IEEE Control Systems Letters paper presented at
2023 American Control Conference (ACC)
San Diego, CA, USA. May 31 - June 2, 2023

Federated reinforcement learning for generalizable motion planning

Zhenyuan Yuan!

Abstract— This paper considers the problem of learning a
control policy that generalize well to novel environments given
a set of sample environments. We develop a federated learning
framework that enables collaborative learning of multiple learn-
ers and a centralized server without sharing their raw data.
In each iteration, each learner uploads its local control policy
and the corresponding estimated normalized arrival time to
the server, which then computes the global optimum among the
learners and broadcasts the optimal policy to the learners. Each
learner then selects between its local control policy and that
from the server for next iteration. By leveraging generalization
error, our analysis shows that the proposed framework is able
to provide generalization guarantees on arrival time and safety
as well as consensus at global optimal value in the limiting case.
Monte Carlo simulation is conducted for evaluation.

I. INTRODUCTION

Motion planning is a fundamental problem in robotics,
and it aims to generate a series of low-level specifications
for a robot to move from one point to another [1]. In the
real world, robots’ operations are usually accompanied by
uncertainties, e.g., from the environments they operate in and
from the errors in the modeling of robots’ dynamics. To deal
with the uncertainties, a number of existing methods leverage
techniques in robust control (e.g., [2] [3]) and stochastic
control (e.g., [4] [5]). Recently, learning-based approaches
have been developed to relax the need of prior explicit
uncertainty models by directly learning the best mapping
from sensory inputs to control inputs from repetitive trials.
For example, paper [6] uses kernel methods to learn the
control policy for a spider-like robot with 18 degrees of
freedom using GPS inputs. Deep neural network is used
in [7], [8] to plan a sequence of actions toward goals
using camera inputs. A combination of convolutional neural
network and recurrent neural network is employed in [9] to
learn the best mapping from 2D LiDAR inputs to steering
angles for a scaled autonomous car for navigation.

This paper focuses on the generalizability of learning-
based approaches. Expected cost minimization is widely
adopted to train machine learning models generalizable to
unseen environments, which follow the same distribution
as training environments [10] [11]. Since the distribution
of the data is generally unknown, these methods instead
solve an empirical mean minimization problem (possibly
with regularization) given a finite amount of training data.

1Zhenyuan Yuan, Siyuan Xu and Minghui Zhu are with School
of Electrical Engineering and Computer Science, Pennsylvania
State University, University Park, PA 16802, USA (email:
{zqy5086, spx5032, muzl6}@psu.edu). This work was
partially supported by NSF grants ECCS-1710859, CNS-1830390, ECCS-
1846706 and the Penn State College of Engineering Multidisciplinary
Research Seed Grant Program.

979-8-3503-2806-6/$31.00 ©2023 AACC

Siyuan Xu!

Minghui Zhu'

Related methods can be categorized into two classes. The
first one is modifying an expected cost function and solving
the modified problem through empirical cost minimization
[12]. The other class is incorporating regularizers into em-
pirical mean minimization to improve the generalizability
of the solution. A necessarily incomplete list of references
includes [8], [13]. While most regularization methods are
heuristic, paper [14] uses the sum of the empirical cost and
the generalization error from PAC-Bayes theory as an upper
bound of the expected cost and synthesizes a controller which
can minimize the upper bound. Nevertheless, empirical mean
minimization (with regularization) is an approximation to
the expected cost minimization problem, and the optimality
loss is unknown. In this paper, we aim to directly solve
the expected cost minimization problem and analyze the
optimality of the solution.

The papers aforementioned focus on centralized learning,
where all the training data are possessed by a single learning
agent. On the other hand, the advent of ubiquitous sens-
ing and mobile storage renders some scenarios, in which
training data are distributed across multiple entities, e.g., the
driving data in different autonomous cars. It is well-known
that learning models trained with more data have better
performance [10]. However, directly using the raw data for
collective learning can risk compromising the privacy of the
data owners, e.g., exposing the living and working locations
of the drivers. To tackle this challenge, distributed learning
is usually leveraged, where multiple learning agents perform
training collaboratively by exchanging their locally learned
models. There are mainly two approaches: decentralized
learning and federated learning. In decentralized learning,
learning agents directly communicate their locally learned
models with each other to facilitate the updates of the local
models [15]-[18]. In federated learning, learning agents are
orchestrated by a central server, i.e., the learning agents
download shared models from the server, implement local
updates based on local data and report the local models
to the server for the updates of the shared models [19].
Decentralized learning is executed over peer-to-peer (P2P)
networks, does not require a centralized entity and thus is
robust to the failures of individual learning agents. With the
support of a central server, federated learning has access to
more resources in, e.g., computation, memory and power,
and hence enables a much larger scale of learning processes.

Contribution Statement: In this paper, we propose a
novel framework, federated learning for generalizable motion
planning (FedGen), to tackle the challenge of generalizable
motion planning in the presence of distributed data across
multiple learning entities. Specifically, each learner updates

Authorized licensed use limited to: Penn State University. Downloaded on January 30,2024 at 20:22:26 UTC from |IEEE Xplore. Restrictions apply.

its local controller and sends its observation of the objec-
tive function to a central server for global minimization
among the controllers of the learners. The global minimizer
is then sent back to the learners for updates of the lo-
cal controllers. The algorithm explicitly takes into account
the generalization to unseen environments. This allows the
framework to provide generalization guarantees in terms of
the arrival time and the collision avoidance with obstacles
for the robot navigating in unseen environments. Almost-sure
convergence, almost consensus and Pareto improvement can
also be achieved. In addition, the algorithm can be executed
over P2P networks after a minor change. In summary, our
contributions are: Monte Carlo simulations are conducted for
evaluations.

Notations. We use superscript (-)[) to distinguish the local
values of robot 7 and | - || to denote 2-norm.

II. PROBLEM FORMULATION

In this section, we introduce the dynamic system of the
robot, the problem of motion planning, the setting of feder-
ated learning, and the objective of this paper. The dynamic
system of the robot is given as follows:

(D

Tip1 = fog,ue) + dp(ve, ut),

where z; € X C R" is the state of the robot, u; € U C
R™ is its control input, and dg is the unknown external
disturbance induced by environment F € £.

A. Environment-specific motion planning

Let environment E be composed of obstacle region
Xo,g C &, free region Xr g £ x \ Xo,E, and goal region
Xo,r € Xr g, The objective of the environment-specific
motion planning problem is to synthesize a controller, which
can drive system (1) to the goal region with obstacle collision
avoidance. The arrival time function under controller 7 :
X x & — U for system (1) starting from initial state x;,; is
given by

te(Tine;) 2 inf{t > 0| 2, € Xg. g, %0 = Tint,
Tr41 = f(x'rvur) + dE(x'rvuT)a
ur =7m(xr E),xr € Xpp, V0 < 7 < t}.

If the robot never reaches the goal, or hits the obstacles
before arrival, then tg(Z;ne;) = 0o. We say safe arrival
is achieved from initial state x;,; under controller 7 if
tp(xint; ™) < 00. Note that t g (2;,,¢;) is potentially infinite,
and it can cause numerical issues. Therefore, we normalize
the arrival time function by the adjusted Kruzkov transform
U(r) £ 1 — e 2", where @ > 0. Note that when « is
small, ¥ o tg(xe;) is close to the indicator function that
only returns zero when safe finite-time arrival happens. We
obtain the standard Kruzkov transform when o = 1. Then
the normalized cost functional is given by Jg(zin:; ™) £
U o tp(Ting;).

79

B. Generalizable motion planning

In the problem of generalizable motion planning, we
aim to synthesize a single controller that performs well in
different environments. In statistical learning theory [10],
this can be formulated as minimizing the expectation of
the normalized arrival time over different environments. In
particular, we assume the environments are sampled from an
unknown distribution.

Assumption IL.1. (Stochastic environment). There is an
unknown distribution Pg over £ from which environments
are drawn from. [|

Further, we assume that the initial state is a random
variable which is conditional on the environment.

Assumption IL.2. (Stochastic initialization). There is an
unknown conditional distribution P;,z from which z;,; is
drawn conditional on environment F € £. []

The objective of the generalizable motion planning prob-
lem is to synthesize a controller 7, € T' = {u(-) : X x & —
U, measurable}, such that the expected normalized cost over
all possible, including unseen, environments is minimized:

)

me =argminE,. |, g[Je(zing;)]
wel

Since T" is a function space, problem (2) is a functional
optimization problem and hard to solve in general. In order
to make the problem tractable, we approximate the space
I" using, e.g., deep neural networks and basis functions.
Consider a class of controllers mgp € I' parameterized by
0 € R, e.g., the weights of a deep neural network. Denote
n(0) £ Ea,,, 2[JE(Tint; me)]. Then problem (2) becomes a
parameter minimization problem:

0, = arg Jmin n(0). 3)
Denote 7, = mingegne () and O, = {0 € R™ | () =
7. }. Problem (3) is a standard expected cost minimization
problem. However, since the distribution of the environments
is unknown, (3) cannot be solved directly. A typical practice
is to approximate it by empirical cost minimization (with
regularization), e.g., [8], [13], [14], where a controller is
synthesized by minimizing the empirical cost (with regular-
ization) over a finite number of training environments. In this
paper, we aim to directly solve (3) and analyze the optimality
of the solutions.

C. Federated learning

We consider a network of learners V = {1,--- , N}. Each
learner ¢ € V observes function 1 by sampling a set of local
. i) iei.d. ;
environments Elm Y Pl =1, ,n[g], and a set of
[4] - o1l
initial states mmt|E}“,l' Pz‘nt\E{”’ =1, SCAAPS for
each Elm. Given a triple of (Q[i],El[Z],x[_z] i@) learner
int| BVl
; (L] o i h
1 can measure JE}” (mmt|E}"’],l"7T9M) by. running the robot
under controller 7y from initial state :c[_l]t‘EM v in environ-
] in T
ment Elm, measuring the arrival time and taking the Kruzkov

Authorized licensed use limited to: Penn State University. Downloaded on January 30,2024 at 20:22:26 UTC from IEEE Xplore. Restrictions apply.

transform. Then learner ¢ can approximate the gradient
Vo T]JEM(HtlE l/,wg[l]) by, e.g., using natural evolution
m

strategies [20]. "fhe learners can communicate to a Cloud
but cannot communicate with each other. The objective of
the multi-learner network and the Cloud is to collaboratively

solve problem (3).

III. ALGORITHM STATEMENT

In this section, we propose a federated optimization algo-
rithm and analyze the performances the algorithm renders.

Algorithm 1 FedGen

(]

1: Input: Local sample sizes: ng ,nlY

int|€
form constant: «; Initial step size: r[ll] Initial estimate:
9([;], Threshold for gradient: ¢!”); Local bias: s[l; Step
exponent: p € (0,1).

¢« 1, Convergel!

Kruzkov trans-

2: Init: < False, Collects
(y([f],z([)]) Vie V.
3: for k=1,2,--- , K do
{Learner-based update}
4: for i €V do ‘
5 Sends (9;[;],173},[;],1) to the Cloud
6: if |z | > ¢/ and Convergel! | == False
7 O 0, — o)
8: Convergegj} + False
9: else ‘
10: o ol |
1: (', 2 « @i, 21)
12: Convergegj} <« True
13: end if
14: end for
{Cloud update} '
15: (4,0) « arg miniev,l/:o, k-1 yl[f] + sl
16: Sends (9l[j],ylm,s[j]) toallieV
{Learner-based fusion}
17: for i ¢V do ‘ ‘ .
18: if 7 %4 and ylm +sbl < min{y,{il — sl C;E;Zl,l}

and ||z | < q'"! then

19: 0“ i

20: C — yl[L

21: Convergek + False
22: else

23: 9[1 gl

24: [Z glf

25: end 1f

26: if Convergem == False then
27: Collects (y,E],z,Ll])

28: end if

29: end for

30: end for

80

A. Federated optimization

Denote 9,[51 the empirical estimate of the solution

to problem (3) by learner i at iteration k, yl £
il ,
n n .
ﬁ 151 lr:i‘g JE[J(Ht‘E l/;%,[f]) the empirical

Mint|e

[i]
Nint|e
I'=1

[4]

estimate of n(e[i]), and 2z, =

lil
S, S
VJ i (z []t|EM T]) the empirical estimate of Vn(&l[j]).
We propose the FedGen algorithm stated in Algorithm 1.
Informally speaking, each learner i first updates its local
controller based on its empirical estimates of 7 and sends
the estimates to the central server, e.g., the Cloud. The
Cloud finds the best local estimate by taking into account
the estimation error between y[] and 77(9[]) and then sends
it back to the learners. Each learner then chooses between its
local controller and the controller from the Cloud to further
reduce 1. The latter two parts utilize the power of the Cloud
to identify the controller that can potentially achieve better
performance in expectation and allow the learners to escape
from their local minima. Specifically, in each iteration k, the
algorithm sequentially executes three components as follows.
1) Learner-based update: First, each learner 7 updates its

estimate based on the measurement (y,[z] l,z,[z] 1) and the
|| is greater than

estimate 91[;] from last iteration k—1. If ||,z,[j]71
a local threshold ¢!”, the learner makes one_ gradient descent
step and updates its local estimate to é The threshold
gl mdlcates whether a local minimum of 7 is achieved.
If ||zk L|I is not greater than qll, the learner is labeled as
converged, skips updating its local controller and maintains
the previous measurement. The previous measurement is also
sent to the Cloud for global minimization.
2) Cloud update: Upon the receipt of local estimates of

, (y,C 1,9,[;] 1), from each i € V, the Cloud returns the

global minimizer of yl[/] + sl over all the local estimates

91[, ,j €V, I'=0,---,k—1, and sends the global minimizer
and minimum to the learners The local bias s[?! bounds
the estimation error between y,[i] and 17(0[]) Different from
the regularizers used in the literature of empirical cost
minimization, the local bias sl is a constant value and
does not depend on the estimate 91[5]. This procedure can
be implemented recursively by comparing the learner-wise
global minimum in the previous iteration with the values
obtained in the current iteration. If one wants to implement
Algorithm 1 over P2P networks without the Cloud, this step
can be executed using the minimum consensus algorithm
[21] in a distributed manner.

3) Learner-based fusion: Learner 7 only chooses the
global minimizer 0, 1 sent by the Cloud when two conditions

9[3]

are satisfied: (i) estimate ¢;"* achieves a smaller estimate of 7,

ie., yl[j] + sl is less than the minimum between y,[il — sl
and C,[il, the previous global minimum adopted by learner
i; and (ii) the local estimate converges, i.e., z,[;]_l is small.
That is, the global minimizer helps learner ¢ escape from its
local minimum. When the global minimizer is chosen, the

Authorized licensed use limited to: Penn State University. Downloaded on January 30,2024 at 20:22:26 UTC from IEEE Xplore. Restrictions apply.

local estimate is labeled as not converged at the iteration.
New measurements are collected on the current estimate if
the learner is not labeled as converged.

B. Performance guarantees

In this section, we provide the theoretic guarantees of
FedGen (Algorithm 1). Due to space limitation, all the proofs
are omitted and can be found in the complete version [22].

Let v € (0,1) and bl £ W Theorem III.1 be-
low shows the generalized performance of the local controller

estimates to unseen environments.

Theorem III.1. Suppose Assumptions II.1 and I1.2 hold. The

following properties are true for all ¢ € V:

(T1, Generalization error). For each k > 0, it holds that
77(0,[;]) < y,[s] + b[yl] with probability at least 1 — =y

(T2, Generalized safety). For each k > 0, the policy Tyl
achieves safe arrival with probability at least 1 — v —
(1 =) (ys il]) for £~ Pg and 2in¢ ~ Pipyjp- W

Next we investigate the limiting behavior of the algo-
rithm. Similar to most analysis of stochastic gradient descent
(please see [23] [24] and the references therein), we assume
7 is Lipschitz continuous and Lv,-smooth.

Assumption IIL2. (Lipschitz continuity). There exists posi-
tive constant L,, such that |n(6) — n(6")| < L,||6 — 0’| for
all 0,0’ € R, |

Assumption IIL.3. (Lv,-smooth). There exists positive con-
stant Ly, such that ||[Vn(0) — Vn(0')|| < Ly, — 0’| for
all 6,6’ € R™, []

Furthermore, we assume that the variance of the errors of

gradient estimation is bounded. This is a standard assumption
in the analysis of stochastic optimization [23] [24].

Assumption IIl.4. (Bounded variance). It holds that

IE[HZM V(6 ’])||] < (o2 for some ol > 0. []
The lemma below shows that z[] is an unbiased estimate
of (ol

Lemma IILS. (Unbiased estimator). Suppose AssumFtlons
I1.1, I1.2 and II1.2 hold. Then it holds that | zk
0 for all £ > 1.

Since z,[;] is an unbiased estimate of Vn(@m
large numbers (Proposition 6.3 in [25]), (ol f)

" and nu 1| increase. The following theorem summarizes

), by the law of

diminishes as
Ng
the properties of almost-sure convergence, almost consensus
and Pareto improvement of the algorithm.

Theorem II1.6. Suppose Assumptions II.1, 1.2, 1I1.2 II1.3
and 1IL4 hold. For all i € V, if ri! < 57— and ¢l =
28l sl for some S > 1, then the followings hold:

R™® such

(T3, Almost—sure convergence). There exists 9[]
that 9 — 6" almost surely. ,
(T4, Almost consensus). It holds that E, ev[n(@!ﬂ) —

minjey n(@Lj])] < 2maxjey bm.

81

Fig. 1: A sample environment in PyBullet

Denote k1 2 min{k > 0 | |2l < ¢} the first time
learner ¢’s estimate converges. Then we further have

(TS, Fareto improvement). It holds that Ep g [n (9[) —
k7]
n(O) |0 # 01] < / u

IV. SIMULATION

—2minj ey b[

In this section, we conduct a set of Monte Carlo simula-
tions to evaluate the performance of the FedGen algorithm
in the PyBullet simulator [26].

Environment configuration. The evaluation is conducted
using Zermelo’s navigation problem [27] in a 2D space,
where the environments are randomly generated. A sample
of the environments is shown in Figure 1. Each environment
FE consists of ngyps cylinder obstacles and three walls as the
boundary of the 2D environment with p, € [—5,5] and
py € [0,10], where p, is the horizontal coordinate and p,
is the vertical coordinate. The environments are generated
by sampling the obstacle number n,,s uniformly between
15 and 30, and then independently sampling the centers of
the cylinders from a uniform distribution over the ranges
[-5,5] x [2,10]. The radius of each obstacle is sampled
independently from a uniform distribution over [0.1,0.25].
The goal is to reach the open end of the environment while
avoiding collision with the walls and the obstacles.

Robot dynamics. We consider a four-wheel robot with
simple car dynamics [1] and constant speed v = 2.5 and
length L = 0.08 subject to unknown environment-specific
disturbances dg. The dynamics of the robot with state
z = [pe,py.] is given by p. = vcos(p) + de(pe,py)s
py = vsin(p), ¢ = tan(u)/L, where ¢ is the heading of
the robot, control v € [—0.257,0.257], and dg is generated
using the Von Karman power spectral density function as
described in [28] representing the road texture disturbance
(e.g., bumps and slippery surface) in environment F.

Sensor model. The robot is equipped with a depth sensor
(e.g., LiDAR). The readings of the depth sensor depend
on the environment F, the location and the heading of the
robot. Specifically, the output of the sensor has 20 entries,
where each entry ¢ corresponds to the distance measurement
at angle ¢ — 7/3 4+ (¢ — 1)7/60 with ¢ = -, 20.
The measurement hy(z; E') provides the shortest distance
between the obstacles, if there is any, at the angle of entry ¢
of the robot and the robot at location (p.,p,). The sensing

Authorized licensed use limited to: Penn State University. Downloaded on January 30,2024 at 20:22:26 UTC from IEEE Xplore. Restrictions apply.

range is 5, i.e., hy(z; E) € [0,5]. Denote the output of sensor

measurement as h(z; E) £ [hy(z; E)]p=1,.-- 20-

A. Training

We consider a deep neural network-based controller u; =
mo(xy; E) = mo(wy, h(xy; E)), that is parameterized by
0, the weights of the neural network. Note that the con-
troller is periodic in . Thus, the input ¢ is replaced
by two inputs sin(y) and cos(p). During training, espe-
cially during the early phase, the original cost functional
JE(Zint, m9) may have zero gradient for some initial state
T;nt since collisions with obstacles dominate most of the
trial runs. :Fherefore, to facilitate training, we consider the
surrogate Jg(Zint,0) = 0.1(pr(Tint, 76) + JE(Tint, 7)),
where pp(Tint, T9) = Minpgexs o |2(tend(Tine, 70 E)) —
Zal|ls tend(xinta o5 E) min{tcol (minta g5 E)a ﬂ and
teot(Tint, mp; E) is the first time the robot collides with an
obstacle in environment E starting from x;,; under policy
7y, and t is the maximum allowable traveling time of the
robot. The cost pg (X ;nt, Tg) is to drive the robot approaching
the goal without collision, and the cost Jg(Znt, Tg) is to
minimize the arrival time when the robot is able to safely
reach the goal.

Since it is challenging to derive the analytical expression
of VJg(Zint,0), we approximate it by natural evolution
strategies [20]. In particular, we suppose 6 follows a mul-
tivariate Gaussian distribution such that 6 ~ A(u, X)) with
a mean p € R™ and a diagonal covariance > € R™8*"e,
Let 0 € R™ be a vector aggregating the square-root of the
diagonal elements of 3. The gradients of Eg [j 5(Tint, 71'9)}
with respect to p and o are

VNGLEP [jE(xi”t’ We)}

E
e~N(0,1)

VUOLEP [jE(mim’ M)}

E

cN0.D) |:JE’(37int7 Tutooe) (€O € — 1)} 0o,

where @ is the element-wise division, ® is the elementwise
product, and 1 is a vector of 1’s with dimension ng. We ap-
proximate the expectation by sampling m times ¢ ~ N(0, I)
and taking the average.

Selection of hyperparameters. The neural network con-
troller consists of an input layer of size 24, followed by 3
hidden layers of size 20 with ReLU nonlinearities and an

output layer of size 1. V}’f]: sample [r? = 30 to approximate
7 K]

the gradients. We pick ng' = 10, Ninte = 1,y=0.01, r =
0.01, L, = 0.1, & = 0.1 ¢l = 0.04 and sl = [1982/5)
2ng'n

& Nint|e
We use 8 learners, i.e., N = 8, for the experiments. Note

that the generalized performance in unseen environments is
defined as an expectation over all possible environments,
which cannot be obtained exactly. Therefore, we estimate the
generalized performances using 10* sample environments.

B. Results

Generalization. Figure 2 compares the upper bound on the
expected normalized arrival time (T1) and the lower bound

[jE(xmu 7Tu+a®e)€} o,

82

on the safe arrival rate (T2) in Theorem III.1 respectively
with the actual expected normalized arrival time and the
actual safe arrival rate of learner 1. Other learners have
similar behaviors. As the figure illustrates, the upper bound
and the lower bound derived in the theorem are valid. This
shows that the controller trained can generalize well to the
10* unseen environments.

1.0
1.0 —— Expected arrival time
09 Upper bound (T1) 0.8
0.6
0.4
0.2 —— Safe arrival rate
0.0 Lower bound (T2)
0 50 100 150 200 0 50 100 150 200

(a) Normalized arrival time (b) Safe arrival rate

Fig. 2: Generalized performances on unseen environments

Near consensus and Pareto improvement. In Table I below,
we show the performances of the learners’ estimates in terms
of the expected cost Jg, the expected normalized arrival time
Jg, and the expected safe arrival rate. We compare with
the controllers at initialization (9([)2]), the controller obtained
without communication (éLi]), i.e., the controller obtained by
running FedGen using V = {i}, and the final convergence
(9@) under FedGen. We can observe that all the expected
costs, expected normalized arrival times and expected safe
arrival rates at GLZ] are roughly equal. This is aligned with the
near consensus in Theorem III.6. Furthermore, we can ob-
serve that all the expected costs and the expected normalized
arrival times at 0 are no larger than those of 9[[)1] and 01
while the e_xpected safe arrival rates at 9,@ are no smaller than
those at 61 and 6. This shows that FedGen brings Pareto
improvement for each learner through communication.

Figure 3 respectively shows the trajectories of the robot in
a sample unseen environment using learner 1’s initial policy
9([)1}, locally converged policy éL” and finally converged
policy 9,[‘1}. The red disks represent the obstacles. Both
the initial controller (Figure 3a) and the locally converged
controller (Figure 3b) cannot bring the robot to the open
end, despite the locally converged controller is able to drive
the robot closer to the open end. Nevertheless, the path
generated by the final controller HLH is able to drive the
robot to the open end. This illustrates that FedGen helps the
learners escape from their local minimas and achieve better
generalizability.

V. CONCLUSION

We propose FedGen, a federated learning algorithm which
allows a group of learners to collaboratively learn a single
controller for motion planning in unseen environments. The
problem is formulated as an expected cost minimization
problem and solved in a federated manner. The proposed
algorithm is able to provide generalization guarantees on the
performances of the local controllers in unseen environments

Authorized licensed use limited to: Penn State University. Downloaded on January 30,2024 at 20:22:26 UTC from |IEEE Xplore. Restrictions apply.

Learner ID (7) 1 2 3 4 5 6 7 8
Init 0.5198 | 0.5170 | 0.5208 | 0.5210 | 0.5148 | 0.5231 | 0.5237 | 0.5167
Cost (j) Local | 0.0436 | 0.0396 | 0.0331 | 0.4810 | 0.4105 | 0.0341 | 0.3992 | 0.4989
Final | 0.0374 | 0.0396 | 0.0331 | 0.0335 | 0.0353 | 0.0341 | 0.0363 | 0.0335
Init 0.8743 | 0.8761 | 0.8744 | 0.8782 | 0.8692 | 0.8748 | 0.8797 | 0.8732
Normalized arrival time (J) | Local | 0.3759 | 0.3763 | 0.3701 | 0.8385 | 0.7815 | 0.3700 | 0.7622 | 0.8569
Final | 0.3748 | 0.3763 | 0.3701 | 0.3679 | 0.3711 | 0.3700 | 0.3716 | 0.3704
Init 0.1802 | 0.1776 | 0.1800 | 0.1746 | 0.1876 | 0.1794 | 0.1724 | 0.1818
Safe arrival rate Local | 0.9320 | 0.9408 | 0.9522 | 0.2314 | 0.3172 | 0.9450 | 0.3426 | 0.2054
Final | 0.9386 | 0.9408 | 0.9522 | 0.9452 | 0.9432 | 0.9450 | 0.9428 | 0.9468

TABLE I: The expected costs, normalized arrival times, safe arrival rates of the estimates at initialization, local convergence
and final convergence.

) e o £ 3
- - - -
8 - 8 -
-
-
- ® - - L4
-
3 - - 3 -
L d - -

=
s

0
L - E Y - -
- - - -
] - -
- -
- * -
- 5 - -
- - -
e - - - -
)
- - - -
2

-2 0 2 4 -2 0

(a) Trajectory produced by 0([)1]

(b) Trajectory produced by oL

(c) Trajectory produced by ol

Fig. 3: Comparison between initial policy, locally converged policy and globally converged policy

as well as consensus at global optimal value in the limiting
case. Monte Carlo simulations for conducted for evaluation.

[4]

[5]

[6]

[7]

[10]
[11]

[12]

REFERENCES

S. M. LaValle, Planning algorithms.
2006.

A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust
feedback motion planning,” The International Journal of Robotics
Research, vol. 36, no. 8, pp. 947-982, 2017.

S. Singh, A. Majumdar, J.-J. Slotine, and M. Pavone, “Robust online
motion planning via contraction theory and convex optimization,” in
Proc. Int. Conf. Robotics and Automation (ICRA), 2017, pp. 5883—
5890.

M. Ono, M. Pavone, Y. Kuwata, and J. Balaram, “Chance-constrained
dynamic programming with application to risk-aware robotic space
exploration,” Autonomous Robots, vol. 39, no. 4, pp. 555-571, 2015.
M. Castillo-Lopez, P. Ludivig, S. A. Sajadi-Alamdari, J. L. Sanchez-
Lopez, M. A. Olivares-Mendez, and H. Voos, “A real-time approach
for chance-constrained motion planning with dynamic obstacles,”
IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3620-3625,
2020.

N. Virani, D. K. Jha, Z. Yuan, I. Shekhawat, and A. Ray, “Imitation of
demonstrations using bayesian filtering with nonparametric data-driven
models,” Journal of Dynamic Systems, Measurement, and Control, vol.
140, no. 3, 2018.

S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik,
“Cognitive mapping and planning for visual navigation,” in Proc. IEEE
Conf. Computer Vision and Pattern Recognition (CVPR), 2017, pp.
2616-2625.

S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 1334-1373, 2016.

Y. Fu, D. K. Jha, Z. Zhang, Z. Yuan, and A. Ray, “Neural network-
based learning from demonstration of an autonomous ground robot,”
Machines, vol. 7, no. 2, p. 24, 2019.

V. Vapnik, The Nature of Statistical Learning Theory.
science & business media, 2013.

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning.
press, 2016.

J. Garcia and F. Ferndndez, “A comprehensive survey on safe rein-
forcement learning,” Journal of Machine Learning Research, vol. 16,
no. 1, pp. 1437-1480, 2015.

Cambridge university press,

Springer

MIT

83

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” The International Journal of Robotics Research, vol. 34, pp.
705-724, 2015.

A. Majumdar and M. Goldstein, “PAC-Bayes control: Synthesizing
controllers that provably generalize to novel environments,” in Conf.
Robot Learning (CoRL), 2018, pp. 293-305.

K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decen-
tralized multi-agent reinforcement learning with networked agents,”
in Proc. Int. Conf. Machine Learning (ICML), 2018, pp. 5872-5881.
Z. Yuan and M. Zhu, “Communication-aware distributed Gaussian
process regression algorithms for real-time machine learning,” in Proc.
American Control Conf. (ACC), July 2020, pp. 2197-2202.

A. Nedi¢, A. Olshevsky, and C. A. Uribe, “A tutorial on distributed
(non-bayesian) learning: Problem, algorithms and results,” in Proc.
IEEE Conf. Decision and Control (CDC), 2016, pp. 6795-6801.

J. Liu, Y. Liu, A. Nedic, and T. Bagar, “An approach to distributed
parametric learning with streaming data,” in Proc. IEEE Conf. Deci-
sion and Control (CDC), 2017, pp. 3206-3211.

Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, Federated
learning. Morgan & Claypool, 2020.

D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and
J. Schmidhuber, “Natural evolution strategies,” The Journal of Ma-
chine Learning Research, vol. 15, no. 1, pp. 949-980, 2014.

R. Olfati-Saber and R. M. Murray, “Distributed cooperative control of
multiple vehicle formations using structural potential functions,” IFAC
Proceedings Volumes, vol. 35, no. 1, pp. 495-500, 2002.

Z. Yuan, S. Xu, and M. Zhu, “Federated reinforce-
ment learning for generalizable motion planning,”
https://www.dropbox.com/s/rrkvovzceel zkpj/FedGen.pdf?di=0, 2022.
B. Fehrman, B. Gess, and A. Jentzen, “Convergence rates for the
stochastic gradient descent method for non-convex objective func-
tions,” Journal of Machine Learning Research, vol. 21, 2020.

S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for
nonconvex stochastic programming,” SIAM Journal on Optimization,
vol. 23, no. 4, pp. 2341-2368, 2013.

R. Bhattacharya, L. Lin, and V. Patrangenaru, A course in mathemat-
ical statistics and large sample theory. Springer, 2016.

“Pybullet,” https://pybullet.org/wordpress/.
S. Zlobec, Zermelo’s Navigation Problems.
Us, 2001.

K. Cole and A. Wickenheiser, “Impact of wind disturbances on
vehicle station keeping and trajectory following,” in AIAA Guidance,
Navigation, and Control Conference, 2013, p. 4865.

Boston, MA: Springer

Authorized licensed use limited to: Penn State University. Downloaded on January 30,2024 at 20:22:26 UTC from IEEE Xplore. Restrictions apply.

