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Abstract 

Supranucleosomal chromatin structure, including chromatin domain conformation, is 
involved in the regulation of gene expression and its dysregulation has been associated with 
carcinogenesis. Prior studies have shown that cells in the buccal mucosa carry a molecular 
signature of lung cancer among the cigarette-smoking population, the phenomenon known as field 
carcinogenesis or field of injury. Thus, we hypothesized that chromatin structural changes in 
buccal mucosa can be predictive of lung cancer. However, the small size of the chromatin chain 
(approximately 20 nm) folded into chromatin packing domains, themselves typically below 300 
nm in diameter, preclude the detection of the alterations in intradomain chromatin conformation 
using diffraction-limited optical microscopy. In this study, we developed an optical spectroscopic 
statistical nanosensing technique to detect chromatin packing domain changes in buccal mucosa 
as a lung cancer biomarker, chromatin-sensitive partial wave spectroscopic microscopy (csPWS). 
Artificial intelligence (AI) was applied to the csPWS measurements of chromatin alterations to 
enhance diagnostic performance.  Our AI-enabled buccal csPWS nanocytology of 179 patients at 
two clinical sites distinguished Stage-I lung cancer versus cancer-free controls with an area under 
the ROC curve (AUC) of 0.93 ± 0.06 for Site 1 (in-state location) and 0.82 ± 0.11 for Site 2 (out-
of-state location). 

 

 

 
 

 



Introduction 

Cancer screening tests should ideally identify cancer before symptoms have appeared and 
while the tumor is small to effectively increase the chance of treatment and reduce the mortality 
rate. Lung cancer is the leading cause of cancer deaths across races and genders in the U.S. with 
an overall five-year survival rate of 22.9% which is notably lower than colorectal (65.1%), breast 
(90.6%), and prostate cancers (96.8%)1. However, if lung cancer is detected at an early stage, it is 
highly curable through surgical resection. The five-year survival rate for late-stage (distant) non-
small lung cancer (NSLC) is less than 8% but increases to 64% if detected at a localized stage and 
reaches 90% if detected at Stage-IA12. Low-dose computed tomography (LDCT) has been 
established as the gold standard for lung cancer screening and is associated with a 20% decrease 
in mortality among patients screened with the technique. Accessibility, cost, stigma, and lack of 
adherence to LDCT guidelines are among the major challenges limiting its impact; unfortunately, 
only about 5% of the LDCT-eligible population undergoes screening3, resulting in 55% of lung 
cancer cases being detected at an advanced stage where the survival rate is bellow 8%4.  We 
propose to utilize a minimally invasive accessible, sensitive, and accurate pre-screening test for 
LDCT with high sensitivity (Se) to early-stage lung cancer to effectively implement the LDCT 
procedure on a broader scale and enhance the efficacy of lung cancer screening. 

Screening methods other than LDCT such as chest X-rays and sputum cytology have proven 
unsatisfactory when evaluated in large-scale clinical screening settings5. New methods based on 
standard protein biomarkers used for the detection of cancer do not provide sufficient sensitivity 
and specificity (Sp) 6. Recently, there has been significant interest in the development of protocols 
that rely on tumor secretions in the blood, such as liquid biopsy. Tests being developed by 
companies including Grail, Freenome, Guardant, Delfi, and Thrive identify cancer by analyzing 
circulating tumor DNA (ctDNA) or tumor-derived circulating free DNA(cfDNA) properties such 
as gene mutations, methylation, and fragmentation7-11. Although initial results have shown promise 
in the detection of various cancers, including lung cancer, the sensitivity to Stage-I and smaller 
lesions drops precipitously below a clinically acceptable level. It has been suggested that this 
limitation is not primarily due to a technology limitation but might be related to the biology of the 
source and type of biomarker. Smaller lesions secrete less tumor ctDNA (~1 ctDNA/ 10mL of 
blood), while tumor heterogeneity can only be modeled through many tumor-byproduct 
biomarkers, which makes it challenging to find the needed quantities of ctDNA in a clinically 
practical blood sample12. For example, the overall sensitivity of the Grail multi-cancer early 
detection (MCED) test may drop from 90.1% [95% confidence interval (CI): 87.5% to 92.2%)] in 
Stage-IV patients to 16.8% [95% CI: 14.5% to 19.5%] in Stage-I patients13.  Liquid biopsy can be 
a powerful tool for non-screenable cancers (pancreatic, etc.) but for cancers with established 
screening protocols, such as colorectal and lung, methods to detect treatable early-stage lesions are 
still urgently needed. To address these issues and develop an effective pre-screening test for 
LDCT, we optimized three crucial aspects 1) biomarker source, 2) biomarker type, and 3) enabling 
technology.   

An ideal biomarker source for the development of a large-scale prescreening test should be 
obtained in a minimally invasive procedure from an accessible specimen, with an easy-to-
implement and reproducible protocol, and provide high sensitivity to small treatable lesions14. Our 
approach to finding this biomarker source relies upon the application of a well-established 
phenomenon, field carcinogenesis, also known as field effect, or field of injury, which was first 
introduced six decades ago15.  According to field carcinogenesis, the genetic/epigenetic alterations 



leading to neoplastic cell transformation are distributed diffusely throughout the “field of injury” 
at even the pre-malignant stage15-23. For example, cells across the aero-digestive mucosa (field of 
injury) are exposed to carcinogens in tobacco and accumulate genetic changes among smokers21,22. 
Due to the stochastic nature of these molecular changes, some cells may eventually give rise to a 
tumor clone. Thus, cells throughout the entire aero-digestive mucosa harbor biomarkers of 
carcinogenesis regardless of their proximity to a lung tumor. The buccal mucosa is widely 
recognized as a “molecular mirror” for lung cancer because of field carcinogenesis16,21,23,24 and we 
considered it as our biomarker source for two reasons. First, buccal brushings are easily performed 
and uniquely suited for an at-home test or primary care office, as opposed to “liquid biopsies” that 
can hardly be self-administered. Next, the biomarkers of field carcinogenesis are sensitive to early 
(e.g., Stage-I) cancers, regardless of tumor size, which is diagnostically superior to other sources 
such as blood or breath, as the latter depends on a load of secretions by the tumor and thus are 
more sensitive to large tumors than small ones. 

Discovering a suitable lung cancer biomarker type from buccal mucosa is the next major task. 
Biomarkers obtained from genetic changes are negatively impacted by the extremely high number 
of genetic alterations and astonishing tumor heterogeneity which hampers the application of 
downstream biomarkers for the detection of small lesions. The highly dynamic chromatin structure 
is known as a substrate that regulates gene expression by adjusting the accessibility to transcription 
factors (TF) and RNA polymerases (RNAPs) 25,26, and thereby can be used to possibly predict the 
risk of cancer at an early stage25-27. 

To understand what types of chromatin structure may foster carcinogenesis, we first needed to 
calculate a quantifiable metric of chromatin structure. We and others have reported that chromatin 
is organized as a variety of packing domains28-30. Packing domains represent a unique chromatin 
structure that can regulate gene accessibility. At the smallest length scale, DNA wraps around a 
histone and forms ~11 nm nucleosome complexes of “beads on a string” which are further folded 
into the curvilinear chromatin chain, between 5 and 24 nm31. These chromatin chains are packed 
together in various structural compactions and densities forming irregular blocks of larger packing 
domains. The packing domains have heterogeneous morphological properties with an average 
radius of 80 nm and genomic size of about 200 kbp and within these domains, chromatin shows a 
polymeric fractal-like behavior (i.e  the mass scaling behavior within domains follows a near-
power-law relationship) along with radially decreasing mass density from the center to the 
periphery32.  Chromatin packing scaling D is defined by estimating the number of base pairs (𝑁) 
scaling with the radius of the occupied volume (𝑅) as 𝑁𝛼 𝑅ୈ. The value of D falls between 1.8 
and 2.9 across packing domains29. A higher D value may indicate a packing domain with an 
increased chromatin heterogeneity and a decreased gene connectivity scaling resulting in more 
frequent longer-distance contacts33,34. Chromatin domain structures with a higher D have been 
linked to fostering further upregulation of initially upregulated genes and concomitant suppression 
of downregulated genes25,33. In turn, these processes result in transcriptional patterns with greater 
transcriptional malleability and intercellular transcriptional heterogeneity. As neoplastic cells must 
keep developing new traits in response to constraints (e.g., hypoxia, immune system attack, new 
microenvironment), they benefit from transcriptional plasticity. Tumor cells that can more 
efficiently upregulate critical pro-survival pathways for a given level of stress through 
transcriptional malleability and heterogeneity have a higher likelihood of attaining a rare 
transcriptional state that is critical for cancer cell survival, thus further carrying this transcriptional 
phenotype through replication and increasing the probability of their progeny to acquire other gene 
mutations, some of which may be beneficial to tumorigenesis. Thus, transcriptional plasticity-



facilitating chromatin states (including higher chromatin packing domain 𝐷) may play a critical 
role in creating a “proneoplastic positive feedback loop” and therefore serve as a marker for 
neoplastic progression34.   

Chromatin structural changes occur from across the chromatin chain to domains at length scales 
from ~20 to ~300 nm which are too small to be observed by conventional optical microscopy. Our 
group utilized statistical spectroscopic techniques with optical microscopy measurement and 
developed csPWS technology to detect these nanoscale chromatin structural changes in the buccal 
mucosa. csPWS is a fast, reliable, and nanoscale-sensitive optical spectroscopic technique that can 
detect buccal chromatin conformation changes with a sensitivity between 23 and 334 nm35. The 
key innovation in csPWS is statistical nanosensing in which sub-diffractional structures, while not 
resolvable through conventional optical microscopy, are detectable through analysis of the spatial 
variations of the refractive index (RI) via the spectroscopic analysis of scattered light interference 
within each of the microscopic resolution voxels24,36-41. The output of csPWS microscopy is an 
image where a pixel describes chromatin structural heterogeneity by estimating packing scaling D 
for each coherence volume centered around it29,32,42. 

We searched for a suitable approach to thoroughly capture the complex biological interaction 
between lung cancer and packing scaling D in the nucleus of the buccal mucosa. Packing scaling 
D describes a quantitative statistical measurement from 3D packing of the chromatin polymer 
within a self-similar domain. However, local physical conditions such as nuclear crowding density, 
genomic size (Nd), domain volume fraction, and domain intracellular positioning (peripheral vs 
interior, etc.) are also important physical regulators that help determine chromatin connectivity, 
accessibility, and transcriptional heterogeneity and in doing so, gene expression25. As packing 
scaling D is not the only predictor of the plasticity-fostering conformation, calculating the average 
D will not fully capture the complexity of chromatin regulatory mechanisms of gene expression. 
Thus, we utilized advanced machine learning algorithms and artificial intelligence (AI) to 
distinguish the lung cancer biological footprints engraved on the nucleus D images. Such a novel 
and potent "hybrid" AI+etiological biomarker approach is possible by developing neural network 
(NN) layers informed with mechanistic data obtained from chromatin structure alterations and the 
packing scaling D image. Thus, we coupled our novel csPWS microscopy with a knowledge-based 
AI approach and achieved high sensitivity in the detection of early-stage lung cancer.  

Material and Methods 

csPWS nanocytology involves collection, shipment, and preparation of buccal samples followed 
by csPWS image acquisition, and evaluation of the nucleus chromatin packing scaling D image 
using an AI-driven approach.  

(i) Patient Recruitment. Patients were recruited through Institutional Review Board-approved 
studies where written informed consent was obtained from all participants. The cohort comprised 
96 patients with histologically confirmed lung cancer within the last year (case population) and 83 
patients with a negative LDCT scan within the last year (control populations). 167 patients were 
over 45 years of age, nine patients were 27 to 44 years of age, and the age of three patients was 
unknown. Exclusion criteria were family history of lung cancer, exposure to chemotherapy and 
radiation in the past three months, pregnant/lactating women, and inability to give informed 
consent. Our data were obtained at two different sites: Site 1, Northwestern Memorial Hospital 
(NMH) in Chicago, Illinois, US, and Site 2, Boston Medical Center (BMC) in Boston, 
Massachusetts, US.  The control population included non-smokers, low-risk and high-risk 



smokers, and patients with benign nodules. The lung cancer patients included all stages but were 
predominantly Stage-I patients (62% for Site 1 data and 76% for Site 2 data).   

(ii) Sample collection. Buccal samples were collected in the primary care physician’s office 
through a buccal swab procedure using a minimally invasive standard of care (Cytobrush, 
CooperSurgical, Inc., Trumbull, CT, USA). The patients rinsed their mouths with water three times 
before the physician placed the bristles on the inside of one buccal surface followed by a top to 
down motion including brush rotation. Next, the impregnated swabs were dipped into 1.5ml vial 
tubes (Neptune Scientific, San Diego, USA) containing 750 ml of 25% ethanol (collection buffer). 
The samples were then packaged and shipped to the central lab for PWS microscopy.  

(iii) Sample shipment. The Site 2 samples were shipped through the air from an out-of-state 
location while the Site 1 samples were shipped by ground transportation from an in-state location. 
The samples were maintained at a temperature below 10°C during transport using a custom-built 
transport kit and were received at the central facility within 24 hours of sample collection. The 
transportation kit included an outer corrugated box (Uline, Pleasant Prairie, WI, USA) and polar 
pack refrigerants (SONOCO Thermosafe, Arlington Heights, IL, USA) and temperature was 
monitored using a temperature indicator (Timestrip, Cambridge, UK). The sealed vial was 
packaged using an inner Styrofoam container and absorbent sheets to avoid possible leakage under 
refrigerated conditions.  

(iv) Sample preparation. Clinical samples were prepared within 24 hours of collection based on 
the approaches reported earlier.42 In brief, the samples in 25% ethanol were spray deposited on a 
Fisher brand Superfrost microscope slide (Fisher Scientific, Hampton, NH, USA) using our 
custom-built cell deposition system to form non-overlapping monolayer buccal cells. The sample 
slide was air-dried prior to cytological fixation with 95% ethanol (Thermo Fisher Scientific, 
Waltham, MA, USA) followed by csPWS microscopy. 

(v) Standard Operating Procedure (SOP). We developed a well-designed SOP to capture buccal 
csPWS nucleus chromatin structure changes. Our goal was to ensure a fast, robust, reliable, and 
repeatable protocol with small variability of physical features of the cells acquired by csPWS from 
each patient. To minimize the complexity at the collection site, we carried out the cell fixation and 
sample deposition at the central lab instead of the primary care office43. For each patient, a total of 
>30 cells were collected, where the sample size number was determined by power analysis with 
the confidence interval (CI) on mean Σ restricted to be less than 5% of the difference between 
cancer and the control population43.  We created a sample transport solution of 25% ethanol and 
used our custom-built cell deposition device to spray deposit non-deformed, non-overlapping 
monolayer buccal cells with clear nuclear boundaries on the glass slide. An airdrying step 
enhanced the attachment of cells to the glass followed by fixation with 95% ethanol and csPWS 
microscopy.  The csPWS microscope was controlled via custom software with a graphical user 
interface (GUI). The imaging procedure began by scanning the whole slide using a 10X air 
objective. A semi-automated slide-map module was developed to rapidly generate a low-
magnification image of a slide by collecting and stitching individual slide region images. This 
assisted a trained user blinded to the diagnostic information in selecting over 30 buccal cells across 
the entire slide in a timely manner. Our cell screening protocol selected non-folded and non-
overlapping cells with clear nucleus boundaries. The csPWS spectral acquisition was performed 
for the cells in a liquid medium (95% ethanol) using a liquid-dipping 40X optical objective (Nikon, 
Melville, NY, USA) to match the RI between the buccal cell and liquid cover. Cs-PWS acquisition 
algorithm automatically acquired spectral data for selected cells, and the analysis algorithm rapidly 



generated the processed spectral data. These processes facilitated reliable and reproducible results, 
making csPWS suitable for larger studies that span more clinical sites.  

(vi) csPWS microscopy. Conventional microscopy systems are unable to resolve structures smaller 
than 200 nm (half the wavelength of light). Our lab developed csPWS, an optical statistical 
spectroscopic nanosensing approach for the detection of chromatin packing domain changes in the 
nucleus of buccal mucosa. This enables us to distinguish chromatin structural changes among 
histologically normal buccal cells that may carry a signature of cancer. csPWS detects chromatin 
packing domain changes through statistical spectroscopic approaches that evaluate the scattering 
of light within the nucleus of the mucosa. The detailed principles of csPWS microscopy have been 
provided in24,37-39,41,43,44 and here we briefly describe them. csPWS acquires a high magnification 
of monochromatic spectrally resolved images between wavelengths of 450-700 nm and 
distinguishes the non-resolvable sub-diffractional length scales through the assessment of scattered 
light. For a given cell location of r, the RI n is proportional to the local macromolecular density 
(𝜌) of proteins, DNA, RNA etc. The refraction increment is constant and nearly independent of 
macromolecular chemical composition and is estimated by eq-143,45.  

(ρ): 𝑛(𝒓) = 𝑛media + 𝛼𝜌(𝒓)                                                                                                          (1) 

csPWS benefits from liquid cover microscopy to nearly match the RI between the buccal cell and 
liquid cover (shown in Fig. 1 a) while creating a mismatch between the cell-glass interface. Thus, 
the scattering of light from a reference wave due to the variation of RI is proportional to the density 
of the intracellular macromolecules in the coherence volume determined by the depth of field 
(DOF) longitudinally and the axial plane for each pixel. csPWS calculates the standard deviation 
of the interface spectra () obtained from the spectrum of reference wave and scattering of all RI 
changes due to macromolecular nanoscale density variations across different wavelengths. ∑ is 
proportional to the Fourier transform of the autocorrelation function (ACF) of 𝜌(𝒓) integrated over 
the Fourier transform of the coherence volume. Each csPWS image stack is normalized by the 
reference wave that is acquired at the interface of the glass and cover media from a blank region 
on the slide. These subdiffractional variations in RI distribution measured as 𝛴 can be characterized 
by the chromatin packing scaling factor. The relation between 𝛴 and D could be explained as ∝ 
(D – D0)𝛿𝑛, where 𝐷0~1.33 is the fractal dimension of a random 2D-polymer and 𝛿𝑛 is the standard 
deviation of the correlation length scale44. Simulation and experimental results confirmed a high 
correlation between  and packing scaling D associated with each domain25,29,32,42. We estimated 
the packing scaling D value for the domains in each pixel (350 nm by 350 nm) based on the 
analytical framework for quantifying chromatin structure with spectral microscopy provided in42. 
csPWS length scale sensitivity depends on illumination-collection geometry. We designed a small-
to-moderate numerical aperture (NA) of light incidence of 0.6, and light collection NA of 0.8 for 
csPWS. This illumination setting ensures a uniform intensity across the sample plane due to the 
Köhler alignment46 and delivers a chromatin length scale sensitivity of 23-334 nm (exact value 
depends on the sample structure and thickness) 35,47. The larger length scales do not affect csPWS 
output signal43,44. Electron microscopy data has revealed buccal chromatin structures significantly 
alter at this length scale range 48.  Thus, csPWS nanocytology is mainly sensitive to length scales 
that are not resolvable by conventional optical microscopy while carrying a profound signature of 
field carcinogenesis and alterations in chromatin packing domains. 

(vii) csPWS Instrument: The design and schematic of the csPWS instrument and the optical path 
for collecting buccal cell data are shown in Fig. 1a. The csPWS optical system (shown in Fig. 1b) 



is built on a commercial microscope (Nikon Instruments, Melville, NY, USA) using a Nikon 
Eclipse Ni-E microscope body with modifications made to include a Xenon lamp (Exceliatas, 
Tampa, FL, USA). The light is fed to an acousto-optic tunable filter with a switching speed of 
50μs, a bandwidth of 3nm, and a spectral range of 450-700nm (Gooch and Housego, UK). The 
light passes through objective lenses (Nikon, Melville, NY, USA) that are attached to an automated 
objective turret and onto a sample that is positioned with a nanomotion piezo-stage (Prior, 
Rockland, MA, USA). The data is recorded through a digital CMOS camera, ORCA Flash 2.8 
(Hamamatsu, Bridgewater, NJ, USA) thereby enabling hyperspectral imaging. We attain high 
throughput and automated csPWS acquisition by utilizing Kohler illumination for uniform sample 
illumination. We use a high-speed, high-resolution RGB camera (Thorlabs Inc., Newton, NJ, 
USA) for low-magnification slide mapping. The workflow of csPWS buccal nanocytology is 
presented in Fig 1c. Packing scaling D images of the nucleus of 30 to 40 isolated non-overlapping 
buccal cells were acquired for each patient in liquid using a liquid-dipping 40X optical objective 
(Nikon, Melville, NY, USA) to match the RI between the buccal cell and liquid cover (shown Fig 
1.a). AI and advanced machine learning algorithms were used to distinguish characteristics of field 
carcinogenesis and the alterations in the packing scaling D image. 

 

Figure 1. (a) Schematic of csPWS instrument (b) csPWS instrument (c) workflow of csPWS buccal nanocytology 

(viii) AI analysis of packing scaling D. We used AI on csPWS data to see whether we can detect 
field carcinogenesis of buccal mucosa of patients with lung cancer and distinguish alterations in 
buccal chromatin packing domains that indicates tumor initiation and progression. Our AI-driven 
approach consisted of nucleus segmentation, preprocessing, feature learning, and classification of 
csPWS images as shown in Fig. 2. Nearly 7000 buccal csPWS D images (960×720 pixels) from 
179 patients was evaluated in this study. Nuclear segmentation was conducted by a trained user 
blinded to the diagnostic information and the outlier cells with deformed shapes were excluded. 
Next, the nuclei images were resized and passed through min-max normalization in our 
preprocessing subsection. For the feature extractor unit, we incorporated transfer learning on 
VGG16 architecture, a convolutional neural network (CNN) pre-trained on 14 million images 
belonging to 1,000 different labels from the ImageNet data set. Features were extracted from 
multiple convolution layers of the architecture (Conv 2 through Conv 5) and flattened. The mean 
and standard deviation of the flattened features across all cells belonging to a patient were 
calculated to create a feature vector. We used a multiple instance learning (MIL) method of 
instance-level feature aggregation that facilitated the usage of patient-level clinical ground truths. 
MIL enables a seamless process integration for pathologists 49 and for that reason was used in our 
approach. To further reduce the dimension of the patient feature, we conducted a recursive feature 
elimination method using a random forest algorithm, thus selecting a panel of 40 features with 



enhanced classification properties. We used a parameter-tuned random forest classifier to 
determine the patients with lung cancer from the control populations using a patient-wise analysis 
of the diagnostic features obtained by CNN. The tuning of the classifier model for optimal 
parameters was performed using grid search by searching through iterations of multiple 
configurations, of which the model configuration with minimal error for our dataset was used for 
classification. For a robust evaluation of model performance on our relatively small dataset, we 
calculated our metrics AUC, sensitivity, and specificity using a stratified 4-fold cross-validation 
method with 5 iterations. 

 

Figure 2. Workflow and architecture of the feature extraction and classification steps 

Results 

Patient Recruitment and Demographics. We analyzed csPWS D images of clinical buccal samples 
in a double-blind case-control study from two different clinical sites stationed in an in-state and an 
out-of-state location. Most patients identified with lung cancer were at Stage-I: 26 of the 42 (62%) 
at Site 1, and 41 of 54 (76%) at Site 2. The percentage of female patients with lung cancer was 
higher at Site 2 (71%) compared to Site 1 (56%). Minority populations were enriched at Site 2 
with Caucasians forming only 49% of the population compared to 80% at Site 1. PWS D image of 
two histologically normal buccal cells (confirmed by reflectance image) shows an example of 
intercellular domain variation and an overall increase of D in a cell belonging to patients with lung 
cancer in comparison with a smoking control (Fig. 3).  

 

Figure 3. Reflectance image (left) the D image distribution (right) in cells from a control patient (top) and from a 
patient with lung cancer (bottom).  



Population-based study showed a similar trend where the overall packing scaling D was higher in 
patients with lung cancer compared to the healthy control. Patient demographics including age, 
pack-years of smoking, gender, and race, and their association with D were evaluated with the 
significance criterion of the p-value using regression analysis for the patients with lung cancer and 
the control population (shown in Table 1).  

Table1. Demographic factor distribution for Sites 1&2. The Average value and standard deviation are reported 

Demographic Factor Control Parameter Cancer Parameter     Effect on D 

Site 1 Site 2 Site 1 Site 2 Site 1 Site 2 

Age 59 ± 11 61 ± 11 67 ± 12 67 ± 7 0.02 0.47 
Pack-Years 35 ± 26 39 ± 34 37 ± 30 41 ± 30 0.22 0.50 

Gender (% Female) 49% 42% 56% 71% 0.69 0.19 

Race (% Caucasian) 80% 49% 80% 49% 0.62 0.84 

Our regression modeling did not find any statistically significant relationship between gender, 
race, and smoking pack-years with packing scaling D across both sites as shown in Table.1. While 
we did not observe a significant relationship between the age and packing scaling D in Site 2 (p-
value = 0.47), age presented a statistically significant relationship with packing scaling D at Site 
1. We further interrogated packing scaling D data at Site 1 and determined a statistically significant 
negative correlation may exist between age and D (Fig. 4). Patients with lung cancer presented 
significantly (p<0.001) higher overall D than the normal population while lung cancer cases were 
more common among the elder population. Thus, an age adjustment for addressing the negative 
correlation between age and D would further enhance the overall D diagnostic performance. Thus, 
our reporting diagnostic performance at Site 1 may be an underestimation. 

 
Figure 4. Linear regression analysis assessed the impact of demographic factors on average packing scaling D with 
the control population 



AI-enabled csPWS for Early-stage Lung Cancer Detection. We evaluated the average packing 
scaling D among the entire 179 patients (data normalized by year and site) and determined that 
average D significantly increased among patients with lung cancer (p-value <0.001). The average 
packing scaling D provides a statistical descriptor of chromatin structure, however, factors such as 
chromatin connectivity, accessibility, and transcriptional heterogeneity also determine gene 
expression. Local physical conditions such as nuclear crowding density, genomic size, domain 
volume fraction, and domain intracellular positioning are important determinants of a plasticity-
fostering conformation25. Thus, average packing scaling D does not fully describe the complex 
regulatory role of chromatin structure in gene expression. We utilized deep learning and machine 
learning algorithms to capture the biological complexity of chromatin structure and the statistical 
marker, D. Specifically, we used transfer learning-based deep CNN modeling along with a random 
forest classifier on the D image of the buccal nucleus to distinguish patients with lung cancer from 
the control population. Our AI-driven csPWS nanocytology distinguished patients with Stage-I 
lung cancer from the control population with AUC of 0.92 ± 0.06 (Se = 92%, Sp = 89%) at Site 1 
and AUC of 0.82 ± 0.11 (Se = 78%, Sp = 83%) as Site 2 as shown in Table 2. Our approach 
maintained its diagnostic performance for the detection of later-stage lung cancer and showed an 
AUC of 0.90 ± 0.07 (Se = 86%, Sp = 89%) and 0.82 ± 0.09 (Se = 78%, Sp = 87%) for detection 
of all stage lung cancer in Site 1 and Site 2, respectively. 

Table 2. AUC comparison between Site 1&2 for control, Stage-I, and all-Stage lung cancer 

 
AUC comparison 

AI-enabled csPWS Nanocytology 

Site 1 
(#Control, #Case) 

Site 2 
(#Control, #Case) 

Stage-I 0.92 (±0.04) 
(40,26) 

0.82 (±0.11) 
(43,40) 

Stage-I&II 0.92 (±0.04) 
(40,33) 

0.82 (±0.04) 
(43,44) 

All-Stages (I, II, III, &IV) 0.90 (±0.07) 
(40,42) 

0.82 (±0.09) 
(43,54) 

Discussion 

We demonstrated that AI-enabled buccal csPWS nanocytology can be an effective modality for 
the detection of Stage-I lung cancer via the assessment of chromatin structural changes. Buccal 
csPWS nanocytology enables a fast, minimally invasive, accessible, and sensitive approach for the 
detection of early curable stage lesions (I&II) equivalent to advanced stage lesions (III, IV).  High 
diagnostic performance was achieved at two different clinical sites with different socio-
demographic populations and different proximity to the central lab which indicates the robustness 
of buccal csPWS nanocytology.  

From a clinical perspective, the early detection of lung cancer has significant importance. Lung 
cancer patients’ survival rate declines significantly as cancer progresses. Recent work has sought 
to develop new clinical methods to detect lung cancer, but these attempts often fail for the purpose 
of early-stage diagnosis. For example, the novel liquid biopsy technology has shown promising 
diagnostic performance for the detection of lung cancer, but the performance for the detection of 
early-stage lung cancer notably drops due to the limitations associated with the biology of the 
biomarker source12. We started our search for a new biomarker source and biomarker type based 
on the molecular biology of lung cancer. Lung cancer is developed by the dysregulation of diverse 



mutational processes, at different rates resulting in genetic heterogeneity in tumors. The number 
of possible molecular/gene alterations in lung cancer is extremely high with notable tumor 
heterogeneity which negatively impacts the efficacy of tumor byproduct biomarkers obtained from 
blood. Downstream biomarkers are expected to lose their sensitivity at the early stage of lung 
cancer where the tumor is small due to the staggering tumor heterogeneity. Fewer mutations per 
Mbp and fewer clones alongside the high tumor heterogeneity induced by the small lesions would 
negatively impact the diagnostic performance for the detection of early-stage lung cancer. Later-
stage mutations may not exist at a high level in small tumor lesions. The AI-enabled technologies 
that evaluate hundreds of biomarkers will face challenges as most of those products will not be 
produced sufficiently from a small tumor. Thus, their sensitivity drops for the detection of small 
lesions12,50,51. Therefore, we decided to look for a new biomarker source. The field carcinogenesis 
introduces buccal chromatin structures as an accessible “substrate” on which the tumor originates, 
thus biomarkers obtained from it will not depend on the size of the tumor. These realities motivated 
us to leverage the combination of field carcinogenesis with a novel optical spectroscopic statistical 
nanosensing technology to propose a new type of biomarker: nucleus chromatin structure from 
buccal mucosa.  

There is growing evidence advocating for lung cancer field carcinogenesis through assessment of 
more accessible sites from the aero-digestive mucosa15-20.  For example, similar genomic and 
epigenomic changes to cancer are observed in the distal lung and across entire airway epithelial 
cells18,52-54. Other studies showed smoking induces similar genetic changes in the bronchial airway 
and epithelia of the nasal, mucosa55,56. The elevated incidence of synchronous and metachronous 
neoplastic lesions with the increased ratio of secondary cancer 15,57-62, similar chromosomal, gene 
methylation, and gene mutations (EGFR and p53) abnormalities in locations exposed to the same 
carcinogens are widely explained with field carcinogenesis18,57,63-67 . The utility and clinical 
application of field carcinogenesis are confirmed through the evaluation of protein expression, and 
miRNA18,68. More specifically, buccal mucosa has been known as the “molecular mirror” of 
bronchial epithelium for lung cancer54,69. A variety of genetic/epigenetic changes in the buccal 
mucosa are concordant with those in lung cancer20-22,70. Changes in gene/protein expression of 
buccal mucosa have traditionally been used for diagnostic applications while we assessed 
chromatin structural changes for the detection of Stage-I lung cancer71 . The highly complex and 
dynamic chromatin structure is widely known as ubiquitous and a common denominator for 
genetic alterations in biological cells and cancer-promoting transformation72,73. Chromatin 
structure determines the microenvironment enabling neoplasia, thus, can be a predictor of cancer 
in histologically normal cells even prior to the formation of a tumor, and unlike downstream 
biomarkers, should retain sensitivity to small tumors. Cytometry measurement74 and recent 
spectroscopic studies16,23,25,26 have indicated structural changes and field cancerization in the oral 
cavity of patients with lung cancer which advocate the diagnostic application of chromatin 
structural changes. Electron microscopy image analysis determined alterations in buccal chromatin 
packing at a length scale between 80 nm to 200 nm48 is a profound and significant characteristic 
of field cancerization.  

These are the reasons we developed buccal csPWS nanocytology to interrogate the chromatin 
structural changes at the length scale of 23-334 nm and detect early-stage lung cancer. csPWS 
senses chromatin structural changes based on the principle that light scatters substantially more in 
small dense chromatin packing domains than in large loosely packed chromatin domains. csPWS 
achieves its high sensitivity to chromatin structural changes via a spectroscopic nanosensing 
statistical approach. We enhanced the signals obtained from intra-cellular macromolecule density 



changes in the nucleus by matching the RI at the cell/liquid interface and creating a mismatch at 
the cell/glass interface. The packing scaling D image calculated by csPWS42 provides statistical 
characterizing data from the nucleus chromatin packing domain changes which are used as a proxy 
for the prediction of plasticity-fostering conformation.    

The role of packing scaling D in defining chromatin conformation and regulation of gene activity 
is a complex phenomenon. Alongside D, other structural predictors such as the domain size, 
chromatin volume concentration (CVC), average nuclear density, domain volume fraction, and 
their location in the nucleus (peripheral vs interior) are a predictor of the plasticity-fostering 
chromatin conformation25,29,32,42. Thus, calculating the average D for each buccal nucleus will not 
fully capture the role of chromatin structure impact on tumor genesis. As such, we used an AI-
driven approach to capture the packing scaling D image associated with the plasticity-fostering 
conformation that can lead to tumor genesis and is the predictor of Stag-I lung cancer. 

Our AI-driven biomarkers are developed with layers informed by mechanistically driven 
chromatin structural changes and have advantages over conventional biomarker discovery 
methods such as 1) single hypothesis-driven biomarkers and 2) the AI-driven “black-box” 
approaches. A single hypothesis-driven biomarker approach cannot fully capture the complexity 
of biological interactions while the “black-box” approach will fail to deliver an accurate diagnosis 
in a relatively limited sample size due to the lack of mechanistic rationale. In this work, we bridged 
the two approaches while taking advantage of their strengths and mitigating their weaknesses for 
the detection of early-stage lung cancer.  

We assessed AI-enabled buccal csPWS nanocytology across two different sites with different 
proximity to our central lab and different socioeconomic status and realized a high diagnostic 
performance for detecting Stage-I lung cancer (AUC>0.82, Se > 78%, Sp > 83%) which is a 
significant improvement over the current state of art technologies (Se = 34-50%).13,50 In addition 
to high sensitivity to small lesions and Stage-I lung cancer, the diagnostic performance was 
independent of the tumor size and maintained for stages II, III, and IV. This high sensitivity to 
early-stage and late-stage lung cancer is possibly due to field carcinogenesis and our design of the 
biomarker source (buccal mucosa) and biomarker type (chromatin structure). 

To interrogate the robustness of our approach we specifically constructed this study from two 
different sites, one with affluent economic conditions (Site 1) near our central lab and the other 
one from a safety net hospital (Site 2) in a far out-of-state location. This design could assist us to 
evaluate the robustness of csPWS in different settings and shipment conditions. We 
treated/analyzed data from these sites individually rather than combining them. While there was a 
slight difference in the performance between the two sites, the diagnostic performance was still 
notably better than the currently available techniques for Stage-I lung cancer for both settings. 
Future studies may include more sample collection sites and control for possible chromatin 
degradation in prolonged out-of-state shipments and the hospital socioeconomic variables to 
measure this method’s performance more robustly.  

We envision buccal csPWS nanocytology as a sensitive, accurate, fast, and accessible pre-
screening method for the LDCT procedure.  Currently, only about 5% of the eligible population 
undergo LDCT screening which indicates challenges in the effective implementation of LDCT 
procedure on a broad scale3. Assessment of other tests such as Pap smear and colorectal Cologuard 
showed that pre-screening can increase adherence to the screening protocol75,76. In a similar 
manner to what a Pap smear did for cervical cancer, we aimed to develop a pre-screening test for 



LDCT procedure to possibly enhance access and adherence to the screening program. Our well-
designed SOP enables an at-home self-administered collection and preparation of clinical samples 
which can notably enhance screening accessibility. If the buccal csPWS nanocytology is positive, 
a patient can be directed to a more expensive/invasive LDCT procedure. Successful deployment 
of this pre-screening test in clinical practice may potentially enable the screening of a larger portion 
of the asymptomatic at-risk population and identifies patients that urgently need to undergo LDCT 
screening. Additionally, large-scale randomized trials indicate that LDCT is triggered by benign 
lesions that frequently result in false positives77-79. Given the low prevalence of lung cancer among 
the LDCT-eligible smoking population, this exposes many patients to overdiagnosis, unnecessary 
invasive procedures, anxiety, and overexposure to radiation. A csPWS test with high sensitivity to 
Stage-I lung cancer prior to LDCT has the potential to increase the downstream prevalence of 
cases among the population undergoing LDCT thereby increasing positive predictive value (PPV) 
and enhancing the effectiveness of the screening protocol.  

Our study and analysis had some limitations. This clinical study used a case-control design with a 
limited number of patients and, therefore, could not provide a definitive assessment of performance 
for our diagnostic method. However, it shows that our AI-driven nanosensing technology can be 
a promising approach to the early detection of lung cancer. Future work may build upon this study 
and involve a large-scale analysis to advance the model and technique. Because most patients in 
this study have a history of smoking, future studies could validate our findings with a non-smoker 
population. Additionally, there are some potentially confounding variables that future work must 
examine. The possible impact of shipment on chromatin degradation is unknown and needs to be 
determined in future work. The contribution of neoplastic signals from different layers of the 
buccal mucosa is not known while the exact complex structures of packing domains and packing 
scaling D are not established. This suggests that further optimization may lead to improved 
diagnostics.   
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