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Abstract— This paper considers the problem of learning a
control policy that generalize well to novel environments given
a set of sample environments. We develop a federated learning
framework that enables collaborative learning of multiple learn-
ers and a centralized server without sharing their raw data.
In each iteration, each learner uploads its local control policy
and the corresponding estimated normalized arrival time to
the server, which then computes the global optimum among the
learners and broadcasts the optimal policy to the learners. Each
learner then selects between its local control policy and that
from the server for next iteration. By leveraging generalization
error, our analysis shows that the proposed framework is able
to provide generalization guarantees on arrival time and safety
as well as consensus at global optimal value in the limiting case.
Monte Carlo simulation is conducted for evaluation.

I. INTRODUCTION

Motion planning is a fundamental problem in robotics,

and it aims to generate a series of low-level specifications

for a robot to move from one point to another [1]. In the

real world, robots’ operations are usually accompanied by

uncertainties, e.g., from the environments they operate in and

from the errors in the modeling of robots’ dynamics. To deal

with the uncertainties, a number of existing methods leverage

techniques in robust control (e.g., [2] [3]) and stochastic

control (e.g., [4] [5]). Recently, learning-based approaches

have been developed to relax the need of prior explicit

uncertainty models by directly learning the best mapping

from sensory inputs to control inputs from repetitive trials.

For example, paper [6] uses kernel methods to learn the

control policy for a spider-like robot with 18 degrees of

freedom using GPS inputs. Deep neural network is used

in [7], [8] to plan a sequence of actions toward goals

using camera inputs. A combination of convolutional neural

network and recurrent neural network is employed in [9] to

learn the best mapping from 2D LiDAR inputs to steering

angles for a scaled autonomous car for navigation.

This paper focuses on the generalizability of learning-

based approaches. Expected cost minimization is widely

adopted to train machine learning models generalizable to

unseen environments, which follow the same distribution

as training environments [10] [11]. Since the distribution

of the data is generally unknown, these methods instead

solve an empirical mean minimization problem (possibly

with regularization) given a finite amount of training data.

1Zhenyuan Yuan, Siyuan Xu and Minghui Zhu are with School
of Electrical Engineering and Computer Science, Pennsylvania
State University, University Park, PA 16802, USA (email:
{zqy5086,spx5032,muz16}@psu.edu). This work was
partially supported by NSF grants ECCS-1710859, CNS-1830390, ECCS-
1846706 and the Penn State College of Engineering Multidisciplinary
Research Seed Grant Program.

Related methods can be categorized into two classes. The

first one is modifying an expected cost function and solving

the modified problem through empirical cost minimization

[12]. The other class is incorporating regularizers into em-

pirical mean minimization to improve the generalizability

of the solution. A necessarily incomplete list of references

includes [8], [13]. While most regularization methods are

heuristic, paper [14] uses the sum of the empirical cost and

the generalization error from PAC-Bayes theory as an upper

bound of the expected cost and synthesizes a controller which

can minimize the upper bound. Nevertheless, empirical mean

minimization (with regularization) is an approximation to

the expected cost minimization problem, and the optimality

loss is unknown. In this paper, we aim to directly solve

the expected cost minimization problem and analyze the

optimality of the solution.

The papers aforementioned focus on centralized learning,

where all the training data are possessed by a single learning

agent. On the other hand, the advent of ubiquitous sens-

ing and mobile storage renders some scenarios, in which

training data are distributed across multiple entities, e.g., the

driving data in different autonomous cars. It is well-known

that learning models trained with more data have better

performance [10]. However, directly using the raw data for

collective learning can risk compromising the privacy of the

data owners, e.g., exposing the living and working locations

of the drivers. To tackle this challenge, distributed learning

is usually leveraged, where multiple learning agents perform

training collaboratively by exchanging their locally learned

models. There are mainly two approaches: decentralized

learning and federated learning. In decentralized learning,

learning agents directly communicate their locally learned

models with each other to facilitate the updates of the local

models [15]–[18]. In federated learning, learning agents are

orchestrated by a central server, i.e., the learning agents

download shared models from the server, implement local

updates based on local data and report the local models

to the server for the updates of the shared models [19].

Decentralized learning is executed over peer-to-peer (P2P)

networks, does not require a centralized entity and thus is

robust to the failures of individual learning agents. With the

support of a central server, federated learning has access to

more resources in, e.g., computation, memory and power,

and hence enables a much larger scale of learning processes.

Contribution Statement: In this paper, we propose a

novel framework, federated learning for generalizable motion

planning (FedGen), to tackle the challenge of generalizable

motion planning in the presence of distributed data across

multiple learning entities. Specifically, each learner updates
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its local controller and sends its observation of the objec-

tive function to a central server for global minimization

among the controllers of the learners. The global minimizer

is then sent back to the learners for updates of the lo-

cal controllers. The algorithm explicitly takes into account

the generalization to unseen environments. This allows the

framework to provide generalization guarantees in terms of

the arrival time and the collision avoidance with obstacles

for the robot navigating in unseen environments. Almost-sure

convergence, almost consensus and Pareto improvement can

also be achieved. In addition, the algorithm can be executed

over P2P networks after a minor change. In summary, our

contributions are: Monte Carlo simulations are conducted for

evaluations.

Notations. We use superscript (·)[i] to distinguish the local

values of robot i and ‖ · ‖ to denote 2-norm.

II. PROBLEM FORMULATION

In this section, we introduce the dynamic system of the

robot, the problem of motion planning, the setting of feder-

ated learning, and the objective of this paper. The dynamic

system of the robot is given as follows:

xt+1 = f(xt, ut) + dE(xt, ut), (1)

where xt ∈ X ⊆ R
nx is the state of the robot, ut ∈ U ⊆

R
nu is its control input, and dE is the unknown external

disturbance induced by environment E ∈ E .

A. Environment-specific motion planning

Let environment E be composed of obstacle region

XO,E ⊆ X , free region XF,E , X \ XO,E , and goal region

XG,E ⊆ XF,E , The objective of the environment-specific

motion planning problem is to synthesize a controller, which

can drive system (1) to the goal region with obstacle collision

avoidance. The arrival time function under controller π :
X × E → U for system (1) starting from initial state xint is

given by

tE(xint;π) , inf{t > 0 | xt ∈ XG,E , x0 = xint,

xτ+1 = f(xτ , uτ ) + dE(xτ , uτ ),

uτ = π(xτ ;E), xτ ∈ XF,E , ∀0 6 τ 6 t}.

If the robot never reaches the goal, or hits the obstacles

before arrival, then tE(xint;π) = ∞. We say safe arrival

is achieved from initial state xint under controller π if

tE(xint;π) <∞. Note that tE(xint;π) is potentially infinite,

and it can cause numerical issues. Therefore, we normalize

the arrival time function by the adjusted Kruzkov transform

Ψ(r) , 1 − e−αr, where α > 0. Note that when α is

small, Ψ ◦ tE(xint;π) is close to the indicator function that

only returns zero when safe finite-time arrival happens. We

obtain the standard Kruzkov transform when α = 1. Then

the normalized cost functional is given by JE(xint;π) ,
Ψ ◦ tE(xint;π).

B. Generalizable motion planning

In the problem of generalizable motion planning, we

aim to synthesize a single controller that performs well in

different environments. In statistical learning theory [10],

this can be formulated as minimizing the expectation of

the normalized arrival time over different environments. In

particular, we assume the environments are sampled from an

unknown distribution.

Assumption II.1. (Stochastic environment). There is an

unknown distribution PE over E from which environments

are drawn from. �

Further, we assume that the initial state is a random

variable which is conditional on the environment.

Assumption II.2. (Stochastic initialization). There is an

unknown conditional distribution Pint|E from which xint is

drawn conditional on environment E ∈ E . �

The objective of the generalizable motion planning prob-

lem is to synthesize a controller π∗ ∈ Γ , {u(·) : X × E →
U ,measurable}, such that the expected normalized cost over

all possible, including unseen, environments is minimized:

π∗ = argmin
π∈Γ

Exint,E [JE(xint;π)]. (2)

Since Γ is a function space, problem (2) is a functional

optimization problem and hard to solve in general. In order

to make the problem tractable, we approximate the space

Γ using, e.g., deep neural networks and basis functions.

Consider a class of controllers πθ ∈ Γ parameterized by

θ ∈ R
nθ , e.g., the weights of a deep neural network. Denote

η(θ) , Exint,E [JE(xint;πθ)]. Then problem (2) becomes a

parameter minimization problem:

θ∗ = arg min
θ∈R

nθ

η(θ). (3)

Denote η∗ , minθ∈R
nθ η(θ) and Θ∗ , {θ ∈ R

nθ | η(θ) =
η∗}. Problem (3) is a standard expected cost minimization

problem. However, since the distribution of the environments

is unknown, (3) cannot be solved directly. A typical practice

is to approximate it by empirical cost minimization (with

regularization), e.g., [8], [13], [14], where a controller is

synthesized by minimizing the empirical cost (with regular-

ization) over a finite number of training environments. In this

paper, we aim to directly solve (3) and analyze the optimality

of the solutions.

C. Federated learning

We consider a network of learners V , {1, · · · , N}. Each

learner i ∈ V observes function η by sampling a set of local

environments E
[i]
l

i.i.d.
∼ PE , l = 1, · · · , n

[i]
E , and a set of

initial states x
[i]

int|E
[i]
l

,l′
∼ P

int|E
[i]
l

, l′ = 1, · · · , n
[i]
int|E , for

each E
[i]
l . Given a triple of (θ[i], E

[i]
l , x

[i]

int|E
[i]
l

,l′
), learner

i can measure J
E

[i]
l

(x
[i]

int|E
[i]
l

,l′
;πθ[i]) by running the robot

under controller πθ[i] from initial state x
[i]

int|E
[i]
l

,l′
in environ-

ment E
[i]
l , measuring the arrival time and taking the Kruzkov
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transform. Then learner i can approximate the gradient

∇θ[i]J
E

[i]
l

(x
[i]

int|E
[i]
l

,l′
;πθ[i]) by, e.g., using natural evolution

strategies [20]. The learners can communicate to a Cloud

but cannot communicate with each other. The objective of

the multi-learner network and the Cloud is to collaboratively

solve problem (3).

III. ALGORITHM STATEMENT

In this section, we propose a federated optimization algo-

rithm and analyze the performances the algorithm renders.

Algorithm 1 FedGen

1: Input: Local sample sizes: n
[i]
E , n

[i]
int|E ; Kruzkov trans-

form constant: α; Initial step size: r[i]; Initial estimate:

θ
[i]
0 ; Threshold for gradient: q[i]; Local bias: s[i]; Step

exponent: ρ ∈ (0, 1).

2: Init: ζ
[i]
0 ← 1, Converge

[i]
0 ← False, Collects

(y
[i]
0 , z

[i]
0 ), ∀i ∈ V .

3: for k = 1, 2, · · · ,K do

{Learner-based update}
4: for i ∈ V do

5: Sends (θ
[i]
k−1, y

[i]
k−1) to the Cloud

6: if ‖z
[i]
k−1‖ > q[i] and Converge

[i]
k−1 == False

then

7: θ̂
[i]
k ← θ

[i]
k−1 −

r[i]

kρ z
[i]
k−1

8: Converge
[i]
k ← False

9: else

10: θ̂
[i]
k ← θ

[i]
k−1

11: (y
[i]
k , z

[i]
k )← (y

[i]
k−1, z

[i]
k−1)

12: Converge
[i]
k ← True

13: end if

14: end for

{Cloud update}

15: (j, l)← argmini∈V,l′=0,··· ,k−1 y
[i]
l′ + s[i]

16: Sends (θ
[j]
l , y

[j]
l , s[j]) to all i ∈ V

{Learner-based fusion}
17: for i ∈ V do

18: if j 6= i and y
[j]
l + s[j] < min{y

[i]
k−1− s[i], ζ

[i]
k−1}

and ‖z
[i]
k−1‖ < q[i] then

19: θ
[i]
k ← θ

[j]
l

20: ζ
[i]
k ← y

[j]
l

21: Converge
[i]
k ← False

22: else

23: θ
[i]
k ← θ̂

[i]
k

24: ζ
[i]
k ← ζ

[i]
k−1

25: end if

26: if Converge
[i]
k == False then

27: Collects (y
[i]
k , z

[i]
k )

28: end if

29: end for

30: end for

A. Federated optimization

Denote θ
[i]
k the empirical estimate of the solution

to problem (3) by learner i at iteration k, y
[i]
k ,

1

n
[i]
E n

[i]

int|E

∑n
[i]
E

l=1

∑n
[i]

int|E

l′=1 J
E

[i]
l

(x
[i]

int|E
[i]
l

,l′
;π

θ
[i]
k

) the empirical

estimate of η(θ
[i]
k ), and z

[i]
k , 1

n
[i]
E n

[i]

int|E

∑n
[i]
E

l=1

∑n
[i]

int|E

l′=1

∇J
E

[i]
l

(x
[i]

int|E
[i]
l

,l′
;π

θ
[i]
k

) the empirical estimate of ∇η(θ
[i]
k ).

We propose the FedGen algorithm stated in Algorithm 1.

Informally speaking, each learner i first updates its local

controller based on its empirical estimates of η and sends

the estimates to the central server, e.g., the Cloud. The

Cloud finds the best local estimate by taking into account

the estimation error between y
[i]
k and η(θ

[i]
k ), and then sends

it back to the learners. Each learner then chooses between its

local controller and the controller from the Cloud to further

reduce η. The latter two parts utilize the power of the Cloud

to identify the controller that can potentially achieve better

performance in expectation and allow the learners to escape

from their local minima. Specifically, in each iteration k, the

algorithm sequentially executes three components as follows.

1) Learner-based update: First, each learner i updates its

estimate based on the measurement (y
[i]
k−1, z

[i]
k−1) and the

estimate θ
[i]
k from last iteration k−1. If ‖z

[i]
k−1‖ is greater than

a local threshold q[i], the learner makes one gradient descent

step and updates its local estimate to θ̂
[i]
k . The threshold

q[i] indicates whether a local minimum of η is achieved.

If ‖z
[i]
k−1‖ is not greater than q[i], the learner is labeled as

converged, skips updating its local controller and maintains

the previous measurement. The previous measurement is also

sent to the Cloud for global minimization.

2) Cloud update: Upon the receipt of local estimates of

η, (y
[i]
k−1, θ

[i]
k−1), from each i ∈ V , the Cloud returns the

global minimizer of y
[j]
l′ + s[j] over all the local estimates

θ
[j]
l′ , j ∈ V, l′ = 0, · · · , k−1, and sends the global minimizer

and minimum to the learners. The local bias s[i] bounds

the estimation error between y
[i]
k and η(θ

[i]
k ). Different from

the regularizers used in the literature of empirical cost

minimization, the local bias s[i] is a constant value and

does not depend on the estimate θ
[i]
k . This procedure can

be implemented recursively by comparing the learner-wise

global minimum in the previous iteration with the values

obtained in the current iteration. If one wants to implement

Algorithm 1 over P2P networks without the Cloud, this step

can be executed using the minimum consensus algorithm

[21] in a distributed manner.

3) Learner-based fusion: Learner i only chooses the

global minimizer θ
[j]
l sent by the Cloud when two conditions

are satisfied: (i) estimate θ
[j]
l achieves a smaller estimate of η,

i.e., y
[j]
l +s[j] is less than the minimum between y

[i]
k−1−s[i],

and ζ
[i]
k−1, the previous global minimum adopted by learner

i; and (ii) the local estimate converges, i.e., z
[i]
k−1 is small.

That is, the global minimizer helps learner i escape from its

local minimum. When the global minimizer is chosen, the
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local estimate is labeled as not converged at the iteration.

New measurements are collected on the current estimate if

the learner is not labeled as converged.

B. Performance guarantees

In this section, we provide the theoretic guarantees of

FedGen (Algorithm 1). Due to space limitation, all the proofs

are omitted and can be found in the complete version [22].

Let γ ∈ (0, 1) and b
[i]
γ ,

√

log(2/γ)

2n
[i]
E n

[i]

int|E

. Theorem III.1 be-

low shows the generalized performance of the local controller

estimates to unseen environments.

Theorem III.1. Suppose Assumptions II.1 and II.2 hold. The

following properties are true for all i ∈ V:

(T1, Generalization error). For each k > 0, it holds that

η(θ
[i]
k ) 6 y

[i]
k + b

[i]
γ with probability at least 1− γ.

(T2, Generalized safety). For each k > 0, the policy π
θ
[i]
k

achieves safe arrival with probability at least 1 − γ −
(1− γ)(y

[i]
k + b

[i]
γ ) for E ∼ PE and xint ∼ Pint|E . �

Next we investigate the limiting behavior of the algo-

rithm. Similar to most analysis of stochastic gradient descent

(please see [23] [24] and the references therein), we assume

η is Lipschitz continuous and L∇η-smooth.

Assumption III.2. (Lipschitz continuity). There exists posi-

tive constant Lη such that |η(θ) − η(θ′)| 6 Lη‖θ − θ′‖ for

all θ, θ′ ∈ R
nθ . �

Assumption III.3. (L∇η-smooth). There exists positive con-

stant L∇η such that ‖∇η(θ)−∇η(θ′)‖ 6 L∇η‖θ − θ′‖ for

all θ, θ′ ∈ R
nθ . �

Furthermore, we assume that the variance of the errors of

gradient estimation is bounded. This is a standard assumption

in the analysis of stochastic optimization [23] [24].

Assumption III.4. (Bounded variance). It holds that

E[‖z
[i]
k −∇η(θ

[i]
k )‖2] 6 (σ[i])2 for some σ[i] > 0. �

The lemma below shows that z
[i]
k is an unbiased estimate

of ∇η(θ
[i]
k ).

Lemma III.5. (Unbiased estimator). Suppose Assumptions

II.1, II.2 and III.2 hold. Then it holds that E[z
[i]
k −∇η(θ

[i]
k )] =

0 for all k > 1. �

Since z
[i]
k is an unbiased estimate of∇η(θ

[i]
k ), by the law of

large numbers (Proposition 6.3 in [25]), (σ[i])2 diminishes as

n
[i]
E and n

[i]
int|E increase. The following theorem summarizes

the properties of almost-sure convergence, almost consensus

and Pareto improvement of the algorithm.

Theorem III.6. Suppose Assumptions II.1, II.2, III.2 III.3

and III.4 hold. For all i ∈ V , if r[i] 6 1
2L∇η

and q[i] =

2β[i]σ[i] for some β[i] > 1, then the followings hold:

(T3, Almost-sure convergence). There exists θ
[i]
∗ ∈ R

nθ such

that θ
[i]
k → θ

[i]
∗ almost surely.

(T4, Almost consensus). It holds that E
θ
[i]
∗ ,i∈V

[η(θ
[i]
∗ ) −

minj∈V η(θ
[j]
∗ )] 6 2maxj∈V b

[j]
γ .

Fig. 1: A sample environment in PyBullet

Denote k[i] , min{k > 0 | ‖z
[i]
k ‖ < q[i]} the first time

learner i’s estimate converges. Then we further have

(T5, Pareto improvement). It holds that E
θ
[i]
∗ ,θ

[i]

k[i]

[η(θ
[i]
∗ ) −

η(θ
[i]

k[i]) | θ
[i]
∗ 6= θ

[i]

k[i] ] 6 −2minj∈V b
[j]
γ . �

IV. SIMULATION

In this section, we conduct a set of Monte Carlo simula-

tions to evaluate the performance of the FedGen algorithm

in the PyBullet simulator [26].

Environment configuration. The evaluation is conducted

using Zermelo’s navigation problem [27] in a 2D space,

where the environments are randomly generated. A sample

of the environments is shown in Figure 1. Each environment

E consists of nobs cylinder obstacles and three walls as the

boundary of the 2D environment with px ∈ [−5, 5] and

py ∈ [0, 10], where px is the horizontal coordinate and py
is the vertical coordinate. The environments are generated

by sampling the obstacle number nobs uniformly between

15 and 30, and then independently sampling the centers of

the cylinders from a uniform distribution over the ranges

[−5, 5] × [2, 10]. The radius of each obstacle is sampled

independently from a uniform distribution over [0.1, 0.25].
The goal is to reach the open end of the environment while

avoiding collision with the walls and the obstacles.

Robot dynamics. We consider a four-wheel robot with

simple car dynamics [1] and constant speed v = 2.5 and

length L = 0.08 subject to unknown environment-specific

disturbances dE . The dynamics of the robot with state

x = [px, py, ϕ] is given by ṗx = v cos(ϕ) + dE(px, py),
ṗy = v sin(ϕ), ϕ̇ = tan(u)/L, where ϕ is the heading of

the robot, control u ∈ [−0.25π, 0.25π], and dE is generated

using the Von Karman power spectral density function as

described in [28] representing the road texture disturbance

(e.g., bumps and slippery surface) in environment E.

Sensor model. The robot is equipped with a depth sensor

(e.g., LiDAR). The readings of the depth sensor depend

on the environment E, the location and the heading of the

robot. Specifically, the output of the sensor has 20 entries,

where each entry φ corresponds to the distance measurement

at angle ϕ − π/3 + (φ − 1)π/60 with φ = 1, · · · , 20.

The measurement hφ(x;E) provides the shortest distance

between the obstacles, if there is any, at the angle of entry φ
of the robot and the robot at location (px, py). The sensing
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range is 5, i.e., hφ(x;E) ∈ [0, 5]. Denote the output of sensor

measurement as h(x;E) , [hφ(x;E)]φ=1,··· ,20.

A. Training

We consider a deep neural network-based controller ut =
πθ(xt;E) = πθ(xt, h(xt;E)), that is parameterized by

θ, the weights of the neural network. Note that the con-

troller is periodic in ϕ. Thus, the input ϕ is replaced

by two inputs sin(ϕ) and cos(ϕ). During training, espe-

cially during the early phase, the original cost functional

JE(xint, πθ) may have zero gradient for some initial state

xint since collisions with obstacles dominate most of the

trial runs. Therefore, to facilitate training, we consider the

surrogate ĴE(xint, θ) , 0.1(ρE(xint, πθ) + JE(xint, πθ)),
where ρE(xint, πθ) , minxG∈XG,E

‖x(tend(xint, πθ;E)) −
xG‖, tend(xint, πθ;E) , min{tcol(xint, πθ;E), t̄} and

tcol(xint, πθ;E) is the first time the robot collides with an

obstacle in environment E starting from xint under policy

πθ, and t̄ is the maximum allowable traveling time of the

robot. The cost ρE(xint, πθ) is to drive the robot approaching

the goal without collision, and the cost JE(xint, πθ) is to

minimize the arrival time when the robot is able to safely

reach the goal.

Since it is challenging to derive the analytical expression

of ∇ĴE(xint, θ), we approximate it by natural evolution

strategies [20]. In particular, we suppose θ follows a mul-

tivariate Gaussian distribution such that θ ∼ N (µ,Σ) with

a mean µ ∈ R
nθ and a diagonal covariance Σ ∈ R

nθ×nθ .

Let σ ∈ R
nθ be a vector aggregating the square-root of the

diagonal elements of Σ. The gradients of Eθ

[

ĴE(xint, πθ)
]

with respect to µ and σ are

∇µ E
θ∼P

[

ĴE(xint, πθ)
]

= E
ε∼N (0,I)

[

ĴE(xint, πµ+σ�ε)ε
]

� σ,

∇σ E
θ∼P

[

ĴE(xint, πθ)
]

=

E
ε∼N (0,I)

[

ĴE(xint, πµ+σ�ε)(ε� ε− 1)
]

� σ,

where � is the element-wise division, � is the elementwise

product, and 1 is a vector of 1’s with dimension nθ. We ap-

proximate the expectation by sampling m times ε ∼ N (0, I)
and taking the average.

Selection of hyperparameters. The neural network con-

troller consists of an input layer of size 24, followed by 3

hidden layers of size 20 with ReLU nonlinearities and an

output layer of size 1. We sample m = 30 to approximate

the gradients. We pick n
[i]
E = 10, n

[i]
int|E = 1, γ = 0.01, r =

0.01, Lη = 0.1, α = 0.1 q[i] = 0.04 and s[i] =
√

log(2/γ)

2n
[i]
E n

[i]

int|E

.

We use 8 learners, i.e., N = 8, for the experiments. Note

that the generalized performance in unseen environments is

defined as an expectation over all possible environments,

which cannot be obtained exactly. Therefore, we estimate the

generalized performances using 104 sample environments.

B. Results

Generalization. Figure 2 compares the upper bound on the

expected normalized arrival time (T1) and the lower bound

on the safe arrival rate (T2) in Theorem III.1 respectively

with the actual expected normalized arrival time and the

actual safe arrival rate of learner 1. Other learners have

similar behaviors. As the figure illustrates, the upper bound

and the lower bound derived in the theorem are valid. This

shows that the controller trained can generalize well to the

104 unseen environments.

(a) Normalized arrival time (b) Safe arrival rate

Fig. 2: Generalized performances on unseen environments

Near consensus and Pareto improvement. In Table I below,

we show the performances of the learners’ estimates in terms

of the expected cost ĴE , the expected normalized arrival time

JE , and the expected safe arrival rate. We compare with

the controllers at initialization (θ
[i]
0 ), the controller obtained

without communication (θ̌
[i]
∗ ), i.e., the controller obtained by

running FedGen using V = {i}, and the final convergence

(θ
[i]
∗ ) under FedGen. We can observe that all the expected

costs, expected normalized arrival times and expected safe

arrival rates at θ
[i]
∗ are roughly equal. This is aligned with the

near consensus in Theorem III.6. Furthermore, we can ob-

serve that all the expected costs and the expected normalized

arrival times at θ
[i]
∗ are no larger than those of θ

[i]
0 and θ̌

[i]
∗ ,

while the expected safe arrival rates at θ
[i]
∗ are no smaller than

those at θ
[i]
0 and θ̌

[i]
∗ . This shows that FedGen brings Pareto

improvement for each learner through communication.

Figure 3 respectively shows the trajectories of the robot in

a sample unseen environment using learner 1’s initial policy

θ
[1]
0 , locally converged policy θ̌

[1]
∗ and finally converged

policy θ
[1]
∗ . The red disks represent the obstacles. Both

the initial controller (Figure 3a) and the locally converged

controller (Figure 3b) cannot bring the robot to the open

end, despite the locally converged controller is able to drive

the robot closer to the open end. Nevertheless, the path

generated by the final controller θ
[1]
∗ is able to drive the

robot to the open end. This illustrates that FedGen helps the

learners escape from their local minimas and achieve better

generalizability.

V. CONCLUSION

We propose FedGen, a federated learning algorithm which

allows a group of learners to collaboratively learn a single

controller for motion planning in unseen environments. The

problem is formulated as an expected cost minimization

problem and solved in a federated manner. The proposed

algorithm is able to provide generalization guarantees on the

performances of the local controllers in unseen environments
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Learner ID (i) 1 2 3 4 5 6 7 8

Cost (Ĵ)
Init 0.5198 0.5170 0.5208 0.5210 0.5148 0.5231 0.5237 0.5167

Local 0.0436 0.0396 0.0331 0.4810 0.4105 0.0341 0.3992 0.4989
Final 0.0374 0.0396 0.0331 0.0335 0.0353 0.0341 0.0363 0.0335

Normalized arrival time (J)
Init 0.8743 0.8761 0.8744 0.8782 0.8692 0.8748 0.8797 0.8732

Local 0.3759 0.3763 0.3701 0.8385 0.7815 0.3700 0.7622 0.8569
Final 0.3748 0.3763 0.3701 0.3679 0.3711 0.3700 0.3716 0.3704

Safe arrival rate
Init 0.1802 0.1776 0.1800 0.1746 0.1876 0.1794 0.1724 0.1818

Local 0.9320 0.9408 0.9522 0.2314 0.3172 0.9450 0.3426 0.2054
Final 0.9386 0.9408 0.9522 0.9452 0.9432 0.9450 0.9428 0.9468

TABLE I: The expected costs, normalized arrival times, safe arrival rates of the estimates at initialization, local convergence

and final convergence.

(a) Trajectory produced by θ
[1]
0 (b) Trajectory produced by θ̌

[1]
∗ (c) Trajectory produced by θ

[1]
∗

Fig. 3: Comparison between initial policy, locally converged policy and globally converged policy

as well as consensus at global optimal value in the limiting

case. Monte Carlo simulations for conducted for evaluation.
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