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Abstract—To support various upper applications of intelligent
vehicles ranging from driving assistance to automated planning
and control, accurate localization, and tracking are the fun-
damental tasks. Given the limited versatility and efficiency of
traditional single-vehicle multisensor and multivehicle multisen-
sor localization and tracking solutions, this article presents an
efficient distributed multivehicle cooperative tracking framework
via multicast. Once the self-positioning data is locally fused
with assistance from roadside units, each vehicle shares the
local-fusion results with surrounding vehicles through multicast
and observes surrounding vehicles with on-board sensing equip-
ment. The vehicles can then jointly feed the local-fusion results,
received multicast information, and observation results into a
global filter to obtain accurate and robust cooperative track-
ing. By leveraging multicast, the communication load is reduced,
which promotes the efficiency of communication resource utiliza-
tion. By optimizing the data fusion procedure, the error caused
by error correlation is eliminated and the sensitivity to non-
ideal conditions, including packet loss, interruption, time-varying
cooperative vehicles, etc., is reduced, which improves the versa-
tility of the framework in real-world applications. Furthermore,
several practical issues, such as random communication delay,
packet loss, communication load, and localization robustness are
also involved. To verify the effect of the framework, both theo-
retical analyses and simulation results are presented to show the
accuracy and robustness of our proposed cooperative tracking
framework.

Index Terms—Autonomous driving, cooperative tracking, intel-
ligent transportation systems (ITSs), Internet of Vehicles (IoV),
multicast.
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I. INTRODUCTION

AS AN essential part of the intelligent transportation
system (ITS), intelligent vehicles, and autonomous driv-

ing technology have attracted more and more attention
in recent years [1]. There are mainly five modules for
autonomous driving, namely, localization, perception, plan-
ning, control, and system management [2]. Accurate localiza-
tion and tracking of vehicles are fundamental for autonomous
driving, as they provide precise information about the posi-
tion, attitude (i.e., localization), and continuous trajectory of
vehicles (i.e., tracking). This information is essential for vari-
ous aspects of autonomous driving, ranging from environment
perception to vehicle control. The key performance metrics of
interest in localization and tracking are accuracy and robust-
ness [3]. In terms of accuracy, a root mean squared error
(RMSE) of less than 5 m is needed to justify which road the
vehicle is in, less than 1.5 m is needed for lane, and less than
1 m is needed for the detailed position in the lane. For active
control of the vehicle, the RMSE should be less than 0.1 m [4].
In terms of robustness, the accuracy must be maintained at
the desired level in all driving conditions, including complex
dynamic urban environments and various harsh weather condi-
tions, such as rain and snow. In summary, a subdecimeter-level
localization and tracking scheme that is robust in complex road
environments is desired for autonomous driving [5].

In recent years, numerous methods have been proposed to
provide accurate localization [6] using various technologies,
such as global positioning system (GPS), inertial measure-
ment unit (IMU), and simultaneous localization and mapping
(SLAM) based on light detection and ranging (LiDAR), cam-
era, etc. However, it is challenging to tradeoff accuracy,
robustness, and cost for single-vehicle localization using only
one or more on-board devices. With the development of
Internet of Vehicles (IoV) and 5G communication techniques,
wireless interconnections with high quality of services, such
as high bandwidth and low latency among vehicles are possi-
ble in the near future, which supports the ITS to have stronger
cooperative intelligence capability [7], [8], [9], [10], [11]. In
such a context, multivehicle cooperative localization methods
have been proposed to address the limitations of single-vehicle
localization. In our previous work [12], we proposed a mul-
tisensor multivehicle (MSMV) cooperative localization and
tracking framework, which takes full advantage of various
on-board equipment, vehicle–vehicle cooperation, and vehicle-
road cooperation. However, this framework also has issues,
such as direct vehicle-to-vehicle (V2V) communication load
and multivehicle performance loss.
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To leverage emerging communication technologies and take
full advantage of cooperative tracking, this article presents
a multicast-based distributed cooperative tracking framework.
Similar to [12], it continues to use a variety of sensors and
RSUs, as well as the vehicles’ dynamic model for the tracking
process. However, it improves the scheme of the information
interactions and the structure of the fusing algorithm to further
improve performance and efficiency. Specifically, the two-
layer filtering structure is replaced by a new local-fusion
global-filtering framework. In the local-fusion phase, vehicles
fuse self-positioning data from GPS, IMU, etc., with the aux-
iliary positioning data from RSUs to integrate vehicle-road
cooperation into the vehicle–vehicle cooperation framework.
Then, they share the locally fused data with surrounding
vehicles through multicast communications. With malicious
user detection algorithms like [13], trusted cooperators can
be selected among surrounding vehicles as multicast mem-
bers. In the meantime, each vehicle takes observations on
surrounding vehicles to obtain relative states with them using
the on-board sensing systems, including LiDAR, camera, etc.
Finally, each vehicle feeds data from different sources into
the global-filtering algorithm independently to generate coop-
erative localization and tracking results, which constitutes a
distributed framework. Delay compensation is also utilized to
ensure localization accuracy.

Compared with [12], the main contributions of this arti-
cle lie in the optimization of communication content and
data fusion procedure, which leads to gains in communication
load and versatility. Specifically, the communication content
enables the utilization of multicast to reduce communication
load. The data fusion procedure can handle a time-varying
number of cooperative vehicles, keep robust in lossy communi-
cation environments, and eliminate the asymptotic localization
error as the number of vehicles increases. This adaptability
makes the framework applicable to the real IOV scenar-
ios. The contributions of this article are in the following
aspects.

1) The optimization of the communication content
facilitates the utilization of multicast to reduce
communication load and avoids complex V2V direct
communication, which improves the efficiency of uti-
lizing communication resources.

2) The optimization of the data fusion procedure reduces
the number of filters and enhances the resistance
to packet loss, random delay, communication colli-
sion, interruption, and time-varying cooperative vehicles,
which improves the scenario versatility.

3) The asymptotic error caused by error correlation is ana-
lyzed and eliminated. The performance of the framework
is shown in analytical forms and simulation results corre-
spondingly, which shows the effectiveness of cooperative
tracking.

The remainder of this article is organized as follows.
The related work on localization and tracking are presented
in Section II. The system model and problem formu-
lation are presented in Section III. The multicast-based
cooperative tracking algorithm and theoretical analysis are
presented in Section IV. Then, some numerical simulations

are given in Section V to evaluate the performance of the
framework. Finally, conclusions and ongoing research issues
are highlighted in Section VI.

II. RELATED WORK

To realize localization and tracking, a traditional method
is the dead reckoning derived from navigation, which uses
accelerators and gyroscopes in the IMU to conduct low-cost
localization and tracking [14], [15]. Due to its reliance on
accurate initial positioning and susceptibility to accumula-
tion error, using only the IMU for tracking is not feasible.
However, the IMU’s insensitivity to environmental factors
makes it a valuable assistant to real-time absolute localiza-
tion methods such as GPS. Furthermore, some technologies
rely on a priori map for localization. With a high-precision
map of the area, the vehicle can match the map using preset
laser or other forms of labels, thus providing stable and high-
precision positioning [16], [17]. However, due to the high cost
of building and updating the map, it is not practical for open
areas.

One of the most widely used low-cost outdoor position-
ing methods is GNSS, including GPS, GLONASS, BeiDou,
Galileo, etc. However, the accuracy of traditional GNSS ranges
from several meters to even tens of meters in open out-
doors [18], providing a reference only at the road level.
Additionally, GNSS faces accuracy reduction and signal loss
issues in closed environments, such as tunnels and under-
ground areas. new methods derived from traditional GNSS
have been developed, with real-time kinematic GPS being
the most advanced. To improve the accuracy, new meth-
ods derived from traditional GNSS have been developed,
with real-time kinematic GPS being the most advanced.
It uses the phase correlation between base station signals
and GPS signals to improve accuracy, achieving centimeter-
level accuracy in fixed solutions [19] with a good sig-
nal connection. However, it suffers from ten times more
terminal cost compared to regular GPS, limited coverage of
ground stations, and higher sensitivity to occlusion environ-
ments. Consequently, GNSS alone cannot meet the precision
and robustness requirements for localization and tracking in
autonomous driving, necessitating the use of other sensors in
combination.

Intelligent vehicles are typically equipped with various sens-
ing devices, such as LiDAR [20], [21], camera [22], [23],
millimeter-wave radar [24], etc. SLAM using these sen-
sors [25] enables positioning without the need for a prior map.
By installing a variety of high-performance sensors on a single
vehicle, information fusion can be used to achieve more accu-
rate localization and tracking through filtering algorithms, such
as the Kalman filter [26], [27] and particle filter [28], [29].
However, utilizing high-precision sensors on a single vehicle
can be costly in practice. Additionally, the performance of sen-
sors on a single vehicle tends to be correlated. For instance, in
challenging conditions like long dark tunnels, multiple sensors
may be affected simultaneously. GPS localization can be lost
due to satellite signal occlusion, LiDAR point clouds may be
difficult to be matched due to the lack of structural features
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on smooth walls, and camera images may be unclear in dim
light. In such cases, the additional cost of multisensor single-
vehicle localization and tracking may not result in significant
performance gains.

Since the challenges of high costs and adverse conditions
are difficult to overcome in both the single-sensor single-
vehicle and multisensor single-vehicle strategies, an alternative
approach is to leverage multivehicle cooperation. Some early
studies like [30] and [31] have proposed the concept of
cooperative localization in wireless sensor networks. Through
Bayesian inference, recent research has optimized the location
of multiple nodes by measuring the angle of arrival [32] and
transmission range [33] using wireless signals.

However, this approach only takes into account quasi-
stationary nodes and does not account for the mobility dynam-
ics of vehicles. In a vehicular environment, by utilizing the
multipath channel between the base station and vehicles [34],
as well as between vehicles themselves [35], vehicles can
achieve radio-based cooperative SLAM. In [36] and [37],
GPS raw data at a low level are exchanged to improve GPS
localization by exploiting multivehicle trajectory correlation.
Notably, in such methods, the GPS information and coopera-
tive information of multiple vehicles are closely integrated.
However, this tightly coupled scheme is only suitable for
specific device scenarios.

As the loosely coupled scheme is more general to scenar-
ios with heterogeneous vehicle sensor types, [38], [39] reduce
the coupling between self-localization and relative position
correlation to improve applicability. Using dedicated short-
range communication signal processing, information, such as
time of arrival, received signal strength, and Doppler shift
are extracted to calculate relative localization. Then, filter-
ing and joint optimization methods are used, respectively, to
optimize localization. However, it should be noted that since
relative localization is obtained through wireless signals, these
methods are inapplicable to mainstream intelligent vehicles
equipped with sensors, such as LiDAR and cameras.

Utilizing on-board sensing devices, [40] has proposed a
cooperative LiDAR-SLAM framework, which shares LiDAR
point clouds to achieve relative pose registration between
vehicles and robust tracking. However, this framework does
not incorporate vehicle-road cooperation, and the transmis-
sion of multiline LiDAR point clouds imposes a significant
communication load. In [12], we proposed a general archi-
tecture that enables the fusion of information from various
sources, such as surrounding vehicles, road side units (RSUs),
and different sensors, such as GPS, IMU, LiDAR, camera,
etc. This architecture utilizes a two-layer filtering algorithm
and shows advantages in terms of cost, accuracy, generality,
and robustness. However, in practical applications, commu-
nication interruptions can cause instabilities in the algorithm
due to changing cooperation scales. Additionally, the direct
V2V communication load is high, and the two-layer algo-
rithm proposed in [12] has high complexity and performance
loss caused by error correlation. These limit the versatility and
efficiency of the algorithm.

As multicast has been considered a resource-efficient way
to transmit the same content to multiple users, the 3GPP 5G

Release 17 supports multicast and broadcast services over
the existing 5G framework. Research efforts have focused on
achieving point-to-multipoint communication with low latency
and high reliability. For example, in [41], unmanned aerial
vehicles (UAVs) are employed to assist in the dissemination of
data to a group of vehicles. One notable advantage of multicast
over broadcast is its ability to choose receivers, which bet-
ter ensures data security. Therefore, multicast is suitable for
intelligent vehicles in terms of efficiency and security.

III. SYSTEM MODEL

As stated in our previous work [12], the dynamic process
of vehicles and observation can be described by a first-order
hidden Markov model [28]. It is assumed that vehicles are
equipped with IMU, GPS, and one or more sensing devices
to possess a fundamental localization and sensing capabil-
ity. In Section III-A, the dynamic process is modeled as a
state transfer function and the self-positioning and sensing of
the vehicles are modeled as observations. In Section III-B,
RSUs’ auxiliary positioning is introduced to extend the frame-
work with vehicle-road cooperation. Furthermore, the effect of
communication delay is modeled in Section III-C, along with
compensation methods. The key models are briefly described
as follows and more details can be found in [12].

A. State Transfer and Observation Model

We are interested in localizing and tracking an object in the
2-D plane using Cartesian coordinates x and y. Angle compo-
nent can be added into state equations and filtering algorithms,
if we consider vehicles’ orientation [42]. For a vehicle Vi, its
mobility can be described by a system state transfer function

xi[k] = Axi[k − 1] + Buui[k] + wi[k] (1)

and

xi =

⎛
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where xi is the state vector, containing positions and velocities
in a Cartesian coordinate; ai,x and ai,y are the acceleration of
the vehicle, which are generated from the control system of a
vehicle and measured by IMU; wi is the process noise, which is
the additive white Gaussian noise (AWGN) with a covariance
matrix Qi; The value of Qi is approximately proportional to
the time step length �t; matrices A and Bu are obtained by
the physical dynamics. To discretize the continuous motion
of the vehicle, the typical value of �t is 0.1 s, and k is the
discrete time index. The GPS and sensors report data also at
a rate of 10 Hz.

The observation data of Vi consist of two parts: 1) the mea-
surement provided by sensors, such as GPS and wheel-speed
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Fig. 1. IoV with RSUs [12].

sensors with information only related to its position and veloc-
ity, denoted as zi and 2) the measurement provided by the
sensing systems related to both its own and surrounding Vj’s
states, denoted as zi→j.

For zi, we have

zi[k] = Hixi[k] + vi[k]. (2)

For zi→j, we have

zi→j[k] = Hi→jxi→j[k] + vi→j[k] (3)

where vi and vi→j are measurement noises, Hi and Hi→j are
measurement matrices determined by properties of device, and
xi→j[k] = xj[k] − xi[k] is the relative state between Vj and Vi.
Without loss of generality, we assume that Hi and Hi→j are
identity matrices and the noises are AWGN, and the covariance
matrices Ri and Ri→j are diagonal.

B. RSU Auxiliary Positioning Model

In ITS, RSUs serve as road facilities that provide auxiliary
service to vehicles within their communication range through
on-board units, as shown in Fig. 1. In general, RSUs are con-
sidered auxiliary facilities with a precise prior location. In
some traditional positioning methods, vehicles can be located
using IMU without relying on GPS, thanks to RSUs and wire-
less positioning [43]. With the development of sensing devices,
RSUs now possess perception capability.

Unlike moving vehicles, RSUs are stationary and therefore
can provide more accurate positioning services. Additionally,
RSUs are relatively limited in number, making the invest-
ment costs for implementing them in ITS moderate. Therefore,
RSUs can serve as powerful participants in the cooperative
tracking process. Particularly in enclosure spaces, such as tun-
nels and underground, where GPS suffers from signal loss, it
is easier to implement RSU coverage to ensure positioning
accuracy.

The mth RSU’s positioning for Vi can be described as
follows:

zrm,i[k] = zrm→i[k] + xrm[k]

= Hrm→ixrm→i[k] + vrm→i[k] + xrm [k]

= xi[k] + vrm→i[k] (4)

where zrm,i[k] is the measurement of Vi by the mth RSU,
consisting of relative measurement zrm→i[k], and abso-
lute state vector of RSU xrm[k]. The error of xrm[k] can
be ignored since the RSU is fixed and its location is
known a priori. The measurement follows a similar format
as (2), with the difference only in the error part. Thus,
the measurement from the RSU can be considered as a
special self-positioning for Vi. Owing to the high precision
of RSU, the variance of vrm→i[k] is much smaller than
that in (2).

C. Compensation for Communication Delays

Similar to our previous work [12], we assume that there
is a finite communication delay in any data-sharing pro-
cess between two intelligent agents [44], including V2V and
vehicle-to-road (V2R) communications. The delay can be mea-
sured by the timestamps reported by the sender [45]. In
the current state-of-the-art IoV, the delay can be controlled
within 0.1 s [45]. Neglecting the delay in localization can
lead to drift in the results, particularly when the vehicle
is traveling at high speeds and the communication quality
is poor. This can undermine the advantages of cooperation
and even introduce risks. During the cooperation, at time
instant k, the self-positioning data zj[k − kτj→i ] received by
Vi from another vehicle Vj corresponds to xj[k − kτj→i ],
where kτj→i = τj→i/�t is normalized delay. Due to Vj’s
motion in τj→i, positioning drift can be introduced, and the
magnitude of the drift increases with Vj’s speed. Similarly,
auxiliary positioning data zrm,i[k − kτrm→i] received from the
mth RSU corresponds to xi[k − kτrm→i] and drifted due to Vi’s
motion.

To ensure system performance, we utilize a compensation
method that employs the state transfer function as (1) to
estimate zj[k] based on zj[k − kτj→i]

ẑj[k] = HjA|τj→iH
−1
j zj

[
k − kτj→i

]

+ HjB|τj→iuj
[
k − kτj→i

]
(5)

where A|τj→i and B|τj→i represent dynamic matrices with �t
replaced by τj→i, which can also be derived from physical
dynamics. We assume uj[k − kτj→i ] = uj[k] considering the
smoothness of vehicle control in a short period.

The effect of delay compensation is briefly discussed as
follows. As an estimate of the state xj[k], ẑj[k] can be rewritten
by substituting (1) and (2) into (5)

ẑj[k] = xj[k] + A|τj→ivj
[
k − kτj→i

]− wj|τj→i[k]. (6)

The error consists of two parts: 1) the measurement error
vj[k − kτj→i] which is amplified by A|τj→i after the prediction
using the dynamic model and 2) the error of the pro-
cess noise wj|τj→i[k] with covariance Q|τj→i corresponding
to τj→i. Compared with the noise vj[k] in the case with-
out delay, even though compensation is applied, the variance
of the error unavoidably increases. However, since the error
remains zero-mean, the compensation effectively reduces the
position drift.
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Correspondingly, we can utilize similar delay compensation
strategies in the mth RSU’s positioning for Vi as follows:

ẑrm,i[k] = A|τrm→i zrm,i
[
k − kτrm→i

]

+ B|τrm→iui
[
k − kτrm→i

]

= xi[k] + A|τrm→ivrm→i
[
k − kτrm→i

]

− wi|τrm→i[k]. (7)

IV. DISTRIBUTED COOPERATIVE TRACKING

FRAMEWORK VIA MULTICAST

A diagram of our proposed multicast-based cooperative
mobility tracking framework is shown in Fig. 2, which con-
tains local-fusion and global-filtering. The ego-vehicle is
denoted as Vs and there are N other vehicles (V1, V2, . . . , VN)

cooperating in the IoV, which can be observed by Vs to
measure the relative states zs→1, zs→2, . . . , zs→N . Using Vs’s
on-board sensor data, including commonly used traditional
localization devices, such as IMU and GPS, Vs can obtain
a self-measurement of its state zs. This self-measurement is
then locally fused with measurements from the RSUs to obtain
the fused self-measurement z̄s in Section IV-A. Then, Vs can
send z̄s to other vehicles and receive their local-fusion results
z̄1, z̄2, . . . , z̄N through multicast in Section IV-B. By match-
ing and subtracting, local-fusion results of other vehicles can
be combined with Vs’s observation toward them to generate
a set of Vs’s state measurements in Section IV-C. Together
with Vs’s locally fused self-measurement, they are fed into
a global filtering algorithm for localization and tracking in
Section IV-D. Such a process is done by each vehicle indepen-
dently, which forms a distributed framework. The key variables
in the proposed cooperative tracking algorithm are listed in
Table I.

A. Local-Fusion and Delay Compensation

1) Fusion of Self-Positioning and RSU: Before sharing data
with V1, V2, . . . , VN , the ego-vehicle Vs will locally fuse its
self-measurements from GPS, IMU, etc., with the auxiliary
measurements from RSUs. Suppose that at time k, there are
M RSUs within Vs’s communication range. The fused data
involves zs[k], zr1,s[k], zr2,s[k], . . . , zrM,s[k], as indicated by (2)
and (4). All of the mentioned data can be treated as Gaussian
random vectors with a mean value equal to the true state xs[k].
Therefore, the local-fusion can be formulated as a data fusion
problem under a linear Gaussian system, and the local-fusion
result z̄s can be denoted as a linear combination

z̄s =
M∑

m=1

Aizrm,s + Aszs (8)

where Ai and As are weights of RSUs and self measurement
which satisfy

∑M
m=1 Am + As = 1. The time parameter k

is omitted because all the vectors are corresponding to the
same k. The maximum likelihood estimate of z̄s is equivalent
to minimizing the variance due to the Gaussian noise assump-
tion. Therefore, the local fusion problem can be solved by
utilizing the Lagrange multiplier method, which is identical to

the global filter in [12]. The optimal weights can be obtained
as follows:

As = Rs
−1

(
M∑

m=1

Rrm,s
−1 + Rs

−1

)−1

Ai = Rrm,s
−1

(
M∑

i=1

Rrm,s
−1 + Rs

−1

)−1

. (9)

The optimized covariance matrix R̄s can be denoted as follows:

R̄s =
(

M∑
m=1

Rrm,s
−1 + Rs

−1

)−1

. (10)

2) Delay Compensation in Local Fusion: According to the
analysis in Section III-C, when data from RSUs are transmit-
ted to Vs, there might be a communication delay τrm→s. This
delay introduces a time misalignment, and as a result, we can
no longer omit the time parameter k. Hence, (8) needs to be
modified as follows:

z̄s[k] =
M∑

m=1

Aizrm,s
[
k − kτrm→s

]+ Aszs[k] (11)

which results in bias in estimating xs[k]. It is essential to
compensate for the communication delay in RSUs’ measure-
ments before the local-fusion process. This compensation can
be done using the method in Section III-C

ẑrm,s[k] = A|τrm→szrm,s
[
k − kτrm→s

]

+ B|τrm→sus[k] (12)

and the covariance after the compensation is

R̂rm,s = A|τrm→sRrm,sAT |τrm→s + Q|τrm→s . (13)

B. Multicast and Observation

1) Intervehicle Data Exchange and Observation: After
performing the local-fusion and delay compensation pro-
cess, the ego vehicle Vs and other cooperating vehicles
V1, V2, . . . , VN have obtained their locally fused results z̄s

and z̄i. Now the local-fusion data need to be shared among
vehicles via the IoV. For Vs, at time k, a data package
containing the local-fusion result z̄s, covariance R̄s, acceler-
ation us, and timestamp ts is multicast to surrounding trusted
vehicles V1, V2, . . . , VN . Meanwhile, packages from surround-
ing vehicles are collected by the ego vehicle Vs to obtain
z̄i, R̄i, ui, ti.

To optimize the localization of Vs through the multicast
information from Vi, Vs needs to obtain observations on them,
which are expressed as measurement vectors zs→i[k] according
to (3). By utilizing the positions multicast by the surrounding
vehicles, the sensing results obtained from multiple sensors
can be matched and fused, resulting in unique zs→i[k] vectors
for each Vi.
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Fig. 2. Schematic of the multicast-based distributed cooperative tracking framework.

TABLE I
DEFINITIONS OF COOPERATIVE MOBILITY TRACKING KEY VARIABLES

2) Communication Load Analysis: In our previous
work [12], the ego vehicle Vs needs to estimate the states
of surrounding vehicles, and then send them to the cor-
responding vehicles. Other vehicles’ estimations of Vs’s
state are also received by Vs for cooperative tracking.
In such a framework, different data are sent to different
vehicles, so point-to-point V2V links among vehicles are
needed. When the number of cooperating vehicles is large,
there will be a large communication load on direct V2V
communication.

The communication load involved in cooperative tracking is
analyzed quantitatively as follows. A state vector contains four
numbers; the covariance matrix is 4×4, and since it is a sparse
block diagonal matrix, it can be denoted by six numbers; the
acceleration vector contains two numbers; the timestamps con-
tain two numbers. This results in a total of 14 numbers for
each package involved in the data-sharing process. Assuming
that the data type is float, then each number takes up 8 bytes.
Given a package transmission rate of 10 Hz which is the typi-
cal data rate for vehicle on-board sensors, the data rate would
be about R = 1.5 kB/s.

When there are N vehicles around Vs, in the previous
work [12], Vs needs to establish N direct V2V links with
surrounding vehicles. As different data are transmitted over
different links, the data rate of sending and receiving are both
NR, and the total load is 2NR. If no direct V2V link is avail-
able, the base station is required to collect and distribute all the
packages. As each of the N+1 vehicles sends and receives data
both at a rate of NR, the base station has a total communication
load of 2(N + 1)NR.

For the multicast-based method proposed in this article,
Vs only needs to make a one-to-N multicast to trusted vehi-
cles. The data being sent remains consistent regardless of the
number of vehicles, meaning that the data sending rate is
always R at Vs. Considering a receiving rate of NR, the total
load is (N + 1)R, which is 50% smaller than that in [12].
Moreover, if the multicast is also supported by the base
station, each of the N + 1 vehicles transmits data to the
base station at a rate of R, and the base station multicasts
at a rate of (N + 1)R. As a result, the total communica-
tion load is 2(N + 1)R, which grows with N slower than
that in [12].
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C. Data Fusion and Delay Compensation

1) Integration of Observations on the Ego-State via Other
Vehicles: In contrast to the method proposed in [12], where
observations on Vs by V1, V2, . . . , VN are directly sent to
Vs, the multicast-based method requires Vs to integrate
the data received from other vehicles with the information
obtained from its onboard sensors to construct its self-state
observations.

At time instant k, when Vs receives the locally fused self-
positioning data z̄i from Vi, it can obtain the observation on
its self-state via Vi as follows:

zi,s[k] = z̄i[k] − zs→i[k]

= xi[k] + v̄i[k] − Hs→ixs→i[k] − vs→i[k] (14)

where v̄i[k] is the error of Vi’s locally fused self-positioning
and its covariance is R̄i, according to (13). Substituting
xs→i[k] = xi[k] − xs[k], (14) can be rewritten as follows:

zi,s[k] = xs[k] + v̄i[k] − vs→i[k]. (15)

The random errors v̄i[k] and vs→i[k] are independent and both
AWGN, so the covariance of the error part in zi,s[k] is

Ri,s = R̄i + Rs→i (16)

which contains the uncertainty of both the locally fused self-
positioning of Vi and Vs’s observation on Vi.

From surrounding vehicles V1, V2, . . . , VN , the ego
vehicle Vs can obtain the observations on its self state
z1,s[k], z2,s[k], . . . , zN,s[k], all of which are Gaussian vectors
with a mean of Vs’s true state and independent errors. Together
with Vs’s local-fusion result, these observations on the state of
Vs by surrounding vehicles can be organized into a long global
observation vector

zs,g = [
z̄s z1,s z2,s · · · zN,s

]T (17)

where each subvector is an observation of Vs’s state.
Correspondingly, since subvectors are independent, the covari-
ance is a block diagonal matrix

Rs,g =

⎡
⎢⎢⎢⎣

R̄s 0 · · · 0
0 R1,s · · · 0
...

...
. . .

...

0 0 · · · RN,s

⎤
⎥⎥⎥⎦. (18)

2) Time Alignment of Data: Multicast collisions are usu-
ally managed by interframe interval and waiting mechanisms.
As a result, there might be a random delay τi→s when Vs

receives data from Vi. Assuming that each vehicle attempts to
multicast its local-fusion data at time k and the actual arrival
time is k + kτi→s . Then, Vs matches and subtracts them with
the intervehicle observation results at k + kτi→s . So, (14) can
be rewritten as follows:

zi,s
[
k + kτi→s

] = xi[k] + v̄i[k] − Hs→ixs→i
[
k + kτi→s

]

− vs→i
[
k + kτi→s

]
. (19)

Because of the motion of Vi, xi[k] �= xi[k + kτi→s ] introduces
bias in the result. Thus, zs,g should be rewritten as follows:

zs,g[k] =

⎡
⎢⎢⎢⎢⎣

z̄s[k],
z1,s
[
k + kτ1→s

]
,

z2,s
[
k + kτ2→s

]
,

· · ·
zN,s

[
k + kτN→s

]

⎤
⎥⎥⎥⎥⎦

. (20)

Assume that delay τi→s from different vehicles are bounded
by τm = max1≤i≤N{τi→s}. By the time instant k + kτm , Vs has
received all the packages and the relative state between Vs

and Vi can be obtained from sensing devices. According to
the dynamic model, the delay can be compensated as follows:

ˆ̄zi
[
k + kτm

] = A|τm z̄i[k] + B|τmui[k] (21)

where the acceleration vector ui[k] of Vi can be easily obtained
from the data package. Based on the compensation, (14) can
be rewritten as follows:

ẑi,s
[
k + kτm

] = ˆ̄zi
[
k + kτm

]− zs→i
[
k + kτm

]
(22)

and the compensated covariance is

R̂i,s
[
k + kτm

] = A|τmR̄i[k]AT |τm

+ Q|τm + Rs→i
[
k + kτm

]
. (23)

After compensating for the delays from V1 to VN , the global
observation vector zs,g, can be constructed as follows:

zs,g = [ˆ̄zs ẑ1,s ẑ2,s · · · ẑN,s
]T

(24)

and the covariance matrix is

Rs,g =

⎡
⎢⎢⎢⎢⎣

ˆ̄Rs 0 · · · 0
0 R̂1,s · · · 0
...

...
. . .

...

0 0 · · · R̂N,s

⎤
⎥⎥⎥⎥⎦

. (25)

Comparing with (17) and (18), time corresponding to zs,g

is k + kτm , and the exact value of τm is determined by the
communication condition.

In communication environments with packet loss due to
multicast collisions, if the data from Vi at a particular time
instant k fail to be received by Vs, Vs will temporally exclude
Vi from the list of cooperative vehicles until subsequent data
are received. This situation can be modeled as a temporary
reduction in the number of cooperators and the dimension
reduction of the global observation vector zs,g. In the worst
case of communication interruption, only the local-fusion
result of Vs is available and zs,g = ˆ̄zs.

D. Global Dynamic Filtering

1) Algorithm Description: After the steps above, we can
achieve “tracking” beyond “localization” by introducing the
dynamic model to fusion and smooth multisource data. In this
article, we apply the Kalman filter to this linear model for
simplicity and conduct theoretical performance analysis.

Based on the system model in Section III-A and the
Kalman prediction equations [26], the prediction process can
be described as follows:
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x̂′[k + 1] = Ax̂[k] + Bu[k + 1]

P′[k + 1] = AP[k]AT + Q (26)

where x̂′[k+1] is the prediction of time k+1 based on the state
estimation x̂[k] at time k and P′[k + 1] denotes the prediction
variance.

In our framework, the global observation vector zs,g can
be considered as a sensor that can give N independent direct
measurements of the state of Vs simultaneously. The covari-
ance is block diagonal, as described in (18). Following (2),
the measurement matrix H in the measurement equation of
the dynamic model is

H4N×4 = [
I4×4 I4×4 · · · I4×4

]T
. (27)

Consequently, the linear combination of the observation and
the prediction according to the Kalman update equations can
be written as follows:

x̂[k + 1] = x̂′[k + 1] + K
(
zs,g[k + 1] − Hx̂′[k + 1]

)
(28)

where K is the Kalman Gain which is a 4 × 4N linear combi-
nation coefficient matrix of zs,g and x̂′

k+1 for our model. The
Kalman Gain can be calculated by

K = P′[k + 1]HT(HP′[k + 1]HT + Rs,g
)−1

. (29)

The covariance Pk+1 of x̂k+1 can be obtained by the Kalman
variance updating equation

P[k + 1] = (I − KH)P′[k + 1]. (30)

In summary, the Kalman filter operates based on (26)–(30)
to continuously track the state of the ego vehicle Vs. Due
to the property of Kalman filter, the variance will eventually
converge, resulting in continuous and effective tracking. The
algorithm is summarized in Algorithm 1.

2) Comparison With Our Previous Work [12]: Compared
to the approach proposed in [12, Algorithm 2], the frame-
work presented in this article optimizes the fusion procedure
to attain zero asymptotic error, decrease the number of Kalman
filters, and enhance flexibility in complex scenarios. The
corresponding analysis is shown as follows. In [12], the
proposed approach adopts a “local filtering and global filter-
ing” two-layer structure. First, Vs observes surrounding vehi-
cles V1, V2, . . . , VN and gets the measurement of their states
based on relative observation zs→i and self-positioning zs.
Subsequently, Vs sends zs→i + zs to surrounding vehicles and
receives measurements zi→s + zi from them. Then, zs and
zi→s+zi from other vehicles are fed into N+1 local Kalman fil-
ters separately as shown in [12, Algorithm 1]. Finally, a global
filter based on maximum likelihood estimation is employed to
fuse the outputs of local filters.

This method utilizes information from multiple vehicles to
optimize location and tracking. However, in the final step, the
optimality of the global filtering depends on the assumption
of error independence among the outputs of each local filter.
However, due to the repeated Kalman filtering on the same
vehicle trajectory, correlated process noise is introduced into
the system. A detailed analysis can be found in Appendix A.
The effect of correlated noise is illustrated in [12, Fig. 7].

Algorithm 1 Multicast-Based Cooperative Mobility Tracking
Flow

1: Initialize: the estimation value x̂0, and its covariance P0;
2: for k = 1:T do
3: Self-positioning: Obtain zs and its covariance Rs from GPS,

acceleration us from IMU;
4: for m = 1:M do
5: RSU auxiliary: Receive zrm,s and its covariance Rrm,s

from mth RSU and perform delay compensation;
6: end for
7: Local Fusion: Fuse zs and zrm,s (m = 1, 2, . . . , M) locally;
8: Data sending: Multicast data package that consists of

z̄s,R̄s,us and timestamp;
9: for i = 1:N do

10: Data receiving: Receive z̄i, R̄i and ui from Vi and
perform delay compensation;

11: Sensing: Observe Vi to obtain zs→i and calculate zi,s =
z̄i − zs→i;

12: end for
13: Fusion: Align z̄s and zi,s (i = 1, 2, . . . , N) and integrate into

zs,g and Rs,g;
14: Global Filtering: (x̂[k], P[k]) = KF(zs,g, Rs,g, us, x̂[k −

1], P[k − 1]);
15: end for

From the figure, it can be observed that as the number of
vehicles increases, there is diminishing marginal utility, and
further increase in the number of vehicles leads to the conver-
gence of the RMSE to a nonzero value, in contrast to the zero
asymptotic error achieved under the assumption of indepen-
dent noise. Due to this performance bottleneck, the method
proposed in [12] is not suitable for large-scale cooperation or
high-precision sensor fusion.

In this article, according to (28), observation from differ-
ent sources and prediction are jointly fused by global optimal
weights. In other words, there is only one global filter for Vs’s
tracking. In addition to avoiding the cumulative error, it also
reduces the calculation and storage overhead caused by extra
filters. Moreover, due to packet loss or even connection loss,
the number of cooperative vehicles can be time varying. In
the MSMV framework in [12], when some vehicle Vi is dis-
connected, the local filter corresponding to it cannot continue
to work. When a vehicle joins the cooperation, a new filter
needs to be allocated. Hence, the framework is sensitive to a
time-varying number of cooperative vehicles. However, in this
article, when some vehicles are disconnected, only the dimen-
sion of the integrated data vector changes and the filter still
stably works, which endows the system with stronger stability
and flexibility.

E. Theoretical Performance Analysis

In this section, we conduct a theoretical performance anal-
ysis of the proposed algorithm. According to Section IV-D1,
based on linear assumption, the global filter can fuse N inde-
pendent measurement vectors and a prediction vector to reach
the unique global optimum. In the dynamic model, N differ-
ent vectors can be treated equally as N direct observations on
the vehicle’s state so they can be replaced by a single mea-
surement vector zg with covariance Rg. In other words, the
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TABLE II
SIMULATION PARAMETERS

global filter is equivalent to a two-layer structure where mea-
surements from various sources are combined linearly into zg

before being fused with the prediction. It means that zs,g and
Rs,g in (28) to (30) can be substituted with zg and Rg. The
specific expressions for them can be found in Appendix B.
Based on the aforementioned substitutions, we establish the
following result.

Theorem 1: The steady-state variance P will be A−1(P′ −
Q)(AT)−1, where P′ is the solution of AP′AT − P′ − AP′[P′ +
Rg]−1P′AT + Q = 0

Proof: See Appendix B.
Theoretical analysis suggests that the accuracy of the

cooperative tracking framework depends on the vehicle num-
ber in the system, the road environment, and the sensors’
performance. In practice, since the error is not strictly AWGN
as in (1) and the performance of the sensor may not remain
stationary in complex road environments. Therefore, the actual
performance fluctuates around this theoretical value.

V. SIMULATION RESULTS

In this section, multiple simulations are performed to ver-
ify the performance of the cooperative tracking framework in
various scenarios. Considering the actual accuracy of sensors
and the requirements of localization, simulation parameters
are listed in Table II. Given the high positioning accuracy
requirements of intelligent vehicles, the sensor parameters cho-
sen for the simulations possess relatively high performance
capabilities while keeping costs within reasonable limits.

The simulations are organized as follows.
1) The performance of the algorithm under ideal commu-

nications, including the trajectory and RMSE, is shown
in Section V-A.

2) The impact of delay, the effectiveness of delay compen-
sation, and the impact of packet loss are mentioned in
Section V-B.

3) The robustness of the algorithm in adverse conditions,
including disturbed self-positioning and intervehicle
observation failure, is shown in Section V-C.

4) The extension of RSU range due to vehicle cooperation
is discussed in Section V-D.

A. Accuracy of the Algorithm Under Ideal Communications

First, the performance of cooperative localization and track-
ing under ideal communication is shown. To intuitively reflect
the performance improvement, the trajectory of a simple
two-vehicle scenario is presented in Fig. 3(a).

The x-axis represents the horizontal direction, while the y-
axis represents the vertical direction, illustrating the trajectory

(a)

(b)

Fig. 3. Intuitive and quantitative result of cooperative tracking performance.
(a) Trajectory of two vehicles. (b) Position RMSE of multiple vehicles.

directly. There are two vehicles and an RSU connected in the
V2X network. One vehicle remains driving straight and the
other changes lane in the y direction. RSU continuously pro-
vides auxiliary positioning for both vehicles. The dotted lines
represent the self-positioning of the vehicles, which have rel-
atively large errors when compared to the ground truth shown
in solid lines. The dashed lines indicate the global estimates
of the trajectory. From the figure, it is evident that cooperative
localization and tracking effectively reduce estimation errors
and result in a smoother trajectory. A comparison of tracking
performance in systems with different numbers of vehicles and
RSUs is presented by RMSE in Fig. 3(b). We take V1 as the
ego vehicle and evaluate its RMSE. The trajectory trend of
other vehicles can be simulated similarly to V2, resembling
the traffic flow moving in the same direction on the road.

Fig. 3(b) illustrates that a single vehicle without RSU has
an RMSE of 0.277 m. This level of accuracy only allows for
lane-level localization assistance and is insufficient to support
active control of intelligent vehicles. Without the assistance
of RSU, when the number of vehicles in cooperation reaches
5 and 10, RMSEs are 0.162 and 0.131, respectively, which
are 41.5% and 52.7% smaller than the single-vehicle case.
Therefore, the performance is notably improved through mul-
tivehicle cooperation. However, since the fused information
among vehicles includes both self-positioning and observa-
tion errors, the RMSE of the cooperative localization still
falls short of achieving centimeter-level precision even with
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(a)

(b)

Fig. 4. Effect of eliminating error correlations. (a) Simulation RMSE
comparison with [12]. (b) Theoretical asymptotic RMSE.

10 vehicles. Moreover, considering the diminishing marginal
utility, the performance gains from having 1 to 5 vehicles are
much more substantial than the gains obtained from 5 to 10
vehicles. This suggests that additional vehicles would yield
only limited improvement while increasing the communication
and computing load. Hence, it becomes necessary to enhance
accuracy by leveraging the assistance of an RSU.

When one RSU is incorporated into the framework and the
numbers of vehicles are 1, 5, and 10, the RMSE are, respec-
tively, 0.104, 0.089, and 0.080. Comparing these results with
the same number of vehicles without an RSU, we observe an
improvement of 62.5%, 45.1%, and 38.9%. With an increase
in the number of RSUs to 2, the percentage improvements are
68.5%, 50.6%, and 44.3%. The significant enhancement in
tracking performance can be attributed to the assistance pro-
vided by RSUs, as they do not have self-positioning errors.
From the data shown in Fig. 3(b), we see that the centimeter-
level precision becomes easily attainable through cooperative
tracking with either one vehicle and two RSUs or two vehicles
with one RSU.

According to our analysis, due to the presence of pro-
cess noise w, data provided by different vehicles in our
previous work [12] may consist of correlated errors. So, the
performance gains will be saturated as the number of vehi-
cles increases. A comparison is shown in Fig. 4(a). It can be
seen that due to the two-layer filters involved, the method
in [12] does have an overall advantage of around 15% in

Fig. 5. RMSE of cooperative localization in random accuracy case with
floating variance.

the case where there is no RSU. However, when introduc-
ing high-precision RSU and more vehicles in the cooperation,
the saturation in the performance gains shows up as illustrated
in the circled and squared dash curves. However, the frame-
work in this article always maintains a performance gain with
the number of cooperating vehicles, especially in the cases
with RSUs, as shown in the solid curves. The zero asymp-
totic error when the vehicle number N → ∞ is also shown
in Fig. 4(b). As the simulation is intractable when N is large,
only theoretical calculation is presented.

Simulations with random accuracy are also conducted to
account for the variable performance of localization and sens-
ing modules on intelligent vehicles in practical scenarios. In
Fig. 5, the variance of position and velocity measurement
in self-positioning, positioning from RSUs, and intervehicle
positioning are independently sampled from the uniform dis-
tributions from 50% to 150% of the values in Table II. The
randomness results in different RMSE values compared to the
ideal case depicted in Fig. 3(b). However, despite these varia-
tions, the performance gains obtained from cooperation remain
approximately the same. This demonstrates the practical appli-
cability of the framework in practical sensor scenarios.

B. Effects of Communication Delay, Compensation, and
Packet Loss

The simulations above are based on ideal communications,
but in practice, there would always be communication delays
and packet loss. According to the previous analysis, the com-
munication delay may reduce the cooperation gains and even
make the performance worse than single-vehicle tracking.
In our simulation, the delay follows a uniform distribution
from 5 to 35 ms, and the impact of delay is introduced by
adding drift due to vehicle motion according to the model in
Section III-C.

As shown in Fig. 6(a), in the case of no RSU, as the number
of vehicles increases, more delayed data are involved in the
global filtering of the ego vehicle and the performance dete-
riorates as shown in the gap between the solid and the dotted
crossed curves. Specifically, in the cases of five and ten vehi-
cles, compared with the ideal case without delay, the RMSE is
increased by 31.3% and 57.9%, respectively. Furthermore, the

Authorized licensed use limited to: University of Wyoming Libraries. Downloaded on January 30,2024 at 20:23:23 UTC from IEEE Xplore.  Restrictions apply. 



168 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 1, 1 JANUARY 2024

(a)

(b)

Fig. 6. Performance loss and compensation effects in 5–35 ms delay
and slow-moving surrounding vehicles. (a) Without compensation. (b) With
compensation.

misleading effects of delayed data from RSU are even more
significant. The RMSE in the case of one RSU is increased
by 376% to 394% as compared with the ideal case without
delay. Indeed, the higher weight of RSU data in the fusion
process can make the overall performance more sensitive to
communication delays.

As the position drift is caused by the vehicles’ motion dur-
ing the delay, the vehicles’ velocity may significantly influence
the RMSE. In Fig. 7(a), the speed of surrounding vehicles is
29 m/s, which is larger than 9 m/s in Fig. 6(a). Otherwise,
the speed of the ego vehicle is 6.5 m/s, which is smaller than
24.6 m/s in Fig. 6(a). It causes a smaller motion of the ego
vehicle and a larger motion of the surrounding vehicles during
the delay. When only RSU data are involved, the localization
drift is only determined by the motion of the ego vehicle.
So, the impact of RSU in Fig. 7(a) is not as much as that in
Fig. 6(a). When the number of surrounding vehicles increases,
their motion gradually influences the global filtering of the
ego vehicles. So, the impact of more surrounding vehicles in
Fig. 7(a) is much larger than that in Fig. 6(a).

The result of delay compensation is shown in Figs. 6(b)
and 7(b). After compensation, RMSE is only increased by no
more than %1 compared to the case without delay and the
additional error solely comes from a random error in compen-
sation. As the delay is relatively short as compared with the
sampling period of the dynamic model (5–35 ms delay versus
100-ms sampling period), the effect of compensation is quite

(a)

(b)

Fig. 7. Performance loss and compensation effects in 5–35 ms delay
and fast-moving surrounding vehicles. (a) Without compensation. (b) With
compensation.

well. Therefore, the proposed delay compensation scheme is
effective in mitigating the effects of delay and maintaining the
overall performance.

In the case of packet loss, data from the surrounding
vehicles are randomly disabled with a certain probability to
simulate packet loss. The simulation result is shown in Fig. 8.
When the packet loss rate is 10%, the overall RMSE increases
by about 3% to 5%, from zero-RSU case to two-RSU case.
The blue curve also indicates that the RMSE in ten-vehicle
cooperation with 10% packet loss is the same as that in the
nine-vehicle case with ideal communication. This indicates
that the packet loss problem in our proposed framework is
equivalent to the temporal reduction of cooperators.

C. Robustness of the Cooperative Tracking Algorithm Under
Adverse Conditions

In addition to accuracy, robustness is also a crucial factor
in achieving stable localization and tracking in a coopera-
tive system, especially when GPS deteriorates or even fails
due to signal loss. When self-positioning is disturbed, posi-
tioning accuracy could be maintained at an acceptable level
thanks to the cooperation with surrounding vehicles and RSUs
as shown in Fig. 9(a). Suppose that the ego vehicle’s self-
positioning variance is ten times larger than normal due to
harsh conditions, while the mutual communication and obser-
vation with surrounding vehicles can be performed normally.
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Fig. 8. Effect of 10% packet loss rate on cooperative localization
performance.

Through cooperation with 0–9 vehicles and 0–2 RSUs, the
robustness of tracking is significantly improved. In the single-
vehicle scenario, when the GPS is disturbed (as shown in the
blue dashed curves), RMSE increased from 0.277 to 0.626,
representing an increase of 126%. This substantial increase
indicates the unsatisfactory robustness of a single vehicle.
However, through cooperation, in the case of five and ten
vehicles, the RMSE increases due to the deterioration of the
GPS signal are only 8% and 5.3%, respectively. When there
is RSU, due to the high precision of RSUs’ self-positioning,
the RMSE increase is only about 1%. It shows again that the
RSU plays an important role in improving vehicle localization
and tracking performance.

Intervehicle observation is crucial for obtaining relative
states with surrounding vehicles and achieving vehicle–vehicle
cooperation. However, temporary relative observation failures
can occur due to factors, such as heavy occlusion or sen-
sor failures. Therefore, it is essential to evaluate the tracking
performance under such observation failures to ensure robust-
ness. As shown in Fig. 9(b), in the road section where an
RSU is deployed, five vehicles drive for 20 s. Suppose that
between 7.5 and 12.5 s, the ego vehicle experiences a fail-
ure in observing the surrounding four vehicles, leading to a
lack of cooperation during that period. However, the five-
vehicle cooperative tracking RMSE (shown as the orange
circled curve) still keeps 1.41% smaller than the single-vehicle
tracking (shown as the blue crossed curve) at 10 s, which is
2.5 s after the observation fails. Once the relative observation
is restored, the ego vehicle promptly utilizes the observa-
tion data and the RMSE recovers in approximately 1.5 s.
Furthermore, when one RSU is available to assist (as shown
in the green squared curve), even during the period of 7.5 and
12.5 s, the RMSE remains 62.7% smaller than the single-
vehicle case. In general, if a vehicle experiences relative
observation failure, it can still maintain a certain performance
gain through self-positioning and assistance from RSUs, while
the tracking of other vehicles in the framework remains
unaffected.

D. Extension of RSU Range With Cooperation

From the simulations above, we have seen the impor-
tance of RSUs in improving tracking accuracy and robustness.

(a)

(b)

Fig. 9. Improvement of robustness due to cooperative tracking. (a) RMSE
in the adverse self-positioning scenario. (b) RMSE fluctuation in temporary
intervehicle observation failure.

However, in practical transportation systems, the communica-
tion and perception ranges of RSUs, as well as the number
of RSUs are limited. It is impractical to cover the entire
transportation system by RSUs. Therefore, the RSU cannot
replace single-vehicle localization or vehicle–vehicle cooper-
ation. On the other hand, the gains of RSU’s assistance can
be transferred among vehicles by V2V multicast as depicted
in Fig. 10.

In the simulation, due to the limited coverage of the RSU,
only V1 (shown as the red circled curve) can obtain assistance
from it. However, when V1 shares the high-precision local-
fusion result, it can be a better localization reference for other
vehicles. Even without the direct help of the RSU, the coop-
erative localization accuracy of other vehicles (shown as the
green squared curve) can be higher than the no-RSU control
group (shown as the blue crossed curve). In other words, V2R
cooperation can be extended by V2V cooperation.

When there is only one other vehicle apart from V1 in the
system, compared with the control group, the RMSE of it after
cooperation is reduced by 30%, although it is 49.3% larger
than the RMSE of V1. Therefore, the gains of the RSU are
equivalently extended by V1. However, when there are more
vehicles, e.g., in the ten vehicles case, the RMSE of other
vehicles is only reduced by 7.67% compared with the control
group. This indicates the capability of vehicles to extend RSU
gains is limited, causing the blue crossed curve and green
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Fig. 10. Equivalent extension of RSU range due to intervehicle cooperation.

squared curve to converge as the number of vehicles increases.
This demonstrates that, even with the range extension effect of
vehicle–vehicle cooperation, the coverage provided by RSUs
remains significant for a multivehicle system.

VI. CONCLUSION AND FUTURE WORK

This article presents an efficient distributed cooperative
tracking framework via multicast to enhance the localization
and tracking performance of intelligent vehicles while reduc-
ing the communication load of the IoV. Compared with the
previous work, our framework simplifies the communication
content and optimizes the data fusion process. By utiliz-
ing multicast, we can reduce the communication load and
eliminate the need for complex direct V2V communication.
Through the two-layer structure involving local fusion and
global filtering, the proposed framework reduces the num-
ber of filters and has zero asymptotic error. This framework
is designed to be adaptable to practical scenarios with lim-
ited communication resources, random communication delay,
packet loss, and a varying number of cooperative vehicles.
This article also provides theoretical analysis and simula-
tion results on the localization performance and shows the
applicability of the framework in the practical communication
environment.

Based on the research in this article, future research
can explore the following areas. In real-world environments,
there are noncooperative objects, such as traditional vehi-
cles and pedestrians. The perception of such targets can also
be improved through intervehicle cooperation to address the
problem of blinding areas and achieve perception beyond the
vision range. Furthermore, with the support of high-precision
tracking and perception, optimal path planning can also be
made to solve the problem of traffic congestion and accidents
caused by the wrong decisions of drivers and improve the
safety and efficiency of ITS.

APPENDIX A
ERROR CORRELATION ISSUE IN [12]

According to [12, Algorithm 2], after Vs receive measure-
ments from Vi at time instant k+1, the measurement zi→s +zi

is fed into a local Kalman filter as [12, Algorithm 1]

x̂i[k + 1] = x̂′
i[k + 1]

+ K
(
zi→s[k + 1] + zi[k + 1] − Hx̂′

i[k + 1
])

x̂′
i[k + 1] = Ax̂g[k] + Bus[k + 1] (31)

where x̂′
i[k + 1] is the prediction based on the previous output

x̂g[k] of global filter. The prediction is fused with measurement
zi→s + zi by the Kalman Gain. The x̂i[k + 1] is then fed into
the global filter with the outputs of other local filters.

As the output of each local filter is an estimation with
Gaussian error. Global filter in [12] is a data fusion problem
in a linear Gaussian system. Assuming that the errors in the
outputs of all the local filters are independent, there is an
optimal linear combination to minimize the variance of the
global estimation xg.

However, due to the state transfer (1), errors in different
local filters’ outputs are partially correlated. Taking local filter
for Vi as an example, error of x̂i[k + 1] comes from the mea-
surement zi→s[k + 1] + zi[k + 1] and the prediction x̂′

i[k + 1].
The error in the observation is caused by the inaccuracies of
the sensors

zi→s[k + 1] + zi[k + 1] = xs[k + 1]

+ vi→s[k + 1] + vi[k + 1] (32)

where vi→s[k + 1] and vi[k + 1] are errors in relative observa-
tion and Vi’s self-positioning. As for the prediction x̂′

i[k + 1],
according to (1), we can obtain

x̂′
i[k + 1] = Ax̂g[k] + Bus[k + 1]

= A
(
xs[k] + vg[k

]
) + Bus[k + 1]

= Axs[k] + Bus[k + 1] + Avg[k]

= xs[k + 1] − ws[k + 1] + Avg[k] (33)

where vg[k] is the error in the global estimation of time
instant k. Bring (32) and (33) into (31), x̂i[k+1] can be denoted
as follows:

x̂i[k + 1] = xs[k + 1] + (I − K)
(−ws[k + 1] + Avg[k

]
)

+ K(vi→s[k + 1] + vi[k + 1]). (34)

Since observations from different vehicles are independent of
each other, vi→s[k + 1]+vi[k + 1] from different Vi is naturally
independent. On the contrary, −ws[k + 1] + Avg[k] is derived
from Vs itself and therefore remains the same for different
local filters.

The correlated part −ws[k + 1] + Avg[k] will be brought
into the output of global filter xg[k + 1], which will be used
for local filters at k + 2. The value of this part of the error
remains constant as the number of vehicles N increases and
converges to a nonzero asymptotic error as N approaches infin-
ity. In a typical road environment, the process noise is usually
much smaller than the sensor noise. However, as the num-
ber of cooperative vehicles gradually increases and the global
localization accuracy gradually improves, this portion of the
noise can no longer be ignored.

APPENDIX B
PROOF OF THEOREM 1

Suppose Vs is surrounded by N trusted vehicles Vi. The
variance of self-positioning for Vs is Rs, while for Vi, it
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is Ri. The variance of relative observation from Vs to Vi is
Rs→i. Additionally, M RSUs provide Vs and Vi with auxiliary
positioning, each having variances Rr,s and Rr,i, respectively.
We denote the communication delay as τ and the variance
of the process noise as Q. As the filtering algorithm rapidly
converges and sensor performance remains stable over a short
period, the above-mentioned variances can be approximated
as unchanged until the filtering reaches a steady state, and the
time index is omitted.

Considering the delay compensation in Section IV-A2, the
locally fused position variance is denoted as follows:

R̄s =
⎛
⎝R−1

s +
M∑

j=1

(
A|τ Rrj,sAT |τ + Q|τ

)−1

⎞
⎠

−1

R̄i =
⎛
⎝R−1

i +
M∑

j=1

(
A|τ Rrj,iAT |τ + Q|τ

)−1

⎞
⎠

−1

. (35)

After multicast and data fusion including delay compensa-
tion in Section IV-C2, Vs gets multiple observations of its own
states, denoted as ˆ̄zs, z̄i,s in (24) and the variances are

R̂s = A|τ R̄sAT |τ + Q|τ
R̂i,s = A|τ R̄iAT |τ + Q|τ + Rs→i. (36)

The equivalent measurement zg can be denoted as As ˆ̄zs +∑N
i=1 Aiz̄i,s, where Ai and As can be determined by the method

of global filter in [12]. The variance of zg is

Rg =
(

R̂
−1
s +

N∑
i=1

R̂
−1
i,s

)−1

(37)

and the multiple-observation Kalman filter is equivalent to a
single-observation Kalman filter with observation zg.

Variance updates in Kalman filter [26] can be written in the
following form:

P′[k + 2] = AP[k + 1]AT + Q

= A
[(

P′[k + 1
]
)−1 + (

Rg
)−1

]−1
AT + Q. (38)

According to the Woodbury matrix identity, the equation can
be rewritten as follows:

P′[k + 2] = AP′[k + 1]AT

− AP′[k + 1]
[
P′[k + 1] + Rg

]−1P′[k + 1]AT

+ Q. (39)

When the system reaches the steady state, P′[k + 2] is equal
to P′[k + 1], so the time index can be omitted as follows:

AP′AT − P′ − AP′[P′ + Rg
]−1P′AT + Q = 0 (40)

and the equation is a standard Riccati equation

AXAT − X − AX[X + R]−1XAT + Q = 0 (41)

where

A = A, X = P′, R = Rg, Q = Q. (42)

As a typical nonlinear equation for optimal control prob-
lems, there is no closed-form solution for the matrix Riccati
equation. Numerical methods are commonly used to obtain
the solution. The solution of the Riccati equation in this article
represents stable P′ which is the prediction variance. To get the
optimized estimation variance, the following transformation is
needed:

P = A−1(P′ − Q
)(

AT)−1
. (43)

Therefore, the steady-state variance P of the cooperative
tracking algorithm is obtained by (40) and (43).
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