
Intrinsic surface superconducting instability in Type-I Weyl Semimetals

Aymen Nomani1 and Pavan Hosur1, 2

1Department of Physics, University of Houston, Houston, TX 77204, USA
2Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA

(Dated: April 6, 2023)

Recent experiments on non-magnetic Weyl semimetals have seen separate bulk and surface super-
conductivity in Weyl semimetals, which raises the question of whether the surface Fermi arcs can
support intrinsic superconductivity while the bulk stays in the normal state. A theoretical answer
to this question is hindered by the absence of a well-defined surface Hamiltonian since the Fermi
arcs merge with the bulk states at their endpoints. Using an alternate, Green’s functions-based
approach on a phenomenological model that can yield arbitrary Fermi arcs, we show – within mean-
field theory – that the surface can support a standard Cooper instability while the bulk remains
disordered. Although the surface has lower dimensionality, a higher density of states compared to
the bulk allows it to have a higher mean-field superconducting transition temperature.

I. INTRODUCTION

Weyl semimetals are three-dimensional (3D) topolog-
ical materials defined by the presence of non-degenerate
bands that intersect at discrete points in bulk momentum
space [1–19]. These points are known as Weyl nodes be-
cause the low energy dispersion around them resembles
that of a Weyl fermion. Weyl nodes have a well-defined
chirality or handedness and occur in even numbers in a
Weyl semimetal, with half of each chirality. They also
carry topological protection in the sense they cannot be
gapped out perturbatively while translational symmetry
of the material persists; when it does not, they can only
be annihilated in pairs of opposite chirality [20–40].

Recent years have seen significant experimental de-
velopments in the interplay of superconductivity with
Weyl semimetallicity [41–58]. In type-I Weyl semimetal
t-PtBi2, transport measurements on bulk single crystals
showed superconductivity with a TC of 0.6K [57] while
scanning tunneling spectroscopy on the surface revealed a
wide range of superconducting gaps, with the largest gaps
corresponding to TC in the 100 K range [58]. Powdered
NbP was also found to exhibit superconductivity [47, 48]
with a small superconducting volume fraction, and Ref.
[48] speculated that the superconductivity could be oc-
curring on the surface. This, along with a large difference
in surface and bulk transition temperatures in t-PtBi2,
raises the question, ”Can the surface turn superconduct-
ing while the bulk remains in the normal state?”

The answer is hindered by another fundamental and
exotic property of Weyl semimetals, namely, surface
states known as the Fermi arc. These are open strings
of zero energy states on the surface of a Weyl semimetal
that connect the surface projections of Weyl nodes of
opposite chirality. Unlike the Fermi surfaces of a conven-
tional 2D metal, they do not form a closed contour; unlike
the surface states of topological insulators, their pene-
tration depth into the bulk depends strongly on the sur-
face momentum and diverges at the end-points, causing
their wavefunction to merge with the bulk Bloch waves
at the Weyl nodes [8–17, 59–77]. The inseparability of

the bulk and the surface makes it impossible to define a
surface Hamiltonian, which hinders theoretical inquiries
into the surface physics of Weyl semimetals. Nonetheless,
the question raised above can be rephrased as ”Does the
Fermi arc metal support an intrinsic Cooper instability
independently of the bulk?”

In this work, we explore the superconducting insta-
bility of the surface of time-reversal symmetric Weyl
semimetals (TWSMs), since time-reversal symmetric
Fermi surfaces generically have a superconducting insta-
bility, and discover an affirmative answer to the above
question. Such an answer directly contrasts näıve expec-
tations from Bardeen-Cooper-Schrieffer theory [78]. Ac-
cording to the theory, higher dimensionality suppresses
fluctuations and stabilizes mean-field superconductivity,
suggesting that the bulk of a TWSM should be more sus-
ceptible to superconductivity than the surface. However,
we find that the surface can turn superconducting before
the bulk does. This is because the surface has a finite
density of states due to the Fermi arcs, whereas the bulk
density of states vanishes in the Weyl limit and remains
parametrically small for a slightly doped Weyl node.

In Sec. II, we introduce the general Hamiltonian for
the Weyl semimetal and show how Green’s function for-
malism bypasses the problem of surface-bulk inseparabil-
ity. The interaction is introduced, which is an intra-layer
Hubbard interaction with pair hopping. This interaction
is then used to calculate the correlation function that
induces a surface superconducting instability. The prob-
lem then reduces to calculating the second-order bubble
diagram. In Sec. III, we introduce a model of a TWSM
with an arbitrary number and shape of Fermi arcs and the
associated Green’s function. Using this model, the con-
tribution to the correlation function splits into two parts:
the Fermi arcs and the projection of the bulk Fermi sur-
face on the surface. The contribution due to Fermi arcs is
then calculated in Sec. IV A, and in Sec. IV B, we show
the contribution due to the projection of the bulk states
onto the surface. In Sec. V, we calculate the bulk insta-
bility. Finally, in Sec. VI, we discuss the implications of
our result in the context of the experiments performed
on NbP and t-PtBi2.
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II. GENERAL FORMALISM

In this section, we develop the formalism for studying
the surface superconducting instability in a Type-I Weyl
semimetal. While a surface Hamiltonian is ill-defined, a
surface Green’s function is meaningful and is the build-
ing block of our theory. Such an approach has previ-
ously been successful in evading this problem of bulk-
surface inseparability and studying surface physics such
as Friedel oscillations [63], conductivity [79], and Lut-
tinger arcs [80].

We begin by considering a slab of a time-reversal sym-
metric Weyl semimetal described by the Bloch Hamil-
tonian Hk. We assume 2Dz degrees of freedom in the
zth layer – the evenness mandated by time-reversal sym-
metry – and decompose Hk into blocks capturing the
surface, the bulk and the surface bulk-coupling:

Hk =

(
HS

k hk
h†k HB

k

)
(1)

Here, HS
k is the 2DS×2DS in-plane Bloch Hamiltonian of

the z = 0 surface layer, HB
k is the Bloch Hamiltonian of

all the other layers that we collectively refer to as “bulk”,

while h†k, hk capture the coupling between the bulk and
the surface. The coupling terms can be strong, making it
difficult to write an effective surface Hamiltonian, but an
effective surface Green’s function can be written. Specifi-
cally, writing Matsubara Green’s function for the full slab
in block form and evaluating the 2DS-dimensional block
corresponding to the surface degrees of freedom yields an
effective surface Green’s function [80]

gk,iωn = (iωn −HS
k − hkGBk,iωnh

†
k)−1 (2)

where GBk,iωn = (iωn − HB
k )−1. gk,iωn can alternately

be obtained by integrating out the bulk fermions from a
Euclidean path integral, see Appendix A. Importantly,
gk,iωn can be calculated analytically for certain local hop-
ping models, as we demonstrate shortly.

Next, in anticipation of deriving a large-DS mean-field
theory, we introduce local, intra-layer attractive Hubbard
and pair-hopping interactions that are invariant under
O(Dz) rotations within each layer. Explicitly,

Hint = −
∑
r,z

∑
nz,n′

z

U

Dz
c†↑,r,z,nzc

†
↓,r,z,nz× (3)

c↓,r,z,n′
z
c↑,r,z,n′

z

where U > 0, n indicates the orbital index, and r is the
2D position vector. Fourier transforming in-plane,

Hint = −
∫

k′,k,K

∑
nz,n′

z

∑
z

U

Dz
c†↑,K2 +k,z,nz

c†↓,K2 −k,z,nz
×

(4)

c↓,K2 −k′,z,n′
z
c↑,K2 +k′,z,n′

z

where K, k and k′ are 2D momenta and
∫
k
≡
∫

d2k
(2π)2 .

FIG. 1. The Dyson series for CK,iνn in the large-DS limit.
Superconductivity occurs when C0,0 diverges.

We decouple Hint on the surface in the superconduct-
ing channel by introducing complex bosonic fields ∆K,iνn ;
see Appendix [B] for details. The superconducting in-
stability then corresponds to the divergence of the cor-
relation function CK,iνn = 〈∆K,iνn∆K,iνn〉 at K = 0,
iνn = 0. Long wavelength equilibrium fluctuations about
the mean-field state are subsequently captured by CK,0.
In the large DS limit, CK,iνn is dominated by RPA-like
bubble diagrams, which enables a straightforward resum-
mation of the Dyson series, Fig. 1. The upshot is

CK,0 = − U/DS

1− U
DS
χK

(5)

where −χK is the bubble shown in Fig. 2 and given by

χK =
1

β

∑
iωn

∫
k

Tr

[
gT
k+ K

2 ,iωn
gk−K

2 ,−iωn

]
Θ(ωD − |iωn|)

(6)

Here, we have introduced a phenomenological Debye
frequency ωD to model conventional, phonon-mediated
pairing. The superconducting instability now corre-
sponds to the condition χ0 = DS/U .

If gk,iωn were the electron Green’s function in a con-
ventional metal, its only non-analyticity would have been
simple poles on the real axis. For the surface of a Weyl
semimetal, the Green’s function also has branch cuts on
the real axis, so the Matsubara sum must be done with
greater care. We carry out this exercise for an explicit
model below. Nonetheless, the branch cuts do not change
the result qualitatively in meaningful limits.

FIG. 2. The second order bubble diagram −χK helps us cal-
culate CK,0. Dashed (solid) lines denote bosons (fermions).
The two fermion lines give two Green’s functions that need
to be summed over the internal momentum and frequency.
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III. TRACTABLE LAYERED MODEL

We consider a minimal model consisting of alternating
layers of spinful electron and hole metals with dispersion
±ξσ,k−µ stacked along z and alternating, real interlayer
couplings tσ,k,−t′σ,k. Its second-quantized Hamiltonian
for an L-layered slab is given by

H =

∫
k

L−1∑
z=0

∑
σ=↑,↓

[(−1)zξσ,k − µ]c†σ,k,zcσ,k,z+ (7)

[
cos2

(πz
2

)
tσ,k − sin2

(πz
2

)
t′σ,k

]
c†σ,k,zcσ,k,z+1 + h.c.

where c†σ,k,z creates an electron with spin σ at layer z and

2D momentum k = (kx, ky). The model clearly conserves
spin and has two layers in each unit cell. Its bulk Bloch
Hamiltonian in the bilayer basis in the σ sector is

Hσ,k =

(
ξσ,k − µ tσ,k − t′σ,ke−2ikzc

tσ,k − t′σ,ke2ikzc −ξσ,k − µ

)
(8)

where c is the interlayer spacing, assumed constant
within and between unit cells for simplicity. The inter-
layer terms are phenomenologically chosen to produce
Fermi arcs on the z = 0 surface along ξσ,k = µ when
t2σ,k < t′2σ,k. This results in bulk Weyl nodes in the kz = 0

plane whenever tσ,k = t′σ,k. Near the jth Weyl node in

the σ sector, at (k, kz) = (Kσ,j , 0), the low energy Hamil-
tonian can be written as

HWeyl
σ,j = (vσ,j · p)τz + (uσ,j · p)τx + (wσ,jpz)τy − µ (9)

where τi are Pauli matrices in the bilayer basis, (p, pz) is
the 3D momentum relative to the Weyl node and vσ,j =

∇kξσ,k|k=Kσ,j
, uσ,j = ∇k(tσ,k − t′σ,k)

∣∣∣
k=Kσ,j

, wσ,j =

−2t′σ,Kσ,j
c are Weyl velocities.

FIG. 3. Minimal layered model of a time-reversal symmetric
Weyl semimetal showing two Fermi arcs with opposite spins.

FIG. 4. Surface layer of Weyl semimetal with Fermi arcs. The
Fermi arcs form when t′σ,k > tσ,k and ξσ,k = 0

.

For this model, gk,iωn can be calculated analytically
in the semi-infinite limit, L → ∞, following [63]. It is a
2× 2 diagonal matrix in the spin basis given by

gσσ′,k,iωn = δσσ′

aσ,k,iωn +
√
b+σ,k,iωnb

−
σ,k,iωn

2t′2σ,k(iωn + µ− ξσ,k)
(10)

aσ,k,iωn = (iωn + µ)2 − ξ2
σ,k − t2σ,k + t′2σ,k

b±σ,k,iωn = (iωn + µ)2 − E±
2

σ,k

E±σ,k =

√
ξ2
σ,k +

(
tσ,k ± t′σ,k

)2

(11)

gk,ω has non-analyticities on the real frequency axis in
the form of poles at ω = µ+ξσ,k that represent the Fermi
arcs when ω = 0, and a pair of square root branch cuts
defined by E−σ,k < |ω + µ| < E+

σ,k that corresponds to ω
being inside the bulk conduction and valence bands and
capture the projection of these bands onto the surface.
Along ξσ,k = µ, the surface also carries Luttinger arcs,
defined as zeros of det(gk,0), that form closed loops with
the Fermi arcs when µ = 0 [80].

This model is a variant of the spinless model intro-
duced in Ref. [63]. Here, we assume two decoupled copies
of the model, one for each spin, and ensure time-reversal
symmetry by requiring tσ,k, t′σ,k and ξσ,k to be unchanged
under the simultaneous reversal of spin and momentum,
σ → −σ,k → −k. It contains a single orbital degree of
freedom in each layer, Dz = 1 ∀ z, so we will suppress
the index nz henceforth. We also suppress the spin index
below for brevity and assume all functions to be the ones
for spin-up, i.e., ξk ≡ ξσ,k, etc.

IV. SURFACE INSTABILITY

We now use the above Green’s function to evaluate χ0

in Eq. (6) to obtain the instability. The trace over spin
simply gives a factor of 2. The pair of Green’s functions
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yields two poles, at ω = ξk+K/2−µ,−ξk−K/2−µ, and four

branch cuts, defined by E−k+K/2 < | ± ω + µ| < E+
k+K/2.

Branch cuts from one Green’s function factor can overlap
with poles and branch cuts from the other, so the fre-
quency integrals must be performed carefully. Summing
over Matsubara frequencies gives separate contributions
from the poles and branch cuts of gk,ω, χ0 = χFA +χproj.

A. Fermi arc contribution

The first contribution is

χFA =

∫
k

tanh

(
ξk − µ

2T

)
R

(
1− t2k

t′2k

)
Θ(ωD − |ξk − µ|)

ξk − µ

×
t′2k − t2k + 4µ(µ− ξk) +

√ ∏
λ=±

(2µ− ξk)2 −
(
Eλk
)2

2t′2k
(12)

where R(x) = (x + |x|)/2 is the ramp function. For
ωD � the hopping energy scales, it is useful to work
in momentum coordinates (k‖, k⊥) parallel and perpen-
dicular to the contour ξk = µ. Near this contour, we
can approximate ξk = µ + vk‖k⊥. This turns the above
expression into a sum of integrals around each Fermi arc,
χFA =

∑
i χFAi , with

χFAi =

∫
k‖∈FAi

R2

(
1−

t2k‖
t′2k‖

) ∫
|k⊥|<

ωD
|vk‖

|

tanh[vk‖k⊥/2T ]

vk‖k⊥

(13)
For ωD � T , the k⊥-integral is dominated by the region
2T < |vk‖k⊥| < ωD where | tanh[vk‖k⊥/2T ]| ≈ 1 and

evaluates to (1/π|vk‖ |) ln(ωD/2T ). As a result,

χFAi ≈ ln
(ωD

2T

) ∫
k‖∈FAi

1

π|vk‖ |
R2

(
1−

t2k‖
t′2k‖

)

≈ lFAi

2π2
ln
(ωD

2T

)〈 1

|v|

〉
FAi

(14)

where lFAi is the length of the ith Fermi arc and 〈. . . 〉FAi
denotes a weighted average over this Fermi arc with k‖
dependent weight R2(1− t2k‖/t

′2
k‖

). Eq. (14) matches the

corresponding result for a 2D metal if lFAi is replaced
by the perimeter of the Fermi surface and the weight is
k‖ independent. Thus, Fermi arcs behave like a metallic
Fermi surface for harbouring a Cooper instability.

B. Contribution from bulk states

Next, we evaluate χproj, the contribution to χ0 from
the projection of the bulk states onto the surface, cap-

tured by the branch cuts in gk,±ω. Explicitly, we find

χproj = −2

∫
k

∫
ω∈BC

tanh
( ω

2T

)√∣∣∣b+k,ωb−k,ω∣∣∣sgn(ω + µ)

×
a−ω +

√
R
[
b+k,−ωb

−
k,−ω

]
t′4k [ω2 − (µ− ξk)2]

Θ(ωD − |ω|) (15)

where ω ∈ BC denotes the branch cut region E−k < |ω +

µ| < E+
k and the factor of sgn(ω+µ) comes from selecting

the principal values of the square roots.
In the regime, ωD � E+

k , the conditions ±ω ∈ BC

reduce to E−k < | ± ω + µ|. Physically, this ensures that
χproj receives contributions only from k-space regions de-
fined by surface projections of bulk Fermi surfaces en-
closing the Weyl nodes. Hence, we can linearize around
the Weyl points as ξp ≈ vj · p, tp ≈ tj + uj · p/2 and

t′p ≈ tj − uj · p/2. Then, E−k ≈
√

(vj · p)2 + (uj · p)2 ≡
εp, ak,ω ≈ −2tjuj · p, b−k,ω ≈ (ω + µ)2 − ε2p and

b+k,ω ≈ −4t2j near the jth node. χproj can then be written

as χproj =
∑
j χproj,j where

χproj
j =

2

πt2j

ωD∫
0

dω tanh
( ω

2T

)
× (16)

∫
|ω−|µ||<εp<ω+|µ|

√[
(ω + |µ|)2 − ε2p

] [
ε2p − (ω − |µ|)2

]
(|µ| − vj · p)2 − ω2

The pseudo-relativistic form of εp makes the p integral
analytically tractable but rather unwieldy. The compli-
cations can be avoided by assuming uj ⊥ vj at the cost
of O(1) prefactors. Under this assumption,

χproj
j =

8|µ|3/2

3π2t2j |ujvj |

ωD)∫
0

dω tanh
( ω

2T

)√
ω

≈
(

4

3πtj

)2 |µ|3/2ω3/2
D

|ujvj |
(17)

Importantly, this is a small number compared to χFA as
it is suppressed by powers of µ/tj and ωD/tj . Thus, χ0 ≈
χFA, and the surface instability is determined mainly by
the FAs and resembles that of an ordinary 2D metal. The
transition temperature follows from setting χ0 = 1/U .
Explicitly,

T surf
C =

ωD
2

exp

− 2π2

U
∑
i lFAi

〈
1
|v|

〉
FAi

 (18)

Strictly speaking, this is expected to be a Berzinskii-
Kosterlitz-Thouless transition rather than a true super-
conducting transition.
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V. BULK INSTABILITY

We now study the superconducting instability in the
bulk. We begin with the Hamiltonian near a Weyl node,
Eq. (9), and compute the appropriate susceptibility χbulk

following the procedure described in Sec. II. We continue
to suppress the spin index to avoid notational clutter, use
spin-up functions only (e.g. ξk ≡ ξσ,k etc.) and note that
the spin sum merely contributes a factor of 2 to χbulk.

The Green’s function near the jth Weyl node is

Gj,p,iωn =
1

iωn + µ− vj · pτz − uj · pτx − wjpzτy
(19)

Thus, χbulk,j = 2T
∑
iωn

∫
p

Tr
[
GTj,p,iωnGj,p,−iωn

]
Θ(ωD−

|iωn|) is given by

χbulk
j = 2T

∑
iωn

Θ(ωD − |iωn|)×∫
p

µ2 − (iωn)2 + ε2
p,pz − 2(wjpz)

2∏
s=±

[
(iωn + sµ)2 − ε2

p,pz

] (20)

where εp,pz =
√
ε2p + (wjpz)2 is the pseudo-relativistic

dispersion near the Weyl node. Once again, the integrals
are analytically tractable in this limit and yield χbulk =∑
j χ

bulk
j with

χbulk
j =

µ2

3π2|(uj × vj) ·wj |
ln
(ωD

2T

)
(21)

for ωD � T .
The bulk transition temperature is given by

T bulk
C =

ωD
2

exp

[
− 3π2

Uµ2
∑
j

1
|(uj×vj)·wj |

]
(22)

Naturally, T bulk
C → 0 as µ = 0 and grows smoothly with

µ. Crucially, there exists a parametrically large regime
in which T bulk

C < T surf
C , namely,∑

j

µ2

3|(uj × vj) ·wj |
<
∑
i

lFAi

〈
1

2|v|

〉
FAi

(23)

For temperatures between these two values, the surface
will superconduct, and the bulk will remain metallic with
the caveat that the surface superconductivity will pre-
sumably be of Berezinskii-Kosterlitz-Thouless type.

VI. EXPERIMENTAL RELEVANCE

This result is pertinent to the observations of super-
conductivity in t-PtBi2. In particular, Schimmel et al.
saw a wide range of surface superconducting gaps in
the tunneling spectrum of t-PtBi2, with the largest gaps
corresponding to TC ∼ 100K range [58]. In compari-
son, transport measurements in bulk crystals displayed

TC ∼ 0.6K [57]. The authors of Ref. [58] speculated
that the higher TC in tunneling measurements was due
to a transition from bulk to surface superconductivity
and asked whether the surface superconductivity is con-
nected to the topologically non-trivial states found on
the surface of a Type-I Weyl semimetal. We have shown,
in a toy model, that the dominant part of surface super-
conductivity indeed emerges from FA states and yields a
higher TC on the surface than in the bulk.

Our work is also relevant to the observation of su-
perconductivity with TC of 6K - 9K in powdered sam-
ples of NbP, a Type-I Weyl semimetal, by Baenitz et
al. [48]. This was in agreement with another published
value, TC ∼7.5K [47], for powdered NbP compounds.
Baenitz et al. reported a superconducting fraction of
only 6.2 % and gave two possible explanations based on
grain size effects for the small fraction. The first one in-
volved strain on the grains, turning the material into a
Type-II Weyl semimetal, which has a bigger Fermi sur-
face and is thus more likely to superconduct. The sec-
ond explanation involved superconductivity developing
on the surface, which can lead to a sizeable signature in
powder samples. We have shown that the second lat-
ter picture is possible, at least within mean-field theory
in a phenomenological model. Moreover, we note that
in the first picture, different samples would likely turn
into Type-II Weyl semimetals with differing sizes of elec-
tron and hole pockets and exhibit vastly different TC ,
unlike what was observed. In contrast, intrinsic surface
superconductivity is more likely to yield similar transi-
tion temperatures in different samples. Our picture can
be tested by studying superconductivity in bulk and thin
films of NbP. If superconductivity intrinsically occurred
on the surface, thin films would display a larger super-
conducting fraction than bulk crystals, in sharp contrast
to the behavior of conventional metallic superconductors.

VII. SUMMARY

We have shown that under a mean-field limit in a phe-
nomenological model of a TWSM, there exists a para-
metrically large regime where the surface has a super-
conducting instability, whereas the bulk remains in the
normal state. Furthermore, we find that the instability
is governed mainly by the Fermi arc surface states, and
the contribution from the surface projection of the bulk
Fermi surface is negligible. This result pertains to recent
experiments on NbP and t-PtBi2 that raised the possi-
bility of intrinsic surface superconductivity in TWSMs.
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Appendix A: Surface Green’s Function

Let HB
k denote the Bloch Hamiltonian of an L-layered time-reversal symmetric system that has 2Dz degrees of

freedom in the zth layer. Time-reversal symmetry (TRS) ensures that each layer has an even number of degrees of
freedom. The layers are unrelated in general but repeat periodically in lattice models. Now, let us add a layer at
z = 0 that we refer to as the “surface”. The Hamiltonian for the full system is of the form

Hk =

(
HS

k hk
h†k HB

k

)
(A1)

We will use b̄, b to denote Grassman variables for fermions in layers 1 . . . L, and s̄, s for surface fermions. Contractions
over layers (z), orbitals (nz), and spin (σ) will be denoted by “·” while integrals will be written in shorthand as∫
k,τ
≡
∫ β

0
dτ
∫

d2k
(2π)2 . In this notation, the Euclidean path integrals for the L- and (L + 1)-layered systems are

ZB0 =
∫
D
[
b̄, b
]

exp
[
−SB0

(
b̄, b
)]

and Z0 =
∫
D
[
b̄, b, s̄, s

]
exp

[
−S0

(
b̄, b, s̄, s

)]
where

S0

(
b̄, b
)

= −
∫
k,τ

L∑
z,z′=1

∑
σ,σ′∈↑,↓

b̄k,z,nz,σ

(
∂τδ(z,nz,σ),(z′,nz′ ,σ

′) +HB
k,(z,nz,σ),(z′,nz′ ,σ

′)

)
bk,z′,nz′ ,σ′ (A2)

≡
∫
k,τ

b̄k ·
[
GBk (τ)

]−1 · bk (A3)

S0

(
b̄, b, s̄, s

)
= −

∫
k,τ

(
s̄k, b̄k

)
· (∂τ +Hk) ·

(
sk
bk

)
(A4)

≡
∫
k,τ

(
s̄k, b̄k

)
· [Gk(τ)]

−1 ·
(
sk
bk

)
(A5)

We have introduced imaginary time Green’s functions GBk (τ) and Gk(τ) for the L- and (L + 1)-layered system.
Integrating out the b-fermions yields an effective surface Green’s function gk(τ) as follows:

ZS0 =
Z0

ZB0
≡
∫
D [s̄, s] exp

[
−SS0 (s̄, s)

]
(A6)

SS0 (s̄, s) = −
∫
k,τ

s̄k ·
[
∂τ +HS

k + hkG
B
k (τ)h†k

]
· sk (A7)

=⇒ gk(τ) = −
(
∂τ +HS

k + hkG
B
k (τ)h†k

)−1

(A8)

The Matsubara Green’s functions GBk (iωn), Gk(iωn) and gk(iωn) can be obtained straightforwardly by the replacement
∂τ → −iωn in the above equations.

Appendix B: Interaction

Since the interaction is local, the path integral for the full interacting system factorizes between the bulk and the
surface: Z = ZBZS where

ZB =

∫
D
[
b̄, b
]

exp
[
−SB0

(
b̄, b
)
− SBint

(
b̄, b
)]

(B1)

SBint
(
b̄, b
)

= −
∫

K,τ

∑
z

U

Dz
B̄K,zBK,z (B2)

BK,z =

Dz∑
nz=1

∫
k

bK
2 +k,z,nz↓bK

2 −k,z,nz,↑
(B3)
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and

ZS =

∫
D [s̄, s] exp

[
−SS0 (s̄, s)− SBint (s̄, s)

]
(B4)

SSint (s̄, s) = − U

DS

∫
K,τ

S̄KSK (B5)

SK =

DS∑
nS=1

∫
k

sK
2 +k,nS↓sK

2 −k,nS ,↑
(B6)

The fermion bilinears BK,z and SK are bosonic variables, and DS ≡ D0 is the number of degrees of freedom in the
z = 0 surface layer.

To investigate surface superconductivity, we focus on ZS . Decoupling the interaction term in the s-wave pairing
channel through another bosonic field ∆2K gives

ZS =

∫
D [s̄, s] exp

[
−SS0 (s̄, s)

] ∫
D
[
∆̄,∆

]
exp

[
−S ′

(
∆̄,∆, s̄, s

)]
(B7)

where

S ′
(
∆̄,∆, s̄, s

)
=

∫
K,τ

−DS

U
∆̄K∆K + S̄K∆K + ∆̄KSK (B8)

Appendix C: Green’s function trace

In this section, we show how the expressions for χ0 can be simplified and written as the trace of a product of
Green’s functions.

χ0 =

∫
k,iωn

[gk(iωn)]
σσ′

nn′ [g−k(−iωn)]
σ̄σ̄′

nn′ (C1)

=

∫
k,iωn

[gk(iωn)]
σσ′

nn′

[
T gk(iωn)T −1

]σσ′

nn′ (C2)

=

∫
k,iωn

tr
[
gTk (iωn)T gk(iωn)T −1

]
(C3)

where the trace runs over both spin and orbital indices,
∫
k,iωn

= T
∑
iωn

∫
d2k

(2π)2 and T denotes time reversal. We

have used the action of T on the matrix elements of gk(iωn):

[
T gk(iωn)T −1

]σσ′

nn′ = [g−k(−iωn)]
σ̄σ̄′

nn′ (C4)

and used the identity tr
(
ABT

)
= tr

(
ATB

)
to reduce notational clutter. Since the system is T -symmetric,

T gk(iωn)T −1 = gk(−iωn). This gives

χ0 =

∫
k,iωn

tr
[
gTk (iωn)gk(−iωn)

]
(C5)
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Above, we separated the σ and n indices for clarity and assumed the orbitals to be T -symmetric. However, the
expression in terms of tr

(
ggT

)
should work even if the orbitals are not T -symmetric. In general:

χK =

∫
k,iωn

[
gK/2+k(iωn)

]σσ′

nSn′
S

[
gK/2−k(−iωn)

]σ̄σ̄′

nSn′
S

(C6)

=

∫
k,iωn

[
gK/2+k(iωn)

]σσ′

nSn′
S

[
T g−K/2+k(iωn)T −1

]σσ′

nSn′
S

(C7)

=

∫
k,iωn

tr
[
gTk+K/2(iωn)gk−K/2(−iωn)

]
(C8)

Appendix D: Integrals for calculating χbulk

In this section, we describe the integration steps for computing χbulk. We begin with Eq. (20) from the main text

χbulk
j = 2T

∑
iωn

∫
p

µ2 − (iωn)2 + ε2
p,pz − 2(wjpz)

2∏
s=±

[
(iωn + sµ)2 − ε2

p,pz

]
Θ(ωD − |iωn|)

(D1)

where εp,pz =
√
ε2p + (wjpz)2 and εp =

√
(vj · p)2 + (uj · p)2 are massless relativistic dispersions in 3D and 2D. To

bring the integrals into a spherically symmetric form, we rotate and rescale the momenta as qx
qy
qz

 =

 Vj 0 0
0 Uj 0
0 0 wj

 cos θj − sin θj 0
sin θj cos θj 0

0 0 1

 p‖
p⊥
pz

 (D2)

This gives,

χbulk
j = 2T

∑
iωn

∫
d3q

UjVjwj(2π)3

µ2 − (iωn)2 + q2
x + q2

y − q2
z∏

s=± [(iωn + sµ)2 − q2]
Θ(ωD − |iωn|)

=
1

π2UjVjwj
T
∑
iωn

∞∫
0

q2dq
µ2 − (iωn)2 + q2/3

[(iωn + µ)2 − q2] [(iωn − µ)2 − q2]
Θ(ωD − |iωn|) (D3)

Performing the Matsubara sum and some algebra gives

χbulk
j = − 1

4π2UjVjwjµ

µ+ωD∫
µ−ωD

q2dq
q/3− µ
q − µ

tanh

(
q − µ
2T

)
(D4)

Shifting q by µ results in a symmetric integration range and causes several terms to vanish. We are then left with

χbulk
j =

µ2

6π2UjVjwj

ωD∫
−ωD

dq
tanh(q/2T )

q
(D5)

For ωD � T ,

χbulk
j ≈ µ2

3π2|(uj × vj) ·wj |

[
ln
(ωD

2T

)
+O(1)

]
(D6)
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