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Abstract— Multi-human multi-robot teams have great poten-
tial for complex and large-scale tasks through the collaboration
of humans and robots with diverse capabilities and expertise.
To efficiently operate such highly heterogeneous teams and
maximize team performance timely, sophisticated initial task
allocation strategies that consider individual differences across
team members and tasks are required. While existing works
have shown promising results in reallocating tasks based on
agent state and performance, the neglect of the inherent
heterogeneity of the team hinders their effectiveness in realistic
scenarios. In this paper, we present a novel formulation of
the initial task allocation problem in multi-human multi-robot
teams as a contextual multi-attribute decision-making process
and propose an attention-based deep reinforcement learning
approach. We introduce a cross-attribute attention module
to encode the latent and complex dependencies of multiple
attributes in the state representation. We conduct a case study
in a massive threat surveillance scenario and demonstrate the
strengths of our model.

I. INTRODUCTION

Human-robot teams offer significant benefits across vari-
ous domains by combining the strengths of autonomous sys-
tems such as consistency and preciseness, with the creativity
and adaptability associated with humans [1]. The increasing
demand for more efficient solutions to complex and large-
scale tasks, such as disaster response, search and rescue, and
environmental surveillance, has spurred the interest in multi-
human multi-robot (MH-MR) teams [2]. The collaboration
of multiple humans and robots with diverse capabilities,
expertise, and characteristics involved in an MH-MR team
presents great potential to enhance team complementarity,
productivity, and versatility [3], [4]. Nevertheless, the high
heterogeneity of such a team also leads to increased oper-
ational challenges in efficiently coordinating agents. There-
fore, optimal task allocation across heterogeneous agents is
a crucial challenge that must be addressed to fully realize
the potential of an MH-MR team.

While task allocation has been well-researched in the
context of multi-robot systems [5]-[7] and human-autonomy
collaboration [8]-[10], scenarios involving MH-MR teams
have received relatively little attention. In the limited liter-
ature available, most works only focus on in-process task
distribution, which utilizes human and robot states, as well
as task performance metrics, as indicators. However, these
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Fig. 1. Tllustration of the contextual multi-attribute decision-making process
used to formulate the initial task allocation problem in an MH-MR team.

studies often overlook the initial task scheduling that con-
siders individual differences of humans, robots, and tasks
[11]-[14]. This initial task arrangement significantly impacts
team performance. Correct initial allocation can leverage the
intrinsic heterogeneity of an MH-MR team by ensuring that
individuals are assigned tasks that match their abilities and
skillset at the start, leading to maximum performance in a
shorter period of time. Conversely, incorrect settings hinder
the team’s ability to optimize performance through in-process
task reallocation, even after a prolonged period of time.

To fill the gap in the literature, we aim to explore the
problem of initial task allocation (ITA) in MH-MR teams.
Specifically, we seek to determine how to optimally assign a
job consisting of a set of tasks, each with varying attributes,
to a team of humans with diverse capabilities and robots with
assorted characteristics at the outset. As illustrated in Fig. 1,
we approach this problem by formulating it as a contex-
tual multi-attribute decision-making process (CMADP) [15].
This involves making a decision by considering a context
consisting of three main categories of attributes: human
factors, robot characteristics, and task attributes, each of
which includes various sub-attributes composed of individual
variables [16]. However, finding the optimal decision for ITA
is challenging for two main reasons. Firstly, the decision
is not solely driven by diverse attributes and sub-attributes,
but rather by the latent dependencies and interactions across
them [17]. Secondly, the importance of different relations is
dynamic, varying under different job scenarios.

To address these challenges, we propose an Attention-
based Deep Reinforcement Learning approach (AtRL). The
architecture and procedure of the AtRL are illustrated in Fig.
2. At the core of our model is cross-attribute attention state
representation learning, which aims to learn a global state
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Fig. 2. Tllustration of the proposed AtRL framework. The multi-attribute data inputs consisting of D) e RSP where (0 presents the ** sub-
attribute sequence within the . attribute category, and L and D respectively denote the ler}?th and dimension of the sequence, are firstly fed into recurrent
embedding layers RE( ) separately to generate three attribute sequences X () e REO? with the same dimension d (Section IV-B). Such sequences
are concatenated to generate a low-level state representation YC € R4, which is passed through cross-attribute attention layers with each attribute
sequence X () respectively. In each cross-attribute attention layer, each attribute sequence is adapted with relative information revealed in the other two,
by calculating adaptive dependencies between features of the current attribute and those encoded in the Y'C (Section IV-C). Finally, the enhanced attribute

sequences X =~ are then passed through a mean pooling layer to produce the high-level state presentation of the multi-attribute context Z€ € R™ 4,
which is transported to a policy network to learn the value function Vand policy 7 (Section IV-D).

representation of the multi-attribute context with adaptive
correlation information encoded. Specifically, cross-attribute
attention layers adaptively capture the latent dependencies
across different attribute categories, continually enhancing
features within one certain attribute with strongly relevant
information from the other two. Then, the enhanced attribute
feature sequences pass through a mean pooling layer to
produce the global state representation. To evaluate the per-
formance of our AtRL and the cross-attribute attention inside,
we conduct a case study in a large-scale threat surveillance
and identification task scenario.

The main contributions can be summarized as followings:
1) We conduct pioneering research to investigate the ini-
tial task allocation problem in MH-MR teams and provide
a problem formulation for the contextual multi-attribute
decision-making process; 2) To tackle challenges associ-
ated with the CMADP, we propose a novel learning-based
framework with a cross-attribute attention representation
learning module to adaptively capture the latent dependen-
cies in the multi-attribute context; and 3) Our case study,
which involved a large-scale threat surveillance task scenario,
demonstrates the effectiveness of our AtRL and the cross-
attribute attention inside.

II. BACKGROUND AND PRELIMINARY

Related Works. A multi-human, multi-robot (MH-MR) team
is a group consisting of multiple human agents and multi-
ple robots working together to achieve a shared objective
comprised of different tasks [2]. Such a team is highly
heterogeneous in nature for the significant differences that
exist among the human agents and the robots in terms of
their capabilities, skills, and characteristics. For instance,
human agents obtain varied levels of cognitive resistance to
fatigue and workload, and different operational skills and
decision-making abilities. Also, the robots in an MH-MR
team often have varying types, such as the combination

of unmanned aerial vehicles (UAVs) and unmanned ground
vehicles (UGVs) in field search and rescue operations, re-
sulting in different robotic characteristics. To take advantage
of such high heterogeneity and maximize team performance,
sophisticated initial task allocation strategies are required to
ensure that individuals are assigned tasks that match their
abilities and skill sets from the outset.

Unfortunately, in the limited literature, most existing
workload distribution methods for MH-MR teams neglect
this intrinsic heterogeneity, only considering in-process
workload reallocation based on the states and performance
of each human agent and robot [11]-[14]. For example,
Mina et. al [11] developed an adaptive workload alloca-
tion system that monitors human cognitive workload, robot
conditions, and individual performance to adjust the work-
load accordingly, ensuring that each agent is in an optimal
work state. Despite the promising results of such in-process
task allocation methods, failing to consider the fundamental
heterogeneity in MH-MR teams can reduce their effective-
ness in realistic scenarios. In particular, if the initial work-
load distribution is incorrect, optimizing team performance
through in-process task reallocation becomes difficult, even
after a prolonged period of time. On the other hand, few
studies consider the task distribution for MH-MR teams at
the beginning. For instance, Humann ez. al [18] builds a
model of a multi-UAV, multi-operator surveillance system,
simulating the impact of the number of human operators
and two types of UAVs on team performance. However, it
fails to model individual differences in humans adequately
and, more importantly, does not provide any methods to
optimize the initial workload distribution. To address these
gaps, we explore the optimal initial task allocation that takes
into account the inherent heterogeneity of the MH-MR team.
We provide a problem formulation of a contextual multi-
attribute decision-making process and propose an attention-
based reinforcement learning solution to this problem.



State Representation Learning. State representation learn-
ing is a critical problem in reinforcement learning that
involves automatically extracting useful and compact rep-
resentations of the environment states to facilitate the pol-
icy learning process, especially when the state space has
a large and complex structure [19]. Recent research has
shown that attention-based neural networks, such as graph
attention networks and Transformer layers [20], are effective
in reasoning the state space by mapping raw sensory inputs
to a low-dimensional state representation that captures the
most relevant features of the environment. The learned state
representation can then be used as input to a policy network
to learn an optimal policy.

Proximal Policy Optimization. In this work, Proximal
Policy Optimization (PPO) [21] is utilized as the training
algorithm. The objective of policy optimization in PPO can
be formulated as a weighted sum of three loss terms: the
clipped surrogate objective for policy improvement (L),
a value function loss (£"), and an entropy loss (£L°) for
regularization, formally as:

L(0,¢) = w,LF(0) — w, LY (¢) +w LOO) (1)

with .
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where w,, w,, and w. denote the loss coefficients for
the clipped policy loss, value function loss, and entropy
loss respectively. A represents estimates of the advantage
function, € is the clipping ratio, O(-) refers to the entropy,
and r;(0) is the importance sampling ratio as:

mo(ag|s:)
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is the previous policy.

Tt(a) = 3)

where 7y,

III. PROBLEM FORMULATION

We formulate the initial task allocation (ITA) problem in
an MH-MR team as a contextual multi-attribute decision-
making process (CMADP), which is defined as a tuple
(W,a,C, A, T, R), where:

o W:={wi,...,w,} is afinite set of n tasks with varying
attributes
e @ = {aq, ..., o4, Q1, ..., @;} is a finite set of ¢

human agents with diverse capabilities and j robots with
assorted characteristics

o C ={CH x CF x C"} is the joint multi-attribute
context observed, including joint factors of ¢ human
agents measured in h dimensions, CH := {{cfl, e,
cfh} X .0 X {CH“ cf{’b}}, joint characteristics of

j robots presented in r dimensions CcE = {{c e,

cfl} X ... X {cf‘r, }} and joint attributes of
n tasks assessed in w dlmensmns, cW .= {{CW1
W -
My x ox el L, Vel
e A:={a; X ...X a,} is the joint allocation decision

action by assigning wy, to «; and/or @;

e 7 := Pr(C’"|C) is a random contextual observation
transition probability

e R:= fr(C,A) = E[R(Cy, Ar)] = E[X 5, (et ar)]
is the reward function that gives an immediate reward
R; after taking a joint action A; when observing a
joint context C} at time step ¢. It is the sum of the
individual reward r,, for each assigned task 7, reflecting
the individual task performance of task n.

Similar to the contextual multi-armed bandit problem [22],
the CMADP can be viewed as a repeated game between
a player (ITA policy) and an adversary (context selector).
At each time step ¢, the adversary selects a multi-attribute
context C; € C based on the game history H; 1 =
[(Cy,A1,Ry), ..., (Ci—1, At, Ri—1)], and the same contexts
can be selected multiple times. The player selects an ITA
action A; € A based on its policy m(A;|C}) and receives an
immediate reward R;, which only depends on (Cy, A;). The
goal of the player is to find the optimal policy 7* : C; — Ay
that maximizes the expected reward E[>""_, fr (Cs, A,)].

This formulation enables the fundamental modeling of
contextual dynamics of the ITA problem in an MH-MR team,
and explicitly defines various attributes that influence the
decision-making process, including human factors, robotic
characteristics, and task-specific factors. It is worth noting
that our CMADP differs from the traditional Markov decision
process (MDP) in that the initial workload decision action
does not impact the context (state), which presents the
inherent heterogeneity of the team and tasks. However, the
contextual observation transition probability 7, introduced
by the notion of the adversary, serves as a similar function
to the state transition function.

IV. METHODOLOGY

In this section, we introduce our proposed AtRL for initial
task allocation in MH-MR teams.

A. Overview

Our goal is to solve the contextual multi-attribute decision-
making problem formulated in the previous section and
train an allocation policy that can determine the optimal
initial task distribution based on the inherent heterogeneity of
human agents, robots, and tasks, which is defined as a multi-
attribute context. However, since the state space of a multi-
attribute context is highly complex and implicitly includes
dependencies across different attributes and sub-attributes, it
is crucial to learn a state representation that can efficiently
and adaptively model such latent interactions. To this end,
we introduce cross-attribute attention for state representation
learning, which can provide a better understanding of the
multi-attribute context and accelerate the policy learning
process.



B. Recurrent Embedding

Consider an MH-MR team consisting of ¢ human agents
and j robots assigned to complete n tasks. As described
in the problem formulation in Section III, the joint multi-
attribute context comprises three main attributes: factors of ¢
human agents measured in h dimensions, characteristics of
7 robots presented in r dimensions, and attributes of n tasks
assessed in w dimensions.

Formally, we can obtain three raw attribute sequences:
CH ¢ R¥P CR ¢RI and CW € R™Y as:

CcH =o(CHr,CcH2 ... ,Ct)
Cl=o(Ct Ot .. CF) €))
CW =o(C™,C">,. .., C")

where o denotes the concatenation operation, C1» € R%1,
CFr ¢ R3!, and C"» € R™! refer to the sequence data of
sub-attributes within the three attribute classes, respectively.
Then each raw attribute sequence is applied with a nonlin-
ear transformation operation, e.g., Tanh activation function
with fully connected layers, and then fed into a RNN cell

with d hidden units as:
CH — RNN (C*{il,Tr (C.H))

3

Ct=RNN (€1, Tr (CF)) 5)
W = RNN (C,Z‘il,Tr (c,‘f’))

where C1, C and C}V denote the hidden state at the final
time step respectively, and T'r is the nonlinear transformation
operation. Note that these three RNNs have different input
dimensions.

We regard these final hidden states as the low-level at-
tribute sequences X as: X = CH ¢ Rb4, XR = C’f €
R7% and XW = C’,‘{V € R™?. Each of these sequences aims
to obtain low-level features of each attribute while taking
into account spatial information, which is critical given that
the task allocation decision is order-dependent. It is also
important to note that after the recurrent embedding, the three
attribute sequences share the same dimension d, which makes
the dot-product operation in the subsequent cross-attribute
attention mechanism mathematically feasible.

Then these three attribute sequences are concatenated to
produce a low-level multi-attribute state representation Y'¢ €
R*? as:

Y=o (x" X xW). (6)

C. Cross-attribute Attention-enhanced State Representation

The purpose of our cross-attribute attention is to compre-
hensively and adaptively encode the latent correlation infor-
mation among human factors, robot characteristics, and task
attributes into the state representation of the multi-attribute
context. Specifically, in a cross-attribute attention layer, an
attention score is calculated between an attribute sequence
X and the low-level multi-attribute state representation Y'¢,
which guides the adaptation of the uni-attribute features

Cross-Attribute Attention

( ) \

Cross-Attribute
Attention Score

Fig. 3. An example illustration of the cross-attribute attention mechanism.

by incorporating relevant information from the other two
attributes embedded in the state representation.

In the following, we illustrate how the cross-attribute
mechanism works using the attribute sequence of human
factors X# € R»¢ as the example uni-attribute input.
Formally, the query Qp, key K¢ and value V¢ are defined
as:

QH _ xH. WQH

KC =yC. . wK° (7)
Ve =y wvV®

where W@ ¢ R%4, WK ¢ R4F and WV° ¢ Rv
denote three groups of trainable weights.

Similar to the self-attention mechanism used in [23], our
cross-attribute attention allows the flow of relevant infor-
mation, revealing latent dependencies across attributes, from
the multi-attribute representation to the attribute sequence of
human factors, as depicted in Fig. 3:

XH=CAYY - xM)
= Attention(Q, K¢ V)
QH . K’CT
VEk
This process can be performed in parallel multiple times
to serve as the multi-head cross-attribute attention. Then the

enhanced attribute sequence of human factors X  can be
obtained as:

®)

= softmax Ve,

X7 —IN (FFN (XH) n X<H>) )

where LN stands for layer normalization operation and FFN
presents feed-forward layers.

Similarly, we can obtain the enhanced feature represen-

. . - W
tations for the other two attribute sequences X and X
(robot characteristics and task attributes) by applying the
same procedure. Finally, the three sequences are aggregated
through a mean pooling layer to generate the high-level state



representation of the multi-attribute context Z¢ as:

fo (29) =mp (X1, X7 X7) (10)
where MP stands for the mean pooling operation. For brevity,
we denote the learned multi-attribute state representation
as fy (Z%), where ¥ represents the set of all trainable
parameters in the cross-attribute state representation learning.

This mean pooling layer is helpful as the global state
representation can be potentially high-dimensional, espe-
cially when dealing with large-sized or highly heteroge-
neous MH-MR teams and tasks. This layer can map the
high-dimensional global state representation concatenated by
enhanced attribute sequences to a lower-dimensional space,
making it computationally feasible in the following policy
learning.

D. Policy Learning

After obtaining the state representation Z¢ enhanced by
cross-attribute attention, we feed it into the policy network.
Due to the sequential and complex nature of the state
representation, we utilize gated recurrent units (GRU) instead
of traditional fully connected layers as the policy network.
This enables the agent to better capture the dynamic patterns
in the state representation and learn the optimal ITA policy.

Following the formulation in Section III, the agent is
provided with a learned multi-attribute state representation
Z¢ obtained from cross-attribute learning at each step of the
policy learning. Based on the current policy my, it selects a
joint allocation strategy A; to assign tasks to each human
agent and robot in the team and receives a reward R
from the reward function fr(C,A), which evaluates the
team’s performance under the selected task allocation. The
agent optimizes the parameter sets 6, ¢ of its policy and
value function using PPO to maximize the objective function
described in Eq. 1. Additionally, the parameter set ¢ in the
state representation learning is optimized as part of the value
function.

V. A CASE STUDY IN THREAT SURVEILLANCE SCENARIO

In this section, we describe our case study to apply and
validate our proposed AtRL in a large-scale threat surveil-
lance task scenario'.

A. Task Scenario

The application domain that we consider in our case study
is the large-scale surveillance and classification of unknown
threats within one area using an MH-MR team. This scenario
is common in military and environmental applications, where
potential threats, such as enemy equipment or hazardous
materials, need to be monitored and identified at a closer
distance than satellite imagery.

In our case study, the objective of the MH-MR team
is to perform large-scale surveillance and classification of
potential threats in a given territory, utilizing a combination

'More details can be found at https://sites.google.com/
view/ITA-AtRL
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Fig. 4. Tllustration of a simulation environment containing human operators,
UAVs, UGVs, and non-threats (green cubes) and POI threats (red cubes).

of human operators and two types of robots. The task begins
with the satellite system detecting and generating a list of
several points of interest (POIs). The command system then
allocates robots to these reported POIs to gather close-up vi-
sual information, while human operators use this information
to identify each POI as a potential threat or not. Multiple
robots and human operators can work simultaneously to
expedite the process.

To represent the heterogeneity of the MH-MR team, we
consider multiple attributes of human operators, robots, and
tasks. For human factors, we focus on cognitive ability and
operational skill level, which are two main factors affecting
human performance in a human-robot team [24]. Cognitive
ability measures the resilience of a person to fatigue and
workload, while operational skill level refers to an individ-
ual’s level of skill or expertise in a specific task or set of
tasks acquired through training and experience. Concern-
ing robot characteristics, we consider two types of robots:
unmanned aerial vehicles (UAVs) and unmanned ground
vehicles (UGVs). UAVs can move quickly and provide a
top-down view of POIs from a certain height, while UGVs
move more slowly but can provide a clearer view to humans.
Finally, we consider the location information of POIs and the
difficulty of threat classification as task attributes.

B. Simulation Environment

To validate our AtRL in the above task scenario, we
created a simulation environment using the GAMA platform
[25], based on the one used in [18]. As depicted in Fig. 4, the
territory to be monitored is an open space of 2 km x 2 km,
which contains several POIs. Each POI has either a threat or
a non-threat object that needs to be identified.

1) Robot Model: The two different robots, i.e., UAVs
and UGVs, possess different specifications, such as the
movement speed and quality of provided images, which are
summarized in Table I. However, their movement patterns
and tasks are the same.

TABLE I
SPECIFICATIONS OF UAVS AND UGVS SET IN THE SIMULATION.

UAV UGV
Speed 20m/s  8m/s
Image Quality low high
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At the start of each job, a robot is assigned an initial
POI. The robot automatically navigates from the origin to
the POI and stays there for 3 seconds to capture an image of
the threat. It then publishes the image to one human operator
for classification. The robot moves on to the next closest POI
that has not been visited yet and repeats the image-capturing
process. Once all POIs have been explored, the robot returns
to the origin.

2) Human Performance Model: We model the human
operator as an event server responsible for handling image
classification tasks generated by both UAVs and UGVs.
Based on the empirical findings regarding human perfor-
mance in complex tasks [26], we assume that the human
server handles events serially. The performance of the binary
threat identification task is assumed to be affected by the
fatigue and workload of the human operator. This influence
can be corrected by the individual cognitive ability of the
operator. It is also affected by the inherent difficulty of the
image classification task, which is subject to image quality
and threat types. The difficulty level can be weighted by
the individual operational skill level of the operator. The
probability of correct image classification by the operator
is nonlinearly influenced by these factors [18] as:

Prc = } + 'Y(FfEu) : g(Fs)

2 (1)

where v, ¢ € (0, g) are the correction weights for individ-
ual cognitive ability and operational skill level, respectively,
and Fy, F,, € [0,1], and F :€ (0,1) denote the correction
factors for fatigue, workload, and inherent task difficulty,
respectively.

This formulation allows for the minimum classification
success probability to be infinitely close to 0.5, which is
consistent with the random guessing of a binary choice. The
specific patterns and values of these correction factors are
set as follows, based on [16], [18]. We refer readers to
these references for more details regarding the theoretical
and empirical justification. The correction factors for fatigue
and workload can be defined as:

. 1 0<i<1
Filt) = { 0a2i+112 1<i<s (1P
—2.47u? +2.22u+ 0.5 0<u<0.45
Fy(u) = 1 0.45 < u < 0.65
—4.08u2 + 5.31u — 0.724 0.65<wu<1.0
(13)

where £ is the working hours of a human agent, and u denotes
a human agent’s utilization, which is the percentage of time
that an operator is busy performing tasks, measured over a
trailing 5-minute period.

Also, the factor that reflects the task difficulty can be
defined as a sigmoid pattern [27] as:

1

F(t) = 1 + ¢0-05(i—150) (14)

where ¢ serves as an indicator of task difficulty, which
is measured as the minimum time in seconds required to
complete the task.

The value of ¢ is subject to the image quality and the
type of threat. In our case, two levels of image quality are
considered: low-quality images captured by UAVs and high-
quality images taken by UGVs. Additionally, we consider
three types of objects to be identified, presenting three levels
of abstract classification difficulty. The value of ¢ is defined
in Table II.

TABLE I
VALUES OF £ UNDER DIFFERENT SCENARIOS.

Image Classification Difficulty
Quality Easy Medium Hard
Low 20 60 180
High 10 30 90

To account for individual differences in the performance
model, we introduce two correction weights: v and &,
reflecting human cognitive abilities and operational skills,
respectively. v is used to correct for performance decreases
due to fatigue and workload, while ¢ is used to correct for
the performance decreases due to task difficulty. The values
of v and £ are defined as:

~v = sin(h.); € = sin(hs) (15)

where h., hs € (0,7) denote the individual levels of cogni-
tive abilities and operational skills, respectively.

We define three levels of h. and h,: low € (0, {5) vs.
medium € [{5, ] vs. high € (%, 7). The exact value of
h¢ or hg is randomly sampled from the range of a human’s
cognitive ability or operational skill level.

3) Specifications of CMADP formulation: In our case
study, the state space, i.e., the multi-attribute context C,
includes six sub-attributes related to tasks, robots, or humans,

as summarized below:

o Task attributes: location and classification difficulty of
POIs

o Robot characteristics: speed and image quality

o Human factors: cognitive ability and operational skill
level

The action space A consists of two parts: assigning initial
POIs to j robots and assigning identification tasks of all
POIs to ¢ humans. Note that we use K-Mean clustering to
divide the POIs into j areas of interest based on the location
information, and regard the centroid POIs of each cluster as
the candidate initial POIs to be assigned, which is consistent
with the realistic military applications [24]. Once the initial
POIs are assigned, the robots automatically navigate to the
next nearest POI by taking the shortest path.

For the reward function fr, we define the individual
reward r,, as the average performance of threat identification
tasks driven by Pr. described in Eq. 11. Specifically, if a
POI is correctly identified, the agent will receive 10, 20, or
30 points, depending on the classification level (low to high).
Conversely, if the identification is incorrect, the agent will
lose the same points. Finally, the average score of all POIs
obtained during one environment step is calculated as the r,.
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Fig. 5. Average performance scores of each method in setting (a) 3 humans,
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*: p < 0.001.

C. Simulation Experiment and Results

1) Implementation Details: We set the number of heads
in each cross-attribute attention process to 2, and each
transformer’s hidden unit size to 40. Moreover, the number
of hidden units in the GRU was established at 64, and the
GRU was set to have a single layer. For the PPO, we set
the clipping ratio to 0.2, and the loss coefficients of clipped
policy loss, value function loss, and entropy loss to 2, 1,
and 0.1 respectively. For training, Adam optimizer is utilized
and the initial learning rate is set to 2 x 10~*. To boost and
stabilize the training process, we use 10 behavioral actors
to collect interaction experiences in parallel. The training is
conducted with an NVIDIA Tesla V100 GPU.

2) Baselines and Ablation Model: We compared our
AtRL model with two baseline approaches: average (AV)
and random (RA) allocation. The AV approach assigns initial
POIs to robots in a specific order and distributes threat
classification tasks equally to humans. In contrast, the RA
approach assigns robots to POIs and distributes threat iden-
tification tasks randomly to humans. Additionally, to evaluate
the benefits of our proposed cross-attribute attention module,
we built an ablation model called RL, which removes the
state representation learning part in AtRL, concatenating
attribute sequences directly as the state. We trained AtRL and
RL with the same PPO parameters and episodes of 1 x 10%.

3) Evaluation: There are two evaluation settings: (a) 3
humans, 4 robots, 20 threats, and 20 non-threats; and (b)
5 humans, 7 robots, 25 threats, and 25 non-threats. For
each setting, the attributes of humans, robots, and tasks are
randomly selected to generate multiple scenarios, and 500
unseen scenarios are tested with each model. We compare
the learning curves of AtRL and RL, as well as the average
performance scores, i.e., the average scores obtained of threat
classification tasks per run, of every model.

4) Results: Fig. 5 demonstrates the average performance
scores of each run in each setting. We can observe that AtRL
and RL outperform AV and RA statistically significantly
(p < 0.001). We argue the reason lies in that AtRL and
RL can optimize the initial task allocation policies by con-
tinuously interacting with the multi-attribute context, while

—— AtRL
4000 RL

Episode Return

o 2500 5000 7300 10000
Environment Steps

Fig. 6. Learning curves of AtRL and RL in terms of episode return during
training.
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Fig. 7. Visualization of partial example cross-attribute attention weights
learned between human factor attribute sequence X 7 and the multi-attribute
representation Y'C in setting b within one batch during training. Note that
the original attention weight matrix (see Fig. 3) has the dimension of i X c,
ie, 5 x 69.

the task distribution strategies of AV and RA are fixed,
neglecting the intrinsic heterogeneity among human agents,
robots, and tasks. This comparison highlights the importance
of the initial task allocation in a heterogeneous MH-MR
team. Furthermore, AtRL outperforms RL significantly (p <
0.001), and such performance augmentation is more obvious
when the team complexity, i.e., the number of team members
and tasks, is higher. This is reasonable since AtRL can learn a
state representation encoded with latent dependencies hidden
in the multi-attribute context. Moreover, Fig. 6 shows the
example learning curves of AtRL and RL during training in
setting (b). We can observe that AtRL (purple) achieves more
rewards with a more efficient and stable pattern compared
to RL (orange). This further demonstrates the benefits of
the cross-attribute state representation learning introduced in
AtRL quantitatively.

To illustrate how our cross-attribute attention works, we
visualize the attention activation. Fig. 7 shows a partial
example of learned cross-modal attention matrices at the
final cross-attribute layer with the input of human factor
sequence X7 and the multi-attribute representation Y'¢. We
can observe that our cross-attribute has successfully learned
to attend to different positions exhibiting strongly relevant
information between features of humans and features of tasks
and robots embedded in the multi-attribute representation in
an adaptive pattern. For example, the learned cross-attention
score is relatively high between Hs which presents a human
operator with a low level of cognitive ability, and 77; which
denotes an image classification task at a far location as well
as IRo which is a UGV with a low speed. This is reasonable



as cognitive ability decides the human resistance to fatigue
that is sensitive to work time, which in our case is influenced
by the navigation speed of robots and the location of the POI.

VI. CONCLUSION

In this work, we investigated the initial workload allo-
cation problem in a multi-human multi-robot team taking
the inherent heterogeneity of humans, robots, and tasks
into account. We provided a general problem formulation
of a contextual multi-attribute decision-making process and
proposed a novel attention-based deep reinforcement learning
approach. To capture the complex dependencies across mul-
tiple attributes and sub-attributes in a multi-attribute context,
we introduced a cross-attribute attention module for state
representation learning. A comprehensive case study under
the scenario of a threat surveillance task was conducted to
demonstrate the benefits of our approach and the proposed
module inside. In future work, we intend to test our method
in more complex scenarios, such as cluttered environments.
We also plan to conduct a user study to refine our human
model and validate the effectiveness of the AtRL approach
in real-world applications. Additionally, our current work
is aiming to enhance our model’s adaptability within more
large-scale MH-MR teams.
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