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Multivehicle Multisensor Occupancy Grid Maps
(MVMS-OGM) for Autonomous Driving

Xinhu Zheng
Liuging Yang

Abstract—In autonomous driving, environment perception is
the fundamental task for intelligent vehicles which provides the
necessary environment information for other applications. The
main issues in existing environment perception can be catego-
rized into two aspects. On the one hand, all sensors are prone
to measurement errors and failures. On the other hand, in com-
plex driving environments, vehicles may encounter a variety of
blind spots caused by vehicle occlusions, overlaps, and harsh
weather conditions, which will cause sensors to experience low-
quality data or to miss crucial environmental information. To
cope with these issues, a multivehicle and multisensor (MVMS)
cooperative perception method is presented to construct the occu-
pancy grid map (OGM) of vehicles in a global view for the
environment perception of autonomous driving. Distinct from
existing environment perception methods, our proposed MVYMS-
OGM not only provides continuous geographical information but
also captures and fuses continuous information with soft occu-
pancy probabilities, resulting in more comprehensive and raw
environmental information. Simulations and real-world experi-
ments demonstrate that the proposed approach not only expands
the perception range in comparison with single-vehicle sensing
but also better captures the uncertainty of sensor data by fusing
the occupancy probabilities with soft information.

Index Terms—Autonomous driving, cooperative sensing, mul-
tisensor data fusion, occupancy grid map (OGM) fusion, occu-
pancy probability assignment.
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I. INTRODUCTION

S THE core component of the next-generation trans-

portation system and automotive technology, unmanned
autonomous vehicles integrate a large variety of modules to
realize different tasks, such as environment perception, intelli-
gent decision making, autonomous driving, etc., among which,
environment perception is a key step to ensure the safety of
vehicle driving. The perception module uses various types of
vehicular sensors, such as LiDAR, camera, and millimeter-
wave radar to achieve the environment perception by detecting
the surrounding environment in real time, providing effective
environmental information and timely warning of potential
danger. The environment perception can also allow the vehicle
to make appropriate decisions based on the driving environ-
ment and provide guidance for the path planning. In typical
driving scenarios, perception tasks mainly include pedestrian
detection, vehicle detection, safe passing region detection,
traffic sign recognition, etc.

In most existing works, the perception task is carried out
by some specific sensors, such as LiDAR [1], camera [2], and
millimeter-wave radar [3]. However, different sensors have dif-
ferent specifications in terms of the sensing range or suitable
environments. Not any single type of sensor can provide reli-
able data in all scenarios at all times. In addition, the dynamics
and complexity of the driving environment also pose many
significant challenges to the perception tasks. In complicated
traffic scenarios, there is a variety of blind spots that vehicles
may encounter, which may be caused by vehicles’ occlusions
and overlaps, or harsh weather conditions, such as sandstorms,
rainstorms, etc. In these cases, the vehicular sensors are prone
to failure and leading to great uncertainty in the perception
result.

Multisensor fusion stands for combining information from
several sensors to form a more comprehensive environment
or integrating information from different types of sensors to
generate a more reliable description of the environment. In the
environment perception, camera and LiDAR are often consid-
ered to be the two most commonly used sensors. Without loss
of generality, we are considering these two types of data here
in this article. The method proposed in this article can also be
applicable to fuse other types of sensor data. Camera data can
provide rich color information and work well on many per-
ception tasks with the assistance of deep learning algorithms
and computer vision techniques (see [2], [4]). However, the
camera data is sensitive to the environment such as the lighting
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condition and lacks depth information. In contrast, the point
cloud data collected by LiDAR contains depth information
and is more robust and accurate in ranging tasks. However,
given the relatively sparse nature of its point density, it falls
short in capturing the features of small objects. Therefore,
combining the information from the LiDAR and camera is
expected to alleviate their respective limitations and facili-
tate environment perception with more reliable and consistent
results (see [5], [6]).

However, most existing research has only been validated in
simplified environments and often with oversimplified assump-
tions. When they are applied to real-world driving scenarios,
various issues may arise. For instance, the main reason for
the first fatal Tesla car accident that occurred in Florida on
7 May 2016 [7] is because the onboard full self-driving system
relying solely on the camera-based environment perception
for object detection, and it is unable to detect the stationary
truck in front due to the abnormal light reflection. Although
the fusion of data from multiple sensors could potentially
improve the perception accuracy of a single vehicle to a certain
extent, it cannot completely solve the problem caused by blind
spots. When the vehicle is in a poor perception perspective or
encounters bad weather conditions, most of the perception area
may be occluded, and the data collected by the sensor may be
corrupted by significant noise. Obviously, such results would
have a fatal impact.

Researchers have attempted to fuse the data from different
perspectives to mitigate these issues, via multivehicle cooper-
ative perception. In vehicular networks, vehicles can exchange
sensing information via V2V and/or V2I communications
to achieve cooperative perception [8]-[12]. Multivehicle
cooperative perception can expand the perception range of
individual vehicles, improve the data accuracy of the perceived
overlapping area, compensate for the blind zones of individual
vehicles, and reduce the risk of potential dangers with more
comprehensive and reliable driving environment information
by supplementing the perception results of multiple
perspectives.

To this end, in this article, a multivehicle multisen-
sor (MVMS) cooperative sensing environment perception
approach is developed by combining the two data fusion
techniques and present a more informative environment for
driving scenarios through the occupancy grid map (OGM).
The OGM divides the area of interest into fine grids and
provides the environmental information about the target area
by giving the occupancy status of all the grids. Here, we
also adopt OGM as the representation of the driving envi-
ronment information because it can be used as a universal
representation for different sensor types and fits the mul-
tisensor fusion aspect of this work naturally. Furthermore,
while most existing OGMs represent the occupancy status
of grids in a discrete manner (either occupied or unoccu-
pied), in this article, we assign continuous probability values
for the occupancy status of grids to fully capture the uncer-
tainty in the sensor data. In this way, the sensor data provided
by different sensors at different vehicles could be fused
according to the occupancy probabilities. We propose a rule
based upon the likelihood principle to combine the occupancy
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probabilities and quantify the uncertainties in the fused sensing
data.

In summary, our proposed MVMS-OGM, instead of using
discrete information or giving binary occupancy status, will
capture and fuse continuous information with soft occupancy
probabilities. It provides a more comprehensive and informa-
tive environment representation for other autonomous driving
tasks that require more than just binary detection results.

The remainder of this article is organized as follows.
Section II further discusses the related works. Section III sys-
tematically describes the workflow of the multisensor data
fusion process. Section IV presents the proposed MVMS-
OGM method. Section V validates the proposed methods
with simulations, public data set, and the real-world data.
Section VI presents conclusion remarks and future directions
for this article.

II. RELATED WORKS
A. Multisensor Data Fusion

In recent years, various multisensor data fusion methods
have been adopted to improve the performance of autonomous
driving perception [13]. By combining information from indi-
vidual sources, the defects of single typed sensors can be well
compensated, and more reliable and comprehensive perception
results can be obtained. Based on the information used for the
fusion algorithm, the fusion methods can be categorized into
data-level fusion (see [14]), feature-level fusion (see [5], [15]),
and decision-level fusion (see [16], [17]).

Data-level fusion combines the raw data from multiple sen-
sors and provides the fusion results at the lowest data level.
This method needs to process all the original information,
which slows down the decision-making process and may
incur extremely high computational demand and extensive data
storage requirement. Feature-level fusion first extracts the fea-
tures of the raw data and then combines these features into
a feature map. Compared with the data-level method, the
information space that this method processes is smaller and
is not as computational demanding. However, the quality of
the selected features directly affects the performance of this
method. Decision-level fusion is to make the final decision
from a set of decisions generated from multiple sensors. It
has the highest level of abstraction and can be readily applied
to fuse the information from groups of heterogeneous sensors.

In the field of autonomous driving, there have been numer-
ous research works attempting to improve the perception
range and accuracy via multisensor data fusion. For example,
Deng et al. [5] proposed a real-time multisensor integra-
tion strategy for multiscale object recognition, which leads to
significant improvements in the detection of objects of differ-
ent sizes by introducing low-level details. Rashed et al. [15]
designed a novel CNN architecture to fuse the RGB and
LiDAR information, which operates in real time and is suitable
for autonomous driving. Fu et al. [18] exploited a deep neu-
ral network to combine the LiDAR and RGB data and results
in a denser pixel-wise depth map. Wei et al. [16] proposed a
method to locate obstacles in the scene by comprehensively
utilizing the sparse point clouds captured by a LiDAR and
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the natural image from a camera. Guan et al. [17] combined
the camera and LiDAR data at the decision level, based on
bounding box fusion and improved Dempster—Shafer theory.

However, most of these works did not take into consid-
eration of blind zones caused by occlusions and overlaps or
harsh weather conditions, which are quite common in the real
world. If the vehicle is in a nonideal situation, multisensor
data fusion alone is insufficient to compensate for the limita-
tion of the field of view and the influence of the surrounding
objects, such as occlusion and shadowing. Therefore, in this
article, we add the multivehicle perception data fusion on top
of the multisensor data fusion, in order to solve the problems
of vehicle blind spots.

B. Multivehicle Data Fusion

Researchers have utilized multivehicle data fusion in high-
level tasks, such as decision making [19] and behavior
analysis [20], but not quite much in the basic environment
perception task. Rosenstatter and Englund [21] constructed a
trust system to evaluate the perception information from differ-
ent sources of and conduct the fusion process for multivehicle
cooperative sensing. However, the limitation of this work is
that the information is the location of the vehicle but not
the overall environment and was only validated in the vehicle
distance model (VDM) and vehicle position model (VPM).

To better demonstrate and capture the overall scene of the
environment, while also providing guidance for the fusion pro-
cess, a unified representation of sensing results is required to
restrain different sampling rates and data formats in different
sensor setups. Hence, many researchers selected the OGMs,
which not only demonstrate the information in a geographical
form but also quantify the uncertainty of the vehicle’s location
to represent the perception results. It has been widely applied
and justified in previous works, including SLAM [22], object
detection [23], etc. Many researchers have conducted works on
expanding a single vehicle’s sensing range via map concate-
nation. For instance, Li et al. [24] adopted an optimization
approach based on the occupancy likelihood to achieve the
merging of the OGMs. Saeedi et al. [25] proposed a multi-
step process to guide the map fusion process, including map
learning, relative orientation extraction, and relative translation
extraction.

However, there are still two problems to be solved in exist-
ing studies. First, most of the OGMs are constructed with
discrete probability models. Specifically, they only assign the
binary probability to each grid, which is not able to describe
or quantitatively reflect different sensor measurements in dif-
ferent quality or precision. Therefore, it is necessary to study
an appropriate probability approach for the OGM that will not
only seize the information but sufficiently facilitate the fusion
process. Some researchers introduced probability distributions
to portray objects based on background subtraction [26] or
likelihood-field-model [27], [28], but in terms of the general
map formation, few studies have been done. Second, little has
been done on the combination of different sensing information
from different vehicles, most of the existing works focus on the
map alignment. Furthermore, the precision of the overlapping
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areas where sensors are providing data from multiple vehicles
is not benefited from the map merging. Few studies have been
conducted for those overlapping regions. For instance, [29]
adopts the largest probability value as the fusion result and
another study [30] utilizes the Dempster—Shafer evidence the-
ory to combine the probability properly. The geographical
implication of occupancy probabilities is not considered in the
methods mentioned above. Instead, in this article, we introduce
the probability fusion into the OGM fusion process with the
consideration of the physical meaning, in order to guarantee
that the integrated OGM will not only expand sensing range
but also capture the uncertainty quantitatively by providing the
soft probability information.

C. Summary of Our Contribution

In this article, we develop an MVMS cooperative sensing
approach for the environment perception, using the OGM as a
unified representation of all sensor data. At the single-vehicle
multisensor fusion phase, the sensing data of the LiDAR and
camera are combined to exploit the advantages of these two
sensors and compensate for their respective limitations. After
the fusion process, the data obtained from these two sensors
are represented in the form of the OGM. With the OGM, the
discrete detection points provided by most existing LiDAR or
camera data processing methods are now organized into a map
with continuous spatial information that is crucial for driving
tasks. At the multivehicle cooperative perception phase, an
occupancy probability assignment algorithm and a probability
fusion algorithm are proposed. The raw data of sensors are
first converted into an occupancy probability density model,
and then the multiview OGMs are merged at the spatial and
probability levels, thereby expanding the perception range of
single-vehicle sensing as well as improving the perception
accuracy.

However, it is worth stressing that our MVMS-OGM is fun-
damentally distinct from existing environment perception in
two aspects.

1) Most exciting methods process the sensor data to obtain
environment representation of detection points that are
discrete in space. Our MVMS-OGM will provide con-
tinuous geographical information.

2) Existing methods, regardless of whether they are OGM
based or not, only provide discrete information and hard
detection result or binary occupancy status. Our MVMS-
OGM will capture and fuse continuous information with
soft occupancy probabilities.

In other words, our proposed MVMS-OGM is novel and
unique in that a more comprehensive and informative environ-
ment representation becomes possible for the first time. Not
only does the MVMS fusion setup retains more information
from individual sensors and perspectives but also various
detection, classification, or estimation tasks that best suit the
specific driving tasks become possible with such a repre-
sentation that is continuous in space and soft in occupancy
status. Even if the final objective is indeed hard detection
decision at discrete spacial points, one could associate those
hard decisions with reliability labels. All of these are crucially
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important for fully autonomous driving, in which the required
information goes far beyond the binary result of the object
detection.

The overall MVMS fusion framework is shown in Fig. 1.
At the single-vehicle multisensor fusion phase, the data from
multiple sensors are fused to generate the local OGM for each
vehicle, which contains continuous area information and con-
tinuous occupancy probability values to capture uncertainty in
sensor data. At the multivehicle phase, OGMs from multiple
vehicles are aligned to the same coordinate system based on
the location information of the vehicles and then fused to gen-
erate a global map based upon the likelihood ratio combination
principle.

The part of this work is based on our previously published
paper [31], which proposed four different OGM construc-
tion methods and the map fusion algorithm. Different from
that conference paper, this article proposes a more detailed
multivehicle cooperative perception framework, in which the
multisensor data fusion process is added at the single-vehicle
multisensor fusion phase.

III. SINGLE-VEHICLE MULTISENSOR FUSION

The single-vehicle multisensor data fusion process is
presented, as shown in Fig. 2. The process starts with prepro-
cessing the image data obtained by the camera and the point
cloud data from the LiDAR to extract the object information
in the image. Then, the object information is converted to the
LiDAR coordinate system after depth estimation. Finally, the
LiDAR point cloud data and the object information are fused
and sent to the next phase for OGM construction.

A. Sensor Data Processing

LiDAR: As shown in Fig. 3, the origin Ow is the center of
the LiDAR coordinate system Xw — Yw — Zw, axis Zy points
to the driving direction of the vehicle, and the axes satisfy the
right-hand rule. The position of each point w in the coordinate
is denoted as (X, Yy Zw)-

The point cloud acquired by LiDAR contains a lot of ground
points, which lead to issues for subsequent object point cloud
processing. Hence, the ground segmentation is usually the
first step in perception for processing the 3-D point cloud.
A common method is using the grid elevation map based on
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cells [32]. The maximum and minimum height difference is
calculated, and on the basis of the elevation information y,,,
the portions are the ground areas if the difference is not greater
than the threshold. After processing, the obtained 3-D point
cloud will only contain the information about static objects
surrounding the vehicle.

Camera: The image data obtained by the front camera on
the vehicle have two different coordinates, the pixel coordi-
nate and camera coordinate, respectively. As shown in Fig. 4,
where the upper left corner image is the origin image data.
U — V is the pixel coordinate, the value of u is the number
of columns in the image array, and the value of v is the num-
ber of rows. X¢ — Yc — Z¢ is the camera coordinate, with the
optical center O of the camera. The axis Xc is parallel to the
u axis, the axis Y¢ is parallel to the v axis, and the axis Z¢ is
the camera optical axis, which is perpendicular to the image
plane. The conversion can be expressed as

U fi 0 uw O )§c
Zc|V| =10 f, v O ZC = M M>X, = MX,,
1 0O 0 1 0 1C
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fe=fldx, fy=Ff/dy (1

where f, and f, are the scale factors for axis U and axis V
in pixel coordinate, respectively. (ug, vo) is the center of the
image plane.

Spatiotemporal Consistency: Time and spatial synchroniza-
tion is critical to correctly fuse data from different sensors.

Time synchronization is to align LiDAR data and camera
data in time and reduce the impact of different sensors’ differ-
ent refresh rates and delays in the data fusion process. Based
on the sensor refresh rate, we can obtain the approximate
frame of multiple sensors. The GPS PPS timing source is
used to synchronize the host machine and each sensor and the
synchronization frames of different sensors can be obtained
according to the accuracy timestamp of the host sent to the
Sensors.

Spatial synchronization is to align LiDAR data and camera
data in space. Specifically, the objective is to map the dynamic
target detected by the camera to the LiDAR coordinate system
according to the conversion. Based on (1), the conversion rela-
tionship from the LiDAR coordinate Xy — Yw — Zy system to
the pixel coordinate system U —V can be expressed as follows:

U fio 0w e 7 ))(,W

ZCV:OnyOO|:01]Zw

1 00 1 0 v
= MiM>X,, = MX,, )

where Z. is the distance between the object and the optical
center. The camera’s intrinsic matrix which contains the intrin-
sic parameters of the camera is denoted by M. The extrinsic
matrix is denoted by Mj, where R is the rotation matrix
and T is the translation vector. M| and M, are used to con-
vert between camera local coordinates and global coordinates.
Finally, the projection matrix is denoted by M.

Inspired by [33], assume that the Velodyne coordinate
system is equivalent to the global coordinate system, because
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the calibration is performed when the vehicle is stationary.
In (2), M; contains the internal parameters of the camera.
The external matrix M, is estimated using the Caltech cali-
bration toolbox. Then, the camera’s tilt, roll, and yaw relative
to the global coordinate system can be obtained based on the
estimated disappearance line on the selected image.

B. Multisensor Fusion Algorithm

The critical step of the single-vehicle multisensor fusion
process is to map the bounding box in the image to the global
coordinate and fuse the camera data and the LiDAR data
together. The coordinate conversion is expressed as follows:

);Z R A I I
ZZZC[OJ 0 f w 0 |V
- 00 1 o] |1

= Z.M; 'M;'X, 3)

which is actually the inverse transform of (2). This is based
on the temporal and spatial consistency of the sensor.

To calculate the coordinate via (3), Z. is needed, which is
the distance from the optical center to the object. The depth
information is not presented in the camera data, the Z. of
the points in the bounding box can be obtained based on the
corresponding LiDAR point cloud data.

First, the image bounding box is divided into grids as shown
in Fig. 5, and then the point cloud data is mapped into the
camera coordinate system as follows:

Xe Xw
Y| [R T||Yw
Z —[o 1} Z, @

1

Based on the Z. values of the points collected by LiDAR, the
Z. value of every grid in the bounding box can be estimated
by calculating the average Z. value of the points that fall into
the grid. It can be seen that the smaller the size of the grid,
the more accurate the Z. value of this grid. However, in order
to avoid the case where no point falls into the small grid, the
grid size cannot be too small. Therefore, the grid size should
be selected based upon the resolution of the LiDAR cloud
points. A good option is to make it to be slightly larger than
the minimum distance between LiDAR cloud points.

Based on the positions of the grids in the bounding box and
the corresponding Z. values, the RGB values of these grids can
be mapped into the world coordinate system using (3). Then,
the dynamic target information becomes (x, y, z, R, G, B).
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IV. MVMS-OGM CONSTRUCTION

The data of multiple sensors are now combined with spatial
and temporal consistency. While the density of point clouds
can be improved by fusing LiDAR and camera data, the
LiDAR point cloud is discretely distributed in nature and there
is no guarantee that every grid occupied by the vehicle has
some data points. In other words, the fused result will only
contain isolated points in space rather than continuous areas.
In addition, regardless of whether it is LiIDAR data or image
data, there will also be a certain level of uncertainty in the data
that need to be quantified during the fusion process. Hence,
an assignment algorithm of the occupancy probabilities based
on kernel density estimation is proposed, in order to quantify
the uncertainty in sensor measurements. To this end, discrete
sensing data are converted into a continuous PDF by mapping
those data into continuous areas on the grid map. Finally, the
multivehicle maps are fused.

A. Introduction of OGM

There are typically three methods to integrate the LiDAR
and the camera data. They are adding depth information to
images, adding RGB information to point clouds, or converting
the image and point cloud data into other unified data repre-
sentation formats, such as OGMs, Graphs, and Trees. The first
method loses the depth information when converting the data
to the 2-D image plane. The fusion efficiency of the second
method is affected by the mismatch between high-resolution
images and low-resolution point clouds [34]. In autonomous
driving, the depth information and the fusion efficiency are
both very important. Hence, in this article, the third method is
adopted and the image data and point clouds data information
are converted into an OGM before the fusion process. The
advantages of the OGM are: 1) it gives a unified representa-
tion of data from different types of sensors and extracts the
features of them in a joint manner and 2) the OGM provides
the sensing information in the form of continuous geograph-
ical areas instead of isolated detection points, which makes
the fusion greatly simplified and provides crucial information
for driving. In an OGM, the entire area of interest would be
divided into many grids uniformly, and the state of each grid
s; in the map is either occupied s; = 1 or unoccupied s; = 0.
For grid i, ps;,=1 and py—o indicate the occupied probability
and unoccupied probability, respectively, and the sum of these
two values equals to 1 as follows:

Psi=0 +ps,‘:l =1. (5)

B. Kernel Density Estimation

The fixed bandwidth kernel density estimator [35] is
defined as

— 1 1 X — X ln X — Xi
ph(x)=E§K< p >=;Zkh< p ) (©)

i=1

where (x1,x2,...,%,) are independent and identically dis-
tributed samples collected from PDF p(x) and K is the kernel
function. The kernel function is usually a single-peak symmet-
ric function. The positive smoothing parameter denoted by &
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is also regarded as the bandwidth. The scaling kernel K}, is
expressed as

X

Kn(x) = %K(z) %)

The selection of the bandwidth /4 can be troublesome. If
the bandwidth is too large, the estimation result will be too
smooth, masking the data structure of the ground truth, result-
ing in a large deviation from the true probability density. If
the bandwidth is too small, though the deviation between the
estimation result and the ground truth will be reduced, the
variance of the estimated value will be large and the result
will be sharp. The choice of 4 is a tradeoff between deviation
and variance. However, the choice of the kernel function is
not that important in the KDE, because the effect of kernel
function on the estimation error is a constant shift [36]. Here,
in this article, the Gaussian kernel is selected.

C. Occupancy Probability Assignment

Assume that there are N vehicles cooperating in the traffic
scene, and in the ego vehicle’s map, there are M sensor data
points z} = (x},y), 22 = 2, y%), ..., 2¥ = (M, y¥) in the
target object #’s occupied area. Denote the output of proba-
bility assignment as p(m(x, y) |zt1,z,2, . ,zﬁ”), where m(x, y)
means the grid at the (x,y) is occupied. The output indi-
cates the occupancy probability based on the measurements
ztl, ztz, . ,zﬁ” . No sensing information of the environment is
available at initialization, and the initialization for all grids is
set to 0.5.

The kernel function is formulated as

1
Kd(Z) — Zefl/Zz.zT. (8)

The kernel estimator is formulated as
| M
_ i
PrDE®@) = o le Kn(z. 2. H) 9)
1=

where the bandwidth is denoted by H, a 2-D matrix.
Kn(z,z}, H) is the scaled kernel function, given by

i 1 iNgy—1

|H|
Then, the h-bandwidth matrix is determined following the
generalized rule of thumb [37]. Assume the target vehi-
cle’s occupancy probability distribution follows a Gaussian
distribution. Then, denote A-bandwidth matrix as

~1/2

H=M"0%"" (11)

Substituting H and Ky into (9), the occupancy probability of
the target object can be obtained, given by

pm@)z!, 22, ..., 2") = pkpE®). (12)

D. Probability Mapping to OGM

Note that the vehicle is continuously sensing the environ-
ment. Hence, the OGM should be updated continuously when
new measurements are taken. The main goal of this mapping
process is to update the occupancy probabilities based on the
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Algorithm 1 Probability Mapping to OGM

Require: p,(m(xi, y)lz} .27, .- 2D pro1 (i, v
Ensure: p;(x;,yi);

1 Af pi (g, yi) = 1ot pim(x, y)lz), 22, ... 21) ==
then p;(x;,y) = 1;

2: elseif p;(m(x;, yi)|zt1,zt2, . ,zﬁ”) < 0.5
then p;(x;,y;)) =0.5;

3: elseif p;—1(xi, yi) > 0.5
then | v
I =log DPr—1(Xi, yi) prm(xi, y)lzg s .., 2)")
b 1 _pt—ll(xi»yi) 1 — py(m(x;, yi)lz}, .. .,zﬁ”)

er

Di(xi, yi) = Ter

4 else py(xi,yi) = pom(xi, y)lzl, 22, ... 2);

5: return p;(x;, ;).

most recent measurements obtained via occupancy probabil-
ity assignment, to construct the accurate area occupied by the
objects in the map.

First, normalize the occupancy probability distribution
obtained previously, denoted by p;(m(x, y)|zt1 , ztz, ... ,zﬁ” ). For
a grid located at (x;,y;) in the map, denote p,(x;,y;) and
pi—1(xi, yi) as its current occupancy probability at 7 and the
previous moment probability at ¢ — 1, respectively.

The pseudocode of the probability mapping is given by
Algorithm 1. If any input probability is 1, this means that
the corresponding grid is occupied and hence its occupancy
probability is assigned to 1, as shown in step 1. Next, if
the probability returned is less than 0.5, it indicates that it
is included in the occupied area of the object, and its state
is assigned as “uncertain.” The probability distribution of the
unoccupied area will be discussed in Section IV-E. In step 3, if
the input probability is greater than 0.5, it indicates that there
is an object that may be near the vehicle, resulting in over-
lapping of some grids. Here, the log likelihood is introduced
to combine the probabilities which will be further explained
in detail in Section IV-F. In step 4, if the current input does
not satisfy any cases above, the probability is directly mapped
onto the map based on the current measurement value. Finally,
the algorithm returns the updated occupancy probability value
at current moment time .

E. Unoccupied Area Probability Assignment

The surrounding environment of the ego vehicle is divided
according to the occupancy probability distribution within the
maximum detection distance D of the sensor. For simplicity,
assume that there is only one object in the detection range, as
shown in Fig. 6, the blue part is the detected object. The reset
portion image, the darker the color, the greater the occupancy
probability. And the uncertain state is represented by shadows.
For multiple objects, the unoccupied area can be determined by
the same beam model except that all beams returning objects
need to be involved.

First, for the grids that are out of D, which means that
objects cannot be detected by the sensor, they are treated
as under the uncertain state with the probability of 0.5 at
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Fig. 6. Beam model of the sensor.

first. Then, if the returned distance is the maximum range
of the sensor, which means that within the detection range
in this direction, there is no object. Hence, all grids in
this direction are now assigned with the unoccupied state.
And for the area occluded by the objects that cannot be
detected, the state is also set as the uncertain state with
the probability of 0.5. Conversely, along the path from the
sensor to the occupied part, there is no occlusion, then
the grids in this area are assigned with the unoccupied
state.

For the grids with the unoccupied state, the occupancy prob-
ability values are always below 0.5, and increasing linearly
according to the distance from the sensor. The maximum value
of the unoccupied grids is 0.5 in the boundary of the detectable
area, because the state of the maximum range of the sensor
cannot be determined.

F. Multivehicle Map Fusion

Multiple vehicles share their OGM with a fusion center,
and it will return a global OGM to each vehicle by map
fusion that integrating the local OGMs. The integration pro-
cess consists of two steps: 1) map alignment and 2) probability
fusion. Many existing studies for the fusion of different maps
can provide good alignment results. To this end, we assume
that the fusion center knows the position of each participated
vehicle in a global coordinate. Then, the local OGMs can be
easily mapped into the global coordinate via coordinate trans-
formation. After the coordinate conversion, probabilities of the
overlapped region are combined based on the log-likelihood
ratio.

For the overlapped regions, assuming the detecting process
of the occupancy status of a grid is independent, and then the
log-likelihood ratio is the best way to combine the perception
information from different vehicles without losing. In addition,
the log-likelihood ratio can avoid unnecessary truncation errors
because it is in the range of [—o0, co].

Following the previous assumptions, there are N vehicles
cooperating at time ¢, denoted as Vi, ..., Vy. Denote the cor-
responding maps under the global coordinate are expressed
as My, ;, ..., My, ; after the coordinate transformation. Then,
the log-likelihood ratio corresponding to vehicle V; for a
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overlapped grid r in the global OGM can be expressed as

Di(Cxr, yr)lMVi,t)
1 — pi((xr, yr) My, 1)

where (x,,y,) is the coordinates of the rth grid; and
Di((xr, y-)IMy, ;) is the occupancy probability of grid » in map
My, ;.

To fuse the OGMs, the occupancy probability of N vehicles
is a summation of the log-likelihood ratio of each vehicle by
converting the summation of the log-likelihood ratio into a
probability value. The probability is formulated as

in, = log (13)

N N
: ,yr) My,
I, = ZLZ/II _ Zlog Pi((xr, yr) My, 1)
’ i=1 ’ i—1 1 _pt((xr’ yr)'MVi,t)

I,f ng:,t
= — 14)
r,t f (

1 4 ebra
where p,, is the occupancy probability of the grid r after
fusion.

V. SIMULATIONS AND EXPERIMENTS

In this section, the proposed MVMS-OGM method will be
validated with the simulated data, an open data set, and the
real-world data, respectively. For the multivehicle coopera-
tive perception scenario, it requires multiple vehicles equipped
with sensors and V2V equipment, which is difficult to realize,
therefore, the multivehicle cooperative perception algorithm
proposed in Section IV will be first validated on the MATLAB
simulation platform, with a detailed description presented
in Section V-B. Then in Section V-C, the multisensor and
multivehicle data fusion algorithm is demonstrated on the chal-
lenging open data set KITTI [38], which contains the real
sensing data collected by LiDAR and camera. Finally, some
real-world experiments are conducted via an autonomous driv-
ing platform to validate the algorithms in Section V-D. The
sensor data are collected from a multivehicle cooperation scene
where each vehicle is equipped with LiDAR and camera.

A. Experimental Setup

The simulation uses the MATLAB [39] autopilot toolbox
visionDetectionGenerator and lidarPointCloudGenerator pre-
set settings, the maximum detection distance is limited to 500.
The two vehicles KITTI validation is based on the KITTI data
set, 2011_09_26. Three frames of image and LiDAR data are
chosen, 207, 235, and 269. The sensor setup is provided on
the official KITTI website [40]. The data acquisition platform
for the KITTI data set was assembled with two gray-scale
cameras, two color cameras, a Velodyne 64-line 3-D LiDAR,
four optical lenses, and a GPS navigation system. Real-world
experiments were conducted via an unmanned vehicle plat-
form. The raw data set was obtained on 19 November 2018.
The data acquisition platform for the real-world experiment
was equipped with one color camera with a 1392 x 512 res-
olution, with a total number of three LiDAR, the left and
right ones are 16-line LiDAR, Velodyne VLP-16, and the mid-
dle one is 32-line LiDAR, Velodyne VLP-32C. The following
sections present the results from each experiment.
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Fig. 7. Overtaking scene aerial view.

B. Simulations

The implementation of simulation is conducted in the
MATLAB, which consists of four phases: 1) scene construc-
tion; 2) data acquisition; 3) map formation; and 4) map fusion.
The scene construction and data acquisition modules are based
on the Automated Driving Toolbox in MATLAB.

For scene construction, a total duration of 4.45 s typical
scenario is considered. There are four vehicles on a three-lane
road. Three vehicles numbered 1-3 are driving in the middle
lane and vehicle 4 is in the left lane. Vehicle 1 attempts to
overtake vehicle 2 at t = 1.95 s. The aerial view of the scene
att = 1.95 s is shown in Fig. 7. However, vehicle 2 blocks part
of the view of vehicle 1, making vehicle 1 unable to observe
the traffic situation beyond vehicle 2, making it difficult to
make an overtaking decision.

In the data acquisition module, only vehicles 1 and 2 are
equipped with the same configuration of the sensor, and the
sensor scanning radius is set to 360°. The aerial views in vehi-
cle 1’s and vehicle 2’s ego coordinates at t = 1.95 s are shown
in Fig. 8, respectively, where the blue boxes represent the
points detected by the vehicle’s sensor at the corresponding
moment. The figures are shown in aerial views while vehi-
cles may have different heights which are not shown in aerial
views. For this specific scenario, vehicle 3 has detection points
due to the difference in height, and it only has three detection
points which is much less than regular detection results.

Local OGM: For map formation, the construction of the
local OGM of each vehicle is using the data from its own
sensors. Based on the occupancy probability assignment algo-
rithm, the local OGMs of vehicles 1 and 3 are shown in Fig. 9,
respectively.

In Fig. 9, the blue area represents the occupied area, and
the white part represents the unoccupied area. The occupancy
probability of the gray area is 0.5, the indefinite state. The
position of the vehicle itself (the origin of the map) is circled
on the map as an ellipse. In order to evaluate the OGM, the
yellow dotted lines are provided in the figure to identify the
true contour and position of vehicles at the corresponding time.

Fig. 9(a) shows the local OGM formed by vehicle 1. In the
unoccupied area, the occupancy probability is increasing with
the distance from vehicle 1’s sensor, as shown by the fact that
the color gradually darkens with the increasing distance. In
the occupied area, the discretely distributed detection points
are continuously distributed in the map based on the KDE.
Due to the occlusion of the preceding vehicle and the poor
detection position, vehicle 1 cannot detect vehicle 3 and only
partial contours of vehicle 2 and vehicle 3 can be identified.
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Fig. 8.  Aerial views under four vehicles’ ego coordinates. (a) vehicle 1.

(b) vehicle 2.
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Fig. 9. Local OGMs of (a) vehicle 1 and (b) vehicle 2.
Compared with vehicle 1, vehicle 2 is in a bet-

ter detection position, which can detect three vehicles
around, although the contour information is still incomplete

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 22, 15 NOVEMBER 2022

Occupancy Grid

23 26 27 29 31 33 35 37 39 #

X [meters]

43 45 47 49 51 53

Fig. 10. Integrated global OGM based on kernel density estimation.

compared with the yellow dotted line, as shown in
Fig. 9(b).

Grid Map Fusion: The map fusion phase combines the two
local OGMs of vehicles 1 and 2 to generate the global OGM,
including the occupied area and the unoccupied area.

Fig. 10 shows the fusion result of the two local OGMs.
It can be observed that the information of the global map is
more comprehensive, with more detail and complete boundary
information of vehicles in the environment. Furthermore, the
accuracy of the detection results is improved in the overlapped
areas. For instance, as shown in Fig. 9, the two vehicles both
have fewer detection points for vehicle 4, resulting in only
a small portion of the occupied area being detected. After
fusion, the boundary of vehicle 4 is more accurate and con-
crete. Meanwhile, the occupancy area of vehicle 3 is reflected
in the map, which cannot be detected from vehicle 1’s per-
spective. Some of the occluded and uncertain areas in the
single-vehicle maps are also determined after the fusion.

C. Validation With KITTI Data Set

To the best of our knowledge, most of the publicly avail-
able perception data sets of outdoor scenes are collected by a
single vehicle, and no public data set contains the percep-
tion data from multiple vehicles under the same scenario.
The KITTI data set [38] contains the sensing data from
two high-resolution color cameras, two gray-scale video cam-
eras, a Velodyne laser scanner, and the real-time positioning
information provided by a GPS localization system. To over-
come this problem and utilize the KITTI data set, we treat
several consecutive frames of data collected by a single vehicle
as the perception data of the environment from different per-
spectives, which is similar to the approached adopted by [41]
to further verify the proposed MVMSOGM method. With this
approach, the data frames will contain information about the
same environment, but they will be obtained from different
views since the vehicle is at different locations when taking
them. This makes these frames a good approximation to the
case of multivehicle sensing from different views at the same
time instant.

As shown in Fig. 11, a T-shaped intersection scene is
selected. The ego vehicle is going to pass through the
intersection and then turn left. Its camera can only see vehi-
cle 1 at the intersection in its vision of range, as shown in
Fig. 12(a), while its LiDAR can additionally see vehicle 10
on its front right as shown in Fig. 13(a). The local OGM from
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Fig. 11.

Bird’s-eye view of the T-shaped intersection scene.

Fig. 12. Object detection results of the images collected by the cameras of
the (a) ego vehicle and (b) vehicle 1.
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Fig. 13. Point cloud maps detected by the LiDAR of the (a) ego vehicle and

(b) vehicle 1.

the perspective of the ego vehicle is shown in Fig. 14(a), which
is constructed based on the fusion of its camera and LiDAR
data. It can be seen that the fusion of multisensor data can
compensate for the short sensing range of the camera and the
sparseness of the point cloud from the LiDAR. The outlines
of vehicle 1 and vehicle 10 can be displayed after constructing
the OGM.

However, due to the occlusion of buildings in the environ-
ment, from the perspective of the ego vehicle, it is impossible
to perceive the traffic conditions of the lane that it is going
to join, whereas vehicle 1 can obtain the information because
it is already in this lane. The local OGM from the perspec-
tive of vehicle 1 is obtained based on the same method as
shown in Fig. 14(b). It can be seen that from the perspective
of vehicle 1, the traffic conditions in this lane can be seen quite
well. Therefore, the local OGMs from the perspective of the
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(b)
Fig. 14. Local OGMs generated after fusing the camera and LiDAR data of
the (a) ego vehicle and (b) vehicle 1.

Fig. 15. Fusion result of the OGMs generated by the perception data of the
ego vehicle and vehicle 1.

ego vehicle and vehicle 1 are fused and the result is shown in
Fig. 15. It can be observed that, via the cooperative perception
with surrounding vehicles, the ego vehicle can sense beyond
its own vision range and obtain more comprehensive percep-
tion data for its turn. As a result, subsequent safer decisions
or timely warnings can be made if needed.

Next, the perception information of vehicle 2, which is
beyond vehicle 1, is fused. The vision fields of these three
vehicles are shown in Fig. 16 and the integrated global
perception map is shown in Fig. 17.

In order to observe the changes in the occupied area during
the fusion process in detail, vehicle 6 is taken as the observa-
tion object. It can be seen from Fig. 16 that only vehicles 1 and
2 can observe vehicle 6. However, due to the long distance,
the perception information about vehicle 6 is limited. Zoomed-
in version of the area occupied by vehicle 6 in the OGMs of
vehicles 1 and 2 is provided in Fig. 18(a) and (b), respectively.
It can be seen that only one side or two sides have a higher
occupancy probability and the probability in the middle area
is small with great uncertainty. The corresponding area in the
merged map is shown in Fig. 18(c). In the merged map, the
contour of vehicle 6 can be clearly seen, which shows that
by fusing the occupancy probabilities of these two maps, the
uncertainty of the single vehicle’s perception data can be fur-
ther reduced, providing more accurate perception results, and
more helpful to the subsequent semantic analysis and scene
understanding process.
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Fig. 16. Object detection results of the images collected by the cameras of
the (a) ego vehicle, (b) vehicle 1, and (c) vehicle 2.

Protabity

Fig. 17. Fusion result of the OGMs generated by the perception data of the
ego vehicle, vehicle 1, and vehicle 2.

D. Real-World Experiments

To evaluate the performance of the proposed algorithm in
the real world, the multivehicle perception data provided by the
unmanned vehicle platform are used, which was collected by
two autonomous vehicles equipped with LiDAR and cameras.

The experimental scene is shown in Fig. 19, which is an
intersection. The ego vehicle is in the central area of the
intersection and is about to turn into lane B. The vehicle clos-
est to the ego vehicle in lane B is vehicle 1. Figs. 20-22,
respectively, show the camera data, LiDAR data, and the gen-
erated OGMs from the perspective of the ego vehicle and
vehicle 1. It can be seen that the ego vehicle can only see
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Fig. 18. Area occupied by vehicle 6 in the three OGMs. (a) Area in vehicle
1’s map. (b) Area in vehicle 2’s map. (c) Area in the fusion map.
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Fig. 19. Bird’s-eye view of the crossroad in the real-world experiment.

(b)

Fig. 20. Object detection results of the images collected by the cameras of
the (a) ego vehicle and (b) vehicle 1 in the real-world experiment.

vehicle 1 due to the limitation of its own vision range and
cannot obtain the traffic status of lane B.

By cooperating with vehicle 1, the ego vehicle can receive
the perception data of vehicle 1, thereby obtaining the
information of lane B. The fusion result of the ego vehicle’s
map is displayed in Fig. 23 and vehicle 1’s map in Fig. 22.
It can be seen that by fusing the perception data of these two
vehicles, the ego vehicle can perceive vehicle 2 and vehicle 3
in the lane to be merged before turning and obtain richer per-
ceptual information, which helps to predict the incoming risks
in advance and improve the safety during the turning process
at the intersection.
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(a) (b)

Fig. 21. Point cloud maps detected by the LiDAR of the (a) ego vehicle and
(b) vehicle 1 in the real-world experiment.

(@) W

Fig. 22. Local OGMs generated after fusing the camera and LiDAR data of
the (a) ego vehicle and (b) vehicle 1 in the real-world experiment.

Fig. 23. Fusion result of the OGMs generated by the perception data of the
ego vehicle and vehicle 1 in the real-world experiment.

VI. CONCLUSION

In this article, we proposed an MVMS cooperative percep-
tion framework for autonomous driving by the construction
and fusion of OGMs. The OGM is adopted as a unified rep-
resentation of the sensing information to facilitate the fusion
of sensing information collected by different sensors at dif-
ferent vehicles. At the multisensor level, our proposed fusing
algorithm ensures the spatiotemporal consistency in different
kinds of sensor data; at the multivehicle level, our proposed
fusion scheme conducts the fusion with considerations of the
quantified uncertainty in sensor data by likelihood ratio princi-
ple. Our proposed MVMS-OGM not only provides continuous
geographical information but also captures and fuses continu-
ous soft, analog occupancy probabilities, resulting in a more
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comprehensive and raw environmental information. MATLAB
simulations, public KITTI data, and real-world experiments
were used to validate and demonstrate our proposed algo-
rithm. In the future, we would consider more factors in
sensor data uncertainty such as the weather conditions in the
OGM construction and also the analysis of OGMs for various
driving tasks, such as driving decision making, multivehicle
interaction, and so on.
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