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Abstract—In this work, we study an LQG control system
where one of two feedback channels is discrete and incurs a
communication cost. We assume that a decoder (co-located with
the controller) can make noiseless measurements of a subset of
the state vector (referred to as side information) meanwhile a
remote encoder (co-located with a sensor) can make arbitrary
measurements of the entire state vector, but must convey its
measurements to the decoder over a noiseless binary channel.
Use of the channel incurs a communication cost, quantified as
the time-averaged expected length of prefix-free binary codeword.
We study the tradeoff between the communication cost and
control performance. The formulation motivates a constrained
directed information minimization problem, which can be solved
via convex optimization. Using the optimization, we propose a
quantizer design and a subsequent achievability result.

I. INTRODUCTION

In this work we consider discrete-time MIMO LQG control
in a system where some measurements incur a communication
cost, but others do not. As in [1] and [2], we study the tradeoff
between control performance and communication cost, where
the latter is measured in terms of the average length of prefix-
free codewords. Our principal motivation is a sensing scenario
where an energy constrained remote platform (the encoder)
must encode, and then wirelessly transmit, its measurements to
a joint fusion center/controller (decoder) which contains some
sensors of its own. We model the decoder measurements as
noiseless observations of a subset of the state vector indices,
which we refer to as side information (SI). We consider a
setup where both the encoder and decoder have access to the
decoder’s measurements. In the remote sensing scenario, it
may be reasonable to assume that the decoder has sufficient
energy to feed its measurements back to the encoder while the
sensor platform could be constrained— under some additional
assumptions, minimizing the time-averaged bitrate from the
encoder to decoder is a surrogate for minimizing the energy
the sensor platform “spends" on communication. We establish
a converse bound on the minimum prefix-free codeword length
in terms of Massey’s directed information (DI) [3]. The
bound applies to the case when the SI is known at both
the encoder and decoder, and thus applies when the SI is
known at the decoder only. The converse motivates a rate
distortion problem where a DI term is minimized subject to
a constraint on control performance. The problem is solved
optimally via a tractable mathematical program (namely a
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log-determinant optimization) [4]. We use the optimization to
derive an achievability result based on the construction in [2].

Massey’s DI quantifies the flow of information from one
stochastic process to another [3]. In [5], the time-averaged
bitrate of a prefix-free codec inserted into the feedback loop
of a SISO control system was shown to be lower bounded by
the DI from the plant output to the control input. Also, [5]
motivated the use of entropy dithered quantization (EDQ) in
control systems subject to data rate constraints. Extending [5]
to the MIMO setting, [1] motivated a rate distortion problem
that minimized DI in an LQG control system subject to a
constraint on performance. Under standard linear/Gaussian
plant dynamics, [1] showed that any optimal measurement
and control policy could be implemented via a three-stage
separation architecture; namely a linear/Gaussian sensor, a
Kalman filter, a certainty equivalence linear feedback con-
troller. The optimization to find the minimum DI (and the
minimizing policy) was formulated as a semidefinite (log-
determinant) program [1]. [2] gave operational significance
to the minimal DI (and minimizing policy) in [1]. In [2], it
was shown that a zero-delay source coding scheme, based on
quantizing Kalman filter innovations via EDQ, followed by
prefix-free coding achieves a DI cost within 7 log(%7) + 1
bits of the minimal DI cost in [1]. Likewise, [6] studied the
tradeoff between DI and LQG performance, proved converse
bounds applying to plants with non-Gaussian disturbances, and
demonstrated achievability without dithering.

The impact of SI (modeled as a decoder-side linear ob-
servation of the state vector in additive Gaussian noise) on
the tradeoff between DI and LQG performance in LTI SISO
systems was investigated in [7]. It was argued that it suffices
to consider a rate distortion problem in a related tracking
problem and that linear/Gaussian policies were optimal. In
[8], an optimization problem was formulated to analyze the
minimum attainable DI in a MIMO LQG control system with
SI assuming linear feedback policies. Very recently, [4] proved
that linear/Gaussian policies conforming to the “three-stage
separation" architecture of [1] achieve optimal performance in
a MIMO time-varying generalization of the original control
problem posed in [7]. It is also argued that it suffices to
consider time-invariant policies in the time-invariant infinite
horizon setting [4]. In [7], [8], and [4], SI at the encoder does
not impact the rate-distortion tradeoff.
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In this work, our system model differs slightly from that
in [8] and is slightly less general than that in [4]. Our
perspective is quite different. We motivate our rate distortion
problem, and demonstrate an achievability result, in terms of
digital communications. The achievability approaches in [8]
and [4] are analog in the sense that the feedback channel is
continuous. Our contributions are summarized as follows:

1) Assuming that the feedback channel from the encoder
to decoder is binary and noiseless, we derive a lower
bound on the minimum expected prefix-free codeword
length under a constraint on control performance. The
converse result motivates a rate distortion formulation.

2) Via the three-stage separation principle (cf. [4, (19)]),
we derive a semidefinite program equivalent to the rate
distortion problem. !

3) We provide a recipe to design both a sensor and a
quantizer that nearly achieves the performance of the
rate distortion formulation. Namely, we specify both a
zero-delay quantizer design and source coding protocol.

A version of this paper with appendices is provided in [9].

Notation: We denote scalars by lower case letters s, vectors
by boldface lower-case letters v, and matrices by boldface
capitols M. MT denotes transpose. We use 1. to denote
the sequence (z1,%2,...,2¢), and {z;} for x1.... We define
the “time shifted" sequence x7,; = (0,x1,...,%¢-1). If £ < 1,
x1:¢ = &. Denote the set of finite length binary strings {0,1}*.
Denote the entropy of a discrete random variable (RV) H,
differential entropy by &, and mutual information (MI) by 1.
Denote causally conditioned DI

T
I(prr = qur|rir) = Zt=1 I(prt;qeldre-1,71:6). (1)

If A, B,C are RVs and A is independent of C' given B we say
that A, B, C form a Markov chain and write A <+ B < C.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1 illustrates our assumed system model. We assume
a MIMO plant, a generally randomized sensor/encoder, and
two feedback channels (one for SI and one for prefix-free
codewords) from the encoder to a possibly randomized de-
coder/controller. Let x} ¢ R™ and xt e R™. The state
vector is defined as x; = [(x;)7T, (x2)T]T. Let A;; e R™™,
Ay € RV Aoy € R™”, and Ay € R™™ be block
partitions of the system matrix A, and define Wy, € R™",
and Way € R™ ™. The plant dynamics are given by

1 A A
[2%:1] ) [A; A;z] [ ] +Bu; + wy, where (2a)
“ N0 W) and W= [V\(I)H V322] . @)

We assume W11, Wy, > 0 and the w; are IID. We assume B €
R™™*% and that (A,B) is stabilizable. The sensor/encoder

"When we originally submitted this manuscript, we proposed three-stage
separation as a conjecture. After submitting, we became aware that it was
shown to optimal in the commensurately published [4]. We derived our
SDP formulation independently, and provide additional system theoretic
commentary with respect to [4].

Plant
— 1
X1 = AX,+ Bu, +w, ) |X
1 th A 4
u, )
A
N\ x|
Decoder/Controller < Encoder/Sensor

P(at | X1 a1:t—1)

P(u,| X%:t, aj,up, )
_J/

Flg 1. The encoder has access to x} and x2, while the decoder can access
xt, only. At every time ¢, the encoder transmits a prefix-free codeword a; €
{0,1}* to the controller. As in [1] [2], the length of the codeword provides
a notion of communication cost. Intuitively, the decoder relies on a discrete
channel to convey any knowledge of {x!} not contained in {x?} to the
decoder. The decoder generates the control input u

policy is a sequence of causally conditioned stochastic ker-
nels denoted P(aj:ico|[X1:00) = {P(asX1:4,a1:4-1) }e=1,..., the
decoder/controller policy is defined analogously and denoted
P(Utio0@1:00, X310 ) = {P(Ws]atis, X3, Urip-1) Fe=1,2,. -

Let ¢(a;) be the length of the codeword a; ¢ {0,1}*
(in bits). We seek policies that minimize the time averaged
expected codeword length subject to a constraint on control
performance. Following from [2], we pursue the optimization:

inf

E[¢
P(a1:c0||X1:00) zt 1 (at)
P(ulool‘aloo,x?w) (3)

s.t. hmsup Zt 1

hm sup

[xeerG + luelz] <~

where Q > 0, R > 0. The expectations are taken with respect to
the joint measure induced by the policies and plant dynamics.

IIT. CONVERSE

The converse follows from [2] and [1].

Theorem III.1 (A converse proof). Consider the model in
Fig. 1. Let {(a;) be the length of the codeword a; in bits.
For any (possibly randomized) control and encoding/decoding
policies, we have

S E[(a)] 2 I(xur - avr|x2y). )

Proof. The model assumes that a; is a codeword from a prefix-
free code. Let A; = {a € {0,1}* : P(a; = a) > 0}. At every
time ¢, if aj,as € A; the prefix-free assumption guarantees
that a; is not a prefix of a5 and vice-versa. We claim that

E[¢(a;)] > H(a), &)

this follows from a claim that for every ¢, any function C; :
{0,1}* - {0,1}* satisfying a = Cy(a) for all a € A; is a
prefix-free code (in the terminology of [10, Ch. 5] ) from
Ay to {0,1}*. For any prefix-free code C; (cf. [10, Theorem
5.3.1])

E[(Cf (ar))] > H(ay). (6)

Since C} is identity on A;, we have E[£(C;(at))] = E[£(at)],
and (5) follows. We discuss (5) in [9, Appendix A].
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At every time ¢ we have the following chain of inequalities

E[¢(a;)] > H(at) (7N

> H(aylay;1,%7,,) ®)

> H(aylais-1,%x7,) - H(aar-1,x14), (9)

Note that (7) is precisely (5), (8) follows since conditioning

reduces entropy, and (9) follows since discrete entropy is

positive. The right hand side of (9) is I(as;Xy¢|ar.s1,X5.;).

Summing over ¢, and applying (1) gives (4). O
IV. RATE DISTORTION FORMULATION

Given the converse in Sec. III, the arguments in [1] and [2]

suggest attempting the following optimization

limsup I(x1.7 — al:THX%:T)

T—oo

inf
P(a1:oo||xlzoo)
P(U1:co||at:00 X 100 )

(10)

. T
s.t. hITnsup > Ellxe H?Q +lwR] <,

where the infimum is over all possible encoder and de-
coder policies and all expectations are computed under the
measure induced by the policies and the plant dynam-
ics. Let {y;} denote a sequence of (not necessarily dis-
crete) random variables. Define the set of causally condi-
tioned kernels P(y1:00|[X1:00) = {P(¥¢|X1:t, Y1:0-1) }e=1,... and
P(Wtico|[Y 1:005 XTi00) = {P(Wefy1:t, X7, Wit-1) Fe=1,2,.... The
infimum in (10) is lower bounded by

inf limsup I(x1.7 = yir|[x37)

P(yroollX1:00)  T00
P(ULico|[Y 1:00 %7 00 )

. T
s.t. hrTnsup Zt=1E[”Xt+1”?Q + |Juy H%{] <.

(1)

That (11) lower bounds (10) follows from expanding the
domain of minimization. In (10) the optimization is restricted
to kernels where a; is a discrete codeword, whereas in (11)
we make no such assumption.

Note that (11) is an optimization over an infinite dimen-
sional policy space and is not computationally amenable.
Recently, [4] demonstrated that the minimum in (11) is achiev-
able by a time invariant linear/Gaussian policy conforming
to the three-stage separation architecture depicted in Fig. 2;
namely, the optimal policy consists of a time-invariant linear-
Gaussian sensor, a Kalman filter, and a certainty equivalence
controller. Such a structural result allows us to convert (11)
into an equivalent finite dimensional optimization. We discuss
the optimal architecture in the following subsection.

A. Three stage test channel (cf. [1], [4])

The feedback loop contains three components:
1. Time-invariant linear/Gaussian sensor: Let C; ¢ R™*"
and C, € R™™.The equation governing the sensor output, y;,

is assumed to be
yt=[C1 Ca]x:+ vy, where v ~N(0,V). (12)

II. Kalman filter: The standard Kalman filter (KF) com-
putes the linear minimum mean squared error (LMMSE)

Plant
x}, Ay A !
’2“ = [A” AIZ] X’Z +Bu,+w, 1
Xy 21 Axl [xF Y Xt

2
X;

Certainty Equivalent
Controller

u, = KX,

Linear/Gaussian
Sensor

Kalman
Filter

%, = E[x,| X%:t’ Yid

Y, =Cx,+v,

Fig. 2. The three-stage separation architecture.

estimator, which in the joint Gaussian case is also the MMSE
estimator. The estimator is computed by the standard recursion
(cf. [11]). The KF computes the estimate X; via a linear (in
all arguments), time varying, C and V dependent recursion
denoted %; = U, (Xs_1,y1, X7, ).

III. Certainty equivalence control: We assume certainty
equivalence linear feedback control. Let S be a stabilizing
solution to the algebraic Riccati equation [2]

S=ATSA-ATSB(B"SB+R)'BTSA+Q. (13)
The feedback control gain K is then given by
K=--(B"SB+R) 'BTSA. (14)

Under the three-stage test channel assumption, the design
variables are limited to C and V > 0, converting (11) into
a finite-dimensional optimization.

V. A CONVEX PROGRAMMING APPROACH TO THE
RATE/CONTROL PERFORMANCE TRADEOFF

Via three-stage separation, the minimum in (11) is given by

. 1
dof limsup o I(xyr yurlxir) (15a)

T—oo

. 1 &1
s.t. V¢ limsup T Yot IE[HleHQQ +[u|R] <, (15b)

T—o0
Xyl = AXt + BKut + Wy,
vi =Cxy + vy, vi ~N(0,V), V=0,

- ~ 2 ~
Xt = \Ijt(xt717Ytaxt7ut71)s u; = K%y,

where we identify the DI (15a) as the communication cost and
the quadratic (15b) as the control cost [4]. All expectations are
under the measure induced by C, V, and Fig. 2. In this section
we derive a convex program from (15). We first simplify
the cost (15a) under the assumed architecture, deriving an
expression in terms of Kalman filter error covariance matrices.

A. The rate and control costs in terms of KF variables

Under the architecture in Fig. 2, it can be verified that
X141 © x%t,x%,yl;t,l < yy. Thus, by the chain rule
I(%1:5yeX3., Y1:e-1) = I(Xt; ye[Xiy, Y1:6-1) and the commu-
nication cost (15a) is given by

T
I(xer = yirlxie) = 2, I(xeyidxTy, yia-1).  (16)
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Predict Sl Update se"s°’t',"";:ft:re"‘e“‘
-1 xt|t 1=

xtlt 1 Xt x =
[E[thxlt_p)'lz—l] [E[xx|X1pY1t 1] [E[X |xlt’ylt]

Fig. 3. A depiction of the Kalman ﬁltermg process with two measurement
updates. The first update is after acquiring the SI (x?);, meanwhile the second
is after acquiring the sensor measurement y:. In the present setting, joint
Gaussianity ensures the filter computes MMSE estimators. The residuals are
uncorrelated, and thus independent, of the respective observations (cf. V-A).

Sl el 2 ol _ Tl o2
Let X; = E[x;|x],¥1:4-1] and %; = E[x;|x7.,;,y1:t]. Denote
the residuals ¥; = x} X} and ¥ = x} —%;. Since X} and %/ are
measurable functions of x2,,,y1.+_1 and x3,,,y1.+ respectively,

by the definition of MI

I(Xia yt|X%:t7 yl:t—l) =

R(Fe|xXTs Yi-1) = h(BexT, y1:). (17)

By the joint Gaussianity of x;.; and y;.; and the orthogonality
principle F; is Gaussian, has E[F;] = 0, and is independent
of X2, V141 L1kew1se #; is Gaussian, has E[f;] = 0, and
is independent of x%.,,y1,. Define P, = E[FF;] and P; =
E[#:f] ]. The differential entropy of z ~ N'(04,X) is h(z) =
1 (log det(X) + dlog(2me)) [10]. Thus (17) is

1 ~ N

3 (log det Py —logdet Py).

I(x{3yelxT, yis-1) = (18)

Thus, the rate cost function in (15) may be written

. 1
lim sup fI(XlzT - Y1:T||X%:T) =

t—o0

lim sup_ (19)

t—o0

Zt | logdet P, - logdet P,.

Under the present assumptions (cf [2] [1]), the control cost
may also be written in terms of P;. Let © = KT (BTSB +
R)K. We have

hmsup Zt 1 |Xf+1HQ + HufHR]

T—o0

lim SUp Z Tr(@Pt) +Tr(SW).

T—o0

(20)

In the sequel, we recast (15) in terms of P, and P,.

B. The constraints in terms of Kalman filter variables

In this subsection, we derive constraints between the resid-
ual covariance matrices and conclude the simplification of
(15). The sequences {P;} and {P,} are related via a Riccati
recursion we derive via considering the implementation of the
Kalman filter from Fig. 2 depicted in Fig. 3.

Define the a posteriori state estimate of x at time ¢ — 1
as X;_1. This is the estimator given xit_l and yi4-1 and is
given by %, 1 = [(X_1)T, (x2;)T]T (cf. Sec. V). Since x2_,
is observed noiselessly there is no error in estimating x7 ;
we thus defined the residual, #;_1, with respect to x%,l (only).
The orthogonality principle and Gaussianity ensures that ©;_q
is independent of x%, ,y1:41.

Denote the a priori state estimate for time ¢ as X;;_;.
Given the linear feedback control, X;;_; is a linear func-
tion of X;—; and is precisely the MMSE estimator X;;_; =
E[x; 1|3, 1, Y1+-1]. Denote the a priori residual process
Fyjs—1 = Xt — Xy¢—1- Note that in contrast to the definition of
-1, T4;—1 contains residuals from estimating (predicting) both
x} and x?. It can be shown that E[fﬂt 1] = 0. Denote the co-
variance matrix Py,_; = E[f4,_ 1rt‘t J-LetA =[AT AZ 1"
By direct substitution Py;_; = AP, AT +W, where P,_; is
covariance of ;_; defined in V-A.

The estimator after the SI update (the noiseless observation
of x?) at time ¢ is given by %; = [(X})T, (x2)T]T (cf. Sec.
V). Again, xt = E[x¢[x%.;,y¥1:+-1] and is a linear function of
Xy|t-1 and x2. The re51dual Iy, is again defined with respect to
the error estlmatmg x} only (as in Sec. V). Let P11 e R™™,

tlt-1
Pl2 eR™m P2l R™" P22 ¢ R™*™ be such that

tlt- 1€ tlt- 1€ tlt— 1€
| 3 P2
Py :[ gt bl 1]. @1
i Pt\t 1 Pt\t 1

The covariance of the residual r; (cf. V-A) follows from a
standard Shur complement result

Pt _Pt|t 1~ t|t 1(Pt|t 1) 1Pt\t 1

Finally, the sensor measurement update computes the posterior
state estimate at time ¢. It can be shown that P, is given by

Pl=P'+CIVCy,

(22)

(23)

which demonstrates that Cs is completely arbitrary.
Let F = AT, W3lA,,. Using (22), the matrix inversion
lemma gives

~ L -1

P =W +Aq (P +F) AT, (24)
Substituting (23) into (24) gives a recursion for P via

Py =Wy + Ay (B +CIVIC, +F) AL (29

The matrix inversion lemma demonstrates that (25) is a
Riccati difference equation [12]. Given an initial condition,
the recursion (25) converges under a variety of circumstances
[12] [11]. If it exists, the steady state solution P.. solves the
discrete algebraic Riccati equation

P =Wy +A; (PL+CIVIC, +F) AL (6)

In particular, [12, Theorem 4.1] establishes convergence to

a unique, positive definite solution when (A;;, W) is
stabilizable and ([CT,AZ]T, A1) is detectable [12]. The
stabilizability is immediate as Wy; > 0. Furthermore, in the
present setting, the existence of a positive definite solution to
(26) can be shown to imply that ([CT, AJ;]T, A) is detectable
via a discrete time Liaponov equation We restrict our attention
to the case that ([C AT 1T, A) is detectable.

Convergence of {Pt} 1mpl1es that {P,} also converges. The
limits of {P,} and {P;} must satisfy both

Pl-Pl+ClvlCy, and (27a)
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P =Wy +Ay, (PL+F) AL (27b)

Given C and V, if such a 1500 > 0 and 1500 > (0 can be
found, the resulting f’oo will satisfy (26). If for some C and
V there exists Poo (necessarily positive definite) satisfying
(27), it follows that ([CT,A3]", A) is detectable and that
both P; - P, and f’t > Pe. Using (19), a standard Ceséro
mean (cf. [10]) argument gives that

1 det P,

lim sup IXlT—> 1.7||X =—1lo =
e ( yurll lT) 9 gdetP

(28)

[}

Similarly, using (20) we have that
, 1 & 5 ) R
hjmsupf ZE[Hle ”Q +|u|g] = Tr(OP + SW). (29)
—eo 4 421

In the following subsection, we use these results to derive a
convex program for the rate distortion problem (15).

C. Derivation of the convex program

Define P £ P. and P 2 P... Substituting (27), (28), and
(29) into (15) yields the finite dimensional optimization

min log det P)

C,V
st. Vz0,Px0, Tr(OP + SW) <,
|-

=P+CiVCy,
ﬁ = W11 + All(f)_l + F)_lAlTl.

1 -
§(log detP -

(30)

2wl

Since Wy; > 0, P > 0. The minimum in (30) can be found
by the convex optimization

iy Jogdet W —logdet IT — log det, (W, + A, PAT)
P.II 2
st. P>0,I1=0,Tr(OP) + Tr(SW) <,

~a~1 (P O
W+ APA —[0 O]z(),
[15 ~1II PAT ]
— A — | =0.
AP W+ APAT
€2y
Details are given in [9, Appendix B]. Let f’min be the
minimizer in (31), and let f’min be given by (27b). The
minimizers C; and V are the set of matrices satisfying
Pl - Pl = C,VICT. Without loss of generality, we
choose V =1, C; the corresponding minimizer, and Cs =0
We now show that the minimum is nearly achievable in the

architecture of Fig. 1.

VI. QUANTIZATION AND PREFIX FREE CODING

The architecture used to demonstrate the achievability result
follows from [2, IV], and is shown in Fig. 4. As in [2], we use
a predictive elementwise uniform quantizer with subtractive
dither. We define an elementwise uniform quantizer with
sensitivity A as a function ga : R™ — R" such that

[aa(z)]; = [mA—%,mAwL%),

Controller Plant X,
A, A
"/+| [ 11 IZ] X/ +Bu,+w,
X2 Ay Ay ¥

x;
XNGt
2 2] Encoder
0 2 X; Kalman Filter
Decoder I - X -
Kalman Filter | \o; Side C

(Cl(x —XNG, )

Entropy

Decoder/Controller

3 YNG,I

Fig. 4. The dither signal [d¢]; ~ Umform([—f 7)) IID over 4, ¢ is
independent of X1:t, y1:t—1, U1:4—1, &1:¢—1 but is assumed to be known
at both the encoder and decoder. In practice, this “shared randomness" could
be accomplished by using synchronized pseudorandom number generators at
both the encoder and decoder.

Sensor/Encoder

e.g. each element of z is “rounded" to the nearest integer
multiple of A. For a random input z, ga(z) is a discrete RV
with countable support. Consider the random vector d € R"”

where [d]; ~ Uniform[-%, 2] IID over i and independent of
z. Define the quantizer with subtractive dither via
aX’(z) =qa(z+d)-d (33)

Dithering allows the quantization error to manifest as additive
uniform mnoise; it can be shown that n = z - q3P(z) is
independent of z and that the elements [n]; are IID with
[n]; ~ Uniform[—;7 5] [2, Lemma la] [13]. The caption of
Fig. 4 outlines the use of dithering this achievability result.
We now show that when A = 2v/3, the system in Fig.
4 achieves an equivalent control performance as the as the
architecture in Fig. 2 for equivalent C; and V = I. In Fig.
4, at time t the decoder observes a dithered quantized mea-
surement of x!, denoted yN¢ and to be described presently.
The measurement is predictive and defined recursively via an
encoder KF process. At time ¢, a KF at the encoder computes

5&% NG _ The LMMSE estimate of x given yll\ItG_ X5

The encoder’s quantizer computes the discrete z; =
aa(Cy(x} - xi NSy 4 d,), and encodes Z, with a prefix-free
lossless Shannon-Fano-Elias (SFE) code. The codeword is sent
to the decoder, which (exactly) reconstructs z;.

Given the dlther 51gnal the decoder forms yN© = 7, —

or, equivalently yN¢ = g3 (C1(Xt x5 NG)). This gives

dt’

~1,N
C,x, N

NG
y;  =Cy xt +1ny

where n; is a zero mean, uniform random vector with IID
elements and E[n;n}] = I. The decoder side Kalman filter
operates analogously to the two stage ﬁlter in Fig. 3. Havmg
received the previous measurements yNS . and the SI x?,, the
decoder can compute xt "N and form a centered measurement
yNG =yN Gy Clx . It clear that,

5(2 NG _ The LMMSE estimate of x; given yll\ltc’ , X1y, (34)
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is the same as the LMMSE of x; given y S and Xlt The
controller forms the control input u; = K[(%,’ NG)T (x)1T
where K is as in (14). A corollary to the proof of [2,
Lemma la] demonstrates that under this (really any) feedback
arrangement, the sequence of quantization noises {n;} is
temporally white, e.g. E[nn}] =0 if t #¢'.

This leads to a result analogous to [2, Lemma 2]. Having
fixed C; and V = I, denote the jointly Gaussian random
variables (x,,%},%;) with the joint distribution induced by
the architecture in Fig. 2 by (x¢ %% %,°%). Likewise,
denote the (generally non-Gaussian) RVs (x,,%;,%;,) with
the joint distribution induced by the architecture in Fig. 4 by
(xNG %) NG X, NG) We have the following lemma.

Lemma VI.1. If RVs describing the initial conditions xNG

and x§ have identical first and second moments, then the
{LNG ~1NG ~1G AlG
processes {(xN¢ %,’ )} and {(x$,% )} are

equivalent up to second moments Regardless of znztlal condi-
tions B[ (x; N = %N (x; N - % N9 T] S P

This result follows from comparing the measurement model

Az NG Clxt NG n; 35)

to the linear/Gaussian model (12) under the assumed choices
of C; and V = 1. While the additive white noise is uniform,
rather than Gaussian, it has E[n;] = 0 and E[n;n}] = L
The first statement follows from an induction on ¢. The latter
follows as the Riccati recursion relating the covariance matri-
ces of the error processes xi’NG - 5(% NG and x1 NG ii7NG
is identical to that derived in V-B. The same control cost is
achieved in both systems (cf. (29)).

It remains to bound the codeword lenéth Recall the discrete
RV Z,, and define z; = Cl(x1 NG _gLN ). At every time ¢, by
the SFE construction (cf. [10]) there exists a lossless, prefix-
free code that encodes z; with an expected length E[¢(a;)] <
H(%;|d;) + 1. Consider the joint Gaussian case and define ¥

as in Sec. V. The next lemma is proved in [9, Appendix C].

Lemma VL2 ( [2]). At every time t, we have

4
H(z,|d,) <~ - log, % +I(C1F8:CiFC +vi). (36

Letk=1+% log2 41”26

Our main result is the following.
Theorem VI.3. When the entropy encoder and decoder in
Fig. 4 use SFE coding adapted to the PMF of z; for all t, the

architecture achieves

lim sup T Z E[¢

T—o0 t=

at)] <

. 1
lim sup TI(XLT - y1;T||xiT) +k. (37

T—oo

Proof. At every time ¢, SFE codeword has a length E[{(a;)] <
1 + H(#/d,). Since X, ‘% is a measurable function of
ng,y%_l we have that

1,G.
I(x,7s5yy |X1t ’ylt 1) =

I(FF; CiEf +velxpy vy Tig). (38)

Since ¥ and v, are independent of (xfftG ,¥$,_1), this implies

I(X;Gth |X1f aylt 1) = I(rt 7clrt +Vy) (39)

Note that both F¢ < C 7% «» C17¢ +v; and CiF¢ < 7 «

C.F¢ + v, are Markov chains. Applying the standard data
processing inequality (twice) to I(F&; C1F + v;) using both
of these chains allows us to conclude that

I(th’GJ’t |X1f vy?t 1) = I(Clrt ,Clr? + V). (40)
Thus, by Lemma VI.2
_ n 4dme
H(Zt|dt)3510g2ﬁ+-[(x yebGS Y ). @D
Summing (36) over ¢, and applying (1) gives (37). O

The Cesdro mean argument in (28) applied to (37) gives

, ! det Py, — log det P i,
lim sup —ZE l(ar)] < 08 e 08 e ,

T—o0 2

which is convenient for computing the bound via (31).
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