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Abstract

Supranucleosomal chromatin structure, including chromatin domain conformation, is
involved in the regulation of gene expression and its dysregulation has been associated with
carcinogenesis. Prior studies have shown that cells in the buccal mucosa carry a molecular
signature of lung cancer among the cigarette-smoking population, the phenomenon known as field
carcinogenesis or field of injury. Thus, we hypothesized that chromatin structural changes in
buccal mucosa can be predictive of lung cancer. However, the small size of the chromatin chain
(approximately 20 nm) folded into chromatin packing domains, themselves typically below 300
nm in diameter, preclude the detection of the alterations in intradomain chromatin conformation
using diffraction-limited optical microscopy. In this study, we developed an optical spectroscopic
statistical nanosensing technique to detect chromatin packing domain changes in buccal mucosa
as a lung cancer biomarker, chromatin-sensitive partial wave spectroscopic microscopy (csPWS).
Artificial intelligence (AI) was applied to the csPWS measurements of chromatin alterations to
enhance diagnostic performance. Our Al-enabled buccal csPWS nanocytology of 179 patients at
two clinical sites distinguished Stage-I lung cancer versus cancer-free controls with an area under
the ROC curve (AUC) of 0.93 £ 0.06 for Site 1 (in-state location) and 0.82 + 0.11 for Site 2 (out-
of-state location).



Introduction

Cancer screening tests should ideally identify cancer before symptoms have appeared and
while the tumor is small to effectively increase the chance of treatment and reduce the mortality
rate. Lung cancer is the leading cause of cancer deaths across races and genders in the U.S. with
an overall five-year survival rate of 22.9% which is notably lower than colorectal (65.1%), breast
(90.6%), and prostate cancers (96.8%)'. However, if lung cancer is detected at an early stage, it is
highly curable through surgical resection. The five-year survival rate for late-stage (distant) non-
small lung cancer (NSLC) is less than 8% but increases to 64% if detected at a localized stage and
reaches 90% if detected at Stage-IA1%. Low-dose computed tomography (LDCT) has been
established as the gold standard for lung cancer screening and is associated with a 20% decrease
in mortality among patients screened with the technique. Accessibility, cost, stigma, and lack of
adherence to LDCT guidelines are among the major challenges limiting its impact; unfortunately,
only about 5% of the LDCT-eligible population undergoes screening?, resulting in 55% of lung
cancer cases being detected at an advanced stage where the survival rate is bellow 8%*. We
propose to utilize a minimally invasive accessible, sensitive, and accurate pre-screening test for
LDCT with high sensitivity (Se) to early-stage lung cancer to effectively implement the LDCT
procedure on a broader scale and enhance the efficacy of lung cancer screening.

Screening methods other than LDCT such as chest X-rays and sputum cytology have proven
unsatisfactory when evaluated in large-scale clinical screening settings®. New methods based on
standard protein biomarkers used for the detection of cancer do not provide sufficient sensitivity
and specificity (Sp) ®. Recently, there has been significant interest in the development of protocols
that rely on tumor secretions in the blood, such as liquid biopsy. Tests being developed by
companies including Grail, Freenome, Guardant, Delfi, and Thrive identify cancer by analyzing
circulating tumor DNA (ctDNA) or tumor-derived circulating free DNA(cfDNA) properties such
as gene mutations, methylation, and fragmentation’!!. Although initial results have shown promise
in the detection of various cancers, including lung cancer, the sensitivity to Stage-I and smaller
lesions drops precipitously below a clinically acceptable level. It has been suggested that this
limitation is not primarily due to a technology limitation but might be related to the biology of the
source and type of biomarker. Smaller lesions secrete less tumor ctDNA (~1 c¢tDNA/ 10mL of
blood), while tumor heterogeneity can only be modeled through many tumor-byproduct
biomarkers, which makes it challenging to find the needed quantities of ctDNA in a clinically
practical blood sample'?. For example, the overall sensitivity of the Grail multi-cancer early
detection (MCED) test may drop from 90.1% [95% confidence interval (CI): 87.5% to 92.2%)] in
Stage-IV patients to 16.8% [95% CI: 14.5% to 19.5%] in Stage-I patients'®. Liquid biopsy can be
a powerful tool for non-screenable cancers (pancreatic, etc.) but for cancers with established
screening protocols, such as colorectal and lung, methods to detect treatable early-stage lesions are
still urgently needed. To address these issues and develop an effective pre-screening test for
LDCT, we optimized three crucial aspects 1) biomarker source, 2) biomarker type, and 3) enabling
technology.

An ideal biomarker source for the development of a large-scale prescreening test should be
obtained in a minimally invasive procedure from an accessible specimen, with an easy-to-
implement and reproducible protocol, and provide high sensitivity to small treatable lesions'*. Our
approach to finding this biomarker source relies upon the application of a well-established
phenomenon, field carcinogenesis, also known as field effect, or field of injury, which was first
introduced six decades ago'®. According to field carcinogenesis, the genetic/epigenetic alterations



leading to neoplastic cell transformation are distributed diffusely throughout the “field of injury”
at even the pre-malignant stage'>?}. For example, cells across the aero-digestive mucosa (field of
injury) are exposed to carcinogens in tobacco and accumulate genetic changes among smokers?!?2.
Due to the stochastic nature of these molecular changes, some cells may eventually give rise to a
tumor clone. Thus, cells throughout the entire aero-digestive mucosa harbor biomarkers of
carcinogenesis regardless of their proximity to a lung tumor. The buccal mucosa is widely
recognized as a “molecular mirror” for lung cancer because of field carcinogenesis'®2!2*2* and we
considered it as our biomarker source for two reasons. First, buccal brushings are easily performed
and uniquely suited for an at-home test or primary care office, as opposed to “liquid biopsies” that
can hardly be self-administered. Next, the biomarkers of field carcinogenesis are sensitive to early
(e.g., Stage-I) cancers, regardless of tumor size, which is diagnostically superior to other sources
such as blood or breath, as the latter depends on a load of secretions by the tumor and thus are
more sensitive to large tumors than small ones.

Discovering a suitable lung cancer biomarker type from buccal mucosa is the next major task.
Biomarkers obtained from genetic changes are negatively impacted by the extremely high number
of genetic alterations and astonishing tumor heterogeneity which hampers the application of
downstream biomarkers for the detection of small lesions. The highly dynamic chromatin structure
is known as a substrate that regulates gene expression by adjusting the accessibility to transcription
factors (TF) and RNA polymerases (RNAPs)232%, and thereby can be used to possibly predict the
risk of cancer at an early stage®?’.

To understand what types of chromatin structure may foster carcinogenesis, we first needed to
calculate a quantifiable metric of chromatin structure. We and others have reported that chromatin
is organized as a variety of packing domains®®3°. Packing domains represent a unique chromatin
structure that can regulate gene accessibility. At the smallest length scale, DNA wraps around a
histone and forms ~11 nm nucleosome complexes of “beads on a string” which are further folded
into the curvilinear chromatin chain, between 5 and 24 nm®!. These chromatin chains are packed
together in various structural compactions and densities forming irregular blocks of larger packing
domains. The packing domains have heterogeneous morphological properties with an average
radius of 80 nm and genomic size of about 200 kbp and within these domains, chromatin shows a
polymeric fractal-like behavior (i.e the mass scaling behavior within domains follows a near-
power-law relationship) along with radially decreasing mass density from the center to the
periphery®?. Chromatin packing scaling D is defined by estimating the number of base pairs (N)
scaling with the radius of the occupied volume (R) as Na RP. The value of D falls between 1.8
and 2.9 across packing domains®. A higher D value may indicate a packing domain with an
increased chromatin heterogeneity and a decreased gene connectivity scaling resulting in more
frequent longer-distance contacts**-**. Chromatin domain structures with a higher D have been
linked to fostering further upregulation of initially upregulated genes and concomitant suppression
of downregulated genes®>**. In turn, these processes result in transcriptional patterns with greater
transcriptional malleability and intercellular transcriptional heterogeneity. As neoplastic cells must
keep developing new traits in response to constraints (e.g., hypoxia, immune system attack, new
microenvironment), they benefit from transcriptional plasticity. Tumor cells that can more
efficiently upregulate critical pro-survival pathways for a given level of stress through
transcriptional malleability and heterogeneity have a higher likelihood of attaining a rare
transcriptional state that is critical for cancer cell survival, thus further carrying this transcriptional
phenotype through replication and increasing the probability of their progeny to acquire other gene
mutations, some of which may be beneficial to tumorigenesis. Thus, transcriptional plasticity-



facilitating chromatin states (including higher chromatin packing domain D) may play a critical
role in creating a “proneoplastic positive feedback loop” and therefore serve as a marker for
neoplastic progression®*,

Chromatin structural changes occur from across the chromatin chain to domains at length scales
from ~20 to ~300 nm which are too small to be observed by conventional optical microscopy. Our
group utilized statistical spectroscopic techniques with optical microscopy measurement and
developed csPWS technology to detect these nanoscale chromatin structural changes in the buccal
mucosa. csPWS is a fast, reliable, and nanoscale-sensitive optical spectroscopic technique that can
detect buccal chromatin conformation changes with a sensitivity between 23 and 334 nm?®°. The
key innovation in csPWS is statistical nanosensing in which sub-diffractional structures, while not
resolvable through conventional optical microscopy, are detectable through analysis of the spatial
variations of the refractive index (RI) via the spectroscopic analysis of scattered light interference
within each of the microscopic resolution voxels?**®*!, The output of csPWS microscopy is an
image where a pixel describes chromatin structural heterogeneity by estimating packing scaling D
for each coherence volume centered around it?%3242,

We searched for a suitable approach to thoroughly capture the complex biological interaction
between lung cancer and packing scaling D in the nucleus of the buccal mucosa. Packing scaling
D describes a quantitative statistical measurement from 3D packing of the chromatin polymer
within a self-similar domain. However, local physical conditions such as nuclear crowding density,
genomic size (Nd), domain volume fraction, and domain intracellular positioning (peripheral vs
interior, etc.) are also important physical regulators that help determine chromatin connectivity,
accessibility, and transcriptional heterogeneity and in doing so, gene expression®’. As packing
scaling D is not the only predictor of the plasticity-fostering conformation, calculating the average
D will not fully capture the complexity of chromatin regulatory mechanisms of gene expression.
Thus, we utilized advanced machine learning algorithms and artificial intelligence (Al) to
distinguish the lung cancer biological footprints engraved on the nucleus D images. Such a novel
and potent "hybrid" Al+etiological biomarker approach is possible by developing neural network
(NN) layers informed with mechanistic data obtained from chromatin structure alterations and the
packing scaling D image. Thus, we coupled our novel csPWS microscopy with a knowledge-based
Al approach and achieved high sensitivity in the detection of early-stage lung cancer.

Material and Methods

csPWS nanocytology involves collection, shipment, and preparation of buccal samples followed
by csPWS image acquisition, and evaluation of the nucleus chromatin packing scaling D image
using an Al-driven approach.

(i) Patient Recruitment. Patients were recruited through Institutional Review Board-approved
studies where written informed consent was obtained from all participants. The cohort comprised
96 patients with histologically confirmed lung cancer within the last year (case population) and 83
patients with a negative LDCT scan within the last year (control populations). 167 patients were
over 45 years of age, nine patients were 27 to 44 years of age, and the age of three patients was
unknown. Exclusion criteria were family history of lung cancer, exposure to chemotherapy and
radiation in the past three months, pregnant/lactating women, and inability to give informed
consent. Our data were obtained at two different sites: Site 1, Northwestern Memorial Hospital
(NMH) in Chicago, Illinois, US, and Site 2, Boston Medical Center (BMC) in Boston,
Massachusetts, US. The control population included non-smokers, low-risk and high-risk



smokers, and patients with benign nodules. The lung cancer patients included all stages but were
predominantly Stage-I patients (62% for Site 1 data and 76% for Site 2 data).

(ii) Sample collection. Buccal samples were collected in the primary care physician’s office
through a buccal swab procedure using a minimally invasive standard of care (Cytobrush,
CooperSurgical, Inc., Trumbull, CT, USA). The patients rinsed their mouths with water three times
before the physician placed the bristles on the inside of one buccal surface followed by a top to
down motion including brush rotation. Next, the impregnated swabs were dipped into 1.5ml vial
tubes (Neptune Scientific, San Diego, USA) containing 750 ml of 25% ethanol (collection buffer).
The samples were then packaged and shipped to the central lab for PWS microscopy.

(iii) Sample shipment. The Site 2 samples were shipped through the air from an out-of-state
location while the Site 1 samples were shipped by ground transportation from an in-state location.
The samples were maintained at a temperature below 10°C during transport using a custom-built
transport kit and were received at the central facility within 24 hours of sample collection. The
transportation kit included an outer corrugated box (Uline, Pleasant Prairie, WI, USA) and polar
pack refrigerants (SONOCO Thermosafe, Arlington Heights, IL, USA) and temperature was
monitored using a temperature indicator (Timestrip, Cambridge, UK). The sealed vial was
packaged using an inner Styrofoam container and absorbent sheets to avoid possible leakage under
refrigerated conditions.

(iv) Sample preparation. Clinical samples were prepared within 24 hours of collection based on
the approaches reported earlier.*? In brief, the samples in 25% ethanol were spray deposited on a
Fisher brand Superfrost microscope slide (Fisher Scientific, Hampton, NH, USA) using our
custom-built cell deposition system to form non-overlapping monolayer buccal cells. The sample
slide was air-dried prior to cytological fixation with 95% ethanol (Thermo Fisher Scientific,
Waltham, MA, USA) followed by csPWS microscopy.

(v) Standard Operating Procedure (SOP). We developed a well-designed SOP to capture buccal
csPWS nucleus chromatin structure changes. Our goal was to ensure a fast, robust, reliable, and
repeatable protocol with small variability of physical features of the cells acquired by csPWS from
each patient. To minimize the complexity at the collection site, we carried out the cell fixation and
sample deposition at the central lab instead of the primary care office*. For each patient, a total of
>30 cells were collected, where the sample size number was determined by power analysis with
the confidence interval (CI) on mean X restricted to be less than 5% of the difference between
cancer and the control population®*. We created a sample transport solution of 25% ethanol and
used our custom-built cell deposition device to spray deposit non-deformed, non-overlapping
monolayer buccal cells with clear nuclear boundaries on the glass slide. An airdrying step
enhanced the attachment of cells to the glass followed by fixation with 95% ethanol and csPWS
microscopy. The csPWS microscope was controlled via custom software with a graphical user
interface (GUI). The imaging procedure began by scanning the whole slide using a 10X air
objective. A semi-automated slide-map module was developed to rapidly generate a low-
magnification image of a slide by collecting and stitching individual slide region images. This
assisted a trained user blinded to the diagnostic information in selecting over 30 buccal cells across
the entire slide in a timely manner. Our cell screening protocol selected non-folded and non-
overlapping cells with clear nucleus boundaries. The csPWS spectral acquisition was performed
for the cells in a liquid medium (95% ethanol) using a liquid-dipping 40X optical objective (Nikon,
Melville, NY, USA) to match the RI between the buccal cell and liquid cover. Cs-PWS acquisition
algorithm automatically acquired spectral data for selected cells, and the analysis algorithm rapidly



generated the processed spectral data. These processes facilitated reliable and reproducible results,
making csPWS suitable for larger studies that span more clinical sites.

(vi) csPWS microscopy. Conventional microscopy systems are unable to resolve structures smaller
than 200 nm (half the wavelength of light). Our lab developed csPWS, an optical statistical
spectroscopic nanosensing approach for the detection of chromatin packing domain changes in the
nucleus of buccal mucosa. This enables us to distinguish chromatin structural changes among
histologically normal buccal cells that may carry a signature of cancer. csPWS detects chromatin
packing domain changes through statistical spectroscopic approaches that evaluate the scattering
of light within the nucleus of the mucosa. The detailed principles of csPWS microscopy have been
provided in?*37-3%414344 and here we briefly describe them. csPWS acquires a high magnification
of monochromatic spectrally resolved images between wavelengths of 450-700 nm and
distinguishes the non-resolvable sub-diffractional length scales through the assessment of scattered
light. For a given cell location of r, the RI n is proportional to the local macromolecular density
(p) of proteins, DNA, RNA etc. The refraction increment is constant and nearly independent of
macromolecular chemical composition and is estimated by eq-143%.

(p): n(Tr) = Nimedia + ap(T) (1)

csPWS benefits from liquid cover microscopy to nearly match the RI between the buccal cell and
liquid cover (shown in Fig. 1 a) while creating a mismatch between the cell-glass interface. Thus,
the scattering of light from a reference wave due to the variation of RI is proportional to the density
of the intracellular macromolecules in the coherence volume determined by the depth of field
(DOF) longitudinally and the axial plane for each pixel. csPWS calculates the standard deviation
of the interface spectra (X) obtained from the spectrum of reference wave and scattering of all RI
changes due to macromolecular nanoscale density variations across different wavelengths. }’ is
proportional to the Fourier transform of the autocorrelation function (ACF) of p(1) integrated over
the Fourier transform of the coherence volume. Each csPWS image stack is normalized by the
reference wave that is acquired at the interface of the glass and cover media from a blank region
on the slide. These subdiffractional variations in RI distribution measured as X' can be characterized
by the chromatin packing scaling factor. The relation between X and D could be explained as X
(D —Do)én, where Do~1.33 is the fractal dimension of a random 2D-polymer and 7 is the standard
deviation of the correlation length scale**. Simulation and experimental results confirmed a high
correlation between T and packing scaling D associated with each domain®>?%3242, We estimated
the packing scaling D value for the domains in each pixel (350 nm by 350 nm) based on the
analytical framework for quantifying chromatin structure with spectral microscopy provided in*2.
csPWS length scale sensitivity depends on illumination-collection geometry. We designed a small-
to-moderate numerical aperture (NA) of light incidence of 0.6, and light collection NA of 0.8 for
csPWS. This illumination setting ensures a uniform intensity across the sample plane due to the
Kohler alignment*® and delivers a chromatin length scale sensitivity of 23-334 nm (exact value
depends on the sample structure and thickness) *>#’. The larger length scales do not affect csPWS
output signal****. Electron microscopy data has revealed buccal chromatin structures significantly
alter at this length scale range **. Thus, csPWS nanocytology is mainly sensitive to length scales
that are not resolvable by conventional optical microscopy while carrying a profound signature of
field carcinogenesis and alterations in chromatin packing domains.

(vii) csPWS Instrument: The design and schematic of the csPWS instrument and the optical path
for collecting buccal cell data are shown in Fig. 1a. The csPWS optical system (shown in Fig. 1b)



is built on a commercial microscope (Nikon Instruments, Melville, NY, USA) using a Nikon
Eclipse Ni-E microscope body with modifications made to include a Xenon lamp (Exceliatas,
Tampa, FL, USA). The light is fed to an acousto-optic tunable filter with a switching speed of
50us, a bandwidth of 3nm, and a spectral range of 450-700nm (Gooch and Housego, UK). The
light passes through objective lenses (Nikon, Melville, NY, USA) that are attached to an automated
objective turret and onto a sample that is positioned with a nanomotion piezo-stage (Prior,
Rockland, MA, USA). The data is recorded through a digital CMOS camera, ORCA Flash 2.8
(Hamamatsu, Bridgewater, NJ, USA) thereby enabling hyperspectral imaging. We attain high
throughput and automated csPWS acquisition by utilizing Kohler illumination for uniform sample
illumination. We use a high-speed, high-resolution RGB camera (Thorlabs Inc., Newton, NJ,
USA) for low-magnification slide mapping. The workflow of csPWS buccal nanocytology is
presented in Fig 1¢. Packing scaling D images of the nucleus of 30 to 40 isolated non-overlapping
buccal cells were acquired for each patient in liquid using a liquid-dipping 40X optical objective
(Nikon, Melville, NY, USA) to match the RI between the buccal cell and liquid cover (shown Fig
1.a). Al and advanced machine learning algorithms were used to distinguish characteristics of field
carcinogenesis and the alterations in the packing scaling D image.
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(viii) Al analysis of packing scaling D. We used Al on csPWS data to see whether we can detect
field carcinogenesis of buccal mucosa of patients with lung cancer and distinguish alterations in
buccal chromatin packing domains that indicates tumor initiation and progression. Our Al-driven
approach consisted of nucleus segmentation, preprocessing, feature learning, and classification of
csPWS images as shown in Fig. 2. Nearly 7000 buccal csPWS D images (960x720 pixels) from
179 patients was evaluated in this study. Nuclear segmentation was conducted by a trained user
blinded to the diagnostic information and the outlier cells with deformed shapes were excluded.
Next, the nuclei images were resized and passed through min-max normalization in our
preprocessing subsection. For the feature extractor unit, we incorporated transfer learning on
VGG16 architecture, a convolutional neural network (CNN) pre-trained on 14 million images
belonging to 1,000 different labels from the ImageNet data set. Features were extracted from
multiple convolution layers of the architecture (Conv 2 through Conv 5) and flattened. The mean
and standard deviation of the flattened features across all cells belonging to a patient were
calculated to create a feature vector. We used a multiple instance learning (MIL) method of
instance-level feature aggregation that facilitated the usage of patient-level clinical ground truths.
MIL enables a seamless process integration for pathologists *° and for that reason was used in our
approach. To further reduce the dimension of the patient feature, we conducted a recursive feature
elimination method using a random forest algorithm, thus selecting a panel of 40 features with



enhanced classification properties. We used a parameter-tuned random forest classifier to
determine the patients with lung cancer from the control populations using a patient-wise analysis
of the diagnostic features obtained by CNN. The tuning of the classifier model for optimal
parameters was performed using grid search by searching through iterations of multiple
configurations, of which the model configuration with minimal error for our dataset was used for
classification. For a robust evaluation of model performance on our relatively small dataset, we

calculated our metrics AUC, sensitivity, and specificity using a stratified 4-fold cross-validation
method with 5 iterations.
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Figure 2. Workflow and architecture of the feature extraction and classification steps

Results

Patient Recruitment and Demographics. We analyzed csPWS D images of clinical buccal samples
in a double-blind case-control study from two different clinical sites stationed in an in-state and an
out-of-state location. Most patients identified with lung cancer were at Stage-1: 26 of the 42 (62%)
at Site 1, and 41 of 54 (76%) at Site 2. The percentage of female patients with lung cancer was
higher at Site 2 (71%) compared to Site 1 (56%). Minority populations were enriched at Site 2
with Caucasians forming only 49% of the population compared to 80% at Site 1. PWS D image of
two histologically normal buccal cells (confirmed by reflectance image) shows an example of
intercellular domain variation and an overall increase of D in a cell belonging to patients with lung
cancer in comparison with a smoking control (Fig. 3).

Reflectance image D image

Lower D

Higher D

Figure 3. Reflectance image (left) the D image distribution (right) in cells from a control patient (top) and from a
patient with lung cancer (bottom).



Population-based study showed a similar trend where the overall packing scaling D was higher in
patients with lung cancer compared to the healthy control. Patient demographics including age,
pack-years of smoking, gender, and race, and their association with D were evaluated with the
significance criterion of the p-value using regression analysis for the patients with lung cancer and
the control population (shown in Table 1).

Tablel. Demographic factor distribution for Sites 1&2. The Average value and standard deviation are reported

Demographic Factor Control Parameter Cancer Parameter Effect on D
Site 1 Site 2 Site 1 Site 2 Site 1 Site 2
Age 59+11 61=+11 6712 677 0.02 0.47
Pack-Years 35+£26 39+34 37+£30 41+30 0.22 0.50
Gender (% Female) 49% 42% 56% 71% 0.69 0.19
Race (% Caucasian) 80% 49% 80% 49% 0.62 0.84

Our regression modeling did not find any statistically significant relationship between gender,
race, and smoking pack-years with packing scaling D across both sites as shown in Table.1. While
we did not observe a significant relationship between the age and packing scaling D in Site 2 (p-
value = 0.47), age presented a statistically significant relationship with packing scaling D at Site
1. We further interrogated packing scaling D data at Site 1 and determined a statistically significant
negative correlation may exist between age and D (Fig. 4). Patients with lung cancer presented
significantly (p<0.001) higher overall D than the normal population while lung cancer cases were
more common among the elder population. Thus, an age adjustment for addressing the negative
correlation between age and D would further enhance the overall D diagnostic performance. Thus,
our reporting diagnostic performance at Site 1 may be an underestimation.
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Figure 4. Linear regression analysis assessed the impact of demographic factors on average packing scaling D with
the control population



Al-enabled csPWS for Early-stage Lung Cancer Detection. We evaluated the average packing
scaling D among the entire 179 patients (data normalized by year and site) and determined that
average D significantly increased among patients with lung cancer (p-value <0.001). The average
packing scaling D provides a statistical descriptor of chromatin structure, however, factors such as
chromatin connectivity, accessibility, and transcriptional heterogeneity also determine gene
expression. Local physical conditions such as nuclear crowding density, genomic size, domain
volume fraction, and domain intracellular positioning are important determinants of a plasticity-
fostering conformation®’. Thus, average packing scaling D does not fully describe the complex
regulatory role of chromatin structure in gene expression. We utilized deep learning and machine
learning algorithms to capture the biological complexity of chromatin structure and the statistical
marker, D. Specifically, we used transfer learning-based deep CNN modeling along with a random
forest classifier on the D image of the buccal nucleus to distinguish patients with lung cancer from
the control population. Our Al-driven csPWS nanocytology distinguished patients with Stage-I
lung cancer from the control population with AUC of 0.92 + 0.06 (Se = 92%, Sp = 89%) at Site 1
and AUC of 0.82 £ 0.11 (Se = 78%, Sp = 83%) as Site 2 as shown in Table 2. Our approach
maintained its diagnostic performance for the detection of later-stage lung cancer and showed an
AUC of 0.90 + 0.07 (Se = 86%, Sp = 89%) and 0.82 = 0.09 (Se = 78%, Sp = 87%) for detection
of all stage lung cancer in Site 1 and Site 2, respectively.

Table 2. AUC comparison between Site 1&2 for control, Stage-1, and all-Stage lung cancer
Al-enabled csPWS Nanocytology

AUC comparison Site 1 Site 2
(#Control, #Case) (#Control, #Case)
: 0.92 (+0.04) 0.82 (£0.11)
Stage-I (40,26) (43,40)
R 0.92 (+0.04) 0.82 (+0.04)
Stage-1&11 (40,33) (43 ,44)
0.90 (£0.07) 0.82 (+0.09)

All-Stages (I, II, III, &IV) (40,42) (43,54)

Discussion

We demonstrated that Al-enabled buccal csPWS nanocytology can be an effective modality for
the detection of Stage-I lung cancer via the assessment of chromatin structural changes. Buccal
csPWS nanocytology enables a fast, minimally invasive, accessible, and sensitive approach for the
detection of early curable stage lesions (I&I1) equivalent to advanced stage lesions (III, IV). High
diagnostic performance was achieved at two different clinical sites with different socio-
demographic populations and different proximity to the central lab which indicates the robustness
of buccal csPWS nanocytology.

From a clinical perspective, the early detection of lung cancer has significant importance. Lung
cancer patients’ survival rate declines significantly as cancer progresses. Recent work has sought
to develop new clinical methods to detect lung cancer, but these attempts often fail for the purpose
of early-stage diagnosis. For example, the novel liquid biopsy technology has shown promising
diagnostic performance for the detection of lung cancer, but the performance for the detection of
early-stage lung cancer notably drops due to the limitations associated with the biology of the
biomarker source'?. We started our search for a new biomarker source and biomarker type based
on the molecular biology of lung cancer. Lung cancer is developed by the dysregulation of diverse



mutational processes, at different rates resulting in genetic heterogeneity in tumors. The number
of possible molecular/gene alterations in lung cancer is extremely high with notable tumor
heterogeneity which negatively impacts the efficacy of tumor byproduct biomarkers obtained from
blood. Downstream biomarkers are expected to lose their sensitivity at the early stage of lung
cancer where the tumor is small due to the staggering tumor heterogeneity. Fewer mutations per
Mbp and fewer clones alongside the high tumor heterogeneity induced by the small lesions would
negatively impact the diagnostic performance for the detection of early-stage lung cancer. Later-
stage mutations may not exist at a high level in small tumor lesions. The Al-enabled technologies
that evaluate hundreds of biomarkers will face challenges as most of those products will not be
produced sufficiently from a small tumor. Thus, their sensitivity drops for the detection of small
lesions!%3%3!, Therefore, we decided to look for a new biomarker source. The field carcinogenesis
introduces buccal chromatin structures as an accessible “substrate” on which the tumor originates,
thus biomarkers obtained from it will not depend on the size of the tumor. These realities motivated
us to leverage the combination of field carcinogenesis with a novel optical spectroscopic statistical
nanosensing technology to propose a new type of biomarker: nucleus chromatin structure from
buccal mucosa.

There is growing evidence advocating for lung cancer field carcinogenesis through assessment of
more accessible sites from the aero-digestive mucosa!>?’. For example, similar genomic and
epigenomic changes to cancer are observed in the distal lung and across entire airway epithelial
cells!®32-54 Other studies showed smoking induces similar genetic changes in the bronchial airway
and epithelia of the nasal, mucosa®-°. The elevated incidence of synchronous and metachronous
neoplastic lesions with the increased ratio of secondary cancer '°762, similar chromosomal, gene
methylation, and gene mutations (EGFR and p53) abnormalities in locations exposed to the same
carcinogens are widely explained with field carcinogenesis'®*"%-7  The utility and clinical
application of field carcinogenesis are confirmed through the evaluation of protein expression, and
miRNA'®% More specifically, buccal mucosa has been known as the “molecular mirror” of
bronchial epithelium for lung cancer’*®. A variety of genetic/epigenetic changes in the buccal
mucosa are concordant with those in lung cancer?®?>7°, Changes in gene/protein expression of
buccal mucosa have traditionally been used for diagnostic applications while we assessed
chromatin structural changes for the detection of Stage-I lung cancer’! . The highly complex and
dynamic chromatin structure is widely known as ubiquitous and a common denominator for
genetic alterations in biological cells and cancer-promoting transformation’>”. Chromatin
structure determines the microenvironment enabling neoplasia, thus, can be a predictor of cancer
in histologically normal cells even prior to the formation of a tumor, and unlike downstream
biomarkers, should retain sensitivity to small tumors. Cytometry measurement’® and recent
spectroscopic studies'®?*232¢ have indicated structural changes and field cancerization in the oral
cavity of patients with lung cancer which advocate the diagnostic application of chromatin
structural changes. Electron microscopy image analysis determined alterations in buccal chromatin
packing at a length scale between 80 nm to 200 nm*® is a profound and significant characteristic
of field cancerization.

These are the reasons we developed buccal csPWS nanocytology to interrogate the chromatin
structural changes at the length scale of 23-334 nm and detect early-stage lung cancer. csPWS
senses chromatin structural changes based on the principle that light scatters substantially more in
small dense chromatin packing domains than in large loosely packed chromatin domains. csPWS
achieves its high sensitivity to chromatin structural changes via a spectroscopic nanosensing
statistical approach. We enhanced the signals obtained from intra-cellular macromolecule density



changes in the nucleus by matching the RI at the cell/liquid interface and creating a mismatch at
the cell/glass interface. The packing scaling D image calculated by csPWS* provides statistical
characterizing data from the nucleus chromatin packing domain changes which are used as a proxy
for the prediction of plasticity-fostering conformation.

The role of packing scaling D in defining chromatin conformation and regulation of gene activity
is a complex phenomenon. Alongside D, other structural predictors such as the domain size,
chromatin volume concentration (CVC), average nuclear density, domain volume fraction, and
their location in the nucleus (peripheral vs interior) are a predictor of the plasticity-fostering
chromatin conformation?>2*3242_ Thus, calculating the average D for each buccal nucleus will not
fully capture the role of chromatin structure impact on tumor genesis. As such, we used an Al-
driven approach to capture the packing scaling D image associated with the plasticity-fostering
conformation that can lead to tumor genesis and is the predictor of Stag-I lung cancer.

Our Al-driven biomarkers are developed with layers informed by mechanistically driven
chromatin structural changes and have advantages over conventional biomarker discovery
methods such as 1) single hypothesis-driven biomarkers and 2) the Al-driven “black-box”
approaches. A single hypothesis-driven biomarker approach cannot fully capture the complexity
of biological interactions while the “black-box™ approach will fail to deliver an accurate diagnosis
in a relatively limited sample size due to the lack of mechanistic rationale. In this work, we bridged
the two approaches while taking advantage of their strengths and mitigating their weaknesses for
the detection of early-stage lung cancer.

We assessed Al-enabled buccal csPWS nanocytology across two different sites with different
proximity to our central lab and different socioeconomic status and realized a high diagnostic
performance for detecting Stage-I lung cancer (AUC>0.82, Se > 78%, Sp > 83%) which is a
significant improvement over the current state of art technologies (Se = 34-50%).!>° In addition
to high sensitivity to small lesions and Stage-I lung cancer, the diagnostic performance was
independent of the tumor size and maintained for stages II, III, and IV. This high sensitivity to
early-stage and late-stage lung cancer is possibly due to field carcinogenesis and our design of the
biomarker source (buccal mucosa) and biomarker type (chromatin structure).

To interrogate the robustness of our approach we specifically constructed this study from two
different sites, one with affluent economic conditions (Site 1) near our central lab and the other
one from a safety net hospital (Site 2) in a far out-of-state location. This design could assist us to
evaluate the robustness of csPWS in different settings and shipment conditions. We
treated/analyzed data from these sites individually rather than combining them. While there was a
slight difference in the performance between the two sites, the diagnostic performance was still
notably better than the currently available techniques for Stage-I lung cancer for both settings.
Future studies may include more sample collection sites and control for possible chromatin
degradation in prolonged out-of-state shipments and the hospital socioeconomic variables to
measure this method’s performance more robustly.

We envision buccal ¢csPWS nanocytology as a sensitive, accurate, fast, and accessible pre-
screening method for the LDCT procedure. Currently, only about 5% of the eligible population
undergo LDCT screening which indicates challenges in the effective implementation of LDCT
procedure on a broad scale®. Assessment of other tests such as Pap smear and colorectal Cologuard
showed that pre-screening can increase adherence to the screening protocol”>’®. In a similar
manner to what a Pap smear did for cervical cancer, we aimed to develop a pre-screening test for



LDCT procedure to possibly enhance access and adherence to the screening program. Our well-
designed SOP enables an at-home self-administered collection and preparation of clinical samples
which can notably enhance screening accessibility. If the buccal csPWS nanocytology is positive,
a patient can be directed to a more expensive/invasive LDCT procedure. Successful deployment
of'this pre-screening test in clinical practice may potentially enable the screening of a larger portion
of the asymptomatic at-risk population and identifies patients that urgently need to undergo LDCT
screening. Additionally, large-scale randomized trials indicate that LDCT is triggered by benign
lesions that frequently result in false positives’’”. Given the low prevalence of lung cancer among
the LDCT-eligible smoking population, this exposes many patients to overdiagnosis, unnecessary
invasive procedures, anxiety, and overexposure to radiation. A csPWS test with high sensitivity to
Stage-I lung cancer prior to LDCT has the potential to increase the downstream prevalence of
cases among the population undergoing LDCT thereby increasing positive predictive value (PPV)
and enhancing the effectiveness of the screening protocol.

Our study and analysis had some limitations. This clinical study used a case-control design with a
limited number of patients and, therefore, could not provide a definitive assessment of performance
for our diagnostic method. However, it shows that our Al-driven nanosensing technology can be
a promising approach to the early detection of lung cancer. Future work may build upon this study
and involve a large-scale analysis to advance the model and technique. Because most patients in
this study have a history of smoking, future studies could validate our findings with a non-smoker
population. Additionally, there are some potentially confounding variables that future work must
examine. The possible impact of shipment on chromatin degradation is unknown and needs to be
determined in future work. The contribution of neoplastic signals from different layers of the
buccal mucosa is not known while the exact complex structures of packing domains and packing
scaling D are not established. This suggests that further optimization may lead to improved
diagnostics.
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