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ABSTRACT. Introduced by Erdés in 1950, a covering system of the integers is a finite col-
lection of arithmetic progressions whose union is the set Z. Many beautiful questions and
conjectures about covering systems have been posed over the past several decades, but un-
til recently little was known about their properties. Most famously, the so-called minimum
modulus problem of Erdds was resolved in 2015 by Hough, who proved that in every covering
system with distinct moduli, the minimum modulus is at most 10'6.

In this paper we answer another question of Erdds, asked in 1952, on the number of
minimal covering systems. More precisely, we show that the number of minimal covering
systems with exactly n elements is
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En route to this counting result, we obtain a structural description of all covering systems

as n — 00, where

that are close to optimal in an appropriate sense.

1. INTRODUCTION

A covering system is a finite collection of arithmetic progressions that covers® the integers.
Erdés [5] initiated the study of covering systems in 1950, and since then numerous beautiful
questions have been asked about their properties (see, for example, [5-13,20,21]). Until
recently little progress had been made on these problems, but following groundbreaking
work of Filaseta, Ford, Konyagin, Pomerance and Yu [13] in 2007, a fundamental result was
obtained by Hough [16], who resolved a problem from the original paper of Erdds [5] by
proving that there do not exist covering systems with distinct moduli and arbitrarily large
minimum modulus. Building on his work, the authors of this paper [1, 2] recently made
further progress on several related open problems.

In this paper we will study another problem on covering systems, whose study was initiated
by Erdds [6] in 1952:

How many minimal covering systems of size n are there?

The first two authors were partially supported by NSF grant DMS 1600742, the third author was partially
supported by FAPERJ (Proc. E-26/202.993/2017) and CNPq (Proc. 304237/2016-7), and the fifth author
was supported by a Trinity Hall Research Studentship.

'We emphasize that we do not require the progressions to be disjoint. For related work on covering systems
with this additional property (sometimes called ezactly covering systems), see for example [14,15,19,23].



Erdés [6] gave a simple proof that there are only finitely many minimal® covering systems of
size n, but the bound he obtained on their number was doubly exponential. A more reason-
able upper bound follows from a result of Simpson [22], who proved in 1985 (see Section 2)
that the largest modulus in a minimal covering system of size n is at most 2"~!. Note that
this bound is best possible, since A = {27! (mod 2) : i € [n — 1]} U {0 (mod 2"71)} is a
minimal covering system, and that it easily implies that there are at most 20("*) minimal
covering systems of size n. We will show that there are in fact rather fewer such systems,
and we will moreover determine asymptotically the logarithm of their number. The main
aim of this paper is to prove the following theorem.

Theorem 1.1. The number of minimal covering systems of 7. of size n is
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as n — 0o, where

We remark that proving a weaker upper bound, with a different constant in the exponent,
is significantly easier, and we will give a short proof of such a bound in Section 6. Let us
also note here that we will prove the lower bound under the additional restriction that the
moduli are distinct, and so the conclusion of Theorem 1.1 also holds for such systems.

In order to motivate the form of the formula (1), let us begin by describing a simple
construction that gives a slightly weaker lower bound. Let p; < ... < p be the first &
primes, and for each i € [k], choose p; — 1 arithmetic progressions Aﬁi), e ,AI()?_I with the
following properties: for each j € [p; — 1], the modulus of Agi) is divisible by p; and divides
Q; :==p1---p;, and Agi) contains 7-0);_1. It is not difficult to show that, for each such choice,
by adding the progression {0 (mod @)} we obtain a distinct minimal covering system of
size n =3 (pi — 1)+ 1~ k?logk. Since we have 2°~! choices for the progression Ay) for
each i € [k] and j € [p; — 1], this implies that there are at least
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minimal covering systems of Z of size n. In Section 5 we will describe a somewhat more
complicated construction that proves the lower bound in Theorem 1.1.

We will refer to collections of progressions as in the construction above as “frames” (see
Section 2 for a precise definition). The second main result of this paper, and the key step in
the proof of Theorem 1.1, will be a structural description of all “efficient” covering systems;
roughly speaking, we will show that every such covering system contains a large “approximate
frame”. The purpose of the next section is to state this structural theorem.

2A covering system A is minimal if no proper subset of it covers Z. Without this restriction there are
infinitely many covering systems of size 2, since we can take A = {Z, A} for any arithmetic progression A.
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2. THE STRUCTURE OF EFFICIENT COVERINGS

In this section we will state our main structural theorem. In order to do so, it will be
convenient to shift our attention to the following (slightly more general) geometric setting.
Let Sy, ..., Sk be finite sets with at least two elements and set Sy := [, S; for each I C [].
If H= Hy x---x H, C Sy with each H; either equal to S; or a singleton element of .S;,
then we say that H is a hyperplane. We write F(H) := {i € [k] : |H;| = 1} for the fized
coordinates of H, and F(A) := Uy 4 F(H) if A is a collection of hyperplanes. We will also
write H = [z1,...,x;], where x; € S; U {x} for each i € [k], and * indicates that H; = S;.

Definition 2.1. A simple frame centred at an element (si,...,s;) € S (which we call the
azis), is a sequence (Fi, ..., Fy), where F; is a collection of |S;| — 1 hyperplanes of the form
['xl)---axi—laaa*v"'a*]a (2)

one for each a € S; \ {s;}, with z; € {s;, *} for each j € [i — 1].
A frame is obtained from a simple frame by permuting the order of the sets S, ..., Sk.

Observe that if (Fi,. .., Fg) is a frame centred at (sq, ..., Sx), then the collection
A=FU---UFU{[s1,....s}

is a minimal cover of Sp). Indeed, if we remove the hyperplane [:Bl, e L1, Ay K, ,*}
from A, then the element (si,...,$;_1,a,Sit1,---,Sk) will be uncovered by the remaining
hyperplanes. Note that if we set S; = {0,...,p; — 1} for each i € [k], then the construction
given in the introduction is equivalent to a frame centred at (0,...,0). When we (for now
informally, but later on precisely) discuss frames in Z, we will always mean that each set
S; ={0,...,p — 1} for some prime p (these primes will not generally be distinct), and we
will map S X - - - x Sj into Zy, where N = Hle |S;|, using the Chinese Remainder Theorem
to identify Zy with the product of groups Z,., and then expanding base p.3 Note that
every arithmetic progression in Z corresponds to a hyperplane, but not every hyperplane
corresponds to an arithmetic progression if primes are repeated (see Sections 5 and 7).
The key idea behind the proof of Theorem 1.1 is the following (imprecise) conjecture:

“Almost every minimal covering system of Z of size n is close to a frame.”

We will not prove a result of this form; instead, we will use a slightly weaker notion, which
we call a d-generalized frame. These objects differ from frames in two key ways: the fixed
elements “to the left” of ¢ in a hyperplane H € F; are allowed to vary with ¢, and instead
of insisting that “all coordinates to the right are free” (as in (2)), we allow a few “small”
coordinates to be fixed (with the product of their sizes bounded by 1/4).

The next definition is both important and somewhat technical, and we will need some
additional notation. Given a hyperplane H, we write H; for its ith coordinate, and for any
I C [k] we will write H; = [],.; H; for the hyperplane in S; obtained by restricting H to
the coordinates of I, and define p;(H) := |Hy| - |S;|™* when I # 0, and pg(H) := 1.

3For example, (ag, ay, ..., (y—1) € Zp X -+ X Ly, corresponds to the element 22;01 a;p' € Ly
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Definition 2.2 (d-generalized frames). Let 6 > 0, and let S,..., Sk be finite sets with at
least two elements. A simple d-generalized frame in Sy is a sequence (Fi, ..., Fy), where F;
is a collection of at most |S;| — 1 hyperplanes, satisfying the following conditions. For each
i € [k], there exists a set 1(i) 2 {i +1,...,k}, and for each j & I(i) U {i}, there exists an
element s,(i) € S;, such that, for each H € F;,

ie F(H), Py (H) > 6 and Hj € {s;(1),5;}.
Moreover, if min {|S;],|S;|} = 0" and i # j, then F; and F; are disjoint. A §-generalized
frame is obtained from a simple -generalized frame by permuting the sets Sy, ..., Sk.

We are now ready to state our main structural theorem for covering systems that contain
roughly (up to a constant factor) the same number of elements as a frame.

Theorem 2.3. For every C,e > 0 there exists § = §(C,e) > 0 so that for every collection
of finite sets Sy,..., Sy with at least two elements, the following holds. If A is a minimal
cover of Sy with hyperplanes such that F(A) = [k] and

k
A< (151 ), (3)
=1

then A contains a §-generalized frame (Fy, ..., Fy), with
k

> I 1—52|5|—1 (4)

i=1

The theorem above can be thought of as an inverse theorem for the following extremal
result of Simpson [22]. If A is a collection of arithmetic progressions, then we write lem(.A)
for the least common multiple of the moduli of the progressions in A.

Theorem 2.4 (Simpson’s theorem). If A is a minimal cover of Sy with hyperplanes such

that F'(A) = [k], then
k

|A| > Z |S;| — 1) + 1.

In particular, if A is a minimal covering System of Z with lem(A) = p]* ---p¥m, then
A =D (e
i=1

In the appendix, we will provide (for the reader’s convenience) a proof of Simpson’s theo-
rem. Let us also remark here that, while the form of the function §(C,e) will not matter for
our purposes, we will prove that Theorem 2.3 holds with § = (¢/(C)CUes(1/=),

In order to deduce Theorem 1.1 from Theorem 2.3, we will need to count d-generalized
frames quite precisely, and show that there are relatively few choices for the remaining
elements; we will also need to show that there are few minimal covering systems that fail to
satisfy (3). These calculations are carried out in Sections 6 and 7.
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2.1. An outline of the proof of the structural theorem. The proof of Theorem 2.3
requires a few somewhat technical definitions, and to prepare the reader for these we will
begin by giving an outline of the argument. The idea is to construct a tree that encodes
the structure of the covering system by ‘exploring’ it coordinate by coordinate. To be more
precise, given a minimal cover A of Sy, let us choose a coordinate ¢ € [k] to explore, and
observe (see Section 3.2 for the details) that for each s € S; we obtain a covering system of

Spx oo x Sioy X {s} X Sipq X -0 X Sy,

which we identify with Sy ;. (Here the hyperplanes H € A with H; = S; appear in each
of the |S;| covering systems corresponding to coordinate i.) These covering systems may not
be minimal, but for each s € S; we can take a minimal sub-covering A,.

Now, some of the systems A; may be trivial (i.e., may consist of a single hyperplane),
and when this occurs we are happy, because such hyperplanes can be used in the frame that
we are trying to construct. For the remaining elements s € .S;, we consider the set of fixed
coordinates F'(As) of A, and observe (see Lemma 3.7) that every coordinate (except i) is
in F(A;) for some s € S;. We may now choose, for each s such that F(A;) is non-empty,
a coordinate j € F'(Ay), and repeat the above construction, exploring the minimal covering
system A, starting with the coordinate j. Iterating this process produces a rooted tree
(which we call an ‘index tree’, see Definition 3.1), each of whose vertices is labelled with a
set I C [k] and a coordinate ¢ € I, which are the fixed coordinates of the corresponding
minimal covering system, and the coordinate ‘explored’ at that vertex, respectively.

So far, we have not said anything about how to construct the sets JF;, or how to choose
the coordinate ¢ that we explore in a given step. For simplicity, let us explain this only for
the first step (the choice for later steps is similar). First, if there exists i € [k] such that
there are at least (1 —€)(|S;| — 1) hyperplanes H € A with i € F(H) and pup3(H) > 6,
then we choose such a coordinate 7 to explore, and associate this collection of ‘frame-like’
hyperplanes with the current vertex (in this case, the root of the tree). One of the key ideas
of the paper is that, if such a collection of hyperplanes does not exist for any ¢ € [k], then we
may use the Lovész Local Lemma to deduce (see Lemma 3.5) that there exists a coordinate j
(which we will choose to explore), and a ‘large’ collection G of hyperplanes in the current
collection, such that j is a fixed coordinate of each. This collection of ‘garbage’ hyperplanes
will later be used, together with (3), to show that this case does not occur too often.

The plan described above is carried out in Section 3, the main result being Lemma 3.3,
which states that if § is sufficiently small, then there exists a suitable ‘exploration tree’ T
of A (see Definition 3.2). This exploration tree can be very large, however, and to extract
our 0-generalized frame from it we will need to choose a suitable sub-tree 7. To do so, we
choose k ‘special’ vertices of T, one for each coordinate, and take the union of the paths
from these vertices to the root. If almost all of these special vertices are ‘good’ (that is, we
found a large collection of frame-like hyperplanes when exploring them), then we obtain a
sufficiently large d-generalized frame. On the other hand, if a positive proportion of them
are ‘bad’, then we use the ‘garbage’ hyperplanes to show that inequality (3) cannot hold. In
order to carry out this argument, we need to choose the special vertices carefully; it turns
out that it is sufficient to choose them via a depth-first search, see Section 4 for the details.
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3. EXPLORING THE COVER

In this section we will take the first step towards Theorem 2.3 by describing a much larger
object that is somewhat easier to construct, the exploration tree. To define these, we first
need to introduce the following simpler objects, which we call index trees. Let us fix, for
the rest of the proof of Theorem 2.3, a collection of finite sets Si,..., Sy with at least two
elements, and let us write N (u) for the set of out-neighbours of u in a rooted tree, where we
orient the edges away from the root.

Definition 3.1. An index tree T of [k] is a rooted tree, equipped with a labelling of its
vertices u — (1, 14,), where I, C [k] and i, € I, that satisfies the following conditions:

(7) the root of T has label ([k],7) for some i € [k];
(73) for each vertex v € V(T),

U L, =1, \ {Zv} (5>
ueN (v)

We can now define the exploration tree of a collection of hyperplanes in Sp). Given a
rooted tree T" and vertices u,v € V(T'), let us write u <7 v to indicate that u lies on the
path from v to the root (so, in particular, v <7 v).

Definition 3.2. Let A\,¢,0 > 0, and let A be a collection of hyperplanes in Sg;. An (), ¢, 0)-
exploration tree of A is an index tree T of [k] such that, for each vertex u € V(T):

(a) there exists a collection A, C A such that A}, := {H, : H € A,} is a minimal cover
of Sy, with F(A]) = I, and if u € N(v), then:
(1) Ay C Ay
(i1) F(A,) C {iw:w <p v} UL;
(77i) there exists an element s, € S;, such that H;, € {s,,S;,} for each H € A,.
Moreover, for each vertex u € V(T), one of the following holds:

(b) u is good, which means that there exists a collection of hyperplanes F, C A,, with
[Ful = (1 =) (150l = 1), (6)
such that ¢, € F(H) and py,\g,3(H) > 6 for each H € F,.
(¢) w is bad, which means that there exists a collection of hyperplanes G, C A,, with
Z o IF(ALI/A |5/<u|’ (7)
HeGy
such that i, € F(H) and |F(H)N1,| > 2 for each H € G,,.

We think of the elements of F, (when u is good) and G, (when u is bad) as hyperplanes
that (respectively) do and do not look like parts of a frame from the perspective of the
vertex u. We will show (see Lemma 3.3, below) that exploration trees always exist, as long
as we choose ¢ to be sufficiently small, depending on A and . We will then, in Section 4,
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carefully choose a subtree T' of our exploration tree T, and one ‘special’ vertex for each
coordinate ¢ € [k], with the following three properties: the frames corresponding to good
special vertices are disjoint (unless one of the corresponding sets .S; is very small); if ‘many’
special vertices of T are bad, then A fails to satisfy (3); and if ‘almost all’ of the special
vertices of T are good, then there exists a sufficiently large J-generalized frame in A.

The main aim of this section is to prove the following lemma.

Lemma 3.3. Let \,e € (0,1), and let A be a minimal cover of Sik) with hyperplanes such
that F(A) = [k]. If
0 < § < 27922 log2(1/Ae) 11 .

then there exists an (A, g, 0)-exploration tree of A.

Let us fix, for the rest of this section, constants 0 < A\, < 1 and 0 > 0 satisfying (8). We
will prove Lemma 3.3 by iteratively extending a ‘partial’ exploration tree by applying the
following lemma to a leaf of the current tree.

Lemma 3.4. Let ) # I C [k], and let A be a minimal cover of St with F(A) = 1I.
(a) For each i € I, there exists a map J: S; — P(I\ {i}), with
U J(s) =1\ {3}, (9)
s€S;

and for each s € S; there exists A, C A such that A, := {HJ(S) : H e As} s a
minimal cover of Sysy, F(As) \ {1} = J(s), and H; € {s,5;} for each H € As.

Moreover, there exists © € I such that one of the following holds:
(b) there exists a collection F C A, with

71> (1=e)(ISi] - 1),
such that i € F(H) and pup gy (H) > 0 for each H € F.
(c) there exists a collection G C A, with
Z o-IF(I/4 5 |‘ii|’ (10)
Heg
such that i € F(H) and |F(H)| > 2 for each H € G.

Let us fix a set ) # I C [k] until the end of the proof of Lemma 3.4. This section is
organised as follows: in Section 3.1 we will prove two (straightforward) technical lemmas, in
Section 3.2, we will introduce the operation that we will use to construct the map J and the
families A;, and in Section 3.3, we will prove Lemma 3.4, and deduce Lemma 3.3.

3.1. Two technical lemmas. Our first technical lemma (Lemma 3.5, below) follows from
a straightforward application of the Lovasz Local Lemma. We will apply it, in the case that
there does not exist a collection F C A as in Lemma 3.4(b) for any i € I, to a certain subset
[Lc; Ri € Si, in order to find an index such that (c) holds. Our second technical lemma

7



(Lemma 3.6, below) will allow us to deduce the bound (10) from the condition given by the
local lemma. Let us say that a hyperplane H in R; is non-trivial if H # R;.

Lemma 3.5. Let 0 <n < 1/5 and let {R; : i € I} be a collection of finite sets, each with at
least two elements. Let A be a collection of non-trivial hyperplanes in Ry, and let ji denote
the uniform measure on Ry. If

~ n
Z eMFUDIG(H) < 3 (11)
HeA:i€F(H)

for every i € [k], then Ry is not covered by the hyperplanes in A.

Proof. We choose a point y € R; uniformly at random and apply the local lemma. For
each hyperplane H € A we define Ey to be the (“bad”) event that y € H. Observe
that P(Ey) = fi(H), and define a dependency graph G on the events { Ey}yea by setting
Ey ~ Ew if F(H)NF(H') # (. Observe that if F(H)N (F(HW)U---UF(H"Y)) =0, then
Ey is independent of the collection {EH<1>, N ) }, so GG is a valid dependency graph.
Next, we define weights
z(H) = e"‘F(H)l/fL(H)
for each H € A. To apply the local lemma we need to show that
P(Ey) <ax(H) [ (1-x(H)).
Eg~FEg
To do so, we first claim that 1 — 2(H) > e=2*) for every H € A. This holds because
QS(H) _ en\F(H)\ﬁ(H) < (en/Q)\F(H)\ < (1 . 6—1)\F(H)\ <1-— 6_1,

where the first inequality is fi(H) < 27F)! which holds because each set S; has at least
two elements, the second follows since 7 < 1/5, and the third since the hyperplanes in A are
non-trivial, so |F(H)| = 1. Therefore, for each H € A, we have

I - sen(-2 3 ) son(2 55 i)

Ep~Ey Ep~Eg i€F(H) H'€AicF(H')
= exp (—2 Z Z e”lF(H/”ﬂ(H')) > exp (—n|F(H)|),
i€F(H) H'eA:icF(H')
where the last inequality follows from (11). This implies that
(i) ] (=) > a(ie " = (1) = P(Ex),
Ep~Eg
as required. By the local lemma, it follows that the probability that none of the events Ey

holds is non-zero, and hence there exists a point y € R; that is not covered by A. O

The second technical lemma is even more straightforward. Recall that S, ..., Sy are fixed
finite sets with at least two elements, and that the (non-empty) set I C [k] and positive
constants A and e were fixed above.



Lemma 3.6. For each j € I, let R; C S; be such that |R;| > (|S;| — 1) + 1, and let i
denote the uniform measure on R;. Let H be a hyperplane in Sy, and let i € F(H). If

pngiy (H) < 270\2e2lom0/39+11
then
HNR —)\ 12
( N 1) 9IF( )\/2+4’Si" ( )
Proof. Set { := |F(H)| and & := 27 \2e21082(1/2)+11 " and observe that
. S; (e
AR R < o) T < e
jeF(H), i#j
Now, note that |R;| > 2 for every j € I, and suppose that (12) does not hold. Then
IS AR he
—(£—1) . A ) 7
jer (), j#i '
and hence ¢ < 2log,(1/Ae) + 10. It follows that
9/2 -1 9/2 2logy(1/Xe)+9
2[/2+4 . IEL(H N R[) < 2 50 (@) g 2 50 (Q) — )\6 < )\ ,
R \ e [Ril \ € [Ril [l
as required. 0]

3.2. An operation on a covering system. We next introduce a simple operation that,
given a minimal cover of S;, produces a map J and a collection {A; : s € S;} as required
by Lemma 3.4(a). This operation is the basic tool we will use in the construction of our
exploration trees. Recall that the (non-empty) set I C [k] was fixed above, and let A be a
minimal cover of S; with F'(A) = I. For each i € [ and s € 5, set

H(i,s):={H € A: H; € {s,5;}},

and observe that the collection H'(i, s) := {HI\{i} : H € H(i, s)} is a cover of Sp ;. Note
that moreover, since A is minimal, there is a bijection between #(i,s) and H'(i,s). Let
A% C H'(i,s) be an arbitrary minimal subcover of Sy y;;, and define

J(s):=F(A) and  A,:={H e H(i,s): Hnpuy € AL}

Note that A, = {H,) : H € A} is a minimal cover of Sy, that F(A,)\ {i} = J(s), and
that H; € {s,S;} for each H € A,. To verify that J and {A; : s € S;} satisfy Lemma 3.4(a),
it therefore only remains to check that (9) holds.

Lemma 3.7. Let A be a minimal cover of S; with hyperplanes. If F(A) =1, then

UJ =1\ {i}

SES;
for each i € 1.

Proof. We will in fact show that for every H € A, there exists s € S; with Hpy € Aj.
Since J(s) = F(A%) C I\ {i} and F(A) = I, this will be enough to prove the lemma.
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To prove the claim, let z € S; be an element that is only covered by H (recall that A is
minimal), and set s := ;. We claim that Hp ;) € A% Indeed, since A; is a cover of Sp iy,
it must cover the vector z’ obtained from z by ignoring the ith coordinate, and Hp y is the
only potential element of A7 that can do so. O

3.3. Construction of the exploration tree. Having completed our preparations, we are
now ready to prove Lemma 3.4, and deduce Lemma 3.3.

Proof of Lemma 3.4. Let ) # I C [k], and let A be a minimal cover of S; such that F(A) = 1.
To prove part (a), for each i € I we apply the construction defined in Section 3.2 to obtain
a map J: S; — P(I\ {i}) and a collection {A; : s € S;}, where A; C A, as required.
In particular, A, = {Hy) : H € Ay} is a minimal cover of Sy), F(A) \ {i} = J(s),
H; € {s,5;} for each H € A, and the map J satisfies (9) by Lemma 3.7.

To prove that there exists i € I such that either (b) or (¢) holds, let us define an element
s € S; to be special for i if there exists a hyperplane H € A such that

H,=s and ,LL[\{Z}(H) > 0.

If this holds, then we say that the hyperplane H is a witness for the pair (s,7). Now, for each
i € I define S} to be the set of elements s € S; that are special for i, and set R; :== S; \ S;.
We consider two cases, corresponding to conditions (b) and (¢) of Definition 3.2, respectively.

Case 1: There exists ¢ € [ with |R;| <e(]S;| — 1) + 1.
In this case we define
F = U {H € A: H is a witness for (s,i)}.
seS;
Since a hyperplane H cannot witness (s,4) for more than one element s € S}, we have
IF1 2187 = 18i| = e(1Si] = 1) = 1= (1= &)(ISi] = 1),
and by definition ¢ € F'(H) and pp(H) > 6 for each H € F.
Case 2: |R;| > ¢(|S;| — 1) + 1 for every i € I.

In this case we shall apply Lemma 3.5 to the set R; := [],.; R; with n = 1/6. Define
A" C A by removing all hyperplanes that are witness for (s,7) for some ¢ € [ and s € S;.
Observe that none of the witness hyperplanes intersects Ry, so A" :={H N R;: H € A'} is

a cover of R;. We claim that there exists a coordinate ¢ € I such that

Z enIF(H)Iﬁ(Hm RI) > g’ (13)

HEA icF(H)

where fi denotes the uniform measure on R;. Since A” is a cover of R;, and noting that
|R;| > 2 for every i € I (by assumption, and since |S;| > 2), this will follow from Lemma 3.5
if we show that A” is a collection of non-trivial hyperplanes in R;. To do so, suppose for
a contradiction that Ry C H for some H € A’, and observe that therefore F(H) N1 = (),
and hence also S; € H. However, since A is a minimal cover of Sy, this implies that
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A = {H}, and hence F(A) = (). This contradicts our assumption that F'(A) = I, and thus

each hyperplane in A” is indeed non-trivial. As observed above, it follows by Lemma 3.5
that (13) holds for some ¢ € I, as claimed.
Fix such an i € I, and define G := GP U---UGW® | where

G .= {He A :ie F(H)and |F(H)| ={(}
for each ¢ € [k]. Observe that G = 0), since if H € A and F(H) = {i}, then pup 4 (H) = 1,
and so H would have been removed when we formed A’. Similarly, for each H € A’ with

i € F(H) we have
pngiy(H) <0< 99 \2g2logx(1/Ae)+11
since otherwise H would witness (s,4) for some s € S;, and so would been removed when we

formed A’. It follows, by Lemma 3.6, that

) A
A OB < Srmmeg)

for every H € A’ with ¢ € F(H). Finally, combining this with (13) gives

677( 67]‘F(H)| - 16 Sz 8 SZ
Z |Q(€)|W = Z ST = Z e”‘F(H)‘M(H N Ry) |)\ | P 77|)\ ’7
22 HeA' :icF(H) HeA' :icF(H)
and hence | (z)| , S S
—|F(H)|/4 _ g _ 0 €" _ 8nlSil _ [Si
22 —Z 2t/4 _Z‘g ’26/22 A 2 A
HeG =2 02
as required by (10). O

The deduction of Lemma 3.3 is now straightforward. Let 0(T") denote the set of vertices
of a rooted tree T' with no out-neighbours, and call 9(T") the boundary of T

Proof of Lemma 3.3. We construct T, our exploration tree, inductively, with Lemma 3.4
providing the induction step. We begin our induction by defining 7§ to be a single vertex v,
and setting I, := [k], and A, := A. For the induction step, suppose that we have constructed
a rooted tree T; (with root v), a set () # I, C [k] and a collection A, C A for each vertex
u € V(T;), and an index i, € I, for each non-boundary vertex u € V(1;) \ 9(7;), such
that condition (a) of Definition 3.2 holds for every vertex u € V(T;), and condition (iz) of
Definition 3.1, and either condition (b) or (¢) of Definition 3.2, hold for every non-boundary
vertex u € V(T3) \ 9(13). Observe that, since A is a minimal cover of Sy with hyperplanes
such that F(A) = [k], these conditions are satisfied in the base case t = 0.

To construct Ti,1, choose a vertex u € O(T') such that |I,| > 2, if one exists (we will
deal with the other case below), and apply Lemma 3.4 to the set I, and minimal cover
Al ={H;, : H € A,} of S;, (noting that F(A!) = I,, by the induction hypothesis). We
obtain an index ¢ € [,, a map J: S; — P(I \ {i}) and a collection {As : s € S;} as in
part (a) of the lemma, and either a collection F C A/ as in part (b), or a collection G C A,
as in part (¢). In either case, we set i, := i, add an out-neighbour of u for each element
s € S; such that J(s) # 0, and to the new vertex w(s) corresponding to s we assign the set
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Lys) = J(s), the element s, := s, and the collection of hyperplanes
Ay :={H € A, : Hy, € A}

Observe first that condition (a) of Definition 3.2 holds for each vertex w(s). Indeed, we
have A,y € A, C A, and it follows from Lemma 3.4(a) that the family

is a minimal cover of Sy with F(A,, ) = F(As) \ {i} = J(s), that H;
He Aw(s), and that

F(Aui) C (F(AL)\ L) UF(A,) C {iy:w <pu} UJ(s).

Note also that, by (9), u satisfies condition (ii) of Definition 3.1.
To complete the induction step, it remains to observe that w is either good or bad, i.e.,
satisfies either condition (b) or (c) of Definition 3.2. Indeed, if Lemma 3.4(b) holds then set

Fu = {HEAu : Hy, 6]:},
and if Lemma 3.4(c) holds then set
gu = {H G.Au : H[u € g}

In each case, the properties guaranteed by the lemma are exactly those that we require. Since

€ {s,5,,} for each

u

the properties required of all vertices of T;,; other than v and its out-neighbours continue
to hold, it follows that T}, satisfies the same properties that we assumed for 7T;.

Finally, observe that in passing from 7T} to T;,; we replace a vertex of the boundary by
a finite number of boundary elements, each associated with with strictly smaller sets. This
process must therefore eventually end, and when it does, it follows that |I,| = 1 for every
boundary vertex u € 9(T;). When this happens, we simply set i,, equal to the unique member
of I, for each u € 9(1}), and claim that u is good. Indeed, by the induction hypothesis, the
collection A/, forms a minimal cover of S;, with i, € F(A). It follows that A/, consists of
exactly |S;,| singleton hyperplanes, and so (6) holds with F, := A,. Since condition (i) of
Definition 3.1 holds automatically (with both sides equal to the empty set), it follows that
the tree T that we have constructed is an (A, €, §)-exploration tree of A, as required. O

4. EXTRACTION OF THE FRAME, AND THE PROOF OF THEOREM 2.3

In order to prove Theorem 2.3, we will use the exploration tree T constructed in the
previous section, together with the bound (3), to find a d-generalized frame for A. Roughly
speaking, we would like to do this by choosing k vertices 5(1), ..., 5(k) such that the label
of B(i) in T is ¢, define a tree T to be the union of the paths (in T) from £(¢) to the root,
and define the elements s;(i) using the elements s,. For each good vertex (i) we have a
collection F; of hyperplanes more or less as required, and for each bad vertex we obtain a
large collection of ‘garbage’ hyperplanes. We might therefore hope to use (3) to show that
there are few bad vertices, and thus to deduce the bound (4).

There are two main problems with the strategy described above: the frame elements
obtained for good vertices might not be disjoint, and each hyperplane might be included in
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the garbage set G, for a very large number of bad vertices. We overcome both obstacles in
the same way: by choosing the vertices (i) via a depth-first search algorithm. We do not
expect the reader to be able to immediately see why this choice should help in either case,
but it turns out that proving that it does is (in both cases) surprisingly simple.

In Section 4.1 we will state precisely the object we will construct, and show that its
existence implies the existence of a J-generalized frame. In Section 4.2 we will describe
how we choose the sub-tree T" C T, the frame elements (Fi,...,Fx), and the ‘garbage’
sets (G, ..., Gx); in Section 4.3, we will prove two lemmas on the disjointness of the frame
elements and garbage sets; and in Section 4.4 we will complete the proof of Theorem 2.3.

4.1. Tree-frames. The purpose of this section is to introduce the following somewhat com-
plicated objects, which also provide significantly more information (though we will not need
this) about the covering system. We will use these objects to construct our frames.

Definition 4.1. Let T" be a rooted tree equipped with maps
V(T 5[k, B = V(T)  and 4 E(T) = $U--US,
such that
(a) a(u) # a(v) if u <7r v and u # v;
b) a(B(i)) =i for each i € [k];

(b)
(c) if e € E(T') and v is the endpoint of e that is closer to the root, then y(e) € Saw);
(d) there exists a permutation 7 of [k] such that, if for each i € [k] we set

J(i) == {a(u) : u =<7 B(i)} and I(i) :=[k]\ J(2),
then J(7(i)) C {mw(1),...,m(i)} for each i € [k].
Now, for each § > 0, a §-generalized tree-frame centred at T' is a sequence (F,...,Fy),
where F; is a collection of at most |S;| — 1 hyperplanes, satisfying
(1) i € F(H) for each H € F;.
(i) prey(H) > 0§ for each H € F;.
(i13) H; € {y(e), S;} for each H € F; and each j € J(i) \ {i}, where e € E(T) is the edge
leaving the unique vertex v <7 (i) with a(v) = j in the direction of S(i);
() If min {|S;],|S;]} = 07" and i # j, then F; and F; are disjoint.

In Sections 4.2-4.4 we will construct, for any A satisfying (3), a d-generalized tree-frame
satisfying (4). The next lemma shows that this will be sufficient to prove Theorem 2.3.

Lemma 4.2. If (Fi,...,Fx) is a d-generalized tree-frame centred at a rooted tree T, then
(F1,...,Fk) is a 0-generalized frame.

Proof. Let T be a rooted tree equipped with maps «,  and v satisfying conditions (a)-
(d) of Definition 4.1. In particular, let m be the permutation given by condition (d), and
(to simplify the notation) let us permute the sets Si,..., Sk so that 7 is the identity, and
therefore J(i) C {1,...,4} (and hence I(:) D {i +1,...,k}) for each i € [k]. Now, for each
i€ [kl and j € J(i) \ {i}, set s;(i) := v(e) € S;, where e € E(T) is the edge leaving the
unique vertex v < 4(i) with a(v) = j in the direction of 5(3).
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We claim that, for each H € F;,
ZEF(H), ILL[(,L)(H) >0 and Hj € {Sj(Z.),Sj}.

Indeed, these follow directly from properties (7), (iz) and (ii7) of Definition 4.1. Finally,
observe that if min {|S;|,[S;|} = ¢! then F; and F; are disjoint, by property (iv). O

4.2. Constructing the frame. In this section we will construct the J-generalized tree-
frame (F,..., Fr), along with the rooted tree T', and a collection (G, ..., Gy) of ‘garbage’
sets. Let C' > 0 and € > 0 be arbitrary, as in the statement of Theorem 2.3, and set
A= % and § 1= 27 B\ loea(1/2) 415, (14)
Recall that the sets S, ..., Sy were fixed earlier, and let us fix, for the rest of this section, a
minimal cover A of Sy with hyperplanes such that F'(A) = [k]. By Lemma 3.3, there exists
an (\,e/2,6)-exploration tree of A; let us also fix such a tree T.
The first step is to observe that every i € [k] occurs as the label i, of some vertex u € V(T).

This is an immediate consequence of the following simple observation about index trees.

Observation 4.3. Let T be an index tree, let uw € V(T), and let j € I,. Then there exists
v e V(T), with u <t v, such that i, = j.

Proof. This follows easily from (5): if j € I, and i, # j, then j € I, for some w € N(u),
and if j € I, and v € 9(T) then I, = {j}, so i, = j. O

To extract our d-generalized tree-frame from the exploration tree T, we will also need the
notion of a depth-first search ordering < on the vertices of a rooted tree T'. This is defined
by placing an arbitrary linear order on the out-neighbours of each vertex of T, and then
setting u < v if either u <7 v, or if the branch leading to u precedes the branch leading to
v in the ordering of the neighbours of the last common ancestor of u and v.

Definition 4.4. Let < be a depth-first search ordering on the vertices of T. We define a
rooted tree T" and a d-generalized tree-frame centred at 1" as follows:

1. For each i € [k], define §(i) to be the <-minimal vertex u of T such that i, = i.

2. Define T' to be the union of the paths in T from 3(1),..., 5(k) to the root.

3. For each u € V(T), define a(u) := i,.

4. For each edge uwv € E(T), where u € N(v), define y(uv) := s, € S;,.

5. (a) Set F; := Fp() and G; := 0 for each i € [k] such that (i) is a good vertex of T.

(b) Set G; := Gg(;) and F; := () for each i € [k] such that 5(i) is a bad vertex of T.

Properties (a)—(d) of Definition 4.1 follow easily from this construction. Indeed, we have
a(B(i)) = i for each i € [k] by our choice of @ and 8, and y(uv) € S;, = Sy for all
wv € E(T) with u € N(v). To see that a(u) # a(v) if u <7 v and u # v, recall T is an index
tree, and therefore satisfies (5), so a(u) = 4, is not included in any of the sets associated
with the descendants of u. For (d), let m be the permutation of [k] given by the ordering <
restricted to {£(1), ..., 5(k)}, and observe that if u <7 B(m(i)) then u < B(7 (7)), and hence
Ba(u)) < B(w(i)), by our choice of 8. It follows that a(u) € {m(1),...,n(¢)}, and therefore
that J(7(i)) = {a(u) : u <r B(7(i))} C {r(1),...,7(i)} for each i € [k], as required.
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The following lemma shows that properties (i), (i) and (iii) of Definition 4.1 also hold.

Lemma 4.5. Leti € [k] and H € F;, let j € J(i)\{i}, and let e; € E(T) be the edge leaving
the unique vertex v < B(1) with a(v) = j in the direction of the vertex 5(i). Then
i€ F(H), pry(H) > 6 and  H; € {~(e;),S;}

Proof. Note that F; # () implies that the vertex (i) is good. By Definition 3.2(b), it
follows that ¢ € F(H), and also that ur, (3 (H) > 6. Moreover F; = Fpuy C Ap) and
F(Ag@u) € J(i) U I, by Definition 3.2, and therefore H; = S; for every j € I(i) \ Ig).
Since i € J(i), and therefore i € I(i), it follows that ju;¢)(H) > 9.

Now suppose that e; = uv, with u € N(v), and observe that, by Definition 3.2(a), we have
Hj € {s4,S;} = {7(e;), S;} for every hyperplane H' € A,. Noting that F; C Ag) € A, (by
Definition 3.2, and since u <7 ((i)), it follows that H; € {y(e;), S;}, as claimed. O

It therefore only remains to show that property (iv) of Definition 4.1 and the inequality (4)
hold. Both of these properties will follow from our choice of 5(1),..., 5(k).

4.3. Lemmas on disjointness. In this section we will prove two straightforward but crucial
lemmas; the first verifies condition (iv) of the definition of a j-generalized tree-frame.

Lemma 4.6. If min{|S;|,|S;|} = 0! and i # j, then F; and F; are disjoint.

Proof. Suppose that H € Fz(;y N Fp(j), and suppose that §(i) < () in the depth-first search
ordering. Recall that i,j € F(H), by Definition 3.2(b), and p;)(H) > 6, by Lemma 4.5.
Since |S;| > 671, it follows that j & I(7), and hence j € J(i), i.e., there exists u <7 (i) with
a(u) = j. However, this is a contradiction, since u < (i) < £(j) in the depth-first search
ordering, and [3(j) was chosen to be the <-minimal vertex u of T such that a(u) =j. O

The final lemma we need shows that each garbage set only appears on a single path
through 7. Since the number of fixed coordinates of Hj, decreases along the path (and
decreases strictly whenever a(u) € F(H)), this will imply that each hyperplane contributes
only O(1) to the sum of the left-hand side of (7) over vertices u € {5(1),...,5(k)}.

Lemma 4.7. Let H € G;NG;. Then either B(i) <t B(j), or 5(j) <t B(3).

Proof. Suppose (without loss of generality) that 5(i) < £(j) in the depth-first search order-
ing, and suppose that 5(i) A1 5(j), which implies that u < 5(j) for every u € V(T) with
B(i) < u. Note that j € F(H) C Ig;) U J (i), since H € G; N G; and by Definition 3.2.

If j € J(i), then i, = j for some v € V(T) with v <7 (i), and hence v < (i) < 3(j). On
the other hand, if j € Ig(;), then by Observation 4.3 we have 7, = j for some v € V(T) with
B(i1) <t v, and hence (by the observation above) v < (7). In either case, this contradicts
our choice of 5(j) as the <-minimal vertex v of T such that i, = j. O

Let us record here the following simple consequence of Lemma 4.7.
Proof. By Lemma 4.7, we have (without loss of generality) (i) <r 5(j), which implies,
by (5) and since (i) # B(j), that Ig;) C Igu \ {i}. Since i € F(H) N Igg), it follows that
F(H)N g,y € F(H) N Igg), as required. O
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4.4. The proof of Theorem 2.3. We are now ready to prove our main structural result,
Theorem 2.3. It only remains to show that the inequality (4) follows from (3). We will use
the following easy consequence of Lemma 4.8. Set B := {i € [k] : 5(i) is bad}.

Lemma 4.9.

1
P B3 Z |Sil.

i€B

U

1€B

Proof. Summing (7) over i € B, we obtain

Z Z o~ IF(H)N5(i)|/4 > Z 1S4].

icB Heg; zeB

Now, by Lemma 4.8, for each H and ¢ > 2 there is at most one value of ¢ € B such that
H € G;and |F(H) N Ig)| = £, so for each H € |J,.5 Gi we have

Z o IF(H)NTaol/4 iz_m _ (21/2 _ 21/4)71 <5,

1€B:HEeG; =2

as required. 0
Theorem 2.3 now follows easily from the lemmas above.

Proof of Theorem 2.3. We claim that the sequence (F7, ..., F) constructed in Definition 4.4
is a d-generalized tree-frame centred at T', and satisfies (4). By Lemma 4.2, it will follow
that (Fq,...,Fy) is also a d-generalized frame, so this will be sufficient to prove the theorem.
Note that properties (a)—(d) and (i)—(iv) of Definition 4.1 follow from the comments after
Definition 4.4, and by Lemmas 4.5 and 4.6. Moreover, by discarding excess hyperplanes if
necessary, we may assume that |F;| < |S;| — 1 for each ¢ € [k]. It therefore only remains to
show that (4) holds.
To do so, recall that T is an (A, /2, §)-exploration tree of A, and hence

Fil > (1=¢/2) (18] = 1)

for each i such that 3(7) is a good vertex, i.e., for each ¢ € [k] \ B. Now, by Lemma 4.9 and
the condition (3), we have
k

= Slsi<lAl< e (IS - 1),

i€B i=1

and hence, recalling from (14) that A = /(2*C'), we obtain

k k
MIFEI=Z D> (1=¢/2)(1S=1) = (1—=¢/2) > (1S = 1) = > _|Si]
i=1 i€[k]\B i=1 i€B
k k
> (1-¢/2-5C0)> (I1Si1-1) = (1—2)>_ (ISl - 1),
i=1 i=1
as required. O
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5. ARITHMETIC FRAMES AND THE PROOF OF THE LOWER BOUND

In order to deduce Theorem 1.1 from Theorem 2.3, we will need to bound the number
of d-generalized frames in the integers. In this section we will warm up for the calculation
ahead by counting a simpler set of objects, which we call ‘arithmetic frames’, and thereby
deducing a lower bound on the number of minimal covering systems of Z. Recall that*

e t+1\°
TZZ(log J; ) ~ 0.977.

t=1

The following proposition provides the lower bound in Theorem 1.1.

Proposition 5.1. The number of minimal covering systems of Z of size n is at least
4 3/2
3 (logn)1/2

We shall first prove Proposition 5.1 for an infinite sequence of values of n (see (18)); since
this sequence will be sufficiently dense, it will then be easy to deduce the bound for the
remaining values of n. For each n in our sequence, we will choose a single value of N, and

as n — Q.

count only covering systems A of size n with lem(A) = N. We will moreover count only
covering systems that correspond to simple frames of a certain family of sets (see below),
with a specific (carefully chosen) order, see Definition 5.4. We remark that when N is not
square-free, this is not quite as straightforward as counting the simple frames, since there
will exist hyperplanes that do not correspond to arithmetic progressions in Zy. In order to
characterise the hyperplanes that do, we need to introduce a little notation.

Given N = p{* ---pIm > 1, we define

(N) == J{(pi,j) - 5 € W]}, (15)

s

1
and set S(pe) = {0,...,p — 1} for each (p,e) € (N). Now define a map

on:Zy =S = ] Swe
(e)E(N)

<.
I

as follows: if x € Zy, then y = py(x) € S(vy is the vector such that, for each (p,e) € (N),
Ype) € Sipey 1s the coefficient of p¢~! in the p-ary expansion of 2 modulo p¢. Observe that
pn is a bijection, by the Chinese Remainder Theorem.

We say that a hyperplane H in Sy is arithmetic if @' (H) is an arithmetic progression in
Zy. The following observation provides a simple characterization of arithmetic hyperplanes.

Observation 5.2. A hyperplane H in Siyy is arithmetic if and only if, for each prime p,
the set

{(p.e) € (N): (p,e) € F(H)}
forms a (possibly empty) initial segment of the sequence (p,1),(p,2),(p,3),. ..
4We remark that the constant 7 also appears in the study of the iterated divisor function, see [3,4].
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Proof. Suppose first that H is arithmetic, so A := @' (H) is an arithmetic progression in
Zy. Let d be the modulus of A, and observe that (p,e) € F(H) if and only if p® divides d, by
the definition of ¢ . On the other hand, if {(p,1),...,(p,e(p))} C F(H) and (p,€') & F(H)
for all ¢ > e(p), then every pair of points of py'(H) differs by a multiple of p*®), and
therefore o' (H) is contained in an arithmetic progression with modulus d = I, p°®). Since
|H| = N/d, it follows that ' (H) is in fact the entire arithmetic progression, as claimed. [J

Let us now say that a total ordering < on the elements of (N) is arithmetic if

(pi, 1) < (pi,2) < -+ < (P, Vi) (16)

for all ¢ € [m]. Note that (16) does not impose any constraint on < for different primes, and
in particular we may have (p,i) < (q,7) < (p,i +1). We say that a simple frame of Sy, is
‘arithmetic’ if the order of the sets is arithmetic, and if moreover each of the hyperplanes
of the frame is arithmetic. We can now prove the following lower bound on the number of
minimal covering systems of Z of size n.

Lemma 5.3. Let N = p*---p)m > 1, and let < be an arithmetic ordering of (N). There

are at least o ( Z (-1 Z log (%) )

(p.e)E(N) (a,£)=<(p:e)
q#p

manimal covering systems of Z of size n =Y ", vi(p; — 1) + 1.

Proof. To prove the lemma we count arithmetic frames of Sy centred at (0,...,0), where
the sets S(,) are listed in the order <. Recall from Definition 2.1 that, for each (p,e) € (V)
and each a € {1,...,p — 1}, we need to choose an arithmetic hyperplane of the form

['xla'-'axiflaaa*a"' 7*]7

with z; € {0, *} for each j € [i — 1], where (p, e) is the ith element in the ordering <. To do
so, we will choose, for each prime ¢ # p, an initial segment (in the order <) of the set

Jop.e) :={(q,f) € (N): (¢, f) < (p,e)}

set x; = 0 for the corresponding coordinates, and set x; = * for all other elements of J,(p, €).
If we also set x; = 0 for every j € J,(p,e) then, by Observation 5.2, every hyperplane ob-
tained in this way will be arithmetic, and therefore the frame we construct will be arithmetic.
We claim that each such choice gives a different minimal covering system of Z of size n.

To see this, note that the frame consists of n — 1 arithmetic hyperplanes, each of which
corresponds (via the bijection ¢y') to an arithmetic progression in Zy. Moreover, the only
element of Zx not covered by these arithmetic progressions is 0, so adding this progression
gives a covering system of Z of size n, and (as observed after Definition 2.1) if we remove
the hyperplane H = [ml, e T, Ay K, ,*}, then the element (0,...,0,a,0,...,0) will
be uncovered by the remaining hyperplanes, so the covering system we have constructed is
minimal. Finally, each hyperplane in the frame has a unique entry a ¢ {0, *}, and therefore
each choice leads to a distinct covering system, as claimed.
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Finally, since we have exactly

H(IJq(p,e)!H):eXp( 3 bg(%))

a#p (2.f)<(p:e)
a#p
choices for each hyperplane corresponding to (p, ), the lemma follows. O

Now, for each arithmetic ordering < of (N}, let us define

A== X -y Y (D). (1)
(p,e)E(N) (q,f[;;(jp,e)

We will use the following particular arithmetic ordering < to prove Proposition 5.1.

Definition 5.4. For each prime p and integer e € N, set y, . 1= (p — 1)(log 6“) . Now,
given primes p and ¢, and integers e, f € N, define

<Q7 f) < (pu 6) A yq,f < yp7e'

Moreover, if z € R then we write (p, e) < z if and only if y,. < x, and define

yi=1+ Z and H p. (18)

(p,e)<z (pe)<z
Note that n(z), N(z) < oo for every x € R, and that for any N € N, the ordering < on

(N) is arithmetic. Our next lemma, combined with Lemma 5.3, implies Proposition 5.1.

Lemma 5.5. Let © > 0, and set N = N(z) and n = n(x). Then

T n3/?
o0 = (557 200 g

as r — Q.

Proof. Recalling the definition of (N, <), observe first that, for each (p,e) € (N),

+1 +1 +1
= () -lfeere () () o
(@.f)<(p)e) f>1
Now, by the prime number theorem, for each fixed f € N and as y, . — oo,

qF#p
R & o} RO I

Moreover, the sum in (19) of the terms with f > fj is o(yp,e/log yp,e) as fo — 00, so

> tog (L) < B 5= (1, THIY (oo e

1 1
(@.1)=(pe) 08 Upe 2 08 Yp.e
q#p
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as Ype — 00. We next fix e € N, and sum over primes p. We obtain

Ty 3wl ¥ gl

lo et+1
- (T+ O<1)) 3((logg:c) )

as ¢ — 00, again using the prime number theorem.® Thus, summing over e, and noting that

(20)

the left-hand side of (20) is uniformly bounded from above by an absolute constant times
the right-hand side (without the o(1) term), we obtain

3

Q(N, <) = (T+O(1))I—BZZ <log€+1) = (72+0(1>)?)(x—

3(log z) = log x)?

as r — 0o. Finally, using the prime number theorem a third time, we obtain

=1+ (p—l):(1+0(1))z (log

2log (zlo
e>1 p71<91:logie1 & ( &

= (14 0(1)) Z (1 ge+ 1) = (1 +0(1)) v , (21)

2logx = 2logx

e+1)

e+1)

2

and hence Q(N, <) -n~%2/logn — v/2(1%/3)(7/2)73/% = 4\/7/3 as * — o0, as claimed. [

We can now easily deduce the lower bound in Theorem 1.1, the only remaining difficulty

being to deal with those n € N that are not of the form n = n(z) for some x € R.

Proof of Proposition 5.1. It follows immediately from Lemmas 5.3 and 5.5 that the number

of minimal covering systems of Z of size n(x) is at least

as x — 00. Let x > 0 be maximal such that n(z) < n, and set ¢ := n — n(z). Observe that
t <z =o(n), by (21), and that, by removing the hyperplane [0,...,0] (i.e., the progression
{0 (mod N)}) from the construction given in the proof of Lemma 5.3, we obtain a family of
minimal covers of Zy \ {0} of size n(z) — 1. We complete each to a minimal cover of Z of
size n by adding the progressions {27! N (mod 2°N)}, for each ¢ € [t], and {0 (mod 2'N)}.

We obtain a family of
4/T n3/?
Vo 1)) —
o (57 ) o)

minimal covering systems of Z of size n(x) + ¢t = n, as required. O

°Indeed, the prime number theorem implies that dop<s p* = (1/3+0(1))z%/log z as z — oc.
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6. COUNTING COVERINGS THAT ARE FAR FROM FRAMES

In this section we will begin the deduction of Theorem 1.1 from Theorem 2.3 by bounding
the number of minimal covers that fail to satisfy (3). In the process, we will obtain a short
proof of weaker version of Theorem 1.1, bounding the number of minimal covering systems
of Z of size n up to a constant factor in the exponent.

Proposition 6.1. Let C' > 0 be a constant, and let n € N and N = p]* -+ - pIm satisfy

i=1

Then the number of minimal covering systems A of Z of size n with lem(A) = N is at most
2\/T n3/?
e (57 +o0) )

In order to bound the number of covering systems, we will need to bound the number of

as n — Q.

choices for the modulus d and shift a of each arithmetic progression in A. The following
simple but important lemma, which we will use again later, shows that, given the moduli,
we have relatively few choices for the shifts.

Lemma 6.2. Let d,...,d, € N. There are at most (n!)? minimal covering systems A =
{A1,..., A} of Z of size n such that, for each i € [n], the modulus of A; is d.

Proof. Let A = {A;,...,A,} be a minimal covering system of Z, and observe that we may
reorder the elements of A so that, for each i € [n], the arithmetic progression A; covers at
least a 1/i proportion of the set
R; =7\ | JA;.
>
Indeed, to see that this is possible we simply choose the sets one by one (in reverse order),
letting A; be the (remaining) progression in A whose intersection with R; has largest density,
observing that R; is non-empty (since A is minimal) and recalling that A covers Z. The

total number of choices for A is therefore at most the sum over permutations of (dy, ..., d,)
of the number of sequences (A, ..., A,) with this additional property.
Now let ¢ € [n], and suppose that we have already chosen progressions (A1, ..., A,).

We claim that we have at most ¢ choices for the arithmetic progression A;. Indeed, since
the progressions {a (mod d;)} (for a € {0,...,d; — 1}) are disjoint, there are at most ¢
progressions with modulus d; that cover at least a 1/i proportion of R;. It follows that the
number of choices for A is at most (n!)?, as claimed. O

It therefore only remains to bound the number of choices for the moduli. Note that if
lem(A) = p{*---pyr then we have at most [], ('yl- + 1) choices for each modulus. The
following lemma, which we will use again later, provides a sharp bound on this product.
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Lemma 6.3. Let (p1,...,pm) be a sequence of distinct primes, let (1, .. .,vm) be a sequence
of positive integers, and let M > >"7"  vi(p; — 1). Then

m 1/2
Z log (i +1) < (2vT +0(1)) (logiM) (22)

as M — oo.

Proof. We may assume that p; < --- < p;,,, and reorder the ~; so that v; = -+ = 7,
noting that this does not change the left-hand side of (22), and that the inequality M >
Yo vi(pi — 1) still holds under the new ordering. Set x; := max {z Ly 2 t}, and observe
that maximizing the left-hand side of (22) is equivalent to maximizing

t+1
X = th - log (%)
t>1

subject to the constraint

M?Z%‘(Pi—l)zzgt:(pi—l)>Z§max{10gxt—3, 1}, (23)

i>1 t>1 i=1 t>1

where in the final step we used the following bound of Massias and Robin [18],
3 3.56 2
8) > x—(logaj — 2),
2
3

Zpi = — <loga: +loglogx — = —
— 2 2  logx
which holds for every = > e®. Note that X is increasing in z; for each t > 1, and so (by
allowing 0 < z; € R) we may assume that M is equal to the right-hand side of (23).
Applying the method of Lagrange multipliers, it follows that there exists A € R such that,

for each t > 1, either
t+1 5
)\log% = xt(logxt — 5), (24)

or x; < e*. We will first show that the contribution to X of those values of ¢ such that
x; = O(1) is small. To do so, note that z; = 0 for all t > M, by (23), and observe that
therefore

> - log <¥) 1 [z, <log M] < (log(M + 1)) (25)

t>1

We may therefore restrict our attention to those values of ¢ for which x, > log M > e*, so

that, in particular, (24) holds. Let 7' = max {t : z; > log M } and observe that, by (23), (24)
and (25), we have

. (lo m)2 2 L b1y

g 2 A (log )
X<AYy —2— 4+ 0(logM d M>=) ~—1t-
z;logmt—5/2+ (log M) o 22

— log x;

To bound these sums, observe that A — oo as M — oo (by (24) and since x; > log M), and
that therefore, uniformly in 1 <t < log A, we have

t+1

log z; = log A + log log — log (loga:t — 5/2) = (1 + 0(1)) log A
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as M — oo. Moreover, if log A <t < T, then log =~ Bl <1/t and log z; > loglog M. Tt follows
that, for each fixed ¢ € R, we have

Z log'”rl 1+0(1)Z o t+1\* 7+o0(1)
og:vt—c_ log A &7 o log\

t=1 t>1

as M — oo, and hence M > (7/2 + o(1))A*/log \. Finally, we deduce that

A M O\ Y2
3 < @7 o) (15577

as M — oo, as required. [l

X < (74 0(1))

We can now easily deduce Proposition 6.1.

Proof of Proposition 6.1. We first choose the moduli of the progressionsin A = {Ay,..., A},
and then the shifts. Since lem(A) = N = p]' ---p¥m, for each j € [n] we have at most

m

e <o (0 (i)

i=1
choices for the modulus of the arithmetic progression A;, where the inequality follows by
applying Lemma 6.3 with M = n/C, and using our bound on n. By Lemma 6.2, it follows
that the number of choices for A is at most

- (o) )~ () 5

as n — 00, as required. U

Using Simpson’s theorem (Theorem 2.4), we can now easily deduce an upper bound on the
number of minimal covering systems that is sharp up to a constant factor in the exponent.

Corollary 6.4. The number of minimal covering systems of Z of size n is
@(n3/2)
exp (log )i )

Proof. The lower bound follows by Proposition 5.1 (or by the simpler construction in the
introduction). For the upper bound, recall that, by Simpson’s theorem, we have

A 2D yi(pi—1) +12 ) vilog, pi
=1 =1

for any minimal covering system A of Z with lem(A) = N = p]* ---p¥m and hence N < 2".

Thus, applying Proposition 6.1 with C' =1 (and summing over N < 2"), there are at most

exp ((2\/F+ o<1))$)

minimal covering systems of Z of size n, as required. OJ
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7. PROOF OF THEOREM 1.1

In this section we will complete the proof of Theorem 1.1; we begin by giving an overview
of the remaining part of the argument. Let A be a minimal covering system of Z of size n,
let N = lem(A) and, recalling (15), set Sg,0) = {0,...,p— 1} for each (p,e) € (N). We map
Zy into Sny = H(p76)6<N> S(p.e) as described in Section 5; that is, we associate x € Zy with
the vector y = pn(x) € S(ny, where y, . is the coefficient of p*~! in the p-ary expansion
of z modulo p°. Note that the image of each progression in A € A is a hyperplane in Sy.
Moreover, by Observation 5.2, if H = @y (A) then, for each prime p, the set

{(p.e) € (N): (p,e) € F(H)}

forms a (possibly empty) initial segment of the sequence (p, 1), (p,2), . ... Recall that we call
hyperplanes that satisfy this condition ‘arithmetic’.

We will apply Theorem 2.3 to A (with C' = 4 and £ > 0 an arbitrarily small constant),
and deduce that either (3) fails to hold, or A contains an almost optimal d-generalized frame
(}"(M) (p,e) € (N)) In the former case we are done by Proposition 6.1, so let us assume
the latter. We will carefully count the number of choices for the fixed sets of the frame
elements F, ) such that p > 6~'. The bound we obtain will be sufficiently strong unless N
is primarily composed of primes smaller than §~!; however, for such N it turns out that the
simpler argument used in Section 6 suffices to give a sufficiently strong bound.

Next, we bound the number of choices for the fixed sets of the remaining hyperplanes: those
in frame sets F, ) for some prime p < 51, and those not used in the frame. Surprisingly, it
turns out that we can again obtain a sufficiently strong bound using the method of Section 6.
Roughly speaking, these ‘extra’ hyperplanes are being used inefficiently, and would be better
off (in terms of increasing the number of choices) by contributing to the construction of a
larger frame (and thus a different value of N).

Finally, noting that the fixed sets of the hyperplanes in A correspond to the moduli of the
original arithmetic progressions, we will use Lemma 6.2 to bound the number of minimal
covering systems of Z of size n with given moduli.

7.1. Choosing the fixed sets of J-generalized frames. Let N € N and 6 > 0, and
suppose that (.F(pﬂ) :(p,e) € (N >) is a d-generalized frame in Sy consisting of arithmetic
hyperplanes.® Recall that Fp,e) is a collection of at most p — 1 hyperplanes, and that there
exists an ordering < on (N), and for each (p,e) € (N) a set

I(p,e) 2 {(q,f) € (N): (p.e) < (¢, f) and (g, f) # (p,e)}, (26)

such that i) (H) > 0 for each (p,e) € (N) and H € F, .. Recall also that (p,e) € F(H),
and that the sets F, ) with p > 0! are disjoint. We remark that the ordering < might not
be arithmetic, but the hyperplanes are arithmetic, and this will turn out to be sufficient.
In this subsection we will bound the number of choices for the fixed sets of the hyperplanes
in (]:(ne) :(p,e) € (N)) corresponding to primes larger than d—!. While doing so, it will be

6By Definition 2.2, we may suppose that § is sufficiently small; in particular, we will assume that § < 1/2.
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convenient to write (N)s := {(p,e) € (N) : p> 6"}, and to define

I(N):= > (p—1) and Ty(N):= >  (p—1).
(pe)e(N) (pe)e(N)s
Note that, by Simpson’s theorem, if lem(A) = N then |A| > I'(N). Given an ordering < on
(N), for each (p,e) € (N) set
M,(p,e) = H q,
(9:f)=<(p.€)

and given a collection A of hyperplanes, let us write D(A) := (F(H) : H € A) for the
corresponding collection of fixed sets. We begin by observing the following upper bound
(cf. Lemma 5.3) on the number of choices for the sequence (D(F,.)) : (p,€) € (N)s).

Lemma 7.1. Let N € N and § > 0, and let < be an ordering on (N). There are at most

f+1 1
S S
<( Z (fo)eZ ) ( / ) 0

p,€)€<N>5 <M< (pve)

sequences (D(Fpe)) : (p,€) € (N)s) such that (Fpe) : (p,€) € (N)) is a simple §-generalized
frame in Siny with ordering < and consisting only of arithmetic hyperplanes.

Proof. Let (p,e) € (N)s, let H € F,.), and let ¢ be a prime. Recall that, since H is an
arithmetic hyperplane, it follows by Observation 5.2 that the set F/(H) induces a (possibly
empty) initial segment of the set (¢, 1), (¢, 2),(q,3),. ..

Suppose first that ¢ > d~'. We claim in this case that there are at most

1{f e (M<(p,e) }}+1_exp< > )>1og(%)>

fi(a:.f)e(M<(pe
choices for this initial segment. To see this, recall that ji;¢¢)(H) > J, and therefore (¢, f) &
F(H) for every (¢, f) € I(p,e). By (26), it follows that F'(H) does not contain any element
(q, f) with (p,e) < (¢, f) and (p,e) # (q, f), and therefore the elements (¢, f) in F'(H) form
an initial segment (in increasing order of f) of the set {(q, f) € (N) : (¢, f) < (p.€)}. Since
this set has the same size as the set {f 2 (q, f) € (M<(p, e)}} (which is an initial segment of
the positive integers), the claimed bound on the number of choices follows.

Now suppose instead that ¢ < d~'. In this case the condition Pi(pe)(H) > 6 only im-
plies that F(H) contains at most log,(6~1) elements of I(p, ), and hence, by (26), at most
log,(671) elements (g, f) such that (q, f) £ (p,e). Repeating the argument from the case
g > 67, it follows that we have at most

[{F (a0, ) € (Ma(p,e)) } +1+1ogy(671) < exp( S log(f}—1>+%>
f(a.f) )

€<M_<(p,6
choices for the initial segment of the set (¢, 1), (¢,2), (¢,3), ...
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Finally, recall that there are at most p — 1 hyperplanes in F, . for each (p,e) € (N)s, and
note that there are at most 6! primes ¢ < 6~!. Hence, multiplying the number of choices
for all (p,e) € (N)s, all H € F(;), and all primes ¢ that divide N, it follows that we have

at most
f+1 1
exp( 3 <p_1>< 3 1g( )
(p.e)e(N)s (0./)€(M<(pe))
choices for the sequence (D(F,e)) : (p,€) € (N)s), as claimed. O

For each N € N and 0 > 0, and each ordering < on (N), let us define

A= ¥ G-n X ().

(p.e)€(N)s (a./)e(M<(pse))

The following lemma provides a sufficiently strong upper bound on Qs(N, <).
Lemma 7.2. Let N € N and § > 0, and let < be an ordering on (N). If I's(N) > ¢ -T'(N),

then
W Ls(N)*?
5+ (1)) (1ogr5(N))”2 (27)

a0 < (
as N — oo.
We first use Lemma 6.3 to obtain the following bound when I'5(M) is large.
Lemma 7.3. Let M € N and 6 > 0. Then

1/2
Z log (f—]t > < (27 +0(1)) (%) + glogl“(]\/[)

(¢.f)e(M)
as Ts(M) — oo.

Proof. Let M = p]*---p), and observe that

Z log(f+l> Zlog %—1—1 Z log(fyi—i-l)—l— Z log(%+1)
)

(g.f)e(M iip;>0—1 iip; <ot
Ts(M) \'* 2
< (2 1) [ —2—— ZlogT'(M
(2¢/7 + o(1)) <logF5(M)) + S log (M)

as ['s(M) — oo, as required, by Lemma 6.3 applied to the sequence ~; - 1 [pi > 5*1], and by

the bound v; < T'(M), which holds for every i € [m]. O
When I's(M) is bounded and I'(M) — oo, we will instead use the bound
1 3
> log (%) < Slog (M), (28)
(¢:.)e(M)

which follows from the proof above by using the trivial bound log(y; + 1) < I's(M) for the
(bounded number of) large primes p;, instead of applying Lemma 6.3.
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We will also need the following easy lemma.
Lemma 7.4. Let2<mo<my <---<my<m. Then

-1 1/2
3 i (mip1 —my) < 2+0(1) _mr
— \logm; o 7S\ 3 (logm)1/2

1=

as m — Q.

We can now prove Lemma 7.2.

Proof of Lemma 7.2. Observe first that, by Lemma 7.3 applied with M = M_(p, e), we have

e 1/2
> log <%) < (2\/F+o(1))( Lo (M<(p. ))>)> +210gF(M<(p,6))

(@) (M= () log [s (M(p,e g
as ['s(M<(p,e)) — oo, and that when I's(M<(p,e)) is bounded, by (28) we have
1
> log (f;> < glogF(N),

(¢.5)e(M<(pe)) /

as I'(N) — oo, since I'(M<(p,e)) < I'(N). Thus, summing over (p,e) € (N)s, it follows that
. 1/2
Q) < (v o) ) (e T drn e

(p,e)E(N>5
as N — oo (which, in particular, implies that I'(N) — o0).
Next, we apply Lemma 7.4 with (my, ..., my) = (Fg(M<(p, e)))(p OE(NYs and m = [s(N).
Note that if (p/, ') immediately follows (p, e) in the ordering < restricted to (NN)s, then
F5 (M-<(p/7 6/)) - F5 (M-<(p7 6)) =pP— 1a

since I's only counts the large primes. It follows that

4T [s(N)3/2 3
Qv 4) < (14 +o) TR AR Al

as N — oo. Since I's(N) > 6 - I'(IN), by assumption, we obtain (27), as required. O
Before continuing, let us observe that the condition I's(N) > ¢ - T'(IV) in the statement of
Lemma 7.2 (which in any case could be weakened considerably) is not a serious restriction,

since we can easily obtain, using the method of Section 6, a suitable bound on the number
of minimal covering systems whose least common multiple has mostly small prime factors.

Lemma 7.5. Let 3,5 > 0 be constants and let n € N and N € N with I's(N) < - T'(N).
The number of minimal covering systems A of 7 of size n with lem(A) = N is at most

exp <(2 BT + 0(1))(107;3%)

as n — Q.
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Proof. The proof is essentially the same as that of Proposition 6.1, but we use Lemma 7.3
in place of Lemma 6.3 to count the choices of the moduli. To be more precise, in order to
count the minimal covering systems A = {A;,..., A,} of Z of size n with lem(A) = N, we
will first choose the moduli, and then the shifts. Observe first that, for each j € [n], we have
at most

1/2
H (e —2 1) < exp ((2\/?—# o(1)) (%) + % logF(N))
(p,e)€(N)
choices for the modulus of the arithmetic progression A;. Indeed, the left-hand side is simply
the number of divisors of N, and the inequality follows from Lemma 7.3.
Now, since (by assumption and by Simpson’s theorem) we have I's(N) < - T'(N) < fn,
it follows by Lemma 6.2 that the number of choices for A is at most

n3/? 2nlogn

0 e 2/ 7+ 000) gt + 20 ) = e (2 + o) )

as n — 00, as claimed. O

7.2. Proof of Theorem 1.1. We are finally ready to put together the pieces and deduce
our main counting result. We will need the following easy bound.

Lemma 7.6. For every m € N and x > 0, we have

3/2 3/2 1/2
(m+x) S _m N §+0(1) m ..
og(m+ x ogm ogm
(oa(m + o)) = (logm)Z T \2 i

as m — o0.

We can now deduce Theorem 1.1 from Theorem 2.3, Propositions 5.1 and 6.1, Lemma 6.2,
Simpson’s theorem, and the results of this section.

Proof of Theorem 1.1. The lower bound follows immediately from Proposition 5.1, so we will
prove the upper bound. Observe first (cf. Section 6) that, by Simpson’s theorem, if A is a
minimal covering system of Z of size n, then lem(A) < 2". We may therefore fix N < 27,
and consider only covering systems A such that lem(.A4) = N. We associate each progression
A € A with an arithmetic hyperplane in S(yy using the bijection ¢y, as described above.

Let ¢ > 0 be an arbitrarily small constant, set C' = 4, and let 6 = §(C,e) > 0 be the
constant given by Theorem 2.3. Suppose first that either n > 4I'(N) or T'(N) > 4's(N).
Then, by Proposition 6.1 and Lemma 7.5, there are at most

exp ((ﬁ+ 0(1))L/2)

CTORE
minimal covering systems A of Z of size n with lem(A) = N, as required. By Simpson’s
theorem, let us therefore assume from now on that I'(NV) < n < 4T(N) < 2'T5(N).
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By Theorem 2.3 (and our choice of ¢§), every minimal covering system A of Z of size

n < 4T(N) with lem(A) = N contains a d-generalized frame (F,.) : (p,€) € (N)), with
Y |Fpal = (1 —e)LW). (29)

(pe)E(N)
Since I'(IV) < 4Is(N), it follows by Lemmas 7.1 and 7.2 that the number of sequences
(D(Fipe) : (p,€) € (N)s) such that (Fi,e : (p,e) € (N)) is a d-generalized frame in Sy
consisting only of arithmetic hyperplanes is at most
et ep (14T o)) T LD 30
’ (logI's(N)) g

where the factor of I'(V)! bounds (noting that I'(N) > |(N)|) the number of choices for the

ordering < on (N) associated with the d-generalized frame.

We next need to count the choices of the moduli for the remaining arithmetic progressions
in A, that is, those corresponding to hyperplanes that are not included in F,.) for any
(p,e) € (N)s. Recall (from Definition 2.2) that the sets F, ) with (p,e) € (IN); are pairwise
disjoint, so there are exactly

xi=n— Z | Fpe)l

(p.e)e(N)s
such arithmetic progressions in A. We bound the number of choices for the fixed sets of

these remaining hyperplanes in A using Lemma 7.3, which implies that we have at most

11 (6 g 1) < exp ((2ﬁ+ o(1)) (%)m + % logF(N))

(pe)E(N)
choices for each. Combining this bound with (30), and recalling that T'(N) < n < 2'T5(N),

it follows that we have at most

exp ( (% + 0(1)) (102;(?8\?;2) o3 (V7 4 0(1) (%) 2 m) (31)

choices for the moduli of the arithmetic progressions in A, given N and x.
In order to bound (31), we apply Lemma 7.6 with m = I's(N). Since 0 < = < n and

274 < m < n, we obtain

Ds(N)*? §< Ls(N) )”233 _ (TN +a) o(n”?)
(logF(;(N))l/2 2 \logT's(N) - (log(lﬂ(;(]\f)—kx))l/2 (logn)'/2

as n — 00. Now, since |F, | < p— 1 for each (p,e) € (N), it follows from (29) that

3/2

(32)

n—r= Z |.7:(p,e)| > T5(N) —eI'(N) > T5(N) — en,

(p,e)E(N)s
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so I's(N) +z < (1 + ¢)n, and hence

(Ds(N) + x)3/2 ( 5)3/2L/2
(log(I's(N) + :c))l/2 h (logn)/2’

Combining this with (31) and (32), it follows that we have at most

exp ( (% + 0(1)> (1+ 5)3/2ﬁ)

choices for the moduli of the progressions in A.

Finally, by Lemma 6.2, it follows that there are at most

o (5700 )

minimal covering systems of Z of size n with lem(.A) = N. Since € > 0 was arbitrarily small,

this completes the proof of Theorem 1.1. O
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APPENDIX A. PROOF OF THE GEOMETRIC SIMPSON’S THEOREM

In this appendix we will provide, for the reader’s convenience, a proof of the following
slight generalization of Simpson’s theorem [22].

Theorem A.1 (Simpson’s theorem). Let A be a minimal cover of Sy with hyperplanes, and
let I C F(A). Then

{HeA:FHEH)ZI} > Y (1S]-1)+1

ieF(AN\I
Note that Theorem 2.4 follows from Theorem A.1 by setting I = ().

Proof. The proof is by induction on |F'(A)|. Set
LV =8 x-S 1 x {s} x Sij1 x-S

for each i € [k] and s € S;, and note that if F(A) = {i}, then A (being minimal) must
consist precisely of the |S;| hyperplanes Lgi), one for each s € S;. Moreover, if I C F(A)
then I = (), and hence

{Hed: F(H) Z T} = |4 = |5,
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as required. So suppose that |F'(A)| > 2, and (recalling that I C F(A)) choose an element
i€ F(A)\ I. For each s € S;, let A; C A be a minimal cover of LY, and observe that

A= U Asa
sSES;
since A is minimal. For convenience, let us assume (without loss) that S; = {1,...,p}.
Now, set F;(H) := F(H)\{i} for each H € A, (and similarly for a family of hyperplanes),
and define a sequence of sets (R, ..., R,) by setting Ry := I, and
Rs = Rs—l U FZ(.AS)
for each s € S;, so in particular R, = F'(A) \ {¢}. Now set I, :== Rs_1 N F;(Ay), and define
Q,:={HeA,: F,(H) ¢ IL}.

We claim that, applying the induction hypothesis to the minimal cover A, of LY (which we
naturally identify with S; X ---S;_ 1 X S;11 X ---Sy), we have either R,_; = Ry, or
Q= > (51-1)+1 (33)
JER\Rs—1
for each s € S;. To see this, simply note that R, \ Ry 1 = F;(A) \ I, so if Ry 1 # R, then
I, C Fi(Ay), and that F;(As) C F(A)\ {i}, so (since i € F(A)) we have |F;(Ay)| < |F(A)|.
Set J := {3 €S;: Ry 1 # Rs}, and recall that (33) holds for each s € J. We claim that

Ja| =Y 1el=-(si-10+ Y (s]-1).

seJ s€J JjeF(ANI

The inequality follows from summing (33) over s € J, and recalling that i € F(A) \ I, so it
remains to show that the sets Q, are disjoint. To see this, observe that, if H € A,, then

Fi(H) € I & Fi(H)C Ry and F;(H)YZ Ry,

and so H € A, for at most one element s € S;.

Finally, we claim that for each s € S;\ J, there exists a hyperplane H € A such that H C
LY and F(H) Z I. To see this, observe first that LY is not covered by {He A:i¢ F(H)},
as otherwise Sj) would be covered by {H ceA:i¢g F(H )}, contradicting the minimality of
A and the fact that i € F(A). It follows that there exists H € A with H C L{”, and we
have F(H) € I because i € FI(H)\ I. Moreover, none of these |S;| —|J| distinct hyperplanes
is included in @, for any s € .J, since they do not intersect the set (J,, LY.

Hence, noting that F(H) ¢ I for each H € Q, (since I C R,y and F(H) € Rs_1), we
obtain

{HeA:FH)ZI}| >

Ue.

sed

S == Y (181-1) +1,
JEF(ANT

as required. 0
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