) is
in F (As) for some s ∈ Si. We may now choose, for each s such that F (As) is non-empty,
a coordinate j ∈ F (As), and repeat the above construction, exploring the minimal covering
system As, starting with the coordinate j. Iterating this process produces a rooted tree
(which we call an ‘index tree’, see Definition 3.1), each of whose vertices is labelled with a
set I ⊆ [k] and a coordinate i ∈ I, which are the fixed coordinates of the corresponding
minimal covering system, and the coordinate ‘explored’ at that vertex, respectively.
So far, we have not said anything about how to construct the sets Fi, or how to choose

the coordinate i that we explore in a given step. For simplicity, let us explain this only for
the first step (the choice for later steps is similar). First, if there exists i ∈ [k] such that
there are at least (1 − ε)

(

|Si| − 1
)

hyperplanes H ∈ A with i ∈ F (H) and µ[k]\{i}(H) > δ,
then we choose such a coordinate i to explore, and associate this collection of ‘frame-like’
hyperplanes with the current vertex (in this case, the root of the tree). One of the key ideas
of the paper is that, if such a collection of hyperplanes does not exist for any i ∈ [k], then we
may use the Lovász Local Lemma to deduce (see Lemma 3.5) that there exists a coordinate j
(which we will choose to explore), and a ‘large’ collection G of hyperplanes in the current
collection, such that j is a fixed coordinate of each. This collection of ‘garbage’ hyperplanes
will later be used, together with (3), to show that this case does not occur too often.

The plan described above is carried out in Section 3, the main result being Lemma 3.3,

which states that if δ is sufficiently small, then there exists a suitable ‘exploration tree’ T

of A (see Definition 3.2). This exploration tree can be very large, however, and to extract

our δ-generalized frame from it we will need to choose a suitable sub-tree T . To do so, we

choose k ‘special’ vertices of T, one for each coordinate, and take the union of the paths

from these vertices to the root. If almost all of these special vertices are ‘good’ (that is, we

found a large collection of frame-like hyperplanes when exploring them), then we obtain a

sufficiently large δ-generalized frame. On the other hand, if a positive proportion of them

are ‘bad’, then we use the ‘garbage’ hyperplanes to show that inequality (3) cannot hold. In

order to carry out this argument, we need to choose the special vertices carefully; it turns

out that it is sufficient to choose them via a depth-first search, see Section 4 for the details.
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3. Exploring the cover

In this section we will take the first step towards Theorem 2.3 by describing a much larger

object that is somewhat easier to construct, the exploration tree. To define these, we first

need to introduce the following simpler objects, which we call index trees. Let us fix, for

the rest of the proof of Theorem 2.3, a collection of finite sets S1, . . . , Sk with at least two

elements, and let us write N(u) for the set of out-neighbours of u in a rooted tree, where we

orient the edges away from the root.

Definition 3.1. An index tree T of [k] is a rooted tree, equipped with a labelling of its

vertices u 7→ (Iu, iu), where Iu ⊆ [k] and iu ∈ Iu, that satisfies the following conditions:

(i) the root of T has label ([k], i) for some i ∈ [k];

(ii) for each vertex v ∈ V (T),
⋃

u∈N(v)

Iu = Iv \ {iv}. (5)

We can now define the exploration tree of a collection of hyperplanes in S[k]. Given a

rooted tree T and vertices u, v ∈ V (T ), let us write u ≺T v to indicate that u lies on the

path from v to the root (so, in particular, v ≺T v).

Definition 3.2. Let λ, ε, δ > 0, and let A be a collection of hyperplanes in S[k]. An (λ, ε, δ)-

exploration tree of A is an index tree T of [k] such that, for each vertex u ∈ V (T):

(a) there exists a collection Au ⊆ A such that A′
u :=

{

HIu : H ∈ Au

}

is a minimal cover

of SIu with F (A′
u) = Iu, and if u ∈ N(v), then:

(i) Au ⊆ Av;

(ii) F (Au) ⊆
{

iw : w ≺T v
}

∪ Iu;

(iii) there exists an element su ∈ Siv such that Hiv ∈ {su, Siv} for each H ∈ Au.

Moreover, for each vertex u ∈ V (T), one of the following holds:

(b) u is good, which means that there exists a collection of hyperplanes Fu ⊆ Au, with

|Fu| > (1− ε)
(

|Siu | − 1
)

, (6)

such that iu ∈ F (H) and µIu\{iu}(H) > δ for each H ∈ Fu.

(c) u is bad, which means that there exists a collection of hyperplanes Gu ⊆ Au, with

∑

H∈Gu

2−|F (H)∩Iu|/4 >
|Siu |
λ

, (7)

such that iu ∈ F (H) and |F (H) ∩ Iu| > 2 for each H ∈ Gu.

We think of the elements of Fu (when u is good) and Gu (when u is bad) as hyperplanes

that (respectively) do and do not look like parts of a frame from the perspective of the

vertex u. We will show (see Lemma 3.3, below) that exploration trees always exist, as long

as we choose δ to be sufficiently small, depending on λ and ε. We will then, in Section 4,
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carefully choose a subtree T of our exploration tree T, and one ‘special’ vertex for each

coordinate i ∈ [k], with the following three properties: the frames corresponding to good

special vertices are disjoint (unless one of the corresponding sets Si is very small); if ‘many’

special vertices of T are bad, then A fails to satisfy (3); and if ‘almost all’ of the special

vertices of T are good, then there exists a sufficiently large δ-generalized frame in A.

The main aim of this section is to prove the following lemma.

Lemma 3.3. Let λ, ε ∈ (0, 1), and let A be a minimal cover of S[k] with hyperplanes such

that F (A) = [k]. If

0 < δ < 2−9λ2ε2 log2(1/λε)+11, (8)

then there exists an (λ, ε, δ)-exploration tree of A.

Let us fix, for the rest of this section, constants 0 < λ, ε < 1 and δ > 0 satisfying (8). We

will prove Lemma 3.3 by iteratively extending a ‘partial’ exploration tree by applying the

following lemma to a leaf of the current tree.

Lemma 3.4. Let ∅ 6= I ⊆ [k], and let A be a minimal cover of SI with F (A) = I.

(a) For each i ∈ I, there exists a map J : Si → P(I \ {i}), with
⋃

s∈Si

J(s) = I \ {i}, (9)

and for each s ∈ Si there exists As ⊆ A such that A′
s :=

{

HJ(s) : H ∈ As

}

is a

minimal cover of SJ(s), F (As) \ {i} = J(s), and Hi ∈ {s, Si} for each H ∈ As.

Moreover, there exists i ∈ I such that one of the following holds:

(b) there exists a collection F ⊆ A, with

|F| > (1− ε)
(

|Si| − 1
)

,

such that i ∈ F (H) and µI\{i}(H) > δ for each H ∈ F .

(c) there exists a collection G ⊆ A, with

∑

H∈G

2−|F (H)|/4
>

|Si|
λ

, (10)

such that i ∈ F (H) and |F (H)| > 2 for each H ∈ G.

Let us fix a set ∅ 6= I ⊆ [k] until the end of the proof of Lemma 3.4. This section is

organised as follows: in Section 3.1 we will prove two (straightforward) technical lemmas, in

Section 3.2, we will introduce the operation that we will use to construct the map J and the

families As, and in Section 3.3, we will prove Lemma 3.4, and deduce Lemma 3.3.

3.1. Two technical lemmas. Our first technical lemma (Lemma 3.5, below) follows from

a straightforward application of the Lovász Local Lemma. We will apply it, in the case that

there does not exist a collection F ⊆ A as in Lemma 3.4(b) for any i ∈ I, to a certain subset
∏

i∈I Ri ⊆ SI , in order to find an index such that (c) holds. Our second technical lemma
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(Lemma 3.6, below) will allow us to deduce the bound (10) from the condition given by the

local lemma. Let us say that a hyperplane H in RI is non-trivial if H 6= RI .

Lemma 3.5. Let 0 < η < 1/5 and let {Ri : i ∈ I} be a collection of finite sets, each with at

least two elements. Let A be a collection of non-trivial hyperplanes in RI , and let µ̃ denote

the uniform measure on RI . If
∑

H∈A : i∈F (H)

eη|F (H)|µ̃(H) <
η

2
(11)

for every i ∈ [k], then RI is not covered by the hyperplanes in A.

Proof. We choose a point y ∈ RI uniformly at random and apply the local lemma. For

each hyperplane H ∈ A we define EH to be the (“bad”) event that y ∈ H. Observe

that P(EH) = µ̃(H), and define a dependency graph G on the events {EH}H∈A by setting

EH ∼ EH′ if F (H)∩F (H ′) 6= ∅. Observe that if F (H)∩
(

F (H(1))∪ · · · ∪F (H(t))
)

= ∅, then
EH is independent of the collection

{

EH(1) , . . . , EH(t)

}

, so G is a valid dependency graph.

Next, we define weights

x(H) = eη|F (H)|µ̃(H)

for each H ∈ A. To apply the local lemma we need to show that

P(EH) 6 x(H)
∏

EH∼EH′

(

1− x(H ′)
)

.

To do so, we first claim that 1− x(H) > e−2x(H) for every H ∈ A. This holds because

x(H) = eη|F (H)|µ̃(H) 6
(

eη/2
)|F (H)|

6
(

1− e−1
)|F (H)|

6 1− e−1,

where the first inequality is µ̃(H) 6 2−|F (H)|, which holds because each set Si has at least

two elements, the second follows since η < 1/5, and the third since the hyperplanes in A are

non-trivial, so |F (H)| > 1. Therefore, for each H ∈ A, we have

∏

EH∼EH′

(

1− x(H ′)
)

> exp

(

− 2
∑

EH∼EH′

x(H ′)

)

> exp

(

− 2
∑

i∈F (H)

∑

H′∈A : i∈F (H′)

x(H ′)

)

= exp

(

− 2
∑

i∈F (H)

∑

H′∈A : i∈F (H′)

eη|F (H′)|µ̃(H ′)

)

> exp
(

− η|F (H)|
)

,

where the last inequality follows from (11). This implies that

x(H)
∏

EH∼EH′

(

1− x(H ′)
)

> x(H)e−η|F (H)| = µ̃(H) = P(EH),

as required. By the local lemma, it follows that the probability that none of the events EH

holds is non-zero, and hence there exists a point y ∈ RI that is not covered by A. �

The second technical lemma is even more straightforward. Recall that S1, . . . , Sk are fixed

finite sets with at least two elements, and that the (non-empty) set I ⊆ [k] and positive

constants λ and ε were fixed above.
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Lemma 3.6. For each j ∈ I, let Rj ⊆ Sj be such that |Rj| > ε
(

|Sj| − 1
)

+ 1, and let µ̃

denote the uniform measure on RI . Let H be a hyperplane in SI , and let i ∈ F (H). If

µI\{i}(H) 6 2−9λ2ε2 log2(1/λε)+11,

then

µ̃
(

H ∩RI

)

6
λ

2|F (H)|/2+4|Si|
. (12)

Proof. Set ` := |F (H)| and δ0 := 2−9λ2ε2 log2(1/λε)+11, and observe that

µ̃
(

H ∩RI

)

· |Ri| 6 µI\{i}(H)
∏

j∈F (H), i 6=j

|Sj|
|Rj|

6 δ0ε
−(`−1).

Now, note that |Rj| > 2 for every j ∈ I, and suppose that (12) does not hold. Then

2−(`−1)
>

∏

j∈F (H), j 6=i

1

|Rj|
= µ̃

(

H ∩RI

)

· |Ri| >
λ

2`/2+4
· |Ri|
|Si|

>
λε

2`/2+4
,

and hence ` 6 2 log2(1/λε) + 10. It follows that

2`/2+4 · µ̃
(

H ∩RI

)

6
29/2δ0
|Ri|

(
√
2

ε

)`−1

6
29/2δ0
|Ri|

(
√
2

ε

)2 log2(1/λε)+9

=
λε

|Ri|
6

λ

|Si|
,

as required. �

3.2. An operation on a covering system. We next introduce a simple operation that,

given a minimal cover of SI , produces a map J and a collection {As : s ∈ Si} as required

by Lemma 3.4(a). This operation is the basic tool we will use in the construction of our

exploration trees. Recall that the (non-empty) set I ⊆ [k] was fixed above, and let A be a

minimal cover of SI with F (A) = I. For each i ∈ I and s ∈ Si, set

H(i, s) :=
{

H ∈ A : Hi ∈ {s, Si}
}

,

and observe that the collection H′(i, s) :=
{

HI\{i} : H ∈ H(i, s)
}

is a cover of SI\{i}. Note

that moreover, since A is minimal, there is a bijection between H(i, s) and H′(i, s). Let

A∗
s ⊆ H′(i, s) be an arbitrary minimal subcover of SI\{i}, and define

J(s) := F (A∗
s) and As :=

{

H ∈ H(i, s) : HI\{i} ∈ A∗
s

}

.

Note that A′
s =

{

HJ(s) : H ∈ As

}

is a minimal cover of SJ(s), that F (As) \ {i} = J(s), and

that Hi ∈ {s, Si} for each H ∈ As. To verify that J and {As : s ∈ Si} satisfy Lemma 3.4(a),

it therefore only remains to check that (9) holds.

Lemma 3.7. Let A be a minimal cover of SI with hyperplanes. If F (A) = I, then
⋃

s∈Si

J(s) = I \ {i}

for each i ∈ I.

Proof. We will in fact show that for every H ∈ A, there exists s ∈ Si with HI\{i} ∈ A∗
s.

Since J(s) = F (A∗
s) ⊆ I \ {i} and F (A) = I, this will be enough to prove the lemma.
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To prove the claim, let x ∈ SI be an element that is only covered by H (recall that A is

minimal), and set s := xi. We claim that HI\{i} ∈ A∗
s. Indeed, since A∗

s is a cover of SI\{i},

it must cover the vector x′ obtained from x by ignoring the ith coordinate, and HI\{i} is the

only potential element of A∗
s that can do so. �

3.3. Construction of the exploration tree. Having completed our preparations, we are

now ready to prove Lemma 3.4, and deduce Lemma 3.3.

Proof of Lemma 3.4. Let ∅ 6= I ⊆ [k], and letA be a minimal cover of SI such that F (A) = I.

To prove part (a), for each i ∈ I we apply the construction defined in Section 3.2 to obtain

a map J : Si → P(I \ {i}) and a collection {As : s ∈ Si}, where As ⊆ A, as required.

In particular, A′
s =

{

HJ(s) : H ∈ As

}

is a minimal cover of SJ(s), F (As) \ {i} = J(s),

Hi ∈ {s, Si} for each H ∈ As, and the map J satisfies (9) by Lemma 3.7.

To prove that there exists i ∈ I such that either (b) or (c) holds, let us define an element

s ∈ Si to be special for i if there exists a hyperplane H ∈ A such that

Hi = s and µI\{i}(H) > δ.

If this holds, then we say that the hyperplane H is a witness for the pair (s, i). Now, for each

i ∈ I define S∗
i to be the set of elements s ∈ Si that are special for i, and set Ri := Si \ S∗

i .

We consider two cases, corresponding to conditions (b) and (c) of Definition 3.2, respectively.

Case 1: There exists i ∈ I with |Ri| < ε
(

|Si| − 1
)

+ 1.

In this case we define

F :=
⋃

s∈S∗

i

{

H ∈ A : H is a witness for (s, i)
}

.

Since a hyperplane H cannot witness (s, i) for more than one element s ∈ S∗
i , we have

|F| > |S∗
i | > |Si| − ε

(

|Si| − 1
)

− 1 = (1− ε)
(

|Si| − 1
)

,

and by definition i ∈ F (H) and µI\{i}(H) > δ for each H ∈ F .

Case 2: |Ri| > ε
(

|Si| − 1
)

+ 1 for every i ∈ I.

In this case we shall apply Lemma 3.5 to the set RI :=
∏

i∈I Ri with η = 1/6. Define

A′ ⊆ A by removing all hyperplanes that are witness for (s, i) for some i ∈ I and s ∈ Si.

Observe that none of the witness hyperplanes intersects RI , so A′′ := {H ∩ RI : H ∈ A′} is

a cover of RI . We claim that there exists a coordinate i ∈ I such that
∑

H∈A′ : i∈F (H)

eη|F (H)|µ̃
(

H ∩RI

)

>
η

2
, (13)

where µ̃ denotes the uniform measure on RI . Since A′′ is a cover of RI , and noting that

|Ri| > 2 for every i ∈ I (by assumption, and since |Si| > 2), this will follow from Lemma 3.5

if we show that A′′ is a collection of non-trivial hyperplanes in RI . To do so, suppose for

a contradiction that RI ⊆ H for some H ∈ A′, and observe that therefore F (H) ∩ I = ∅,
and hence also SI ⊆ H. However, since A is a minimal cover of SI , this implies that
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A = {H}, and hence F (A) = ∅. This contradicts our assumption that F (A) = I, and thus

each hyperplane in A′′ is indeed non-trivial. As observed above, it follows by Lemma 3.5

that (13) holds for some i ∈ I, as claimed.

Fix such an i ∈ I, and define G := G(1) ∪ · · · ∪ G(k), where

G(`) :=
{

H ∈ A′ : i ∈ F (H) and |F (H)| = `
}

for each ` ∈ [k]. Observe that G(1) = ∅, since if H ∈ A and F (H) = {i}, then µI\{i}(H) = 1,

and so H would have been removed when we formed A′. Similarly, for each H ∈ A′ with

i ∈ F (H) we have

µI\{i}(H) 6 δ < 2−9λ2ε2 log2(1/λε)+11,

since otherwise H would witness (s, i) for some s ∈ Si, and so would been removed when we

formed A′. It follows, by Lemma 3.6, that

µ̃
(

H ∩RI

)

6
λ

2|F (H)|/2+4|Si|
for every H ∈ A′ with i ∈ F (H). Finally, combining this with (13) gives

∑

`>2

|G(`)| e
η`

2`/2
=

∑

H∈A′ : i∈F (H)

eη|F (H)|

2|F (H)|/2
>

∑

H∈A′ : i∈F (H)

eη|F (H)|µ̃(H ∩RI)
16|Si|
λ

>
8η|Si|
λ

,

and hence
∑

H∈G

2−|F (H)|/4 =
∑

`>2

|G(`)|
2`/4

=
∑

`>2

|G(`)| e
η`

2`/2
>

8η|Si|
λ

>
|Si|
λ

,

as required by (10). �

The deduction of Lemma 3.3 is now straightforward. Let ∂(T ) denote the set of vertices

of a rooted tree T with no out-neighbours, and call ∂(T ) the boundary of T .

Proof of Lemma 3.3. We construct T, our exploration tree, inductively, with Lemma 3.4

providing the induction step. We begin our induction by defining T0 to be a single vertex v,

and setting Iv := [k], and Av := A. For the induction step, suppose that we have constructed

a rooted tree Tt (with root v), a set ∅ 6= Iu ⊆ [k] and a collection Au ⊆ A for each vertex

u ∈ V (Tt), and an index iu ∈ Iu for each non-boundary vertex u ∈ V (Tt) \ ∂(Tt), such

that condition (a) of Definition 3.2 holds for every vertex u ∈ V (Tt), and condition (ii) of

Definition 3.1, and either condition (b) or (c) of Definition 3.2, hold for every non-boundary

vertex u ∈ V (Tt) \ ∂(Tt). Observe that, since A is a minimal cover of S[k] with hyperplanes

such that F (A) = [k], these conditions are satisfied in the base case t = 0.

To construct Tt+1, choose a vertex u ∈ ∂(T ) such that |Iu| > 2, if one exists (we will

deal with the other case below), and apply Lemma 3.4 to the set Iu and minimal cover

A′
u = {HIu : H ∈ Au} of SIu (noting that F (A′

u) = Iu, by the induction hypothesis). We

obtain an index i ∈ Iu, a map J : Si → P(I \ {i}) and a collection {As : s ∈ Si} as in

part (a) of the lemma, and either a collection F ⊆ A′
u as in part (b), or a collection G ⊆ A′

u

as in part (c). In either case, we set iu := i, add an out-neighbour of u for each element

s ∈ Si such that J(s) 6= ∅, and to the new vertex w(s) corresponding to s we assign the set
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Iw(s) = J(s), the element sw(s) := s, and the collection of hyperplanes

Aw(s) :=
{

H ∈ Au : HIu ∈ As

}

.

Observe first that condition (a) of Definition 3.2 holds for each vertex w(s). Indeed, we

have Aw(s) ⊆ Au ⊆ A, and it follows from Lemma 3.4(a) that the family

A′
w(s) = {HJ(s) : H ∈ Aw(s)} = {HJ(s) : H ∈ As}

is a minimal cover of SJ(s) with F (A′
w(s)) = F (As) \ {i} = J(s), that Hiu ∈ {s, Siu} for each

H ∈ Aw(s), and that

F (Aw(s)) ⊆
(

F (Au) \ Iu
)

∪ F (As) ⊆
{

iw : w ≺T u
}

∪ J(s).

Note also that, by (9), u satisfies condition (ii) of Definition 3.1.

To complete the induction step, it remains to observe that u is either good or bad, i.e.,

satisfies either condition (b) or (c) of Definition 3.2. Indeed, if Lemma 3.4(b) holds then set

Fu :=
{

H ∈ Au : HIu ∈ F
}

,

and if Lemma 3.4(c) holds then set

Gu :=
{

H ∈ Au : HIu ∈ G
}

.

In each case, the properties guaranteed by the lemma are exactly those that we require. Since

the properties required of all vertices of Tt+1 other than u and its out-neighbours continue

to hold, it follows that Tt+1 satisfies the same properties that we assumed for Tt.

Finally, observe that in passing from Tt to Tt+1 we replace a vertex of the boundary by

a finite number of boundary elements, each associated with with strictly smaller sets. This

process must therefore eventually end, and when it does, it follows that |Iu| = 1 for every

boundary vertex u ∈ ∂(Tt). When this happens, we simply set iu equal to the unique member

of Iu for each u ∈ ∂(Tt), and claim that u is good. Indeed, by the induction hypothesis, the

collection A′
u forms a minimal cover of Siu with iu ∈ F (A′

u). It follows that A′
u consists of

exactly |Siu | singleton hyperplanes, and so (6) holds with Fu := Au. Since condition (ii) of

Definition 3.1 holds automatically (with both sides equal to the empty set), it follows that

the tree T that we have constructed is an (λ, ε, δ)-exploration tree of A, as required. �

4. Extraction of the frame, and the proof of Theorem 2.3

In order to prove Theorem 2.3, we will use the exploration tree T constructed in the

previous section, together with the bound (3), to find a δ-generalized frame for A. Roughly

speaking, we would like to do this by choosing k vertices β(1), . . . , β(k) such that the label

of β(i) in T is i, define a tree T to be the union of the paths (in T) from β(i) to the root,

and define the elements sj(i) using the elements su. For each good vertex β(i) we have a

collection Fi of hyperplanes more or less as required, and for each bad vertex we obtain a

large collection of ‘garbage’ hyperplanes. We might therefore hope to use (3) to show that

there are few bad vertices, and thus to deduce the bound (4).

There are two main problems with the strategy described above: the frame elements

obtained for good vertices might not be disjoint, and each hyperplane might be included in
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the garbage set Gu for a very large number of bad vertices. We overcome both obstacles in

the same way: by choosing the vertices β(i) via a depth-first search algorithm. We do not

expect the reader to be able to immediately see why this choice should help in either case,

but it turns out that proving that it does is (in both cases) surprisingly simple.

In Section 4.1 we will state precisely the object we will construct, and show that its

existence implies the existence of a δ-generalized frame. In Section 4.2 we will describe

how we choose the sub-tree T ⊆ T, the frame elements (F1, . . . ,Fk), and the ‘garbage’

sets (G1, . . . ,Gk); in Section 4.3, we will prove two lemmas on the disjointness of the frame

elements and garbage sets; and in Section 4.4 we will complete the proof of Theorem 2.3.

4.1. Tree-frames. The purpose of this section is to introduce the following somewhat com-

plicated objects, which also provide significantly more information (though we will not need

this) about the covering system. We will use these objects to construct our frames.

Definition 4.1. Let T be a rooted tree equipped with maps

α : V (T ) → [k], β : [k] → V (T ) and γ : E(T ) → S1 ∪ · · · ∪ Sk

such that

(a) α(u) 6= α(v) if u ≺T v and u 6= v;

(b) α
(

β(i)
)

= i for each i ∈ [k];

(c) if e ∈ E(T ) and v is the endpoint of e that is closer to the root, then γ(e) ∈ Sα(v);

(d) there exists a permutation π of [k] such that, if for each i ∈ [k] we set

J(i) :=
{

α(u) : u ≺T β(i)
}

and I(i) := [k] \ J(i),
then J(π(i)) ⊆ {π(1), . . . , π(i)} for each i ∈ [k].

Now, for each δ > 0, a δ-generalized tree-frame centred at T is a sequence (F1, . . . ,Fk),

where Fi is a collection of at most |Si| − 1 hyperplanes, satisfying

(i) i ∈ F (H) for each H ∈ Fi.

(ii) µI(i)(H) > δ for each H ∈ Fi.

(iii) Hj ∈ {γ(e), Sj} for each H ∈ Fi and each j ∈ J(i) \ {i}, where e ∈ E(T ) is the edge

leaving the unique vertex v ≺T β(i) with α(v) = j in the direction of β(i);

(iv) If min
{

|Si|, |Sj|
}

> δ−1 and i 6= j, then Fi and Fj are disjoint.

In Sections 4.2–4.4 we will construct, for any A satisfying (3), a δ-generalized tree-frame

satisfying (4). The next lemma shows that this will be sufficient to prove Theorem 2.3.

Lemma 4.2. If (F1, . . . ,Fk) is a δ-generalized tree-frame centred at a rooted tree T , then

(F1, . . . ,Fk) is a δ-generalized frame.

Proof. Let T be a rooted tree equipped with maps α, β and γ satisfying conditions (a)–

(d) of Definition 4.1. In particular, let π be the permutation given by condition (d), and

(to simplify the notation) let us permute the sets S1, . . . , Sk so that π is the identity, and

therefore J(i) ⊆ {1, . . . , i} (and hence I(i) ⊇ {i + 1, . . . , k}) for each i ∈ [k]. Now, for each

i ∈ [k] and j ∈ J(i) \ {i}, set sj(i) := γ(e) ∈ Sj, where e ∈ E(T ) is the edge leaving the

unique vertex v ≺T β(i) with α(v) = j in the direction of β(i).
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We claim that, for each H ∈ Fi,

i ∈ F (H), µI(i)(H) > δ and Hj ∈
{

sj(i), Sj

}

.

Indeed, these follow directly from properties (i), (ii) and (iii) of Definition 4.1. Finally,

observe that if min
{

|Si|, |Sj|
}

> δ−1 then Fi and Fj are disjoint, by property (iv). �

4.2. Constructing the frame. In this section we will construct the δ-generalized tree-
frame (F1, . . . ,Fk), along with the rooted tree T , and a collection (G1, . . . ,Gk) of ‘garbage’
sets. Let C > 0 and ε > 0 be arbitrary, as in the statement of Theorem 2.3, and set

λ :=
ε

24C
and δ := 2−23λ4ε2 log2(1/λε)+15. (14)

Recall that the sets S1, . . . , Sk were fixed earlier, and let us fix, for the rest of this section, a
minimal cover A of S[k] with hyperplanes such that F (A) = [k]. By Lemma 3.3, there exists
an (λ, ε/2, δ)-exploration tree of A; let us also fix such a tree T.

The first step is to observe that every i ∈ [k] occurs as the label iu of some vertex u ∈ V (T).
This is an immediate consequence of the following simple observation about index trees.

Observation 4.3. Let T be an index tree, let u ∈ V (T), and let j ∈ Iu. Then there exists
v ∈ V (T), with u ≺T v, such that iv = j.

Proof. This follows easily from (5): if j ∈ Iv and iv 6= j, then j ∈ Iw for some w ∈ N(u),
and if j ∈ Iv and v ∈ ∂(T) then Iv = {j}, so iv = j. �

To extract our δ-generalized tree-frame from the exploration tree T, we will also need the
notion of a depth-first search ordering ≺ on the vertices of a rooted tree T . This is defined
by placing an arbitrary linear order on the out-neighbours of each vertex of T , and then
setting u ≺ v if either u ≺T v, or if the branch leading to u precedes the branch leading to
v in the ordering of the neighbours of the last common ancestor of u and v.

Definition 4.4. Let ≺ be a depth-first search ordering on the vertices of T. We define a
rooted tree T and a δ-generalized tree-frame centred at T as follows:

1. For each i ∈ [k], define β(i) to be the ≺-minimal vertex u of T such that iu = i.

2. Define T to be the union of the paths in T from β(1), . . . , β(k) to the root.

3. For each u ∈ V (T ), define α(u) := iu.

4. For each edge uv ∈ E(T ), where u ∈ N(v), define γ(uv) := su ∈ Siv .

5. (a) Set Fi := Fβ(i) and Gi := ∅ for each i ∈ [k] such that β(i) is a good vertex of T.

(b) Set Gi := Gβ(i) and Fi := ∅ for each i ∈ [k] such that β(i) is a bad vertex of T.

Properties (a)–(d) of Definition 4.1 follow easily from this construction. Indeed, we have

α(β(i)) = i for each i ∈ [k] by our choice of α and β, and γ(uv) ∈ Siv = Sα(v) for all

uv ∈ E(T ) with u ∈ N(v). To see that α(u) 6= α(v) if u ≺T v and u 6= v, recall T is an index

tree, and therefore satisfies (5), so α(u) = iu is not included in any of the sets associated

with the descendants of u. For (d), let π be the permutation of [k] given by the ordering ≺
restricted to {β(1), . . . , β(k)}, and observe that if u ≺T β(π(i)) then u ≺ β(π(i)), and hence

β(α(u)) ≺ β(π(i)), by our choice of β. It follows that α(u) ∈ {π(1), . . . , π(i)}, and therefore

that J(π(i)) =
{

α(u) : u ≺T β(π(i))
}

⊆ {π(1), . . . , π(i)} for each i ∈ [k], as required.
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The following lemma shows that properties (i), (ii) and (iii) of Definition 4.1 also hold.

Lemma 4.5. Let i ∈ [k] and H ∈ Fi, let j ∈ J(i)\{i}, and let ej ∈ E(T ) be the edge leaving

the unique vertex v ≺T β(i) with α(v) = j in the direction of the vertex β(i). Then

i ∈ F (H), µI(i)(H) > δ and Hj ∈ {γ(ej), Sj}.
Proof. Note that Fi 6= ∅ implies that the vertex β(i) is good. By Definition 3.2(b), it

follows that i ∈ F (H), and also that µIβ(i)\{i}(H) > δ. Moreover Fi = Fβ(i) ⊆ Aβ(i) and

F (Aβ(i)) ⊆ J(i) ∪ Iβ(i), by Definition 3.2, and therefore Hj = Sj for every j ∈ I(i) \ Iβ(i).

Since i ∈ J(i), and therefore i 6∈ I(i), it follows that µI(i)(H) > δ.

Now suppose that ej = uv, with u ∈ N(v), and observe that, by Definition 3.2(a), we have

H ′
j ∈ {su, Sj} = {γ(ej), Sj} for every hyperplane H ′ ∈ Au. Noting that Fi ⊆ Aβ(i) ⊆ Au (by

Definition 3.2, and since u ≺T β(i)), it follows that Hj ∈ {γ(ej), Sj}, as claimed. �

It therefore only remains to show that property (iv) of Definition 4.1 and the inequality (4)

hold. Both of these properties will follow from our choice of β(1), . . . , β(k).

4.3. Lemmas on disjointness. In this section we will prove two straightforward but crucial

lemmas; the first verifies condition (iv) of the definition of a δ-generalized tree-frame.

Lemma 4.6. If min{|Si|, |Sj|} > δ−1 and i 6= j, then Fi and Fj are disjoint.

Proof. Suppose that H ∈ Fβ(i)∩Fβ(j), and suppose that β(i) ≺ β(j) in the depth-first search

ordering. Recall that i, j ∈ F (H), by Definition 3.2(b), and µI(i)(H) > δ, by Lemma 4.5.

Since |Sj| > δ−1, it follows that j 6∈ I(i), and hence j ∈ J(i), i.e., there exists u ≺T β(i) with

α(u) = j. However, this is a contradiction, since u ≺ β(i) ≺ β(j) in the depth-first search

ordering, and β(j) was chosen to be the ≺-minimal vertex u of T such that α(u) = j. �

The final lemma we need shows that each garbage set only appears on a single path

through T . Since the number of fixed coordinates of HIu decreases along the path (and

decreases strictly whenever α(u) ∈ F (H)), this will imply that each hyperplane contributes

only O(1) to the sum of the left-hand side of (7) over vertices u ∈ {β(1), . . . , β(k)}.
Lemma 4.7. Let H ∈ Gi ∩ Gj. Then either β(i) ≺T β(j), or β(j) ≺T β(i).

Proof. Suppose (without loss of generality) that β(i) ≺ β(j) in the depth-first search order-

ing, and suppose that β(i) 6≺T β(j), which implies that u ≺ β(j) for every u ∈ V (T) with

β(i) ≺T u. Note that j ∈ F (H) ⊆ Iβ(i) ∪ J(i), since H ∈ Gi ∩ Gj and by Definition 3.2.

If j ∈ J(i), then iv = j for some v ∈ V (T) with v ≺T β(i), and hence v ≺ β(i) ≺ β(j). On

the other hand, if j ∈ Iβ(i), then by Observation 4.3 we have iv = j for some v ∈ V (T) with

β(i) ≺T v, and hence (by the observation above) v ≺ β(j). In either case, this contradicts

our choice of β(j) as the ≺-minimal vertex v of T such that iv = j. �

Let us record here the following simple consequence of Lemma 4.7.

Lemma 4.8. If H ∈ Gi ∩ Gj and i 6= j, then |F (H) ∩ Iβ(i)| 6= |F (H) ∩ Iβ(j)|.
Proof. By Lemma 4.7, we have (without loss of generality) β(i) ≺T β(j), which implies,

by (5) and since β(i) 6= β(j), that Iβ(j) ⊆ Iβ(i) \ {i}. Since i ∈ F (H) ∩ Iβ(i), it follows that

F (H) ∩ Iβ(j) ( F (H) ∩ Iβ(i), as required. �
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4.4. The proof of Theorem 2.3. We are now ready to prove our main structural result,

Theorem 2.3. It only remains to show that the inequality (4) follows from (3). We will use

the following easy consequence of Lemma 4.8. Set B := {i ∈ [k] : β(i) is bad}.

Lemma 4.9.
∣

∣

∣

∣

⋃

i∈B

Gi

∣

∣

∣

∣

>
1

5λ

∑

i∈B

|Si|.

Proof. Summing (7) over i ∈ B, we obtain
∑

i∈B

∑

H∈Gi

2−|F (H)∩Iβ(i)|/4 >
1

λ

∑

i∈B

|Si|.

Now, by Lemma 4.8, for each H and ` > 2 there is at most one value of i ∈ B such that

H ∈ Gi and |F (H) ∩ Iβ(i)| = `, so for each H ∈ ⋃i∈B Gi we have

∑

i∈B :H∈Gi

2−|F (H)∩Iβ(i)|/4 6

∞
∑

`=2

2−`/4 =
(

21/2 − 21/4
)−1

< 5,

as required. �

Theorem 2.3 now follows easily from the lemmas above.

Proof of Theorem 2.3. We claim that the sequence (F1, . . . ,Fk) constructed in Definition 4.4

is a δ-generalized tree-frame centred at T , and satisfies (4). By Lemma 4.2, it will follow

that (F1, . . . ,Fk) is also a δ-generalized frame, so this will be sufficient to prove the theorem.

Note that properties (a)–(d) and (i)–(iv) of Definition 4.1 follow from the comments after

Definition 4.4, and by Lemmas 4.5 and 4.6. Moreover, by discarding excess hyperplanes if

necessary, we may assume that |Fi| 6 |Si| − 1 for each i ∈ [k]. It therefore only remains to

show that (4) holds.

To do so, recall that T is an (λ, ε/2, δ)-exploration tree of A, and hence

|Fi| >
(

1− ε/2
)(

|Si| − 1
)

for each i such that β(i) is a good vertex, i.e., for each i ∈ [k] \B. Now, by Lemma 4.9 and

the condition (3), we have

1

5λ

∑

i∈B

|Si| 6 |A| 6 C

k
∑

i=1

(

|Si| − 1
)

,

and hence, recalling from (14) that λ = ε/(24C), we obtain

k
∑

i=1

|Fi| >
∑

i∈[k]\B

(

1− ε/2
)(

|Si| − 1
)

>
(

1− ε/2
)

k
∑

i=1

(

|Si| − 1
)

−
∑

i∈B

|Si|

>
(

1− ε/2− 5Cλ
)

k
∑

i=1

(

|Si| − 1
)

> (1− ε)
k
∑

i=1

(

|Si| − 1
)

,

as required. �
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5. Arithmetic frames and the proof of the lower bound

In order to deduce Theorem 1.1 from Theorem 2.3, we will need to bound the number

of δ-generalized frames in the integers. In this section we will warm up for the calculation

ahead by counting a simpler set of objects, which we call ‘arithmetic frames’, and thereby

deducing a lower bound on the number of minimal covering systems of Z. Recall that4

τ =
∞
∑

t=1

(

log
t+ 1

t

)2

≈ 0.977.

The following proposition provides the lower bound in Theorem 1.1.

Proposition 5.1. The number of minimal covering systems of Z of size n is at least

exp

((

4
√
τ

3
+ o(1)

)

n3/2

(log n)1/2

)

as n → ∞.

We shall first prove Proposition 5.1 for an infinite sequence of values of n (see (18)); since

this sequence will be sufficiently dense, it will then be easy to deduce the bound for the

remaining values of n. For each n in our sequence, we will choose a single value of N , and

count only covering systems A of size n with lcm(A) = N . We will moreover count only

covering systems that correspond to simple frames of a certain family of sets (see below),

with a specific (carefully chosen) order, see Definition 5.4. We remark that when N is not

square-free, this is not quite as straightforward as counting the simple frames, since there

will exist hyperplanes that do not correspond to arithmetic progressions in ZN . In order to

characterise the hyperplanes that do, we need to introduce a little notation.

Given N = pγ11 · · · pγmm > 1, we define

〈N〉 :=
m
⋃

i=1

{

(pi, j) : j ∈ [γi]
}

, (15)

and set S(p,e) = {0, . . . , p− 1} for each (p, e) ∈ 〈N〉. Now define a map

ϕN : ZN → S〈N〉 =
∏

(p,e)∈〈N〉

S(p,e)

as follows: if x ∈ ZN , then y = ϕN(x) ∈ S〈N〉 is the vector such that, for each (p, e) ∈ 〈N〉,
y(p,e) ∈ S(p,e) is the coefficient of pe−1 in the p-ary expansion of x modulo pe. Observe that

ϕN is a bijection, by the Chinese Remainder Theorem.

We say that a hyperplane H in S〈N〉 is arithmetic if ϕ−1
N (H) is an arithmetic progression in

ZN . The following observation provides a simple characterization of arithmetic hyperplanes.

Observation 5.2. A hyperplane H in S〈N〉 is arithmetic if and only if, for each prime p,

the set
{

(p, e) ∈ 〈N〉 : (p, e) ∈ F (H)
}

forms a (possibly empty) initial segment of the sequence (p, 1), (p, 2), (p, 3), . . .
4We remark that the constant τ also appears in the study of the iterated divisor function, see [3, 4].
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Proof. Suppose first that H is arithmetic, so A := ϕ−1
N (H) is an arithmetic progression in

ZN . Let d be the modulus of A, and observe that (p, e) ∈ F (H) if and only if pe divides d, by

the definition of ϕN . On the other hand, if {(p, 1), . . . , (p, e(p))} ⊂ F (H) and (p, e′) 6∈ F (H)

for all e′ > e(p), then every pair of points of ϕ−1
N (H) differs by a multiple of pe(p), and

therefore ϕ−1
N (H) is contained in an arithmetic progression with modulus d =

∏

p p
e(p). Since

|H| = N/d, it follows that ϕ−1
N (H) is in fact the entire arithmetic progression, as claimed. �

Let us now say that a total ordering ≺ on the elements of 〈N〉 is arithmetic if

(pi, 1) ≺ (pi, 2) ≺ · · · ≺ (pi, γi) (16)

for all i ∈ [m]. Note that (16) does not impose any constraint on ≺ for different primes, and

in particular we may have (p, i) ≺ (q, j) ≺ (p, i + 1). We say that a simple frame of S〈N〉 is

‘arithmetic’ if the order of the sets is arithmetic, and if moreover each of the hyperplanes

of the frame is arithmetic. We can now prove the following lower bound on the number of

minimal covering systems of Z of size n.

Lemma 5.3. Let N = pγ11 · · · pγmm > 1, and let ≺ be an arithmetic ordering of 〈N〉. There

are at least

exp

(

∑

(p,e)∈〈N〉

(p− 1)
∑

(q,f)≺(p,e)
q 6=p

log

(

f + 1

f

))

minimal covering systems of Z of size n :=
∑m

i=1 γi(pi − 1) + 1.

Proof. To prove the lemma we count arithmetic frames of S〈N〉 centred at (0, . . . , 0), where

the sets S(p,e) are listed in the order ≺. Recall from Definition 2.1 that, for each (p, e) ∈ 〈N〉
and each a ∈ {1, . . . , p− 1}, we need to choose an arithmetic hyperplane of the form

[

x1, . . . , xi−1, a, ∗, · · · , ∗
]

,

with xj ∈ {0, ∗} for each j ∈ [i− 1], where (p, e) is the ith element in the ordering ≺. To do

so, we will choose, for each prime q 6= p, an initial segment (in the order ≺) of the set

Jq(p, e) :=
{

(q, f) ∈ 〈N〉 : (q, f) ≺ (p, e)
}

set xj = 0 for the corresponding coordinates, and set xj = ∗ for all other elements of Jq(p, e).

If we also set xj = 0 for every j ∈ Jp(p, e) then, by Observation 5.2, every hyperplane ob-

tained in this way will be arithmetic, and therefore the frame we construct will be arithmetic.

We claim that each such choice gives a different minimal covering system of Z of size n.

To see this, note that the frame consists of n − 1 arithmetic hyperplanes, each of which

corresponds (via the bijection ϕ−1
N ) to an arithmetic progression in ZN . Moreover, the only

element of ZN not covered by these arithmetic progressions is 0, so adding this progression

gives a covering system of Z of size n, and (as observed after Definition 2.1) if we remove

the hyperplane H =
[

x1, . . . , xi−1, a, ∗, · · · , ∗
]

, then the element (0, . . . , 0, a, 0, . . . , 0) will

be uncovered by the remaining hyperplanes, so the covering system we have constructed is

minimal. Finally, each hyperplane in the frame has a unique entry a 6∈ {0, ∗}, and therefore

each choice leads to a distinct covering system, as claimed.
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Finally, since we have exactly

∏

q 6=p

(

|Jq(p, e)|+ 1
)

= exp

(

∑

(q,f)≺(p,e)
q 6=p

log

(

f + 1

f

))

choices for each hyperplane corresponding to (p, e), the lemma follows. �

Now, for each arithmetic ordering ≺ of 〈N〉, let us define

Q(N,≺) :=
∑

(p,e)∈〈N〉

(p− 1)
∑

(q,f)≺(p,e)
q 6=p

log

(

f + 1

f

)

. (17)

We will use the following particular arithmetic ordering < to prove Proposition 5.1.

Definition 5.4. For each prime p and integer e ∈ N, set yp,e := (p − 1)
(

log e+1
e

)−1
. Now,

given primes p and q, and integers e, f ∈ N, define

(q, f) < (p, e) ⇔ yq,f < yp,e.

Moreover, if x ∈ R then we write (p, e) < x if and only if yp,e < x, and define

n(x) := 1 +
∑

(p,e)<x

(p− 1) and N(x) :=
∏

(p,e)<x

p. (18)

Note that n(x), N(x) < ∞ for every x ∈ R, and that for any N ∈ N, the ordering < on

〈N〉 is arithmetic. Our next lemma, combined with Lemma 5.3, implies Proposition 5.1.

Lemma 5.5. Let x > 0, and set N = N(x) and n = n(x). Then

Q(N,<) =

(

4
√
τ

3
+ o(1)

)

n3/2

(log n)1/2

as x → ∞.

Proof. Recalling the definition of Q(N,<), observe first that, for each (p, e) ∈ 〈N〉,
∑

(q,f)<(p,e)
q 6=p

log

(

f + 1

f

)

=
∑

f>1

∣

∣

∣

∣

{

q 6= p : q − 1 < yp,e log

(

f + 1

f

)}∣

∣

∣

∣

· log
(

f + 1

f

)

. (19)

Now, by the prime number theorem, for each fixed f ∈ N and as yp,e → ∞,

∣

∣

∣

∣

{

q 6= p : q − 1 < yp,e log

(

f + 1

f

)}∣

∣

∣

∣

=
(

1 + o(1)
)

yp,e log
(

f+1
f

)

log
(

yp,e log
(

f+1
f

)) .

Moreover, the sum in (19) of the terms with f > f0 is o
(

yp,e/ log yp,e
)

as f0 → ∞, so

∑

(q,f)<(p,e)
q 6=p

log

(

f + 1

f

)

=

(

1 + o(1)
)

yp,e

log yp,e

∑

f>1

(

log
f + 1

f

)2

=
(

τ + o(1)
) yp,e
log yp,e
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as yp,e → ∞. We next fix e ∈ N, and sum over primes p. We obtain

∑

p : yp,e<x

(p− 1)
∑

(q,f)<(p,e)
q 6=p

log

(

f + 1

f

)

=
∑

p−1<x log e+1
e

(

τ + o(1)
) (p− 1)2

log
(

e+1
e

)

· log yp,e

=
(

τ + o(1)
)x3

(

log e+1
e

)2

3(log x)2
(20)

as x → ∞, again using the prime number theorem.5 Thus, summing over e, and noting that

the left-hand side of (20) is uniformly bounded from above by an absolute constant times

the right-hand side (without the o(1) term), we obtain

Q(N,<) =
(

τ + o(1)
) x3

3(log x)2

∑

e>1

(

log
e+ 1

e

)2

=
(

τ 2 + o(1)
) x3

3(log x)2

as x → ∞. Finally, using the prime number theorem a third time, we obtain

n(x) = 1 +
∑

e>1

∑

p−1<x log e+1
e

(p− 1) =
(

1 + o(1)
)

∑

e>1

(

x log e+1
e

)2

2 log
(

x log e+1
e

)

=
(

1 + o(1)
) x2

2 log x

∑

e>1

(

log
e+ 1

e

)2

=
(

τ + o(1)
) x2

2 log x
, (21)

and hence Q(N,<) ·n−3/2
√
log n →

√
2(τ 2/3)(τ/2)−3/2 = 4

√
τ/3 as x → ∞, as claimed. �

We can now easily deduce the lower bound in Theorem 1.1, the only remaining difficulty

being to deal with those n ∈ N that are not of the form n = n(x) for some x ∈ R.

Proof of Proposition 5.1. It follows immediately from Lemmas 5.3 and 5.5 that the number

of minimal covering systems of Z of size n(x) is at least

eQ(N(x),<) = exp

((

4
√
τ

3
+ o(1)

)

n(x)3/2

(log n(x))1/2

)

as x → ∞. Let x > 0 be maximal such that n(x) 6 n, and set t := n− n(x). Observe that

t < x = o(n), by (21), and that, by removing the hyperplane [0, . . . , 0] (i.e., the progression

{0 (mod N)}) from the construction given in the proof of Lemma 5.3, we obtain a family of

minimal covers of ZN \ {0} of size n(x) − 1. We complete each to a minimal cover of Z of

size n by adding the progressions
{

2`−1N (mod 2`N)
}

, for each ` ∈ [t], and
{

0 (mod 2tN)
}

.

We obtain a family of

exp

((

4
√
τ

3
+ o(1)

)

n3/2

(log n)1/2

)

minimal covering systems of Z of size n(x) + t = n, as required. �

5Indeed, the prime number theorem implies that
∑

p<z p
2 =

(

1/3 + o(1)
)

z3/ log z as z → ∞.
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6. Counting coverings that are far from frames

In this section we will begin the deduction of Theorem 1.1 from Theorem 2.3 by bounding

the number of minimal covers that fail to satisfy (3). In the process, we will obtain a short

proof of weaker version of Theorem 1.1, bounding the number of minimal covering systems

of Z of size n up to a constant factor in the exponent.

Proposition 6.1. Let C > 0 be a constant, and let n ∈ N and N = pγ11 · · · pγmm satisfy

n > C

m
∑

i=1

γi
(

pi − 1
)

.

Then the number of minimal covering systems A of Z of size n with lcm(A) = N is at most

exp

((

2
√
τ√
C

+ o(1)

)

n3/2

(log n)1/2

)

as n → ∞.

In order to bound the number of covering systems, we will need to bound the number of

choices for the modulus d and shift a of each arithmetic progression in A. The following

simple but important lemma, which we will use again later, shows that, given the moduli,

we have relatively few choices for the shifts.

Lemma 6.2. Let d1, . . . , dn ∈ N. There are at most (n!)2 minimal covering systems A =

{A1, . . . , An} of Z of size n such that, for each i ∈ [n], the modulus of Ai is di.

Proof. Let A = {A1, . . . , An} be a minimal covering system of Z, and observe that we may

reorder the elements of A so that, for each i ∈ [n], the arithmetic progression Ai covers at

least a 1/i proportion of the set

Ri := Z \
⋃

j>i

Aj.

Indeed, to see that this is possible we simply choose the sets one by one (in reverse order),

letting Ai be the (remaining) progression in A whose intersection with Ri has largest density,

observing that Ri is non-empty (since A is minimal) and recalling that A covers Z. The

total number of choices for A is therefore at most the sum over permutations of (d1, . . . , dn)

of the number of sequences (A1, . . . , An) with this additional property.

Now let i ∈ [n], and suppose that we have already chosen progressions (Ai+1, . . . , An).

We claim that we have at most i choices for the arithmetic progression Ai. Indeed, since

the progressions {a (mod di)} (for a ∈ {0, . . . , di − 1}) are disjoint, there are at most i

progressions with modulus di that cover at least a 1/i proportion of Ri. It follows that the

number of choices for A is at most (n!)2, as claimed. �

It therefore only remains to bound the number of choices for the moduli. Note that if

lcm(A) = pγ11 · · · pγmm then we have at most
∏

i

(

γi + 1
)

choices for each modulus. The

following lemma, which we will use again later, provides a sharp bound on this product.
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Lemma 6.3. Let (p1, . . . , pm) be a sequence of distinct primes, let (γ1, . . . , γm) be a sequence

of positive integers, and let M >
∑m

i=1 γi(pi − 1). Then

m
∑

i=1

log
(

γi + 1
)

6
(

2
√
τ + o(1)

)

(

M

logM

)1/2

(22)

as M → ∞.

Proof. We may assume that p1 < · · · < pm, and reorder the γi so that γ1 > · · · > γm,
noting that this does not change the left-hand side of (22), and that the inequality M >
∑m

i=1 γi(pi − 1) still holds under the new ordering. Set xt := max
{

i : γi > t
}

, and observe
that maximizing the left-hand side of (22) is equivalent to maximizing

X :=
∑

t>1

xt · log
(

t+ 1

t

)

subject to the constraint

M >
∑

i>1

γi(pi − 1) =
∑

t>1

xt
∑

i=1

(pi − 1) >
∑

t>1

x2
t

2
max

{

log xt − 3, 1
}

, (23)

where in the final step we used the following bound of Massias and Robin [18],
x
∑

i=1

pi >
x2

2

(

log x+ log log x− 3

2
− 3.568

log x

)

>
x2

2

(

log x− 2
)

,

which holds for every x > e3. Note that X is increasing in xt for each t > 1, and so (by
allowing 0 6 xt ∈ R) we may assume that M is equal to the right-hand side of (23).

Applying the method of Lagrange multipliers, it follows that there exists λ ∈ R such that,
for each t > 1, either

λ log
t+ 1

t
= xt

(

log xt −
5

2

)

, (24)

or xt 6 e4. We will first show that the contribution to X of those values of t such that
xt = O(1) is small. To do so, note that xt = 0 for all t > M , by (23), and observe that
therefore

∑

t>1

xt · log
(

t+ 1

t

)

1
[

xt 6 logM
]

6
(

log(M + 1)
)2
. (25)

We may therefore restrict our attention to those values of t for which xt > logM > e4, so
that, in particular, (24) holds. Let T = max

{

t : xt > logM
}

and observe that, by (23), (24)
and (25), we have

X 6 λ

T
∑

t=1

(

log t+1
t

)2

log xt − 5/2
+O

(

logM
)2

and M >
λ2

2

T
∑

t=1

(

log t+1
t

)2

log xt

.

To bound these sums, observe that λ → ∞ as M → ∞ (by (24) and since x1 > logM), and
that therefore, uniformly in 1 6 t 6 log λ, we have

log xt = log λ+ log log
t+ 1

t
− log

(

log xt − 5/2
)

=
(

1 + o(1)
)

log λ
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as M → ∞. Moreover, if log λ 6 t 6 T , then log t+1
t

6 1/t and log xt > log logM . It follows
that, for each fixed c ∈ R, we have

T
∑

t=1

(

log t+1
t

)2

log xt − c
=

1 + o(1)

log λ

∑

t>1

(

log
t+ 1

t

)2

=
τ + o(1)

log λ
,

as M → ∞, and hence M >
(

τ/2 + o(1)
)

λ2/ log λ. Finally, we deduce that

X 6
(

τ + o(1)
) λ

log λ
6
(

2
√
τ + o(1)

)

(

M

logM

)1/2

as M → ∞, as required. �

We can now easily deduce Proposition 6.1.

Proof of Proposition 6.1. We first choose the moduli of the progressions inA = {A1, . . . , An},
and then the shifts. Since lcm(A) = N = pγ11 · · · pγmm , for each j ∈ [n] we have at most

m
∏

i=1

(

γi + 1
)

6 exp

(

(

2
√
τ + o(1)

)

(

n

C log(n/C)

)1/2)

choices for the modulus of the arithmetic progression Aj, where the inequality follows by

applying Lemma 6.3 with M = n/C, and using our bound on n. By Lemma 6.2, it follows

that the number of choices for A is at most

(n!)2 · exp
((

2
√
τ√
C

+ o(1)

)

n3/2

(

log(n/C)
)1/2

)

= exp

((

2
√
τ√
C

+ o(1)

)

n3/2

(log n)1/2

)

as n → ∞, as required. �

Using Simpson’s theorem (Theorem 2.4), we can now easily deduce an upper bound on the

number of minimal covering systems that is sharp up to a constant factor in the exponent.

Corollary 6.4. The number of minimal covering systems of Z of size n is

exp

(

Θ
(

n3/2
)

(log n)1/2

)

.

Proof. The lower bound follows by Proposition 5.1 (or by the simpler construction in the

introduction). For the upper bound, recall that, by Simpson’s theorem, we have

|A| >
m
∑

i=1

γi
(

pi − 1
)

+ 1 >

m
∑

i=1

γi log2 pi

for any minimal covering system A of Z with lcm(A) = N = pγ11 · · · pγmm , and hence N 6 2n.

Thus, applying Proposition 6.1 with C = 1 (and summing over N 6 2n), there are at most

exp

(

(

2
√
τ + o(1)

) n3/2

(log n)1/2

)

minimal covering systems of Z of size n, as required. �
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7. Proof of Theorem 1.1

In this section we will complete the proof of Theorem 1.1; we begin by giving an overview

of the remaining part of the argument. Let A be a minimal covering system of Z of size n,

let N = lcm(A) and, recalling (15), set S(p,e) = {0, . . . , p− 1} for each (p, e) ∈ 〈N〉. We map

ZN into S〈N〉 =
∏

(p,e)∈〈N〉 S(p,e) as described in Section 5; that is, we associate x ∈ ZN with

the vector y = ϕN(x) ∈ S〈N〉, where y(p,e) is the coefficient of pe−1 in the p-ary expansion

of x modulo pe. Note that the image of each progression in A ∈ A is a hyperplane in S〈N〉.

Moreover, by Observation 5.2, if H = ϕN(A) then, for each prime p, the set
{

(p, e) ∈ 〈N〉 : (p, e) ∈ F (H)
}

forms a (possibly empty) initial segment of the sequence (p, 1), (p, 2), . . . . Recall that we call

hyperplanes that satisfy this condition ‘arithmetic’.

We will apply Theorem 2.3 to A (with C = 4 and ε > 0 an arbitrarily small constant),

and deduce that either (3) fails to hold, or A contains an almost optimal δ-generalized frame
(

F(p,e) : (p, e) ∈ 〈N〉
)

. In the former case we are done by Proposition 6.1, so let us assume

the latter. We will carefully count the number of choices for the fixed sets of the frame

elements F(p,e) such that p > δ−1. The bound we obtain will be sufficiently strong unless N

is primarily composed of primes smaller than δ−1; however, for such N it turns out that the

simpler argument used in Section 6 suffices to give a sufficiently strong bound.

Next, we bound the number of choices for the fixed sets of the remaining hyperplanes: those

in frame sets F(p,e) for some prime p 6 δ−1, and those not used in the frame. Surprisingly, it

turns out that we can again obtain a sufficiently strong bound using the method of Section 6.

Roughly speaking, these ‘extra’ hyperplanes are being used inefficiently, and would be better

off (in terms of increasing the number of choices) by contributing to the construction of a

larger frame (and thus a different value of N).

Finally, noting that the fixed sets of the hyperplanes in A correspond to the moduli of the

original arithmetic progressions, we will use Lemma 6.2 to bound the number of minimal

covering systems of Z of size n with given moduli.

7.1. Choosing the fixed sets of δ-generalized frames. Let N ∈ N and δ > 0, and

suppose that
(

F(p,e) : (p, e) ∈ 〈N〉
)

is a δ-generalized frame in S〈N〉 consisting of arithmetic

hyperplanes.6 Recall that F(p,e) is a collection of at most p− 1 hyperplanes, and that there

exists an ordering ≺ on 〈N〉, and for each (p, e) ∈ 〈N〉 a set

I(p, e) ⊇
{

(q, f) ∈ 〈N〉 : (p, e) ≺ (q, f) and (q, f) 6= (p, e)
}

, (26)

such that µI(p,e)(H) > δ for each (p, e) ∈ 〈N〉 and H ∈ F(p,e). Recall also that (p, e) ∈ F (H),

and that the sets F(p,e) with p > δ−1 are disjoint. We remark that the ordering ≺ might not

be arithmetic, but the hyperplanes are arithmetic, and this will turn out to be sufficient.

In this subsection we will bound the number of choices for the fixed sets of the hyperplanes

in
(

F(p,e) : (p, e) ∈ 〈N〉
)

corresponding to primes larger than δ−1. While doing so, it will be

6By Definition 2.2, we may suppose that δ is sufficiently small; in particular, we will assume that δ < 1/2.
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convenient to write 〈N〉δ :=
{

(p, e) ∈ 〈N〉 : p > δ−1
}

, and to define

Γ(N) :=
∑

(p,e)∈〈N〉

(p− 1) and Γδ(N) :=
∑

(p,e)∈〈N〉δ

(p− 1).

Note that, by Simpson’s theorem, if lcm(A) = N then |A| > Γ(N). Given an ordering ≺ on

〈N〉, for each (p, e) ∈ 〈N〉 set
M≺(p, e) :=

∏

(q,f)≺(p,e)

q,

and given a collection A of hyperplanes, let us write D(A) :=
(

F (H) : H ∈ A
)

for the

corresponding collection of fixed sets. We begin by observing the following upper bound

(cf. Lemma 5.3) on the number of choices for the sequence
(

D(F(p,e)) : (p, e) ∈ 〈N〉δ
)

.

Lemma 7.1. Let N ∈ N and δ > 0, and let ≺ be an ordering on 〈N〉. There are at most

exp

(

∑

(p,e)∈〈N〉δ

(p− 1)

(

∑

(q,f)∈〈M≺(p,e)〉

log

(

f + 1

f

)

+
1

δ2

))

sequences
(

D(F(p,e)) : (p, e) ∈ 〈N〉δ
)

such that
(

F(p,e) : (p, e) ∈ 〈N〉
)

is a simple δ-generalized

frame in S〈N〉 with ordering ≺ and consisting only of arithmetic hyperplanes.

Proof. Let (p, e) ∈ 〈N〉δ, let H ∈ F(p,e), and let q be a prime. Recall that, since H is an

arithmetic hyperplane, it follows by Observation 5.2 that the set F (H) induces a (possibly

empty) initial segment of the set (q, 1), (q, 2), (q, 3), . . .

Suppose first that q > δ−1. We claim in this case that there are at most

∣

∣

{

f : (q, f) ∈ 〈M≺(p, e)〉
}∣

∣+ 1 = exp

(

∑

f : (q,f)∈〈M≺(p,e)〉

log

(

f + 1

f

)

)

choices for this initial segment. To see this, recall that µI(p,e)(H) > δ, and therefore (q, f) 6∈
F (H) for every (q, f) ∈ I(p, e). By (26), it follows that F (H) does not contain any element

(q, f) with (p, e) ≺ (q, f) and (p, e) 6= (q, f), and therefore the elements (q, f) in F (H) form

an initial segment (in increasing order of f) of the set
{

(q, f) ∈ 〈N〉 : (q, f) ≺ (p, e)
}

. Since

this set has the same size as the set
{

f : (q, f) ∈ 〈M≺(p, e)〉
}

(which is an initial segment of

the positive integers), the claimed bound on the number of choices follows.

Now suppose instead that q 6 δ−1. In this case the condition µI(p,e)(H) > δ only im-

plies that F (H) contains at most log2(δ
−1) elements of I(p, e), and hence, by (26), at most

log2(δ
−1) elements (q, f) such that (q, f) 6≺ (p, e). Repeating the argument from the case

q > δ−1, it follows that we have at most

∣

∣

{

f : (q, f) ∈ 〈M≺(p, e)〉
}
∣

∣+ 1 + log2(δ
−1) 6 exp

(

∑

f : (q,f)∈〈M≺(p,e)〉

log

(

f + 1

f

)

+
1

δ

)

choices for the initial segment of the set (q, 1), (q, 2), (q, 3), . . .
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Finally, recall that there are at most p−1 hyperplanes in F(p,e) for each (p, e) ∈ 〈N〉δ, and
note that there are at most δ−1 primes q 6 δ−1. Hence, multiplying the number of choices

for all (p, e) ∈ 〈N〉δ, all H ∈ F(p,e), and all primes q that divide N , it follows that we have

at most

exp

(

∑

(p,e)∈〈N〉δ

(p− 1)

(

∑

(q,f)∈〈M≺(p,e)〉

log

(

f + 1

f

)

+
1

δ2

))

choices for the sequence
(

D(F(p,e)) : (p, e) ∈ 〈N〉δ
)

, as claimed. �

For each N ∈ N and δ > 0, and each ordering ≺ on 〈N〉, let us define

Qδ(N,≺) :=
∑

(p,e)∈〈N〉δ

(p− 1)
∑

(q,f)∈〈M≺(p,e)〉

log

(

f + 1

f

)

.

The following lemma provides a sufficiently strong upper bound on Qδ(N,≺).

Lemma 7.2. Let N ∈ N and δ > 0, and let ≺ be an ordering on 〈N〉. If Γδ(N) > δ ·Γ(N),

then

Qδ(N,≺) 6

(

4
√
τ

3
+ o(1)

)

Γδ(N)3/2
(

log Γδ(N)
)1/2

(27)

as N → ∞.

We first use Lemma 6.3 to obtain the following bound when Γδ(M) is large.

Lemma 7.3. Let M ∈ N and δ > 0. Then

∑

(q,f)∈〈M〉

log

(

f + 1

f

)

6
(

2
√
τ + o(1)

)

(

Γδ(M)

log Γδ(M)

)1/2

+
2

δ
log Γ(M)

as Γδ(M) → ∞.

Proof. Let M = pγ11 · · · pγmm , and observe that

∑

(q,f)∈〈M〉

log

(

f + 1

f

)

=
m
∑

i=1

log
(

γi + 1
)

=
∑

i : pi>δ−1

log
(

γi + 1
)

+
∑

i : pi6δ−1

log
(

γi + 1
)

6
(

2
√
τ + o(1)

)

(

Γδ(M)

log Γδ(M)

)1/2

+
2

δ
log Γ(M)

as Γδ(M) → ∞, as required, by Lemma 6.3 applied to the sequence γi · 1
[

pi > δ−1
]

, and by

the bound γi 6 Γ(M), which holds for every i ∈ [m]. �

When Γδ(M) is bounded and Γ(M) → ∞, we will instead use the bound

∑

(q,f)∈〈M〉

log

(

f + 1

f

)

6
3

δ
log Γ(M), (28)

which follows from the proof above by using the trivial bound log(γi + 1) 6 Γδ(M) for the

(bounded number of) large primes pi, instead of applying Lemma 6.3.
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We will also need the following easy lemma.

Lemma 7.4. Let 2 6 m0 < m1 < · · · < m` 6 m. Then

`−1
∑

i=0

(

mi

logmi

)1/2
(

mi+1 −mi

)

6

(

2

3
+ o(1)

)

m3/2

(logm)1/2

as m → ∞.

We can now prove Lemma 7.2.

Proof of Lemma 7.2. Observe first that, by Lemma 7.3 applied with M = M≺(p, e), we have

∑

(q,f)∈〈M≺(p,e)〉

log

(

f + 1

f

)

6
(

2
√
τ + o(1)

)

(

Γδ

(

M≺(p, e)
)

log Γδ

(

M≺(p, e)
)

)1/2

+
2

δ
log Γ

(

M≺(p, e)
)

as Γδ(M≺(p, e)) → ∞, and that when Γδ(M≺(p, e)) is bounded, by (28) we have

∑

(q,f)∈〈M≺(p,e)〉

log

(

f + 1

f

)

6
3

δ
log Γ(N),

as Γ(N) → ∞, since Γ(M≺(p, e)) 6 Γ(N). Thus, summing over (p, e) ∈ 〈N〉δ, it follows that

Qδ(N,≺) 6
(

2
√
τ + o(1)

)

∑

(p,e)∈〈N〉δ

(p− 1)

(

Γδ

(

M≺(p, e)
)

log Γδ

(

M≺(p, e)
)

)1/2

+
3

δ
Γ(N) log Γ(N)

as N → ∞ (which, in particular, implies that Γ(N) → ∞).

Next, we apply Lemma 7.4 with (m0, . . . ,m`) =
(

Γδ

(

M≺(p, e)
))

(p,e)∈〈N〉δ
and m = Γδ(N).

Note that if (p′, e′) immediately follows (p, e) in the ordering ≺ restricted to 〈N〉δ, then
Γδ

(

M≺(p
′, e′)

)

− Γδ

(

M≺(p, e)
)

= p− 1,

since Γδ only counts the large primes. It follows that

Qδ(N,≺) 6

(

4
√
τ

3
+ o(1)

)

Γδ(N)3/2
(

log Γδ(N)
)1/2

+
3

δ
Γ(N) log Γ(N),

as N → ∞. Since Γδ(N) > δ · Γ(N), by assumption, we obtain (27), as required. �

Before continuing, let us observe that the condition Γδ(N) > δ · Γ(N) in the statement of

Lemma 7.2 (which in any case could be weakened considerably) is not a serious restriction,

since we can easily obtain, using the method of Section 6, a suitable bound on the number

of minimal covering systems whose least common multiple has mostly small prime factors.

Lemma 7.5. Let β, δ > 0 be constants and let n ∈ N and N ∈ N with Γδ(N) 6 β · Γ(N).

The number of minimal covering systems A of Z of size n with lcm(A) = N is at most

exp

(

(

2
√

βτ + o(1)
) n3/2

(log n)1/2

)

as n → ∞.

27



Proof. The proof is essentially the same as that of Proposition 6.1, but we use Lemma 7.3

in place of Lemma 6.3 to count the choices of the moduli. To be more precise, in order to

count the minimal covering systems A = {A1, . . . , An} of Z of size n with lcm(A) = N , we

will first choose the moduli, and then the shifts. Observe first that, for each j ∈ [n], we have

at most

∏

(p,e)∈〈N〉

(

e+ 1

e

)

6 exp

(

(

2
√
τ + o(1)

)

(

Γδ(N)

log Γδ(N)

)1/2

+
2

δ
log Γ(N)

)

choices for the modulus of the arithmetic progression Aj. Indeed, the left-hand side is simply

the number of divisors of N , and the inequality follows from Lemma 7.3.

Now, since (by assumption and by Simpson’s theorem) we have Γδ(N) 6 β · Γ(N) 6 βn,

it follows by Lemma 6.2 that the number of choices for A is at most

(n!)2 · exp
(

(

2
√

βτ + o(1)
) n3/2

(log βn)1/2
+

2n log n

δ

)

= exp

(

(

2
√

βτ + o(1)
) n3/2

(log n)1/2

)

as n → ∞, as claimed. �

7.2. Proof of Theorem 1.1. We are finally ready to put together the pieces and deduce

our main counting result. We will need the following easy bound.

Lemma 7.6. For every m ∈ N and x > 0, we have

(m+ x)3/2

(log(m+ x))1/2
>

m3/2

(logm)1/2
+

(

3

2
+ o(1)

)(

m

logm

)1/2

x,

as m → ∞.

We can now deduce Theorem 1.1 from Theorem 2.3, Propositions 5.1 and 6.1, Lemma 6.2,

Simpson’s theorem, and the results of this section.

Proof of Theorem 1.1. The lower bound follows immediately from Proposition 5.1, so we will

prove the upper bound. Observe first (cf. Section 6) that, by Simpson’s theorem, if A is a

minimal covering system of Z of size n, then lcm(A) 6 2n. We may therefore fix N 6 2n,

and consider only covering systems A such that lcm(A) = N . We associate each progression

A ∈ A with an arithmetic hyperplane in S〈N〉 using the bijection ϕN , as described above.

Let ε > 0 be an arbitrarily small constant, set C = 4, and let δ = δ(C, ε) > 0 be the

constant given by Theorem 2.3. Suppose first that either n > 4Γ(N) or Γ(N) > 4Γδ(N).

Then, by Proposition 6.1 and Lemma 7.5, there are at most

exp

(

(√
τ + o(1)

) n3/2

(log n)1/2

)

minimal covering systems A of Z of size n with lcm(A) = N , as required. By Simpson’s

theorem, let us therefore assume from now on that Γ(N) 6 n 6 4Γ(N) 6 24Γδ(N).
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By Theorem 2.3 (and our choice of δ), every minimal covering system A of Z of size

n 6 4Γ(N) with lcm(A) = N contains a δ-generalized frame
(

F(p,e) : (p, e) ∈ 〈N〉
)

, with
∑

(p,e)∈〈N〉

|F(p,e)| > (1− ε)Γ(N). (29)

Since Γ(N) 6 4Γδ(N), it follows by Lemmas 7.1 and 7.2 that the number of sequences
(

D(F(p,e)) : (p, e) ∈ 〈N〉δ
)

such that
(

F(p,e) : (p, e) ∈ 〈N〉
)

is a δ-generalized frame in S〈N〉

consisting only of arithmetic hyperplanes is at most

Γ(N)! · exp
((

4
√
τ

3
+ o(1)

)

Γδ(N)3/2
(

log Γδ(N)
)1/2

+
Γδ(N)

δ2

)

, (30)

where the factor of Γ(N)! bounds (noting that Γ(N) > |〈N〉|) the number of choices for the

ordering ≺ on 〈N〉 associated with the δ-generalized frame.

We next need to count the choices of the moduli for the remaining arithmetic progressions

in A, that is, those corresponding to hyperplanes that are not included in F(p,e) for any

(p, e) ∈ 〈N〉δ. Recall (from Definition 2.2) that the sets F(p,e) with (p, e) ∈ 〈N〉δ are pairwise
disjoint, so there are exactly

x := n−
∑

(p,e)∈〈N〉δ

|F(p,e)|,

such arithmetic progressions in A. We bound the number of choices for the fixed sets of

these remaining hyperplanes in A using Lemma 7.3, which implies that we have at most

∏

(p,e)∈〈N〉

(

e+ 1

e

)

6 exp

(

(

2
√
τ + o(1)

)

(

Γδ(N)

log Γδ(N)

)1/2

+
2

δ
log Γ(N)

)

choices for each. Combining this bound with (30), and recalling that Γ(N) 6 n 6 24Γδ(N),

it follows that we have at most

exp

((

4
√
τ

3
+ o(1)

)

Γδ(N)3/2
(

log Γδ(N)
)1/2

+
(

2
√
τ + o(1)

)

(

Γδ(N)

log Γδ(N)

)1/2

x

)

(31)

choices for the moduli of the arithmetic progressions in A, given N and x.

In order to bound (31), we apply Lemma 7.6 with m = Γδ(N). Since 0 6 x 6 n and

2−4n 6 m 6 n, we obtain

Γδ(N)3/2
(

log Γδ(N)
)1/2

+
3

2

(

Γδ(N)

log Γδ(N)

)1/2

x 6

(

Γδ(N) + x
)3/2

(

log(Γδ(N) + x)
)1/2

+
o(n3/2)

(log n)1/2
(32)

as n → ∞. Now, since |F(p,e)| 6 p− 1 for each (p, e) ∈ 〈N〉, it follows from (29) that

n− x =
∑

(p,e)∈〈N〉δ

|F(p,e)| > Γδ(N)− εΓ(N) > Γδ(N)− εn,
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so Γδ(N) + x 6 (1 + ε)n, and hence
(

Γδ(N) + x
)3/2

(

log(Γδ(N) + x)
)1/2

6 (1 + ε)3/2
n3/2

(log n)1/2
.

Combining this with (31) and (32), it follows that we have at most

exp

((

4
√
τ

3
+ o(1)

)

(1 + ε)3/2
n3/2

(log n)1/2

)

choices for the moduli of the progressions in A.

Finally, by Lemma 6.2, it follows that there are at most

exp

((

4
√
τ

3
+O(ε)

)

n3/2

(log n)1/2

)

minimal covering systems of Z of size n with lcm(A) = N . Since ε > 0 was arbitrarily small,

this completes the proof of Theorem 1.1. �
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[6] P. Erdős, Egy kongruenciarendszerekről szóló problémáról (On a problem concerning congruence-systems,

in Hungarian), Mat. Lapok, 4 (1952), 122–128.
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Appendix A. Proof of the geometric Simpson’s theorem

In this appendix we will provide, for the reader’s convenience, a proof of the following

slight generalization of Simpson’s theorem [22].

Theorem A.1 (Simpson’s theorem). Let A be a minimal cover of S[k] with hyperplanes, and

let I ( F (A). Then
∣

∣

{

H ∈ A : F (H) 6⊆ I
}∣

∣ >
∑

i∈F (A)\I

(

|Si| − 1
)

+ 1.

Note that Theorem 2.4 follows from Theorem A.1 by setting I = ∅.

Proof. The proof is by induction on |F (A)|. Set
L(i)
s := S1 × · · ·Si−1 × {s} × Si+1 × · · ·Sk

for each i ∈ [k] and s ∈ Si, and note that if F (A) = {i}, then A (being minimal) must

consist precisely of the |Si| hyperplanes L
(i)
s , one for each s ∈ Si. Moreover, if I ( F (A)

then I = ∅, and hence
∣

∣

{

H ∈ A : F (H) 6⊆ I
}∣

∣ = |A| = |Si|,
31



as required. So suppose that |F (A)| > 2, and (recalling that I ( F (A)) choose an element

i ∈ F (A) \ I. For each s ∈ Si, let As ⊆ A be a minimal cover of L
(i)
s , and observe that

A =
⋃

s∈Si

As,

since A is minimal. For convenience, let us assume (without loss) that Si = {1, . . . , p}.
Now, set Fi(H) := F (H)\{i} for each H ∈ As (and similarly for a family of hyperplanes),

and define a sequence of sets (R0, . . . , Rp) by setting R0 := I, and

Rs := Rs−1 ∪ Fi(As)

for each s ∈ Si, so in particular Rp = F (A) \ {i}. Now set Is := Rs−1 ∩ Fi(As), and define

Qs :=
{

H ∈ As : Fi(H) 6⊆ Is
}

.

We claim that, applying the induction hypothesis to the minimal cover As of L
(i)
s (which we

naturally identify with S1 × · · ·Si−1 × Si+1 × · · ·Sk), we have either Rs−1 = Rs, or

|Qs| >
∑

j∈Rs\Rs−1

(

|Sj| − 1
)

+ 1 (33)

for each s ∈ Si. To see this, simply note that Rs \ Rs−1 = Fi(As) \ Is, so if Rs−1 6= Rs then

Is ( Fi(As), and that Fi(As) ⊆ F (A) \ {i}, so (since i ∈ F (A)) we have |Fi(As)| < |F (A)|.
Set J :=

{

s ∈ Si : Rs−1 6= Rs

}

, and recall that (33) holds for each s ∈ J . We claim that
∣

∣

∣

∣

⋃

s∈J

Qs

∣

∣

∣

∣

=
∑

s∈J

|Qs| > |J | −
(

|Si| − 1
)

+
∑

j∈F (A)\I

(

|Sj| − 1
)

.

The inequality follows from summing (33) over s ∈ J , and recalling that i ∈ F (A) \ I, so it

remains to show that the sets Qs are disjoint. To see this, observe that, if H ∈ As, then

Fi(H) 6⊆ Is ⇔ Fi(H) ⊆ Rs and Fi(H) 6⊆ Rs−1,

and so H ∈ As for at most one element s ∈ Si.

Finally, we claim that for each s ∈ Si \J , there exists a hyperplane H ∈ A such that H ⊆
L
(i)
s and F (H) 6⊆ I. To see this, observe first that L

(i)
s is not covered by

{

H ∈ A : i 6∈ F (H)
}

,

as otherwise S[k] would be covered by
{

H ∈ A : i 6∈ F (H)
}

, contradicting the minimality of

A and the fact that i ∈ F (A). It follows that there exists H ∈ A with H ⊆ L
(i)
s , and we

have F (H) 6⊆ I because i ∈ F (H)\I. Moreover, none of these |Si|− |J | distinct hyperplanes
is included in Qs for any s ∈ J , since they do not intersect the set

⋃

s∈J L
(i)
s .

Hence, noting that F (H) 6⊆ I for each H ∈ Qs (since I ⊆ Rs−1 and F (H) 6⊆ Rs−1), we

obtain
∣

∣

{

H ∈ A : F (H) 6⊆ I
}∣

∣ >

∣

∣

∣

∣

⋃

s∈J

Qs

∣

∣

∣

∣

+ |Si| − |J | >
∑

j∈F (A)\I

(

|Sj| − 1
)

+ 1,

as required. �
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