®© W 00 N O U A~ W N =

A A B B B B B W W WWWW W WWW NN NN NN == a 2 g a3 g
o O A W N =20 W N O WD =20 VN0 W N2 VW N0, W N =

Journal of Computer Security 0 (0) 1 1
IOS Press

Flow-Limited Authorization for consensus,
replication, and secret sharing

Priyanka Mondal ?, Maximilian Algehed ® and Owen Arden ©

& University of California, Santa Cruz, CA, USA

E-mail: pmondal@ucsc.edu

b Chalmers University of Technology, Gothenburg, Sweden
E-mail: algehed@chalmers.se

¢ University of California, Santa Cruz, CA, USA

E-mail: owen@soe.ucsc.edu

Abstract. Availability is crucial to the security of distributed systems, but guaranteeing availability is hard, especially when
participants in the system may act maliciously. Quorum replication protocols provide both integrity and availability: data and
computation is replicated at multiple independent hosts, and a quorum of these hosts must agree on the output of all operations
applied to the data. Unfortunately, these protocols have high overhead and can be difficult to calibrate for a specific application’s
needs. Ideally, developers could use high-level abstractions for consensus and replication to write fault-tolerant code that is
secure by construction.

This paper presents Flow-Limited Authorization for Quorum Replication (FLAQR), a core calculus for building distributed
applications with heterogeneous quorum replication protocols while enforcing end-to-end information security. Our type system
ensures that well-typed FLAQR programs cannot fail (experience an unrecoverable error) in ways that violate their type-level
specifications. We present noninterference theorems that characterize FLAQR’s confidentiality, integrity, and availability in
the presence of consensus, replication, and failures, as well as a liveness theorem for the class of majority quorum protocols
under a bounded number of faults. Additionally, we present an extension to FLAQR that supports secret sharing as a form of
declassification and prove it preserves integrity and availability security properties.

1. Introduction

Failure is inevitable in distributed systems, but its consequences may vary. The consequences of failure
are particularly severe in centralized system designs, where single points-of-failure can render the entire
system inoperable. Even distributed systems are sometimes built using a single, centralized authority
to execute security-critical tasks. If this trusted entity is compromised, the security of the entire system
may be compromised as well.

Building reliable decentralized systems, which have no single point-of-failure, is a complex task. Quo-
rum replication protocols such as Paxos [1] and PBFT [2], and blockchains such as Bitcoin [3] replicate
state and computation at independent hosts and use consensus protocols to ensure the integrity and avail-
ability of operations on system state. In these protocols, there is neither centralization of function nor
centralization of trust: all honest hosts work to replicate the same computation on the same data, and this
redundancy helps the system tolerate a bounded number of node failures and corruptions.

Within a single trust domain such as a corporate data center, replicas likely have uniform trust rela-
tionships and may be treated interchangeably. However, many large-scale systems depend on services

0926-227X/$35.00 © 0 — IOS Press. All rights reserved.

O 0 N O U A~ w N =

A B B B B S BA W W WWWWWWWW NN NN NNDNNDNNDNDDND =SS s S g a3 g
Lo B & B e ¥ S 2 U= o o R B o 3 B & o B N O S N R e R o < N o) B & 4 B A O S Y=o - BN B e) B) B - OV B N e

mailto:pmondal@ucsc.edu
mailto:algehed@chalmers.se
mailto:owen@soe.ucsc.edu

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

2 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

& bob e

e =

(a) More Integrity (b) More Availability

TN

\\‘ £
_+ T g

ArT
m '

N

(c) More Integrity and Availability (d) Heterogeneous Trust

[

Fig. 1. Integrity-Availability Trade-off

hosted by multiple external services. Even when a service’s internal components are replicated, devel-
opers must take into account the failure properties of external dependencies when considering their own
robustness.

Information flow control (IFC) has been used to enforce decentralized security in distributed systems
for confidentiality and integrity (e.g., Fabric [4] and DStar [5]). Less attention has been paid to enforcing
decentralized availability policies with IFC. In particular, no language (or protocol) we are aware of
addresses systems that compose multiple quorums or consider quorum participants with arbitrary trust
relationships.

To build a formal foundation for such languages, we present FLAQR, a core calculus for Flow-Limited
Authorization [6] for Quorum Replication. FLAQR uses high-level abstractions for replication and con-
sensus that help manage tradeoffs between the availability and integrity of computation and data.

Consider the scenarios in Figure 1. Shaded boxes represent hosts in a distributed system. Dashed lines
denote outputs that contribute to the final result, a value v. Dotted lines denote ignored outputs and solid
lines indicate the flow of data from an initial expression e distributed to hosts to the collected result.
Results are accompanied by labels that indicate which hosts influenced the final result.

In Figure 1b, e is distributed to hosts alice and bob. The hosts’ results are compared and, if they
match, the result is produced. Since a value is output only if the values match, we can treat the output
of this protocol as having more integrity than just alice or bob. While both alice and bob technically
influence the output, neither host can unilaterally control its value. However, either host can cause the
protocol to fail.

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWW NN NN NN =SS 2 g a3
o O A W N =20 W N OO O R WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 3

By contrast, the protocol in Figure 1a prioritizes availability over integrity: if either alice or bob
produce a value, the protocol outputs a value—in this case alice’s. Here, neither host can unilaterally
cause a failure; the protocol only fails if both alice and bob fail. Either alice or bob (but not both)
has complete control over the result in the event of the other’s failure, so we should treat the output as
having less integrity than just alice or bob.

With an adequate number of hosts, we can combine these two techniques to form the essential compo-
nents of a quorum system. In Figure 1c, e is replicated to alice, bob, and carol. This protocol outputs a
value if any two hosts have matching outputs. Since alice and bob both output v, the protocol outputs v
and attaches alice and bob’s signatures. The non-matching value v from carol is ignored. Hence, this
protocol prevents any single host from unilaterally controlling the failure of the protocol or its output.

Figure 1c is similar in spirit to consensus protocols such as Paxos or PBFT where quorums of in-
dependent replicas are used to tolerate a bounded number of failures. FLAQR also permits us to write
protocols where principals have differing trust relationships. Figure 1d illustrates a protocol that toler-
ates failure (or corruption) of either alice or bob, but requires dave’s output to be part of any quorum.
This protocol will fail if both alice and bob fail to produce matching outputs, but can also fail if dave
fails to produce a matching output. This example illustrates the distributed systems where the hosts do
not have homogeneous trust.

The main contributions of this paper are:

e An extension of the static fragment of the Flow Limited Authorization Model (FLAM) [6] with
availability policies and algebraic operators representing the effective authority of consensus and
replication protocols (§3-§5).

o A formalization of the FLAQR language (§4) and accompanying results:

* A liveness theorem for majority-quorum FLAQR protocols (§7.1) which experience a
bounded number of faults using a novel proof technique: a blame semantics that associates
failing executions of a FLAQR program with a set of principals who may have caused the
failure.

* Noninterference theorems for confidentiality, integrity, and availability (§7.2).

* An extension to FLAQR adding support for simple secret sharing, and results demonstrating
it preserves integrity and availability noninterference as well as our liveness theorem, despite
introducing an additional source of failure due to mismatched shares (§9).

This paper is an expanded and updated version of an article previously published in the proceedings
of the 35" Computer Security Foundations Symposium [7]. This version adds support for secret sharing
(Section 9) and extensions of our previous results that demonstrate these new terms neither impact
integrity and availability noninterference, nor majority liveness, despite introducing an additional source
of failure. In addition, we corrected a minor issue in the original blame semantics, and include complete
rule sets and proofs for our formalization and theoretical results.

Non-goals. The design of FLAQR is motivated by application-agnostic consensus protocols such as
Paxos [1] and PBFT [2], but our present goal is not to develop a framework for verifying implementations
of such protocols (although it would be interesting future work). Rather, the goal is to develop security
abstractions that make it easier to create components with application-specific integrity and availability
guarantees, and compose them in a secure and principled way.

In particular, the FLAQR system model lacks some features that a protocol verification model would
require, most notably a concurrent semantics, asynchronous message delivery, and arbitrary communi-
cation patterns. Although this simplifies some aspects of consensus protocols, our model retains many

0 N o b~ w NN =

A B B B B A BA W W W W WWWWWW NN NN NN == s a3 a3 a3 a2
Lo B & B N ¥ S 2 U= o R B o 3 B & 1 B N O S N R e R o < N R o) B & 4 B A O S Y=o - BN B e) N) B - OV I S R

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

1
2
3
4
5
6

4 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

getBalance (acct):
bal_a = fetch bal(acct) @ alice;
bal_b fetch bal(acct) @ bob;
bal_c fetch bal(acct) @ carol;

if (bal_a==bal_b && bal_a != fail)
return bal_a;

else if (bal_b==bal_c && bal_b != fail)
return bal_b;

else if (bal_c==bal_a && bal_c != fail)
return bal_c;

else return fail;

Fig. 2. Majority quorum

of the core challenges present in fault tolerance models. For example, perfect fault detection is impos-
sible and faulty hosts can manipulate data to cause failures to manifest at other hosts. We argue that
even in a synchronous, deterministic model with RPC-style communication, the challenges of specify-
ing and enforcing policies remain quite difficult to solve, and are among the primary security concerns
of high-level application developers.

2. Motivating examples.

In this section we present two motivating examples. The first example highlights the trade-off between
integrity and availability. The second example highlights the need for availability policies in distributed
systems.

2.1. Tolerating failure and corruption

If a bank’s deposit records are stored in a single node, then customers will be unable to access their
accounts if that node is unavailable or is compromised. To eliminate this single point-of-failure, banks
can replicate their records on multiple hosts as illustrated in Figure 1c. If a majority of hosts agree on
an account balance, then the system can tolerate the remaining minority of hosts failing or returning
corrupted results.

Consider a quorum system with three hosts: alice, bob, and carol. To tolerate the failure of a single
node, balance queries attempt to contact all three hosts and compare the responses. As long as the client
receives two responses with the same balance, the client can be confident the balance is correct even if
one node is compromised or has failed.

Figure 2 illustrates a pseudocode implementation of getBalance in this system. The code fetches
balances from the three hosts (lines 2-4). The function returns the balance if each fetched value matches,
otherwise the function returns fail (lines 6-12).

The downside of this approach is that it is quite verbose and repetitive compared to a single-line fetch
without any fault tolerance. Small mistakes in any of these lines could have significant consequences.
For example, suppose a programmer typed bal_b instead of bal_c on line 8. This small change gives

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWW NN NN NN =SS 2 g a3
o O A W N =20 W N OO O R WD =20 VN0 WD 2O VW N OO0 W N2 v

1
2
3
4
5
6

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 5

highestBalance (acct_1, acct_2):
bal_1:= fetch getBalance(acct_1) @ b;
bal_2:= fetch getBalance(acct_2) @Q b';

if (bal_1==fail) && (bal_2==fail) then
return fail;

else if (bal_1==fail) then
return acct_2;

else if (bal_2==fail) then
return acct_1;

if (bal_1 > bal_2) then
return acct_1;

else
return acct_2;

Fig. 3. Available largest balance

bob (or an attacker in control of bob’s node) the ability to unilaterally choose the return value of the
function, even when alice and carol agree on a different value.

2.2. Using best available services

Real world applications often consist of communication between entities with mutual distrust. The
pseudocode in Figure 3 communicates with two banks, represented by b and b’, during a distributed
computation. A user has two accounts acc_1, and acc_2 with b and b’ respectively. The user has linked
both accounts to a service and specifies the bill should be paid

(1) as long as at least one account is available
(2) using the highest-balance account, if available

Lines 7-10 take care of point(1), ensuring the comparison on line 12 does not get stuck if a fetch returns
fail. Lines 12-15 cover point (2), returning the account with the highest balance when both balances
are available.

This example shows how availability of data can effect the final result of an application and thus high-
lights the importance of enforcing availability in distributed computations. As in the previous example,
the programmer must reason about failures due to unavailable hosts and make the correct comparisons
to implement the (implicitly) desired policy. Furthermore, the programmer may be unaware of the avail-
ability guarantees offered by b and b’. For example, if b and b’ rely on the same replicas to implement
getBalance, the availability of highestBalance may be lower than expected.

Finally, in both of the above examples, an attacker should not be able to read an account balance,
or infer which account balance was greater. With the FLAQR type-system, programmers can not only
specify and enforce availability and integrity, but also confidentiality—crucial for dealing with sensitive
information. Moreover, FLAQR enables programmers to write fault-tolerant code concisely, with explicit
primitives for consensus and replication operations that clarify the programmer’s intentions.

0 N o b~ w NN =

A B B B B A BA W W W W WWWWWW NN NN NN == s a3 a3 a3 a2
o U A W N =20 W N U W2, VN U W2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

6 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing
3. Specifying FLAQR policies

FLAQR policies are specified using an extension of the FLAM [6, 8] principal algebra that includes
availability policies.! FLAM principals represent both the authority of entities in a system as well as
bounds on the information flow policies that authority entails. For example, Alice’s authority is repre-
sented by the principal alice. Authority projections allow us to refer to specific categories of Alice’s
authority. The principal alice® refers to Alice’s confidentiality authority: what Alice may read. Principal
alice! refers to Alice’s integrity authority: what Alice may write or influence.? Principal alice® refers
to her availability authority: what Alice may cause to fail. A principal always acts for any projection
of its authority, so for example alice > alice®. We refer to the set of all primitive principals such as
alice and bob as \V.

We can write the conjunction of two principals with the Boolean connective A as alice A bob,
denoting the combined authority of Alice and Bob. Put another way, alice A bob is a principal both
Alice and Bob trust. The disjunction of two principals’ authority is written using the connective v as
alice v bob. This is a principal whose authority is less than both Alice and Bob; either Alice or Bob
can act on behalf of the principal alice v bob. Put another way alice v bob is a principal that trusts
both Alice and Bob. Authority projections distribute over A and v, so for example (alice A bob)' =
alice' A bob'.

The confidentiality, integrity, and availability authorities make up the totality of a principal’s authority,
so writing alice® A alice® A alice?® is equivalent to writing alice. For brevity, we sometimes write
alice® as a shorthand for alice® A alice’ when we wish to include all but one kind of authority. Our
complete formalization of the acts-for relation is presented in Figures 39 and 40 in Appendix A.

In addition to conjunctions and disjunctions of authority, FLAQR also introduce two new operators:
partial conjunction ([H), and partial disjunction (). These operations are necessary to represent
the tradeoffs between integrity and availability mediated by consensus and replication. Consider the
“more integrity” protocol from Figure 1b. It is reasonable to think of the consensus value v as having
more integrity than (or at least, “not less integrity than) Alice or Bob alone, but it turns out to be
useful to distinguish between this authority and the combined integrity authority of Alice and Bob,
(alice® A bob'). A principal with integrity authority (alice' A bob') may act arbitrarily on behalf of
both Alice and Bob since it is trusted by them. In contrast, the integrity of the value produced in Figure 1b
is not fully trusted by Alice and Bob. Instead, Alice and Bob only trust the value when Alice and Bob
agree on it. If they do not agree, that trust is revoked and no value is produced. For this reason, we
describe the integrity of consensus values such as v as the partial conjunction of Alice and Bob, written
alice' FHbob’.

Similarly, for replication protocols like that in Figure 1a, we want to distinguish the integrity of values
that may have been received from either Alice or Bob due to failure, from the integrity of values that
may have been influenced by both Alice and Bob: alice® v bob'. The integrity of a value produced by
either Alice or Bob is written as the partial disjunction alice' 5 bob'. This principal does not have the
same integrity authority as Alice or Bob alone since we cannot guarantee which host’s value will be used
in the event of a failure. However, the value does have more integrity than alice' v bob’, since only
Alice or Bob (and not both) may have influenced it.

We compare the authority of principals using the acts-for relation >, which partially orders (equiv-
alence classes of) principals by increasing authority. We form the set of all principals P as the closure

1Speciﬁcally, we extend the static fragment of FLAM’s principal algebra defined by FLAC [8].
2Prior FLAM-based formalizations have used — and « for confidentiality and integrity, respectively.

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
Lo B & B e ¥ S 2 U= o R B o 3 B & 1 B N O S N R e e R o N o) B & 4 B A O S Y=o - BN e) N) B - OV B S e

0 N o g b~ w N =

A B B B B B B W W WWWW W WWW NN NN NN =SS 2 g a3
o O A W N =20 W N OO O R WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 7

IL-pi>p IIi-p>p1
ke{l,2 I-p>=
[PANDL] 1.2} [PANDR] b= P [ANDPAND] T I p A g > pEg
II-p1Ep2>p ITl-p>p1Bp2
[PANDPOR]| I IF pHg > pHq [PROJPANDL] II I+ p"H " > (pHq)"
[PROJPANDR|IT I+ (pHq)" > p"HG" [PROJPORL|II I p"H{" > (pEHq)"
[PROJPORR|IT - (pEq)" > p"BJ" [POROR|III-F pHg > p Vv q

Fig. 4. Selected acts-for rules for partial conjunction and disjunction.

V)

Increasing authority (<, A,

xVixB3y)

Fig. 5. The FLAQR authority lattice for the principal set {L, x,y, T}.

of the set N' U {T, L} over the operations A, v, [, H, and authority projections ¢, i, and a. We say
Alice acts for Bob (or equivalently, Bob trusts Alice) and write alice > bob when Alice has at least as
much authority as Bob. The > relation forms a lattice with join A, meet v, greatest element T, and least
element | .

In addition to the trust relationships such as p A ¢ > p and p > p' implied by the principal algebra,
explicit delegations of trust such as p > ¢ (for any p, ¢ in P) may expressed using a delegation context
II. An acts-for judgment has the form I |- p > g and means that p acts for g in context II. While FLAC
has a feature that allows dynamic extensions of II, for simplicity we fix II to a static set of delegations
in FLAQR.

0 N o b~ w NN =

A B B B B A BA W W W W WWWWWW NN NN NN == s a3 a3 a3 a2
o U A W N =20 W N U W2, VN U W2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

8 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

We extend the acts-for relation defined by Arden et al. [8] with new rules for availability authority
and partial conjunction and disjunction. Figure 4 presents a selection of these rules—we have omitted
the distributivity rules for brevity. In Figure 4, an acts for judgement of form II |- p > ¢, states that p
has at least as much authority as g in delegation context II. Figures 39 and 40 in Appendix A together
present the complete formalization of the > relation. In Figure 40 we present only the extensions to this
relation introduced by FLAQR.

As a consequence of these new acts-for rules we have additional distinct points in the authority lattice.
Figure 5 illustrates the authority sublattice over elements { L, x, y, T }. Figure 5 shows the trust ordering
of all possible distinct combinations of elements that can be formed on the set { L, x,y, T} with opera-
tions A, v, and & over them. The relationship between principals |, x,y,x A y,x v y, and T is
the same as in FLAM, but Figure 5 also includes principals constructed using partial conjunctions and
disjunctions. For example, x A (xHy) is the least upper bound of x A (x = y) and x Hy. This is due to
rule PANDPOR in Figure 4, which lets us simplify x A (xHy) A xEHytox A (xHYy).

To compare the restrictiveness of information flow policies, we use the flows-fo relation =, which
partially orders principals by increasing policy restrictiveness, rather than by authority. For example,
we say Alice’s integrity flows to Bob’s integrity and write alice’ = bob' if Bob trusts information
influenced by Alice at least as much as information he influenced himself. Likewise, we write alice® =
bobc if Alice trusts Bob to protect the confidentiality of her information, and alice* = bob?® if Bob is
trusted to keep Alice’s data available. The flows-to relation behaves similarly to a sub-typing relation.
Treating information labeled alice®® (i.e. alice) as though it was labeled bob* (i.e. bob) is only safe
(doesn’t violate anyone’s policies) if alice®® = bob®? (i.e. alice E bob).

One advantage of the FLAM principal algebra is that we can define the flows-to relation, as well as
the upper and lower bounds of information flow policies, in terms of the acts-for relation, simplifying
our formalism.

PEq < ¢ >p‘and p' > g and p* > ¢’

pugz= P Ag)A (P vag)r(pVva)
prg= (P Vvg)a P Ag)r(pAqg)

Based on this, the equivalence classes of > and = are identical, meaning that the lattice formed by =
with joins L and meets 1 has the same elements as the acts-for lattice. A flow from p to g is secure
only when ¢¢ is at least as confidential as p°, ¢* trusts information influenced by p*, and ¢° cannot cause
failures that p* cannot.

4. FLAQR syntax and semantics

Figures 6 and 7 present the FLAQR syntax and selected evaluation rules. For space and exposition pur-
poses, we omit some term annotations and standard lambda calculus rules in order to focus on FLAQR’s
contributions, but the complete, annotated FLAQR syntax and semantics can be found in Figures 29 and
31 in the Appendix.

FLAQR is based on FLAC [8, 9], a monadic calculus in the style of Abadi’s Polymorphic DCC [10].
In addition to standard extensions to System F [11-13] such as pairs and tagged unions, an Abadi-style
calculus supports monadic operations on values in a monad indexed by a lattice of security labels. Such

0 N o b~ w N =

0 N o g b~ w N =

A B B B B B B W W WWWW W WWW NN NN NN =SS 2 g a3
o O A W N =20 W N OO O R WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 9

n € {c,i,a} (projections)
n € N (primitive principals)
x € V (variable names)

p,t’,pc::zn}T‘J_|p”|P/\P’PVI’

| pup|prp| pBp | pEP
tu=unit | X | (t471) | (tx7)
| v 5 7 | VX[pel.t | €saysT

vi=() | @) | ini™ v | vy
| Ax:7)[pcl.e | AX[pc].e

fu=v | fail®

ex=f|x|ee|er|ne|lee)

proj;e | inj™ e | bindx=cine

case” e of inji(x).e | inj%(x).e

|
|
| run”e@p | rete@p | expect”
|

select” eore ! compare” e and e

Fig. 6. FLAQR Syntax. Shaded terms are new to FLAQR. Underlined terms are used during evaluation and not available at the
source level.

a value has a type of the form ¢ says 7, meaning that it is a value of type 7, protected at level €, where ¢
is an element of the security lattice. Here we focus on FLAQR’s additions to FLAC and DCC, and refer
the readers to Figures 33 and 34 in the Appendix for our complete formalization.

FLAQR builds on FLAC’s expressive principal algebra and type system to model distributed security
policies for applications that use replication and consensus. FLAC supports arbitrary policy downgrades
through dynamic delegations of authority, but for simplicity we omit these features in FLAQR.

The monadic unit or return term 7, e protects the value that e evaluates to at level £ (E-SEALED).?
Protected values, (77, v) cannot be operated on directly. Instead, a bind expression must be used to bind
the protected value to a variable whose scope is limited to the body of the bind term (E-BINDM). The
body performs the desired computation and “returns” the result to the monad, ensuring the result is
protected. These rules (E-SEALED and E-BINDM) FLAQR inherits from FLAC. The remaining rules of
Figure 7 are specific to FLAQR.

The primary novelty in the FLAQR calculus is the introduction of compare and select terms for
expressing consensus and replication operations. We represent the consensus problem as a comparison
of two values with the same underlying type but distinct outer security labels. In other words, we want
to check the equality of values produced by two different principals. If the values match, we can treat

3Polymorphic DCC does not define a term similar to (77, v) and thus does not have an rule equivalent to E-SEALED. This
approach enables us to distinguish where a value may be created (e.g., on a host authorized to read and create values protected
at £) and use more permissive rules to control where a sealed value may flow.

0 N o b~ w NN =

A B B B B A BA W W W W WWWWWW NN NN NN == s a3 a3 a3 a2
o U A W N =20 W N U W2, VN U W2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

10 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

[E-SEALED] nev— (7, v) [E-BINDM] bind x = (7, v) ine — e[x — V]

[E-COMPARE] compare (77, v) and (77,, v) — (¢, @¢, V)

Vi # Vg 7= ({1 ®{) says 7
compare (77, v1) and (77, v2) — fail’

[E-COMPAREFAIL|

T, = {1 says T 7 = (61 @) says T

(71, v)
fo= { faflfg says
[E-COMPAREFAILL]

compare (fail™) and fo — fail”

T9 = {3 says T = (t;®) says T
[E-COMPAREFAILR] 2 = 254y (6 @ lo) say

compare (77, v) and fail™ — fail”

[E-SELECT] select (77, v1) or (7, v2) — (ﬁ[1@[2 V1)

[E-SELECTL] select (7, v) or (fail® 3&¥S7) — (3, o, v)

Vie {1,2} 17 ={; says T

"= (6,00
[E-SELECTFAIL] T =(6L06)says T

select (fail™) or (fail™) — fail”

/
e —e

[E-RETSTEP| [E-STEP|

ret e@c — ret ¢'@c

Fig. 7. FLAQR local semantics

E:=[]|Ee|VvE|nE |bindx=Eine
‘ ret E@p ‘ select Eore ’ select for E

‘ compare E and e ‘ compare f and E

Fig. 8. FLAQR evaluation context

them as having the (partially) combined integrity of the principals. If not, then the principals failed to

reach consensus.

Rule E-COMPARE defines the former case: two syntactically equal values protected at different labels
evaluate to a value that combines labels using the compare action on labels @ . Intuitively, {1 @ €2
determines the increase in integrity and the corresponding decrease in availability inherent in requiring

a consensus. We define @ formally in Definition 1.

Ele] — E[€']

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 11

[E-APPFAIL] A(x:7)[pc].e fail® — e[x +— fail’] [E-SEALEDFAIL] 17, fail® — failf S3¥ST
[E-INJFAIL] injl(Tl+T2) Fail" — fail(1tm) [E-PROJFAIL] proj, fail(*™) —, fail™
Fig. 9. fail propagation rules.
Definition 1 (Compare action on principals).
G Dl = (L5 A A (GEEG) A (G V)
We also lift this notation to says types by defining
{1 saysT@ lo says T = (61 D {y) says 1

As discussed in Section 3, the integrity authority of compare is not as trusted as the conjunction of

{1 and £5’s integrity. Instead, we represent the limited “increase” in integrity authority* using a partial

conjunction in Definition 1. In contrast, the decrease in availability is represented by a (full) £3 v €3 since
either €1 or {2 could unilaterally cause the compare expression to fail.

The decreased availability resulting from applying compare is more apparent in rules E-COMPAREFAIL, E-

COMPAREFAILL and E-COMPAREFAILR. In E-COMPAREFAIL, two unequal values are compared,
resulting in a failure. Failure is represented syntactically using a fail® term. We use a type annotation
7 on many terms in our formal definitions so that our semantics is well defined with respect to failure
terms, but we omit most of these annotations in Figure 7. These annotations are only necessary for our
formalization and would be unnecessary in a FLAQR implementation.

A compare term may also result in failure if either subexpression fails. Rule E-COMPAREFAILL
and E-COMPAREFAILR, defines how failure of an input propagates to the output. In fact, most FLAQR
terms result in failure when a subexpression fails. Figure 9 presents selected failure propagation rules
(complete failure propagation rules are presented in Figure 32). Note that fail terms are treated similarly
to values, but are distinct from them. For example, in E- APPFAIL, applying a lambda term to a fail term
substitutes the failure as it would a value, but in E-SEALEDFAIL the failure is propagated beyond the
monadic unit term. This latter behavior captures the idea that failures cannot be hidden or isolated in the
same way as secrets or untrusted data.

Failures are tolerated using replication. A select term will evaluate to a value as long as at least one
of its subexpressions does not fail. For example, rule E-SELECTL returns its left subexpression when
the right subexpression fails. In contrast to compare, applying select increases availability since either
subexpression can be used, but reduces integrity since influencing only one of the subexpressions is
potentially sufficient to influence the result of evaluating select. The effect of a select statement on
the labels of its sub-expressions is captured with the select action © .

Definition 2 (Select action on principals).

6t = (6 A6G) A (GEG) A (G AG)

4Strictly speaking, x [y is not an increase in integrity over x (or y); x {y and x are incomparable.

0 N o b~ w N =

- a4 a4 A A a4 a4 ©
O o N O U A W N = e

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45
46

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

12 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

/
e — e

[E—DSTEP] <E[e],C> &t — <E[e’]e C> &t

[E-RUN] (E[run e@c'],c) & t = (ret e@c, ') & (E[expect™],c) :: t
[E-RETV] (ret vec, ¢’y & (E[expect?” S3YS ™) o) :: 1 — (E[(pea)] 0) & t

[E-RETFAIL] {ret (fail”)ec,c’) & (E[expect? " SAYS ™) ¢} .1 t = (E[fail?®” SAYST] &) & 1

Fig. 10. Global semantics

su={e,c)&t
t:=empty | (E[expect™],c):: 1

Fig. 11. Global configuration stack

We define the select action on types similarly to compare:
{1 saysTOly says T = ({1 ©¢3) says 1

The end result of a select statement, select (7, v) or (7, v), will have integrity of either £} or £}
since only one of the two possible values will be used. We use a partial disjunction to represent this
integrity since the result does not have the same integrity as £; or {3, but does have more integrity than
€1 v {9 since it is never the case that both principals influence the output.

4.1. Global semantics

We capture the distributed nature of quorum replication by embedding the local semantic rules within
a global distributed semantics defined in Figure 10. This semantics uses a configuration stack s =
{e,c) & t (Figure 11) to keep track of the currently executing expression e, the host on which it is
executing ¢, and the remainder of the stack 7. We also make explicit use of the evaluation contexts from
Figure 7 to identify the reducible subterms across stack elements.

The core operation for distributed computation is run® e@p which runs the computation e of type T on
node p. Local evaluation steps are captured in the global semantics via rule E-DSTEP. This rule says
that if e steps to ¢’ locally, then E[e] steps to E[e’] globally.

Rule E-RUN takes an expression e at host ¢, pushes a new configuration on the stack containing e at
host ¢’ and places an expect term at ¢ as a place holder for the return value.

Once the remote expression is fully evaluated, rule E-RETV pops the top configuration off the stack
and replaces the expect term at ¢ with the protected value (7,12 v). Rule E-RETFAIL serves the same
purpose for fail terms, but is necessary since fail terms are not considered values (see Figure 6). The
label pc'® reflects both the integrity and availability context of the caller (c) as well as the integrity and
availability of the remote host (¢’). We discuss this aspect of remote execution in more detail in Section 5.

O 0 N O U A~ w N =

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44

46

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 13

‘H;F;pc;cl—ezf‘

ITI-c > pc ITI-c > pc IT-c > pc
- [FAIL] — [EXPECT]
IT; T; pc;c - () s unit IL;T;pe;c + fail™ : 1

[UNIT] =
IL T pe;c - expect” : 7

’
pc
ILT:pe;c e : 7 =1

ILT:pe;c-eg : 7 IT I+ pc E pc’

w=C(r X5 1 Oc>u ¢ 3= pe
[LAM] St 2) [App] P

ILT; pe;c - A(x:ty)[pc].e - 11 25 1y

ILT, x:t;pc’ut-e: 1 ILI-c > pc

ILT pe;c-e1ex: T

ILTpc;ce: T IHFpc=?

III-c¢ > pc
[SEALED] —
ILD;pe;e-nee: £sayst ILT; pese = (7, v) - £says T

ILT pese-vet III-c > pc

[UNITM]

ILD;pcsc e II |- pc E pc’
ILT;pe;c € : €says 7/ Mi-fupcct Il - ¢ > pc III-c>=C(t)
ILT, x:7;¢upciche: T IIIFc¢ > pc T = pc'*®says 7

[BINDM] [RUN]

ILT;pc;c - bindx=¢ ine: 7 ILT;pc;c - run” e@c : 1

1L pe;e-e: T Il >C()
II |- ¢ > pc

[RET] : .
IL T pe;c - ret e@c’ : pc'® says T

Vie {1,2}.ILT; pc;c e : € says T

III-c> ¢ saysT III-c > pc
[COMPARE] Y P

;s pe; ¢ - compare ey and ey @ (61 @ €) says T
Vie {1,2}IL T pe;c e : € says T
IIIkc = pc

[SELECT] P

IT; T; pc;c - select eg oreg : (61 ©¢2) says T

Fig. 12. Typing rules for expressions
5. FLAQR typing rules

As we have a local and global semantics, we have two corresponding forms of typing judgements: lo-
cal typing judgments for expressions and global typing judgments for the stack. Local typing judgments
have the form II; I'; pc;c — e : 7. 11 is the program’s delegation context and is used to derive acts-for
relationships with the rules in Figures 4 and 40. I' is the typing context containing in-scope variable
names and their types. The pc label tracks the information flow policy on the program counter (due to
control flow) and on unsealed protected values such as in the body of a bind.

Figure 12 presents a selection of local typing rules. Each typing rule includes an acts-for premise of
the form II | ¢ > pc. This enforces the invariant that each host principal ¢ has control of the program
it executes locally. Thus for any judgment II; T'; pc; c I e : T pc should never exceed the authority of c,
the principal executing the expression. Rules FAIL and EXPECT type fail and expect terms according

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

14 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

to their type annotation 7. Rule LAM types lambda abstractions. Since functions are first-class values,
we have to ensure that the pc annotation on the lambda term preserves the invariant II |- ¢ > pc. The
clearance of a type 7, written C(7), is an upper bound on the pc annotations of the function types in

7. By checking that IT | ¢ > C(1; »e, T9) holds (along with similar checks in RUN and RET), we
ensure the contents of the lambda term is protected when sending or receiving lambda expressions, and
that hosts never receive a function they cannot securely execute. Due to space constraints, the definition
of C(-) is presented in Appendix A, in Figure 35. The APP rule requires the pc label at any function
application to flow to the function’s pc label annotation. Hence the premise I |- pc & pc’.

Protected terms 7, e are typed by rule UNITM as ¢ says 7 where 7 is the type of e. Additionally, it
requires that IT |- pc = £. This ensures that any unsealed values in the context are adequately protected
by policy ¢ if they are used by e. The SEALED rule types protected values (77, v). These values are well-
typed at any host, and does not require II |- pc = ¢ since no unsealed values in the context could be
captured by the (closed) value v.

Computation on protected values occurs in bind terms bind x = ¢’ in e. The policy protecting e must
be at least as restrictive as the policy on ¢’ so that the occurrences of x in e are adequately protected.
Thus, rule BINDM requires II | € L pc E 7, and furthermore e is typed at a more restrictive program
counter label ¢ L pc to reflect the dependency of e on the value bound to x.

Rule RUN requires that the pc at the local host flow to the pc” of the remote host, and that e be well-
typed at ¢/, which implies that ¢’ acts for pc’. Additionally, ¢ must act for the clearance of the remote
return type 7’ to ensure ¢ is authorized to receive the return value. The type of the run expression is
pc’*? says 7/, which reflects the fact that ¢’ controls the availability of the return value and also has some
influence on which value of type 7’ is returned. Although ¢’ may not be able to create a value of type
7/ unless pc’** flows to 7/, if ¢/ has access to more than one value of type 7/, it could choose which one
to return. Rule RET requires that expression e is welltyped at ¢ and that ¢’ is authorized to receive the
return value based on the clearance of 7.

The COMPARE rule gives type ({1 @ €3) says 7 to the expression compare e; and e; where e; and ey
have types €1 says 7 and {5 says 7 respectively. Additionally, it requires that ¢, the host executing the
compare, is authorized to fully examine the results of evaluating e; and ey so that they may be checked
for equality.’ This requirement is captured by the premise II |- ¢ > ¢; says 7, pronounced “c reads
{; says 7”. The inference rules for the reads judgment are found in Figure 37 in Appendix A.

Finally, the SELECT rule gives type (£1 © {2) says 7 to the expression select e; or es where e; and
eo have types €1 says T and {5 says 7 respectively.

The typing judgment for the global configuration is presented in Figure 13 and consists of three rules.
Rule HEAD shows that the global configuration {e, ¢) & t, is well-typed if the expression e is well-typed
at host ¢ with program counter pc¢’ where II | pc © pc¢’ and the tail 7 is well-typed. [7']7 means that
the tail of the stack is of type T while the expression in the head of the configuration is of type /. We
introduced rules TAIL(when ¢ # empty) and EMP(when ¢ = empty) to typecheck the tail 7.

(E[expect™],c) : : tis well-typed with type [¢'], if expression E[expect” | is well-typed with type
7 at host ¢. And, the rest of the stack ¢ needs to be well-typed with type [7]r. Rule EMP says the tail is
empty and the type of the expression in the head of the configuration is 7, in which case the type of the
whole stack is [7]7.

> Assuming a more sophisticated mechanism for checking equality that reveals less information to the host such as zero-
knowledge proofs or a trusted execution environment could justify relaxing this constraint.

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
Lo B & B e ¥ S 2 U= o R B o 3 B & 1 B N O S N R e e R o N o) B & 4 B A O S Y=o - BN e) N) B - OV B S e

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 15

‘H;I‘;pcl—<e,c>&t:‘r‘

ILT: pc’sct-e: 7 IGT;pe-t: [v]r
II I~ pc © pc’ III-c > pc

HEAD
[| ILT pe e,y & st

‘H;I’;pcl—<e,c>iif? [T/]T‘

ILT; pc’sc - Eexpect™] : % ILT;pe 1 [f]r
II |- pc = pc’ I c > pc

[TAIL] '
I T pe = (E[expect™ |, c) :: ¢ 2 [t

[EMP| IL; T'; pc - empty : [7]7T

Fig. 13. Typing rules for configuration stack
6. Availability Attackers

Availability attackers are different from traditional integrity and confidentiality attackers. While an
integrity attacker’s goal is to manipulate data and a confidentiality attacker’s goal is to learn secrets,
an availability attacker’s goal is to cause failures. In our model, an availability attacker can substitute a
value only with a fail term. Integrity attackers may also cause failures in consensus based protocols
when consensus is not reached because of data manipulation. In FLAQR this scenario is relevant during
executing a compare statement: if one of the values in the compare statement is substituted with a wrong
(mismatching) value then a fail term is returned. Thus we need to consider an availability attacker’s
integrity authority when reasoning about its power to fail a program. Specifically, the authority of
principal ¢ as an availability attacker is €.

We consider a static but active attacker model similar to those used in Byzantine consensus proto-
cols. By static we mean which principal or collection of principals can act maliciously is fixed prior
to program execution. By active we mean that the attackers may manipulate inputs (including higher-
order functions) during run time. We formally define the power of an availability attacker with respect
to quorum systems.

Availability attackers in FLAQR are somewhat different than integrity and confidentiality attackers
because we want to represent multiple possible attackers but limit which attackers are active for a par-
ticular execution. This goal supports the bounded fault assumptions found in consensus protocols where
system configurations assume an upper bound on the number of faults possible.

A quorum system Q is represented as set of sets of hosts (or principals) e.g. @ = {q1,492,---,qn}-
Here each g; represents a set of principals whose consensus is adequate for the system to make progress.
We define availability attackers in terms of the roleration set [Q] of a quorum system Q. The toleration
set is a set of principals where each principal represents an upper bound on the authority of an attacker
the quorum can tolerate without failing.

Example.

(1) The toleration set for quorum Q; = {q; := {a,b}; g2 := {b,c};q3 := {a,c}} is [Q1] = {a', b™, c**},

(2) For heterogeneous quorum system Qo = {q1 := {p,q};q2 := {r}} the toleration set is [Q2] = {p™ A
qia’ ria

(3) For Q3 = {q := {alice}} the toleration set is [Q3]] = {}, i.e. Q3 can not tolerate any fault.

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
Lo B & B e ¥ S 2 U= o R B o 3 B & 1 B N O S N R e e R o N o) B & 4 B A O S Y=o - BN e) N) B - OV B S e

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

16 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

IHEl>1 ie{l,2 IHE-l>1 ie{l,2 € >
[A-PAIR] 1% - >r,(i X{) } [A-SUM] 1\;% - :(i +{) } [A-FUN] I~ i
X T IHEF€>1 LN T2
I ¢> A I =60 je{l,2
[A-TYPE] i ’ [A-AVAIL] i [A-INTEGCOM] i i/ €2}

HI¢> (¢ sayst HOI-¢>(sayst III-¢> (61 @) says T

Fig. 14. fails judgments.

An availability attacker’s authority is at most equivalent to a (single) principal’s authority in the toler-
ation set. We define the set of all such attackers for a quorum Q as

Aoy = {€ |3 e [Q]ILI- ¢ > ¢}.

which includes weaker attackers who a principal in the toleration set may act on behalf of.

The fails relation (>) determines whether a principal can cause a program of a particular type to
evaluate to fail. Similar to the reads judgment, the fails judgment not only considers the outermost
says principal, but also any nested says principals whose propagated failures could cause the whole
term to fail. Figure 14 defines the fails judgment, written II |- / > 7, which describes when a principal [
can fail an expression of type 7 in delegation context 11.

Consider an expression 77, (7, €) and an attacker principal [,. If IT |- IS > £, and IT | [> (¢, then
the attacker learns nothing by evaluating n, (17, e). Similarly, if IT |- [} > ¢ and II | [} > ¢*, then the
attacker cannot influence the value 1, (7, e).

In contrast, if IT |- 1,° > ¢°, and IT | [2 > ¢°, an availability attacker may cause r, e to evaluate
to fail? S3YS 7 which steps to faill S8YS (' S3YS7) by E_SEALEDFAIL. The fails relation reflects
this possibility. Using A-TYPE and A-AVAIL (or A-INTEGCOM if ¢’ was of form (€1 @ ¢3)) we get
IT |- I, > ¢ says (¢ says 7).

We use the fails relation and the attacker set to define which availability policies a particular quorum
system is capable of enforcing. We say Q guards 7 if the following rule applies:

Ve A[QH.H e>T
I+ Q guards t

[Q-GUARD]

Definition 3 (Valid quorum type). A type 7 is a valid quorum type with respect to quorum system Q and
delegation set II if the condition II |- Q guards 7 is satisfied.

Example. If QO = {¢1 := {a,b};q2 = {b.c};q3 = {a,c}} and {g = (a®b) O (bDc)O(a®c) then
{o says (a says 1) is not a valid quorum type because II | Q guards (g says (a says 7)) as Il |+ a*® >
lg says (a says 7) and a*® € A[gj. But it is a valid quorum type for heterogeneous quorum system Q' = {g; :=
{a,b};q2 := {a,c}} as a® ¢ Ajor.

7. Security Properties

To evaluate the formal properties of FLAQR, we prove that FLAQR preserves noninterference for
confidentiality, integrity, and availability (section 7.2). These theorems state that attackers cannot learn

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 17

Co=F=(g } B
B:=¢teF | Bl OR BQ ’ Bl AND 82
Fig. 15. Blame constraint syntax
CetieF CkElLeF die{l,2}.C=tieF die{l,2}.C=tieF
C-ConNJ C-DisJ C-PARAND
[] CeEti AnlyeF [] CetiviaeF [] CetiHleF
CelieF CEleF M- >p" ne{ia}
C-PAROR C-IN
[] CetHbeF [C-IN] leFepeF
c TeF ¢ TeF i, 3ie{l,2}.CiEp eF i,
[C-OR] 1Ep € 2 E=p' € n e {i,a} [C-AND] ie{l,2}.Ciep'e e {i,a}

Cil RCyE=pieF Ci1 AND Co = pleF

Fig. 16. Blame membership: To apply C-IN, C-OR and C-AND the label p needs to be a primitive principal in N" U {1, T}.
The blame semantics rules ensure all statements added to the blame set only refer to primitive principals. This rule set differs
from the originally published one [7], which didn’t correctly handle compound principals such as p A g.

secret inputs, influence trusted outputs, or control the failure behavior of well-typed FLAQR programs.
In addition, we also prove additional theorems that formalize the soundness of our type system with
respect to a program’s failure behavior.

7.1. Soundness of failure

FLAQR’s semantics uses the compare and select security abstractions and the failure propagation
rules to model failure and failure-tolerance in distributed programs, and FLAQR’s type system lets us
reason statically about this failure behavior. To verify that such reasoning is sound, we prove two related
theorems regarding the type of a program and the causes of potential failures.

In pursuit of this goal, this section introduces our blame semantics which reasons about failure-causing
(faulty) principals during program execution. The goal is to record the set of principals which may
cause run-time failures as a constraint on the set of faulty hosts /. Figure 15 presents the syntax of
blame constraints, which are boolean formulas representing a lower bound on the contents of F. Atomic
constraints ¢ € F denote that label ¢ is in faulty set F. This initial blame constraint (C;,;;) is represented
using the toleration set of the implied quorum system.

Definition 4 (Initial blame constraint). For toleration set [Q] of the form {(pi A ... A p}nl)ia s
(p'{ A A pfnk)la} the initial blame constraint C;,;; is defined as a (logical) disjunction of conjunctions:

Cinit = (p1 € F AND ... AND p) € F) OR .. OR (pieF AND ... AND pf € F)

Each disjunction represents a minimal subset of a possible satisfying assignment for the faulty set
F. For brevity, we will refer to these subsets as the possible faulty sets implied by a particular blame
constraint. Observe that for quorum system Q, there is a one-to-one correspondence between every
t; € [Q] and every possible faulty set F7, ..., F; in Ci,;; Where F; is the set implied by the i’ disjunction
in C;,;; such that ¢; = b;**, where b; = /\pef,- p.

0 N o b~ w N =

- a A A a4 ©
a A w N =

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45
46

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

18 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

V1 # Vo C/ = ‘C(VI’VQ?C’ 51952)

C-COMPAREFAIL -
[] compare (77, v1) and (7, v2),c) & s C — ((failla®f2) says T o & s)C
fl [2

Fig. 17. E-COMPAREFAIL with Blame Semantics.

Evaluation rule C-COMPAREFAIL, in Figure 17, shows how function £ (discussed below) updates the
blame constraint from C to C’. We omit the blame-enabled versions of other evaluation rules since they
simply propagate the blame constraint without modification.

Example.

(1) Quorum system Q1 = {q1 = {a,b};q2 = {b,c};qs = {a,c}} has toleration set [Q;] =
{a*,b", ¢**} and three possible faulty sets in C;: F = {a} or F = {b} or F = {c}

(2) Quorum system Qo = {q1 := {p,q}; q2 := {r}} has toleration set [Qs] = {p** A ¢, r**} and two
possible faulty sets in Cy;i: F = {p,q} or F = {r}.

While C;,;; is defined statically according to the type of the program, rule C-COMPAREFAIL updates
these constraints according to actual failures that occur during the program’s execution. This approach
identifies “unexpected” failures not implied by C;,;;.

For example, Q2 = {q1 := {p,q}; g2 := {r}} has two possible faulty sets F = {p,q} or F = {r}.
The initial blame constraint is Cy; ::= (p€ F AND g€ F) OR (re F)

Placing blame for a specific failure in a distributed system is challenging, (and often impossible!). For
example, when a comparison of values signed by ¢{; and ¢ fails, it is unclear who to blame since either
principal (or a principal acting on their behalf) could have influenced the values that led to the failure.
We do know, however, that at least one of them is faulty; recording this information helps constrain the
contents of possible faulty sets.

We can reason about principals that must be in F by considering all possible faulty sets implied by
the blame constraints. We write C = € € F (read as C entails € € F), when every possible faulty set in
C, has the ¢ € F clause. Figure 16 presents inference rules for the = relation.

The rules C-IN, C-OR and C-AND are defined for a primitive principal p™ in N' U {1, T}, where
n € {i,a}. Whereas rules C-CONJ, C-DisJ, C-PARAND and C-PAROR are defined for compound
principals such as p A ¢, p H ¢ etc. The blame semantics rules (particularly, the £ and NORM functions)
ensure all statementss added to the blame set only refer to primitive principals. This rule set differs
from the rule set presented in the originally published one [7], which didn’t correctly handle compound
principals such as p A g. For example, if C = p and C E ¢, then with the old ruleset from [7], we can not
prove C = p A g, because the blame semantics did not add the compound principal p A g to F. Instead
the blame semantics add p € F and g € F to the blame set as two different statements. But with our
corrected ruleset we can prove C = p A ¢, given C = p and C = ¢ (using C-CONJ and C-IN).

Let us see another example. Since ¢; is included in all satisfying choices of F below, we can say
C & {1 € F(using C-CONJ,C-IN, and possibly C-IN).

C:(€1€f AND 526./_'.) OR (fl€f AND 536.7)
OR (£ €F AND £4€ F) OR ({1 € F AND {5 € F)

O 0 N O U A~ w N =

w W W W N N NN NN N NN =2 = a2 A a2
w N = 0 W N OO U, W NN 2,0 VN O W NN =,

34

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 19

The £ function (full definition in Figure 45) is used by rule C-COMPAREFAIL to update C. For an
expression:

compare (77, v1) and (77, v2)

with vy # vo, L(v1,v2,C, {1, {2) updates the formulas in C to reflect that either £; or ¢; is faulty. If ¢1 or
{2 already must be faulty, specifically if C = ¢; € F or C = {3 € F, then the function does not update
any formulas. This approach avoids blaming honest principals when the other principal is already known
to be faulty.

If neither £; nor {2 are known to be faulty. then function £ is called recursively on inner layers (i.e.,
nested (77) expressions) of v; and vy until a subexpression protected by a known-faulty principal is
found. If no such layer is present, then the principal protecting the innermost layer is added to C (or
the outer principals if there are no inner layers). Only this principal has seen the unprotected value and
thus could have knowingly protected the wrong value. Observe that for well-typed compare expressions,
only the outer layer of compared terms may differ in protection level, so there is less ambiguity when

blaming an inner principal.
Updated constraints are kept in disjunctive normal form. Specifically, for compared terms (77,, v1)

and (77,, v2), with vi # vo, with initial constraint: C;,; ::= (p € F AND g € F) OR (r € F), then
ﬁ(VI ’ v27 Cinitv 519 62) returns

C'=(peF AND g€ F AND {1 € F)
OR (peF AND g€ F AND {5 € F)
OR (re F AND {1 € F) OR (re F AND & € F)

We can now state the soundness theorem for our blame semantics, and apply it to prove a liveness
result. Theorem 1 states that for any well-typed FLAQR program with a failing execution, and the faulty
sets F; implied by C’ (the final constraint computed by the blame semantics), it must be the case that the
program’s type 7 reflects the ability of the (possibly colluding) principals in F; to fail the program.

Theorem 1 (Sound blame). Given,

(1) ILT; pe; e - (e, c) & empty)Cimi : T
(2) (e, c) & empty)Cint —* ((fail",c) & empty)”

where e is a source-level expression,6

then for each possible faulty set F; implied by C', there is a principal b; =)\ e, P such that 1T |-
biia > T

Proof. Either e takes single step or multiple steps to produce the fail® term as the end result. For both
the cases we prove it by induction over structure of e. See Appendix B for full proof. []

While Theorem 1 characterizes the relationship between a program’s type and the possible faulty sets
for a failing execution, it does not explicitly tell us anything about the fault-tolerance of a particular

®1n other words, e does not contain any fail terms.

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
Lo B & B e ¥ S 2 U= o R B o 3 B & 1 B N O S N R e e R o N o) B & 4 B A O S Y=o - BN e) N) B - OV B S e

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

20 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

program. Since the type of a FLAQR program specifies its availability policy (in addition to its confi-
dentiality and integrity), different FLAQR types will be tolerant of different failures. Below, we prove a
liveness result for a common case, majority quorum protocols.

Definition 5 (Majority quorum system). An m/n majority quorum system is a quorum system that
always requires at least m of its hosts to reach consensus, where m > n — m.

Theorem 2 (Majority Liveness). If e is a source-level expression and:

(1) II; T; pe; ¢ - (e, c) & empty)Cimi - 1

(2) Il I+ Q guards T

(3) Q is a m/n majority quorum system

(4) {le,c) & empty)Cini —* ((fail™,c) & empty)C’

then for every possible faulty set F' implied by C', |F'| > (n — m).

Proof. From (2), we know 7 is a valid quorum type for Q so V¢ € Ajgp.Il | ¢ > 7. Since Ajqj
is a superset of [Q], we also have Vr € [Q].Il |¢ ¢ > 7. Furthermore, from Definition 4, for each
possible faulty set F; implied by C;,;;, we know there is a principal ; € [Q] such that t; = b;'*, where
b, = /\pe}‘,- p. Therefore, for each such b;, we know II |£ b;"® > .

Since Q is an m/n majority quorum system, every quorum is of size m and every faulty set in C;,;
is of size (n — m). For contradiction, assume there exists a faulty set F’ satisfying C’ that has size
(n—m). Then by the definition of £, all possible faulty sets implied by C’ also have size (n — m) since £
monotonically increases the size of all possible faulty sets or none of them. Furthermore, each possible
faulty set implied by Ci,;, is a subset (or equal to) a possible faulty set implied by C’, so | F'| = (n — m)
implies C,;; = C'.

From Theorem 1 we know for every possible faulty set 7/ implied by C’, it must be the case that
II I+ bfia > 1, where /\ peF, P- However, since C;,; = C’, we have a contradiction since (2) implies
I |£ b} > 7. Thus there cannot exist a possible faulty set of size (at least) (n — m) implied by C’, and
all possible faulty sets must have size greater than (n — m). []

7.2. Noninterference

We prove noninterference by extending the FLAQR syntax with bracketed expressions in the style of
Pottier and Simonet [14]. Figure 43 shows selected bracketed evaluation rules and Figure 42a and 42b
show the typing rules for bracketed terms. The soundness and completeness of the bracketed semantics
are proved the Appendix A (Lemmata 16 - 21).

Noninterference often is expressed with a distinct attacker label. We use H to denote the attacker. This
means the attacker can read data with label £ if IT | ¢¢ = H° and can forge or influence it if Il |- H* = ¢*
and can make it unavailable if I |- H® &= ¢°

An issue in typing brackets is how to deal with fail terms. Our confidentiality and integrity results
are failure-insensitive in the sense that they only apply to terminating executions. This is similar to
how termination-insensitive noninterference is typically characterized for potentially non-terminating
programs.

Traditionally, bracketed typing rules require that bracketed terms have a restrictive type, ensuring that
only values derived from secret (or untrusted) inputs are bracketed. In FLAQR, there are several scenarios

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
Lo B & B e ¥ S 2 U= o R B o 3 B & 1 B N O S N R e e R o N o) B & 4 B A O S Y=o - BN e) N) B - OV B S e

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 21

where a bracketed value may not have a restrictive type. For example, when a run expression is evaluated
within a bracket, it pushes an element onto the configuration stack, but only in one of the executions.
Another example is when a bracketed value occurs in a compare expression, but the result is no longer
influenceable by the attacker H. For these scenarios, several of the typing rules in Figure 42a permit
bracketed values to have less restrictive types. Because of these rules, subject reduction does not directly
imply noninterference as it does in most bracketed approaches, but the additional proof obligations are
relatively easy to discharge.

Can have less restrictive type
Term =1 mT=a
(v V) No Yes
(v|fail") Yes No
(v|v) Yes Yes
(fail™ | fail") | Yes Yes

The table above summarizes how bracketed terms are typed depending on whether we are concerned
with integrity or availability. For integrity, unequal bracketed values must have a restrictive type (i.e.,
one that protects H), but equal bracketed values may have a less restrictive type. For availability, only
bracketed terms where one side contains a value and the other a failure must have a restrictive type.

7.2.1. Confidentiality and Integrity Noninterference

To prove confidentiality (integrity) noninterference we need to show that given two different secret
(untrusted) inputs to an expression e the evaluated public (trusted) outputs are equivalent. Equivalence
is defined in terms of an observation function O adapted from FLAC [8] in Appendix A, Figure 44.

Theorem 3 (c-i Noninterference). IfII;T',x : ¢/ says 7/ - {e,c) & empty : € says T where

(1) I pe;c b= v; : € says 7, i € {1,2}
(2) (el (1 | v2)],) & empty —* (v,¢) & empty
Q) IUH Cand Il H'C (, 1€ {c,i}.

then, O(|v|;, 1L €,) = O(|v],, 1L, €, 7)

Proof. From subject reduction we can prove that |v|; and |v], have same type. By induction over the
structure of projected values, |v|,, we can show O(|v|;,IL, ¢, n) = O(|v|y,II, €,) Please refer to the
Appendix A for full proof. []

7.2.2. Availability Noninterference

Similar to [15] our end-to-end availability guarantee is also expressed as noninterference property.
Specifically, if one run of a well-typed FLAQR program running on a quorum system terminates suc-
cessfully (does not fail), then all other runs of the program also terminate.

This approach treats “buggy” programs where every execution returns fail regardless of the choice
of inputs as noninterfering. This behavior is desirable because here we are concerned with proving
the absence of failures that attackers can control. For structured quorum systems with a liveness result
such as Theorem 2 for m/n majority quorums, we can further constrain when failures may occur. For
example, Theorem 2 proves failures can only occur when more than (n — m) principals are faulty. In
contrast, Theorem 4 applies to arbitrary quorum systems provided they guard the program’s type, but
cannot distinguish programs where all executions fail.

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
Lo B & B e ¥ S 2 U= o R B o 3 B & 1 B N O S N R e e R o N o) B & 4 B A O S Y=o - BN e) N) B - OV B S e

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

1
2
3
4
5
6
7

8
9

22 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

(A(x:7a)[pe]- Aly:7p) [pel. Az:7e) [pe].
(select
(compare x and y)
or
(select
(compare y and z)
or
(compare x and 7))))
(run™ e,@a) (run™ e,@b) (run™ e.@c)

Fig. 18. FLAQR implementation of majority quorum example

Theorem 4 (Availability Noninterference). If
ILT, x: € says 7 + {e,c) & empty : £o says T where

(1) ILT; pesc b fi: €says 7' ie {1,2}
(2) le[x — (fi | f2)].c) & empty —* (f,c) & empty
(3) I H > ¢ says 7" and H" € Ajg) and

IT |- Q guards (£g says 7)

then |f|, # failf@ SAYST — | f|, # failfe SA¥ST

Proof. From subject reduction (see Lemma 25 in the Appendix) we know, II;T';pc;c +— |f];
(g says 7. Because I |- Q guards (€g says 1) and H* € Ajg) we can write I |/ H”* > {g says T
from rule Q-GUARD . This ensures if |f|; # fail’@ 33¥S7 then |f|, # fail’@ 53¥57 and vice-

versa. []

8. Examples revisited

We are now ready to implement the examples from section 2 with FLAQR semantics. To make these
implementations intuitive we assume that our language supports integer (int) types, a mathematical
operator > (greater than), and ternary operator :?. Beacuse int is a base type C(int) returns L. The
examples also read from the local state of the participating principals. Which is fine because there are
standard ways to encode memory (reads/writes) into lambda-calculus.

8.1. Tolerating failure and corruption

In this FLAQR implementation (Figure 18) of 2/3 majority quorum example of section 2.1, we refer
principals representing alice, bob and carol as a, b and c respectively. The program is executed at host
¢’ with program counter pc. Which means condition IT |- ¢ > pc holds. The program body consists
of a function of type 75 =(1, 2> 7, 25 7. &5 (@ @ b)) © (b* @) © (¢ @ ¢**)) says 7)) and
the three arguments to the function are run statements. Here 7 is (a A b A ¢)° says int. Which means
C(ty) = pc. The function body can be evaluated at ¢/, as condition IT |- ¢’ > pc is true.

Here e,, e, and e, are the expressions that read the balances for account acct from the local states of
a, b and c respectively. The program counter at a, b, and ¢ are a, b and c respectively. The data returned

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

~N O RN =

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 23

(Aargy :tp)[pc]. (A(args Ty)[pc].
(select
(bind x =arg; in (bind y =args in
(bind ¥’ = x in (bind y' =y in
@y Apenpey (X >Y"7 22 3)))))))
or
(select (argy) or (argz)))))(run™ €'@b’))(run™ e@b)

Fig. 19. FLAQR implementation of available largest balance example

from a has type 7, which is basically a** says 7. Similarly 7, is b** says 7 and 7, is ¢** says 7. Because
each run returns a balance, the base type of 7 is an inf type, and it is protected with confidentiality label
(a~b Ac)°, meaning anyone who can read all the three labels (a, b and ¢), can read the returned balances.

In order to typecheck the run statements the conditions I |- pc = a, II | pc E b, and I |- pc E ¢
need to hold. The condition IT |- ¢’ > C(7,) is trivially true as C(7,) = L. Similarly C(7;,) = L and
C(r.) = L as well.

The host executing the code need to be able to read the return values from the three hosts. This
means conditions II |- ¢ > a®sayst II |- ¢ > b sayst and II |+ ¢’ > ¢'* says 7 need to
hold in order to typecheck the compare statements. The type of the whole program is (((a** ® b**) ©
(b @) O (@ D)) says 1) , which is a valid quorum type for Q@ = {q1 := {a,b};q2 :=
{b,c};q3 = {a,c}}.

Based on the security properties defined in section 7 this program offers the confidentiality, integrity
and availability guaranteed by quorum system Q. Therefore, the result cannot be learned or influenced
by unauthorized principals, and will be available as long as two hosts out of a, b, and ¢ are non-faulty.

The toleration set here is [Q] = {a',b*,¢"}. So, the program is not safe against an attacker with
label I, = a** A b* (or, a* A b?), for example. This is because ﬂt € [Q]IL -1t = 1,. Since IT |+ I, > a*,
principal [, can fail two compare statements on lines 3 and 8. And, because II |- I, > b*, I, can also fail
another two compare statements (one overlapping compare statment) on lines 3 and 6. Thus the whole
program evaluates to fail. This FLAQR code also helps prevent incorrect comparisons. For instance,
replacing z with y on line 8 will not typecheck.

8.2. Using best available services

The code in Figure 19 is the FLAQR implementation of Figure 3. The program runs at a host ¢ with
program counter pc. The expressions e and ¢’ read account balances from principals b and b, represent-
ing the banks. The values returned from b and " have types 7, = (b** says (b° A b’®) says int) and
T = (b says (b° A b’®) says int) respectively.

The type of the whole program is ((d © b © b"**) says (b° A b'°) says int). Here d = pc ub L b'.
In order to typecheck the run statements, the conditions IT | pc © b and II |- pc © b’ need to
hold. The program counter at b is b and b’ is b’. The bind statements (lines 3-4) typecheck because
conditions IT |+ pcu b & d, 11 |- pcub® b = d, 11 I+ pcub® b b T d,and II |-
pc L b L b L b L b = d hold, because of our choice of d.

O 0 N O U A~ w N =

N N N = = a3 a a a4
N 2 & VW O N O U~ W N =2 S

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

24 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

9. Secret sharing with FLAQR

Secret sharing is a cryptographic mechanism used in several distributed systems protocols such
as oblivious transfer, multiparty communication, byzantine agreement, etc. In this section we extend
FLAQR with two new language constructs to support secret sharing. We call this extended version of our
programming model FLAQR™. Secret sharing is a process of splitting a secret into n shares and distribut-
ing the shares among n hosts (or principals in our setting). When an adequate number of hosts, say ¢,
combine their respective shares, the secret is reconstructed [16, 17]. Sometimes this process is referred
as (t,n)-threshold secret sharing scheme [16, 18], i.e. a quorum of ¢ hosts (where 1 < ¢ < n) out of those
n hosts need to combine their shares to retrieve the initial secret value. With (# — 1) or fewer shares,
adversaries learn nothing about the secret.

Secret sharing is most commonly described in terms of a mathematical polynomial, say p(x), of
degree (t — 1), p(0) being the secret value [16]. The polynomial’s values at n different co-ordinates are
distributed as the secret shares, and by knowing ¢ of these values one can reconstruct’ the polynomial,
and hence they can find the secret value p(0).

For simplicity, we extend FLAQR to only supports (2,2)-threshold secret sharing, but later we explain
that extending this framework to support (t,n)-threshold secret sharing for 2 < n and t < n would be
straightforward. We model secret shares abstractly using a value sealed by new kinds of principals k.L
and k.R. We call k a key principal because, unlike the principals in P, a new, unique key principal k is
created each time secret shares are created. In contrast, the principals in P are statically known. The
principals k.L and k.R represent the two associated shares of the key principal k. We will be refering to
(2,2)-threshold secret sharing simply as (2,2) secret sharing in the following sections.

9.1. Motivating example of secret sharing : password splitting.

Figure 20 presents a simple (2,2) secret sharing example and the corresponding pseudocode is shown
in Figure 21. A (secret) password s belongs to bob who wants keep a backup of it. Bob creates two
secret-shares of s as s_1 and s_2 and sends them to alice and carol respectively. That is, anyone who
wants to get access to s has to either get it directly from bob, or needs to get both s_1 and s_2 from
alice and carol and reproduce it. Later, dave fetches the secret shares from alice and carol and
combines them to produce the password s.

An advantage of secret sharing is that it permits the secure transmission of secrets without requiring
key distribution or public-key infrastructure (PKI). Instead, any party who possesses ¢ shares may recover
the secret. This can also be a liability, however, since an adversary needs to only obtain the shares to
access the secret, too. Thus, considering the flow of shares between principals is central to the security
of a secret sharing scheme. In the example in Figure 21, alice and carol are unable to access the secret
only because they possess a single share; a coding error can transmit both shares to either alice or
carol obviating the cryptographic protection. For this reason, embedding secret sharing in a language
like FLAQR makes sense because the type system ensures the code only permits authorized flows.

9.2. (2,2) secret sharing in FLAQR™

Our abstractions for secret sharing in FLAQR" make use of the 77, term to represent sealed secret
shares. However, aspects of secret sharing schemes differ from the use of 77, in prior FLAC-based

7Typically using Lagrange interpolation [17].

0 N o b~ w N =

®© W 00 N O U A~ W N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o O A W N =2 0 W N O WD =20 VN O W N2 VW N0, W N =

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 25

m (s_1,s_2) := split(s)

s_1 s_2

alice carol

s_1 s_2

s := combine(s_1,s_2)

Fig. 20. Overview of (2, 2) secret sharing: bob shares his secret shares with alice and carol. Later, alice and carol forward
their respective shares to dave. Finally, dave reproduces the initial secret s with the shares he received from alice and carol.

splitCombinePassword():
(s_1,s_2) := split(s) @ bob;
send s_1 to alice;
send s_2 to carol;
con := func(); // func() returns a bool
if (con)
fetch s_1 from alice;
fetch s_2 from carol;
s' := combine(s_1,s_2) @ dave;
else return;

Fig. 21. Creating two secret shares from a secret and then reconstructing the secret from the two secret shares using functions
of a (2, 2) secret sharing protocol.

languages [8, 19, 20]. Here, in addition to the sealed values generated by the 7, term, sealed values
may also be created when splitting a secret into shares. In the previous approaches, a value sealed by 7,
serves as a reasonable model for signed and encrypted values. Specifically, the confidentiality component
¢ behaves like a public-key encrypted value: anyone can encrypt values at £, but only authorized parties
(which possess the associated private key) can distinguish the values protected at £°. Since 7, can only be
applied in contexts where pc=¢* (see UNITM), the integrity component behaves like a digitally signed
value: only authorized principals can cause a value to be signed with ¢* integrity, but anyone can use
high-integrity values.® Obviously then, enforcing these policies cryptographically would require public-
key infrastructure.

Secret sharing behaves differently from the above interpretations: rather than authorization being
based on possession of a long-lived private key (a reasonable proxy for identity), secret sharing implic-
itly authorizes any party possessing ¢ shares. Therefore using identity-based principals such as alice
or bob is inappropriate since, even if a shared secret is intended for alice, anyone with ¢ shares will
be able to distinguish the secret. Even alice must have ¢ shares to access the secret. An abstraction for
secret sharing should capture this behavior, but doing so in FLAQR*requires new concepts.

8There doesn’t appear to be a natural cryptographic analog for the availability component.

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

26 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

(E-S] k is fresh
-SPLIT : - -

split, v —> ((Terene V) Terene V)
[E-COMBINE] combine x = (e ne V)s Mire e V))@PC ine — e[x — V]

Fig. 22. FLAQR™ semantics for secret sharing (splitting secrets and combining shares).

IL T pc;et—e: 1 II IFc¢ > pc
IT I pc = € L1 A(pct)

[SPLIT] -
IL T pe;c = splitye: (L A € says T X RS A £ says 1)

IL;T; pc;e e : (L A € says T X RS A € says 1)
III-c > pc ILT,x:1;6 upcic € : € sayst
III-¢upc= ' sayst

[COMBINE] : —
;Ispe;c - combine x = e@pc ine’ : £ sayst
IL T pc;e-v:t
ITl-c > pc Ke{L,R
[SEALEDK] P { }

ILT;pe;e b= (Mgxnev) s K A €says T

Fig. 23. FLAQR™ typing rules for secret sharing.

We extend the set of principals P with new primitive principals L and R representing the left and right
shares of our (2, 2) secret sharing scheme. The set of all principals P for FLAQRTis thus the closure of
the set N U {T, L, L, R} over the same operations as FLAQR. In the following we are only interested in
the confidentiality projections L° and R°, since secret sharing only concerns enforcing the confidentiality
of the secret.

Another aspect of secret sharing that departs from prior uses of FLAC principals is that each time
shares are created, they are protected by a different secret. Consequently, shares created from different
invocations cannot be mixed, even when the underlying value is the same. For this reason, we define
key principals, a new type of principal generated dynamically at runtime. For our purposes, each k €
IC, where K is the set of all key principals, is equipped with a left and right principal, k.L° and k.R°.
Importantly, since key principals are generated dynamically, they are not directly representable statically.
The principals L° and R are the static representation for the left and right principals of any key principal,
but the shares of different key principals cannot be distinguished at the type level.

9.3. Semantics and types for secret sharing
Figure 22 presents the semantic rules added to FLAQR™. Expression split, v produces two secret

shares, sealed with principals k.L° A € and k.R° A € from the secret value v (rule E-SPLIT) using a fresh
key principal k. The ¢ annotation specifies an additional policy to seal the secret with an addition to

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
Lo B & B e ¥ S 2 U= o R B o 3 B & 1 B N O S N R e e R o N o) B & 4 B A O S Y=o - BN e) N) B - OV B S e

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 27

the key principal. Primarily ¢ is used for integrity and availability components since k.L° and k.R° are
confidentiality projections.
Two shares are combined with expression

combine x = (T zcnr V)s (Megenr V))@pC ine

Rule E-COMBINE evaluates these terms to e[x — v] revealing the secret v and substituting it for x in
the body e. Notice that the key principal is the same on both sides of the pair. As discussed below in
Section 9.4, mismatched key principals result in failure. The additional pc annotation on combine terms
is used by the extended blame semantics, discussed in Section 9.4.

For simplicity, our extension only supports (2,2)-threshold secret sharing, but we believe extending
this framework to support (#,n)-threshold secret sharing for 2 < n and t < n would be straightforward.
For example, given some ¢ and n, we could redefine E-SPLIT to generate a tuple containing n shares
sealed by principals k.59, k.S, ..., k.S ¢. E-COMBINE would be replaced by ('t’) rules: one for each valid
t-sized subset of shares.

Figure 23 presents the FLAQR™ typing rules for split and combine. The last premise in the SPLIT
rule involves the view [20] of the pc’s integrity, A(pc'). The view of a principal was introduced by
Ceccetti et al [20] to specify an upper bound on the confidentiality that may be robustly declassified [21]
based on the integrity of the context performing the declassification and the data itself. These restrictions
ensure an attacker cannot influence what (or whether) information is declassified. Below, we extend the
definition of view with the principals’ availability projection counterpart as well.

Definition 6 (view of a principal). Let £ = p° A ¢* A r* be a FLAM [6] label (principal) expressed in
normal form. The view of ¢, written as A (), is defined as A(p° A ¢' A 1?) = ¢°.

The premise I |- pc = € 1 A(pc') in SPLIT serves two purposes. First, it ensures the confidentiality
of control flow and the unsealed values in the context, represented by pc, are no more restrictive than the
upper bound on declassification A (pc') (or the confidentiality of £ if no declassification takes place).
Second, it ensures the label ¢ protects the availability and integrity of the context; only confidentiality
may be downgraded by split terms.

When shares are combined to reveal the secret, the rule COMBINE ensures the combined pair contains
a left and right share (although not which key principal they are associated with), and that the body of
the combine term protects the result with a principal at least as restrictive as the upper bound of ¢ and
the context pc the combine occurs in.

In some sense, split, and combine function as an alternative to 7, and bind. The difference is that
split seals values using a key principal in addition to a label £, and permits secrets more restrictive than
¢ to be sealed. Combine is similar to a bind that declassifies its bound value, dropping the key principals
k.L and k.R from the protection requirements on the body of the combine. Note that it is not possible for
a type-safe program to bind a secret share. Since a premise of bind would require the body accessing
the unsealed share on host ¢ to typecheck at pc i (L A €), this would violate the invariant that ¢ must
act for the pc of the programs it executes.’

We need one more typing rule, SEALEDK, to preserve the types of the values sealed with labels k.L¢
and k.R°, for any freshly generated key k € K. The existing SEALED rule is not enough as it does not
handle the values protected with these new key principals. Although, the consequence of having this

“Recall this invariant is enforced by the II |- ¢ > pc premise included in all typing rules.

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
Lo B & B e ¥ S 2 U= o R B o 3 B & 1 B N O S N R e e R o N o) B & 4 B A O S Y=o - BN e) N) B - OV B S e

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

28 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

k is fresh
split, fail” —> £31](L°ACSAYS TxREAL SAYS T)

[E-SPLITFAIL|

ki # ko

E-COMBINEFAIL
[] combine x = (7, rcnr V) (Tiy.rene V))@PC in € — e[x — fail"]

[E-COMBINEFAILL | combine x = (failX" " SAYST fape ine — e[x — fail™]

[E-COMBINEFAILR] combine x = (v, fail® "¢ S3YS™apc ine — e[x — fail™]

Fig. 24. fail propagation rules in FLAQR™

ki # ko C':=NORM(pc,C
[C-COMBINEFAIL] 1 # k2 (pe,C)

Fig. 25. E-COMBINEFAIL with Blame Semantics.

rule is that, inspite of being well-typed, a FLAQR™ program can produce mismatching shares with two
different keys (say k; and k) during run-time. We handle such cases with mismatching shares with our
extended blame semantics in section 9.4.

9.4. Extending the blame semantics

As with other FLAQR terms, fail values propagate through split and combine. Figure 24 presents
fail propagation rules for split and combine statements. These rules are straightforward propagation
rules except for E-COMBINEFAIL, which evaluates to fail if the key principals sealing the shares are
mismatched.

The introduction of E-COMBINEFAIL rule creates an additional source of failure besides compare
terms with mismatched values. Rule C-COMBINEFAIL extends FLAQR’s blame semantics to account
for this. Unlike the case for compare, we cannot blame the failure on the principal that sealed the mis-
matched values given to combine. The failure in this case is due to pairing together shares generated
by different split evaluations. Rather than blaming the creators of the sealed value, we instead want
to blame the principals that influenced this pairing. This influence is represented by the label of the
pc. Hence, when k; and ko do not match, C-COMBINEFAIL adds pc to the blame set. The function £
used in C-COMPAREFAIL is unnecessary here because it is unnecessary to examine any subterms of the
combined pair—only the outer key principals contribute to a combine failure.

The NORM function'? in the premise of C-COMBINEFAIL is used to add the new (potentially malicious)
pricipal pc in the exisiting blame set C, in a normalized form. For example, if pc = (a A b) v ¢ and if

10This normalization function was not present in the original FLAQR publication [7], which is an error. Normalization of the
statements added to the blame set is required to ensure compound principals are correctly handled.

((combine x = (T, 1o V1): (Tey e e V2))@PC in (7,)0 &)¢ — ((Fail’ 557,) & 5)

0 N o b~ w N =

_a a4 a4 a A a4 o
~N o g B W N =

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45
46

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 29
C:= (1 € F) OR (£3 € F), then calling NORM(pc, C) will return a blame set

C':=(ac FANDbe FAND{; € F) OR (ac FANDbe F AND &5 € F)
OR (ce FAND{; € F) OR (ce FAND ¢ € F)

In case of C-COMPAREFAIL (Figure 17), the NORM function was called from within the £ function (see
Figure 45). Figure 46 contains the complete definition of the NORM function.

9.5. Security properties

By design, split and combine are interfering with respect to confidentiality: they can cause secret
values to be declassified. However, we would like to ensure that integrity and availability noninterference
are unaffected.

In order to prove integrity and availability noninterference for FLAQR™ programs we extend the brack-
eted semantics (Figure 26) and observation function (Figure 27) with rules for split and combine, and
add the corresponding cases for split and combine terms to the proofs for the lemmas and theorems
of FLAQR™. The noninterference theorem statements for FLAQR™ are identical to Theorems 3 and 4,
though Theorem 3 only holds for 7 = i in FLAQR™. Since the new static principals L and R are only
used in confidentiality projections, rules such as Q-GUARD and the fails are unaffected by the new terms
for secret sharing, the proofs of these theorems is largely unchanged from those for FLAQR. However,
ensuring the new terms did not break an essential lemma such as subject reduction (Lemma 24) required
careful design of the new evaluation, failure propagation, bracketed semantics, and typing rules.

Although we protect the robustness (in theory) of what values may be declassified via split and
combine, secret sharing is inherently non-robust since the party possessing the shares decides whether
to reveal the secret. To formalize the protections that split and combine do offer, a weaker form of
robust declassification would be required that permits secure uses of split and prohibits insecure ones
(such as those violating the premise IT |- pc & €1 A(pc')). Such a definition is not immediately
clear to us, and we leave further investigation to future work. Since split and combine permit non-
robust declassification, they could potentially permit malleability attacks [20]. Since secret shares cannot
be unsealed via bind, the possibility for such attacks is limited, but we leave formalization of these
limitations to future work.

For compare statements failures are generated because of two mismatching values. For combine state-
ments the contents of the secret shares are irrelevant. Instead the failures happen due to mismatching keys
of the secret shares. Hence, we can only blame the control flow of the program for putting the two mis-
matching secret shares together. Because, the program counter tracks the control flow of the program,
we dynamically blame the program counter pc in the C-COMBINEFAIL rule by adding it to the blame
set when a fail term is returned while combining two shares. Our Theorem 1 (Sound blame) still holds,
even though combine statement we incorporates a new source of failure. This is because of the premise
II I pc © ¢ says t in COMBINE typing rule allows us to show II |- pc > ¢ says 7 (using P-LBL
and A-AVAIL). Since, Theorem 1 holds Theorem 2 (Majority liveness) holds as well, as it depends on
Theorem 1.

9.6. Password splitting example with FLAQR™.

Figure 28 presents the FLAQR T implementation of the example we discussed in Section 9.1. The pro-
gram executes at host ¢’ with program counter pc, such that IT |- ¢ > pc. The host a has program

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
Lo B & B e ¥ S 2 U= o R B o 3 B & 1 B N O S N R e e R o N o) B & 4 B A O S Y=o - BN e) N) B - OV B S e

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

30 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

[B-SPLIT] splite (vi [va) — ((erene (Vi [v2))s (Tegene (V1 [v2)))

[B-COMBINE] combine x = (v; | v2)@pc in e — (combine x = v;@pc in e | combine x = v2@pc in e)

Fig. 26. Bracketed semantics for FLAQR™ terms.

O(split; e, I1,¢, 1) = split; O(e, 11, ¢,)
O(combine x = {e1,e2)@pc ine, I, ¢,) =
combine x = (O(ey, 1L, ¢, 1), O(ea, IL, €,) Yepc in O(e, 11, ¢, 1)

Fig. 27. Observation function for intermediate FLAQR™ terms (extended from FLAC [8]).

counter a, host b has program counter b and host ¢ has program counter c. The program basically con-
sists of a function body (lines 1-5) and an argument to it (line 6). Particularly, the function body is of
type 7 ¢ says int, where 7, = b** says (L° A b says int x R® A b says int). The function body
takes the value of running a split statement at host b (i.e. run™ (split, v)@b), which splits b’s secret
v. The argument type is 7. This means the pair of the secret shares created at and returned by b is tainted
with b’s integrity and availability. In order to typecheck the run statement pc needs to flow to b, i.e. the
condition IT |- pc E b needs to hold. The condition IT |- ¢ > C((L° A b says int x R® A b says int))
satisfies trivially, as C((L® A b says int x R° A b says int)) = L. The function body can be executed
at ¢/ as C(1, 2 ¢ says int) = pc and we mentioned earlier that the condition II |- ¢’ > pc is true.
The run statements on line 3 and 4 indicates that the left share is tainted by a’s and the right share
is tainted by c’s integrity and availability. Which means a and ¢ have seen and approved on the secret
shares created by b. To make the run statements on lines 3 and 4 well-typed, the conditions II |- pc E a
IT - pc & c should satisfy. We choose label ¢ such that IT |- pc L a* ub* Lic® £ €. The bind
statements (lines 2-4) typecheck because the conditions IT |- pc b b = ¢, I |- pc L b*® L1 a®™ = € and
IT |- pc b b™ L a™ u ¢ = € hold due to our choice of £.

10. Related work

FLAM [6, 22] offers an algebra to integrate authorization logics and information flow control policies.
FLAM also introduces a security condition, robust authorization, that is useful to ensure security when
delegations and revocations change the meaning of confidentiality and integrity policies. In FLAQR we
extend FLAM algebra with availability policies, and new binary operations to represent integrity and
availability policies of the output of quorum based protocols. FLAC [9][8] embeds its types with FLAM
information flow policies. FLAC supports dynamic delegation of authority, but this feature is omitted in
FLAQR.

A limited number of previous approaches [15, 23] combine availability with more common confi-
dentiality and integrity policies in distributed systems. Zheng and Myers [23] extend the Decentralized

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
Lo B & B e ¥ S 2 U= o R B o 3 B & 1 B N O S N R e e R o N o) B & 4 B A O S Y=o - BN e) N) B - OV B S e

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 31

I Alarg:b™ says (L° A b™ says int x R® A b*® says int))[pc].
2 (bind s =arg in
3 (bind s1 = (run™ (proj; s)@a) in
4 (bind so = (run™ (proj, s)@c) in
5 (combine sec = (s1,s2)@pc in (7, sec)))))
6 (run™ (split,ia v)@b)
where
7, = a* says (L° A b says int)
7, = b'® says (L° A b says int x R® A b says int)

7. = c® says (R° A b says int)
Fig. 28. A simple example of secret sharing in FLAQR™.

Label Model [24] with availability policies, but focus primarily tracking dependencies rather than ap-
plying mechanisms such as consensus and replication to improve availability and integrity. Zheng and
Mpyers later introduce the language Qimp [15] with a type system explicitly parameterized on a quorum
system for offloading computation while enforcing availability policies. Instead of treating quorums
specially, FLAQR quorums emerge naturally using compare and select and enable application-specific
integrity and availability policies that are secure by construction.

Hunt and Sands [25] present a novel generalisation of information flow lattices that captures disjunc-
tive flows similar to the influence of replicas in FLAQR on a select result. Our partial-or operation was
inspired by their treatment of disjunctive dependencies.

Models of distributed system protocols are often verified with model checking approaches such as
TLA+ [26]. Model checking programs is typically undecidable, making it ill-suited to integrate di-
rectly into a programming model in the same manner as a (decidable) type system. To make verification
tractable, TLA+ models are often simplified versions of the implementations they represent, potentially
leading to discrepancies. FLAQR is designed as a core calculus for a distributed programming model,
making direct verification of implementations more feasible.

BFT protocols [2, 27] use consensus and replication to protect the integrity and availability of op-
erations on a system’s state. Each instance of a BFT protocol essentially enforces a single availability
policy and a single integrity policy. While composing multiple instances is possible, doing so provides
no end-to-end availability or integrity guarantees for the system as a whole. FLAQR programs, by con-
strast, routinely compose consensus and replication primitives to enforce multiple policies while also
providing end-to-end system guarantees.

Our blame semantics presented in Section 7.1 has some resemblance to the idea of blame used to
detect contract violations [28] and applied to gradual typing [29]. In our system, blame is necessarily
ambiguous since perfect fault detection is not possible. Hence, rather than identifying a single program
point responsible for a contract or type violation, our semantics builds constraints that specify a set of
principals that may be responsible for a given failure.

In [30] Clarkson and Schneider talks about integrity measures such as contamination and suppression.
The idea of suppression can be equivalent to the idea of unavailability. Although in [30] suppression
happens due to untrusted input making trusted output unavailable. In FLAQR, unavailibity is caused by
both unavailable and untrusted (via compare statement) inputs.

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
Lo B & B e ¥ S 2 U= o R B o 3 B & 1 B N O S N R e e R o N o) B & 4 B A O S Y=o - BN e) N) B - OV B S e

®© W 00 N O U A~ W N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o O A W N =2 0 W N O WD =20 VN O W N2 VW N0, W N =

32 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing
11. Conclusion

In this work, we extend Flow Limited Authorization Model [6] with availability policies. We intro-
duce a core calculus and type-system, FLAQR, for building decentralized applications that are secure
by construction. We identify a trade-off relation between integrity and availability, and introduce two
binary operations partial-and and partial-or, specifically to express integrities of quorum based repli-
cated programs. We define fails relation and judgments that help us reason about a principal’s authority
over availability of a type. We introduce blame semantics that associate failures with malicious hosts
of a quorum system to ensure that quorums can not exceed a bounded number of failures without caus-
ing the whole system to fail. FLAQR ensures end-to-end information security with noninterference for
confidentiality, integrity and availability. Finally we present FLAQR™, which is an extension of FLAQR
with language constructs that support secret sharing between hosts with mutual distrust. We extend our
failure propagation rules and blame semantics to assign blame to appropriate principals when a secret
sharing round fails.

12. Acknowledgements

Funding for this work was provided in part by NSF CAREER CNS-1750060 and IARPA HECTOR
CW3002436.

References

[1] L. Lamport, The Part-time Parliament, ACM Trans. on Computer Systems 16(2) (1998), 133-169.
doi:10.1145/279227.279229.
[2] M. Castro and B. Liskov, Practical Byzantine fault tolerance and proactive recovery, ACM Trans. on Computer Systems
20 (2002), 2002.
[3] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, Consulted 1(2012) (2008), 28.
[4] J. Liu, O. Arden, M.D. George and A.C. Myers, Fabric: Building Open Distributed Systems Securely by Construction, J.
Computer Security 25(4-5) (2017), 319-321. doi:10.3233/JCS-0559.
[5] N. Zeldovich, S. Boyd-Wickizer and D. Mazieres, Securing distributed systems with information flow control, in: 5t
USENIX Symp. on Networked Systems Design and Implementation (NSDI), 2008, pp. 293-308.
[6] O. Arden, J. Liu and A.C. Myers, Flow-Limited Authorization, in: 28" IEEE Computer Security Foundations Symp.
(CSF), 2015, pp. 569-583.
[7]1 P. Mondal, M. Algehed and O. Arden, Applying consensus and replication securely with FLAQR, in: IEEE Computer
Security Foundations Symp (CSF), 2022, pp. 163-178. doi:10.1109/CSF54842.2022.9919637.
[8] O. Arden, A. Gollamudi, E. Cecchetti, S. Chong and A.C. Myers, A Calculus for Flow-Limited Authorization: Technical
Report, 2021. doi:10.48550/ARXIV.2104.10379.
[9] O. Arden and A.C. Myers, A Calculus for Flow-Limited Authorization, in: 29" IEEE Computer Security Foundations
Symp. (CSF), 2016, pp. 135-147.
[10] M. Abadi, Access Control in a Core Calculus of Dependency, in: 71 h ACM SIGPLAN Int’l Conf. on Functional Program-
ming, ACM, New York, NY, USA, 2006, pp. 263-273. doi:10.1145/1159803.1159839.
[11] J.-Y. Girard, Une extension de L’interpretation de godel a L’analyse, et son application a L’elimination des coupures
dans L’analyse et la theorie des types, in: Studies in Logic and the Foundations of Mathematics, Vol. 63, Elsevier, 1971,
pp. 63-92.
[12] J.-Y. Girard, Interpretation fonctionelle et elimination des coupure dans I’arithmetic d’ordre superieur, Ph. D. Thesis,
L’universite Paris VII (1972).
[13] J.C. Reynolds, Towards a theory of type structure, in: Programming Symposium, Springer, 1974, pp. 408—425.
[14] F. Pottier and V. Simonet, Information flow inference for ML, in: 29" ACM Symp. on Principles of Programming Lan-
guages (POPL), 2002, pp. 319-330.

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

®© W 00 N O U A~ W N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o O A W N =2 0 W N O WD =20 VN O W N2 VW N0, W N =

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 33

L. Zheng and A.C. Myers, A Language-Based Approach to Secure Quorum Replication, in: 9" ACM SIGPLAN Workshop
on Programming Languages and Analysis for Security (PLAS), 2014.

A. Shamir, How to Share a Secret, Communications of the ACM 22(11) (1979), 612-613.

E. Dawson and D. Donovan, The breadth of Shamir’s secret-sharing scheme, Computer & Security, 1994.

C.-C. Yang, T.-Y. Chang and M.-S. Hwang, A (t,n) multi-secret sharing scheme, in: Applied Mathematics and Computa-
tion, 2004, pp. 483-490.

A. Gollamudi, S. Chong and O. Arden, Information flow control for distributed trusted execution environments, in: 3
1IEEE Computer Security Foundations Symp. (CSF), 2019.

E. Cecchetti, A.C. Myers and O. Arden, Nonmalleable Information Flow Control, in: 24" Acm Conf. on Computer and
Communications Security (CCS), 2017, pp. 1875-1891.

S. Zdancewic and A.C. Myers, Robust Declassification, in: / 4" IEEE Computer Security Foundations Workshop (CSFW),
2001, pp. 15-23. ISSN 1063-6900. doi:10.1109/CSFW.2001.930133.

O. Arden, J. Liu and A.C. Myers, Flow-Limited Authorization: Technical Report, Technical Report, 1813—40138, Cornell
University Computing and Information Science, 2015.

L. Zheng and A.C. Myers, End-to-End Availability Policies and Noninterference, in: / 8™ IEEE Computer Security Foun-
dations Workshop (CSFW), 2005, pp. 272-286.

A.C. Myers and B. Liskov, Protecting Privacy using the Decentralized Label Model, ACM Transactions on Software
Engineering and Methodology 9(4) (2000), 410-442.

S. Hunt and D. Sands, A Quantale of Information, in: 2021 IEEE 34th Computer Security Foundations Symposium (CSF),
2021. doi:10.1109/CSF51468.2021.00031.

L. Lamport, The PlusCal Algorithm Language, in: Theoretical Aspects of Computing - ICTAC 2009, M. Leucker and
C. Morgan, eds, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 36-60. ISBN 978-3-642-03466-4.

A. Bessani, J. Sousa and E.E. Alchieri, State machine replication for the masses with BFT-SMaRt, in: Dependable Systems
and Networks (DSN), 2014 44th Annual IEEE/IFIP International Conference on, IEEE, 2014, pp. 355-362.

R.B. Findler and M. Felleisen, Contracts for Higher-Order Functions, SIGPLAN Not. 37(9) (2002), 48-59-.
doi:10.1145/583852.581484.

P. Wadler and R.B. Findler, Well-Typed Programs Can’t Be Blamed, in: Programming Languages and Systems,
G. Castagna, ed., Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 1-16. ISBN 978-3-642-00590-9.

M.R. Clarkson and F.B. Schneider, Quantification of Integrity, in: Proc. IEEE Computer Security Foundations Symposium,
2010, pp. 28-43.

211d

Appendix A. Complete FLAQR rule set and noninterference proofs

In the following proofs we use the simple and the annotated FLAQR syntax interchageably.

Lemma 1 (UniqueType). IfII;T;pc;c e : 7 and II;T;pc;c e : T then T =71

Proof. Straightforward by induction on typing derivation of e. []

Lemma 2 (WaitUniqueT). IfII;T; pc; c - E[expect?] : T and TI;T; pc; c - E[expect®] : v/ then T =
/

T.

Proof. Straightforward using induction over structure of E. []

Lemma 3 (stackUniqueT). If type of the tail TI;T;pc ¢ : [t]t and IL; T;pc ¢ : [T]7 then T =17

Proof. The proof is by induction over typing derivation of s. []

Lemma 4 (distUniqueT). IfIL;T;pc + {e,c) & s: tand IL;T;pe + {e,c) & s : 7' then 7 =17

Proof. Straightforward proof using lemmas UniqueType 1 and 2. [

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

34 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

n € {c,i,a} (projections)
n € N (primitive principals)
x € V (variable names)

p.t,pc=n ! T ‘ 1 | r" ’ pAPp } pvp
!pup|P”P|PEP|PHF
tu=unit | X | (t471) | (tx7)
| T 7 | VX[pc].7 | €sayst

vi=() | (@, v) } inngH) v | A
| Ax:7)[pc).e | AX[pc].e
fu=v | fail”
ex=f|x|ee|etr|mellee)
proj; e ’ injl(TH) e | bindx=eine

case’ eof inj(x).e | inj5(x).e

|
|
| run”e@p | rete@p
| select” eore | compare eande | expect”
|

split] e | combine™x = e1@pc in ey

Fig. 29. Type annotated FLAQR Syntax (Full version).

E:=[]|Ee|vE|Et|(Ee | {fLE) | nE
| proj; E | injl E | bindx = E ine
| case” E of inj{(x).e | inj}(x).e
| ret E@p

| select™ Eore | select”™ forE

| compare® E and e | compare” fand E

| split] E | combine™x = E@pc ine

|

combine™x = v@pc in E

Fig. 30. Evaluation context.
Lemma 5 (I'-Weakening). IfIL;T;pc;c - e : T and for all " and x ¢ dom(T), I; T, x:7'; pc;c e : T
Proof. By Induction on structure of e. [

Lemma 6 (CTXif). If II;T;pc;c — E[v] : T and x ¢ dom(T") then 37/, such that TI;T, x:7', pc;c +
E[x]:tand II;T;pc;c v : 7.

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 35

e —e
[E-APP] (A(x:1)[pc]. e) v —> e[x — V] [E-TAPP] (AX[pcl.e) T —> e[X — 7]
[E-UNPAIR] proj; (vi,va)" — v; [E-SEALED] nev— (7, v)
[E-BINDM] bindx = (7, v) ine — e[x — V]
[E-CASE] (case™ (inj] v) of inji(x).e1 | inj}(x).e2) — e;[x — V]
V1=V

[E-COMPARE]| - - -
compare((1®f) SayS (e, v1) and (g, v2) — (T, e, V1)

V175V2

(7, v1) and (77, v2)

[E-COMPAREFAIL|

Compare([1®[2) SayS T _ fail(fl@fz) SayS T

[E-COMPAREFAILL] Compare(t’l@[Q) saysr failh says and f2 N fail(fl(-Bé’g) says
[E-COMPAREFAILR] Compare(L’l@fg) says fl and .Faill’Q sayst __ _Fail((ﬁ@[g) says

fi= @ w) fie (@, v;), fail” 37}

select(1©f) SAYS™ ¢ op £, (e, 00, Vi)

[E-SELECT]

[E-SELECTFAIL] select(1©%) SAYS T (£53116 SAYST) o (£31112 SAYST) _, £a1](11O%) SAYS+

e— ¢ E-s | k is fresh
-SPLIT — — —
splity v — {(Trenr V)s (ege e V))

[E-RETSTEP] ;
ret e@c — ret e'@c

/
e — ¢
[E-COMBINE] combine™ = {(; ;¢ V), (Mrae V))@pC ine — e[x — v] [E-STEP] ——————
' ' Ele] — E[¢']
Fig. 31. Full FLAQR local semantics
Proof. By induction on structure of E. [

Lemma 7 (CTXonlyif). II;T;pc;c v : 7 and I T, x: 7', pc;c + E[x] : T then I1;T; pc; ¢ + E[v] : 7,
when x ¢ FV(E)(FV returns the free variables).

Proof. Proof by induction over structure of E. []

Lemma 8 (CTXiff). ILI;T'; pc;c - E[v] : 7iff 37, such that I; T, x: 7/, pc; ¢ + E[x] : Tand I1; T; pc; ¢
v: 7 when x ¢ dom(T").

Proof. Straightforward from lemma 6 and 7. [

Lemma 9 (Expect). IfII;T;pc;c — E[v] : Tand II; T; pe; ¢ v : 7 then I1; T; pe; ¢ — E[expect™] : 7.

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

36 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

[E-APPFAILL] A(x:7)[pe]. Fail™ " e — fail”

[E-APPFAIL] A(x:7)[pc].e fail® — e[x +— fail"] [E-TAPPFAIL] fail"™lrel7 ¢/ £ai17X¥ 7]
[E-SEALEDFAIL] 75, fail™ — failfS@YsT [E-INSFAIL] inj{™%7™) £ail™ — fail(m+72)
[E-CASEFAIL] case” fail” of inj,(x).e; | injy(x).e; —> fail”

[E-PAIRFAILL] (fail™, f,)("*™) —, £ai1(m1x7) [E-PAIRFAILR] (f, fail™)(™*™) _, £a41(1%72)
[E-PROJFAIL] proj; fail(m>™) ., faj1"

k is fresh
Spllt[_FailT N 'Fail(LCAZ SayS TXREAL SayS T)

[E-SPLITFAILL]

ki # ko

E-COMBINEFAIL
[] conbine ¥ = (T gy ¥)- (e e ¥))8PC in € — e[x > Fail]

[E-COMBINEFAILL] combine x = (fail’ "fS3YS 7 fapcine — e[x > fail’]
[E-COMBINEFAILR] combine x = (v, failk e says @pc ine — e[x — fail"]

Fig. 32. All propagation of fail terms.
Proof. Straightforward using lemma CTXonlyif 7. []
Lemma 10 (RExpect). ILI;T; pc;c - v : T and II; T; pe; ¢ - Elexpect”] : TthenII; T; pe;c - E[V] : 7.
Proof. Straightforward from lemma CTXonlyif 7. [

Lemma 11 (Values PC). LetILT;pc;c v : . IfIL - ¢’ = pc’ and 11 |- ¢’ > C(7) then1L;T; pc’; ¢’ +—
VT

Proof. Given that,

- ¢ > pc (1)
I+ =Cr) ()

Using induction over values.

Case UNITM. Using UNIT typing rule and (1) we have IT; T'; pc’; ¢’ - () : unit

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

‘H;F;pc;cl—e:r‘

I'x) =1 IT k¢ >= pc II k¢ >= pc
[VAR] () i [UNIT] p -
IL;T;pc;c-x: 1 IT;T; pc;c = () s unit
ILT, x:t1;pcsut-e: 1 II IF ¢ > pc
III-c > pc u=C(t p—cl>T IIIFc>u
[FAIL] P [LAM] (71 2)

ILT; pe;e b= fail®: 7 ILT; pe;c - A(x:t1)[pc] e : 11 25 1o

c/
I peic e : 7 25

ILT: pe;ct-eo: T II - pc = pc’ IIIFc > pc

[APP|
ILTspe;et—erex: v
ILT, X;pcsube: 1 III-c > pc
u=C(r) III-Fc>u
I; T; pe; ¢ = AX[pc]. e : VX[pc']. T

[TLAM]

ILT; pe;c e VX[pd'].T
II |- pc = pc’ IIIFc > pc
;T pe;se - (e 7)) s 7[X — 7]

[TAPP] 7’ is well-formed in T

LT pe;e-e1 i1 ILTpe;e = e2: 7o
ITI+c > pc

[PAIR] ——— Txma) .
IL; T pe;c = {e1, e2) (11 x T2)

ILTpe;e—e: (T xT IIIFc > pc
[UNPAIR] p (11 2) p

IL T pe;c = proj; e : 7;

ILT; pe;e e T III-c > pc

[INT]
IT; T; pc; c inji(rﬁfz) e: (114 712)
ILT;pe;e e : (11 + 12) FpcET
IIc>pe 78 >7
ILT, x:t5pc;c-e1 i T IL T, x:19;pc;c-ea: T
[Case] T L A
II; T;pc;c - case’ eof injy" " (x).e1 | injy '/ (x).e2: T
IL T pc;et—e: 1 IIIFpcE{
I+ ¢ > pc ILTpe;e-v:t III+c > pc
[UNITM] P [SEALED] 2 F

ILT;pc;c-nee: sayst ILT;pe;e = (g, v) : €says T

Fig. 33. Typing rules for expressions (Full version) Part 1/2.

37

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

38 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

‘H;F;pc;cl—e:r‘

ILT;pc;c ¢ : tsays T H-fupctt
ILT, x:7;0upcict—e: 1 III-c > pc

[BINDM] . >
IL T pc;c—=bindx=¢ ine: 1

ILT:pc’;d He: 7 II |- pc = pc’

III-c > pc III-c>=Cc() IL T pc;ct—e: 1 III-c >=cC(r)
7 = pc’*® says 7’ Il Ik ¢ > pc
[RUN] P Y - [RET] f) .
ILT pe;ec = run® e@c : 1 IL; T pc;c = ret e@c’ : pc*® says T
Vie {1,2}.IL;T;pc;c e : i says T
III-c> ¢ sayst III-c > pc
[COMPARE] i SAVS
IL;T; pc; ¢ + compare(1®02) SAYS T 4,1 and e, (61 @) says T
Vie {1,2}.I;T;pc;c - e; : €; says T
IT I+ ¢ > pc
[SELECT] TSI SaVS L
IT;T; pc; ¢ - select(192) SAYS T 4. op o, - (t1©€2) says T
IIIFc > pc
[EXPECT] P
II; ', pc; ¢ - expect™ : 1
LT pc;e-e: 1 IIl-c > pc
III- pc = €U A(pct)
v = (L° AlsaysT x R° A €saysT
[SPLIT] (Y ys)

II;T; pc; ¢ + split;/ e: (L° A {lsaysT x R A {saysT)

ILT; pe;e e (L° A €saysT x RS A £ says 1)
IIlkc¢ > pc ILT,x:7t; €L pc;c € : € sayst
III-tupc= ¢ sayst
¢ sayst

[COMBINE] —
x=e@pcine : € saysT

IL; T; pc; ¢ — combine
IL T pc;e=v:t
III-c > pc K € {L*,R"}

[SEALEDK] —
ILT;pe;e = (Mygxne V) - K A €says T

Fig. 34. Typing rules for expressions (Full version). Part 2/2
Case PAIR. Given

IT; T; pc; c <V1,V2>(T1><T2) : (11 % T2)

3)

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 39

C(r1 > 12) = C(11) W pe L C(72)

C(VX[pc]. ™) = pc u C(1)

C(¢says 1) =C(1)

C((r1 + 72)) = C(71) L C(72)

C((r1 x 72)) = C(71) L C(72)
C(unit) = L

Fig. 35. Clearance function

% (unit) = unit

C((t1+12)) = (€(11) + € (12))

(11 x 12)) = (€(11) x C(12))

C (11 7> 1) = C(11) 7> €(12)

(AX[pcl.7) = AX[pc]. € (x)
C((thB¢2) says 1) = ({1 v £2) says € (7)
€ ((€1H) says 1) = (51 A) says €(1)
(otherwise) €' (¢ says 1) = £ says € (7)

Fig. 36. € function on types.

I-p>r
[R-UNIT]IT I p©> () [R-TFUN] P
IIIFpr> VX[pc].T
I-p>1; I p© > €
HFp>t N-p>r
[R-PROD] Pz [R-LBL] P
IIFp> (11 x 12) III-pr>tsayst

Fig. 37. Reads judgments.
Inverting (3) we get
IL T pc;e vy i 11
and

ILT; pesc b= v : 7o

H”—pD‘Fl

HH—pDTQ

[R-SuM]|

[R-FUN]

- po> (11 +72)

HH‘]?DTl
H“—p>T2

HI}—pDTlﬂ‘rQ

4

®)

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

40 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

I-¢c I-tc
[P-UNIT] IT - £ C unit [P-PAIR] o 2

HFfE(T1XT2)

|| A) II+¢cpc ¢t II+¢cpc

P-FuN P-TFUN
[: | A=, [] O+ VX[pd).t

Oresl
II-¢= ¢ sayst

[P-LBL]

Fig. 38. Type protection levels

By applying induction hypothesis on (4) and (5), we get

ILTpcsc’ v
and

ILTpcsc’ o i
From rule PAIR, (6), (7), and (1) we get II; T'; pc’; ¢’ + (vq, vz>(” xt2) (11 X 12)
Case INJ. Similar to case PAIR.
Case SEALED. Given

IL T pese = (,v) : €says T
Inverting (8) we get

ILT pc;et=v:t
By applying induction hypothesis on (9) we get

ILD;pc;d vt
Thus from rule [SEAL], (1) and (10) we get IT; T; pc’; ¢’ = (7, v) : £ says T
Case LAM. We have

ILT; pe;c - A(x:ty)[pc’].e - 11 2 1y

(6)

(N

®)

€)

(10)

1D

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 41
IIi-p>gq
Mkp> Mi-g>r
[BoT|II - p > L [ToP]ILI- T > p [REFL|II - p > p [TRANS] P~1 1
IIiFp>=r
IT I~
[PrOJ] _ qﬂ [PROJR] IIi-p>p"
III-p q
n#n
[PROJIDEMP] IIi-(p")" = p" [PROJBASIS] _
=L > (p")
[PROJDISTCONI| IIIFp" A q" = (p A q)" [PROJDISTDISI| III-(pvg) >=p v q"
L= pe > p HiEp>p
ke{l,2 II-p>= A
[CoNJL] 1.2} [CONJR] PZ P [CONIBASIS|IT |- p° A p' Ap*=p
ILEpiAp2>p Il p > p1 A p2
HiFp1>p I p > pe
- p2 > ke {1,2 n#n
[DisIL] P27 P [DISIR] .2} [DISIBASIS] ;
IIi-pivp>=p IlIEp>p1vp2 Nr-L>=p"vqg"
[CoNIDISTDISIL] Ii-(prqg)vipar)=pnalgvr)
[CONJDISTDISIR] Di-pa(gvr)=((pnarqg)v(pnar)
[D1sIDISTCONJL] O-F(pvg rlpvr)=pv(gnar)
[D1SIDISTCONJR] Di-pvigary=(pvg Ar(pvr)
Fig. 39. Static principal lattice rules, adapted from FLAC [8].
Inverting (11) we get
ILT, x:ti;pc’;ub-e: 1o (12)

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

42 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

IIi-pi>p ITi-p>p1
ke{l,2 III-p >
[PANDL] (1.2} [PANDR] b= P [ANDPAND] II |- p A ¢ > pEq
Mi-piEp2>=p IMi-p>piEHp2
[PANDPOR] II - pHq > pHyq [PROJPANDL] IT I p" Hq" > (pEHq)”

[PROJPANDR] TT |- (pEH)" > p" B " [PROJPORL]IT I p"EHq" > (pHq)”

[PROJPORR] I I+ (pHQq)" > p"H{" [POROR|II - pHg = p v g

[ANDDISTPORR] I I- p A (gE7) = (p A @) B (p A 1)
[PORDISTANDR] IT - pEH (g A7) > (pBq) A (pET)
[ANDDISTPORL] ITI- (p A q) B (p A7) = p A (qET)
[PORDISTANDL] I |- (pE¢q) A (pEr) > pEH(g A1)
[ORDISTPORR]|II I p v (¢gEHFr) = (pv g EH(pvr)
[ORDISTPORL]IL I+ (p v) B (p v r) = p v (¢E7)
[PORDISTORR| I |- pE (g v r) > (pEq) v (pET)

[PORDISTORL|IL - (pBHq) v (pEr) > pE (g v 1)

[ANDDISTPANDR]IL I+ p A (qEH7) > (p A q) B (p A 1)
[PANDDISTANDR] I |- pEH (g A7) > (pHq) A (pEr)
[ANDDISTPANDL|IT |- (p A q) B (p A7) = p A (qEHT)
[PANDDISTANDL] I |- (pEHq) A (pE7r) > pEH (g A T)
[ORDISTPANDR]II - p v (q&EHT) = (p v q)H (p v 7)
[ORDISTPANDL|IT |- (p v) B (p v r) = p v (¢HT)
[PANDDISTORR]IL I+ pEH (¢ v) > (pEHq) v (pEr)

[PANDDISTORL|IT - (pHgq) v (pEr) > pHI(g v r)

Fig. 40. FLAQR Partial conjunction and disjunction acts-for rules.

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

<
l
—~
<
<
~—

fa= [(L)
ex=... [(e]e)
|empty|, = empty
[<escp =z sl =lelw)+ L5l
[<e.) & 5]y = (leli-) & [s];
|E[expect?]|, = | E],[expect”]
|E[(e1 | e2)]lx = | Elilex]
|split, e|, = split, |e],
|combine x = e@pc in €’|, = combine k = |e|,@pc in |€|,

compare(1®(2) SAYS 7| £ | and | fo,
select(19®2) SAYST | f1| or | fol,

|compare(©1®f2) SAYS T £ and £,

|
|select(162) SAYS T £ or £,
|

|ret e@c|, = [|.@c
|run® e@c|, = run” |e],@c
lproj; e, = proj; [el,

|case e; of inj;(x).e2 | injo(x).e3], ase[1], of inji(x).le2], | inja(x).|e3],
|

[(e]e)

2

Fig. 41. Projection for bracketed expressions.

I ¢ > pc
u=C(ry & 1)

T ¢ > C(r1 25 1)
Applying IH on 12
ILT, x:t;pc”sut-e: 1o
given in lemma statement
- > pc

O =C(m 25 1)

43

(13)
(14)

(15)

(16)

A7)

(18)

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

44

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

I - (H" upe) = pc’ 61 =V <= eg # Vo
ILT;pc'scb-e: 1 ILT;pc5c et
II-H = €(1) I c > pc

[BRACKET]
ILDspesc b (erfe2) : 7

ILD; pe;e=vi: T ILT pese-vo it
I+ H = €(7) I c > pc

[BRACKET-VALUES]
IGT pese = (vifva) i 7

ILTpe;ce: T ILTpes;e-e: v
[BULLL]
I;T;pc;c (e] o) : T ILT pe;e (o]e) it

[BULLR]

ILTpe;ce: 1

[BRACKET-FAIL-L] —
IL T pe;c - (e | fail™) :

ILT pe;eb-e: 1
IL T pe;c - (fail® |e) : 7

[BRACKET-FAIL-R]

ILD;pc;ce i 1 e; + fail” T=a
ILDspesc = (er|e2) 7

[BRACKET-FAIL-A]

ILT pese-vet

[BRACKET-SAME]
ILT; pe;e = (v]v) it

(a) Typing rules for bracketed expressions.

ILT;pc’sc-e: 7 II I+ pc = pc’
Vie {1,2}.ILT;pe = s;: [T']r
ILT; pe =<{e,c) & (s1]s2) : 7

[BRACKET-STACK]

I pcsc b (e1] e2) : 7 IIIF pe E pc
I pes: [7]r
IL;T;pc - {(e1 | e2),c) & s = T

[BRACKET-HEAD]

(b) Typing rules for bracketed configuration stack.

Fig. 42. Bracketed typing rules.

from 17, 18, 16 and LAM rule we get

c//

ILT; pc's ! = A(x:ty)[pc’].e s 11 2 1y (19)

(20)
21

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 45

posrer) C GG UDZRB e () ok o)
(e1]e2) — (e}]e3)

[B-TAPP] w[Vyr— (vt |V 1)

[B-BINDM] bindx = (v|v') ine — (bind x = v in|e|, | bind x =V in |e],)

|compare’®2 S&YST (11, | fi5) and (fo1 | fo2)]; — f; Vie {1,2}
comparet®2 SAYST (£, | fio)and (for | fao) — (fi | f2)

[B-COMPARECOMMON]

|compare®®= S&YST (£, | fi5) and f|, — f; vie {1,2}
comparet®2 SAYST (£, | fio)and f — (fi | f2)

[B-COMPARECOMMONRIGHT]|

|compare*®© S&YST fand (fo; | foz)]; — fi Vie{1,2}

[B-COMPARECOMMONLEFT]| =
comparet®2 SAYST fand (fo1 | faz) — (fi | f2)

|select™©23aYST (£, | fin) or (for | fa2)li — fi Vie {1,2}

B-SELECTCOMMON ;
[] select1©25aYST (.| fig) or (for | faz) — (fi | fo)

|select®©2SAYST (£, | fio) or f|, — fi Vie {1,2}
select1©23AYST (£, | fio)or f — (fi | f2)

[B-SELECTCOMMONLEFT]

[selectf1©2 SAYST ror (fy | f2)li — fi Vie {1,2}
select1©253YST for (for | fao) — (fi | f2)

[B-SELECTCOMMONRIGHT]

[B-FAIL1] 5, (v | fail®) — ((7j, v) | fail? S3¥sT) [B-FAIL2] 7, (fail” | v) — (fail’ 335 7| (7, v))
[B-FAlIL] ne (Fail® | fail®) — fail”
[B-RUNLEFT] {(E[run” e1@c’] | e2),c) & s = {(ret e1@c | o),c’) & {(E[expectT] | e2),c) :: s

[B-RUNRIGHT] {(e1 | E[run” es@c’]),c) & s = ((o | ret es@c),c’) & {(e1 | E[expect™]),c) :: s

f/ — (ﬁ[V) iff =V
fail®S3¥ST if f = fail”

{(ret fec | e),c’) & ((E[expect! S35 ™) | e),¢) :: s = ((E[f'] | e2),c) & s

[B-RETLEFT]

fail?SAYST if £ — faill
{(o] ret fec),c’) & {(ea | E[expect’ S35 T]),¢) :: s = ((ea | E[f']),c) & s

f,_{mv) itf=v

[B-RETRIGHT]

fail®SST if f; = fail”
(ret (fi | f2)@c, ¢’ & (E[expect! 5337, ¢) 1 s = (E[(f] | f)].c) & s

ﬂ:{(nm if f=v

[B-RETV]

Fig. 43. Selected bracketed Evaluation Rules.

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

46 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing
Case TLAM. Similar to case LAM.
Case BRACKET. Given,
ILT;pese = (vi|ve) i 1 (22)

inverting 22 we get

I+ H =% (1) (23)
1L pe;eb-vie T 24)
ILT peseb=va i T (25)

IH on 24 and 25
ILD;pc;d vt (26)
ILT;pc:c =voit (27)

and given in lemma statement,
- > pc (28)
from 26,27, 28 and 23 we get
IETspc’sc’ b= (vi [va) o T (29)
]

Lemma 12 (pc reduction). Let II;T;pc;c + e : 1. For all pc,pc’, such that 11 |+ pc’ © pc and
II I+ c > pc then II;T; pc’; ¢ + e : T holds.

Proof. Proof is by induction on the derivation of the typing judgment. Given that,

II |- pc’ = pc (30)
IIIkc> pc 31)

Case RUN. From the premises of RUN typing rule
IL;T; pc;c - run” e@c’ : 1

we get
ILT;pc";d e 7 (32)
II |- pc = pc” (33)
III-c > pc (34)
- c > C() (35)

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

/lia

where 7 = pc’'* says 7.

From 36 and 33 we have
I - pcl = pC”

From 32, 31 35, 36 we get

IL,T; pc’;c - run e@c : 1

Case RET. From the premises of RET typing rule
IT; T; pc;c - ret e@c’ : pc'* says T

we get

ILT pe;eb-e 1
- > (C(n))
ITI-c > pc

Applying Induction hypothesis to 38 we get
ILT;pc’iche: T

From 41, 39 and 31 we get

IL;T; pc’;c - ret e@c’ : pc® says T

Case COMPARE: Straightforward using IH and 31.

Case SELECT: Straightforward using IH and 31.

Case BRACKET: From the premises Bracket typing rule

ILTipesc b (e1] e2) 7,
we get,

I |- (H" u pc) = pc”
€1 =V1 == e3 F Vg
ILT;pc";c-e1: 1
ILT;pc";c-ep: 1
II-H = %)
ITIFc > pc

47

(36)

(37

(38)
(39)
(40)

(41)

(42)

(43)
(44)
(45)
(46)
47)
(48)

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

48 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

From and 30 we can write
I I+ (H" upc) = (H" L pc)
From 49 and 43 we get
Il I+ (H" upc) = pc”

Thus from 50,45,46,47 and 31 we can write

ILT; pc’se b (e1 | e2) : 7

Case BRACKET-VALUES: Straightforward using IH and 31.

Case BRACKET-* : Straightforward using IH and 31.

Other Cases : Straightforward from 31 and pc reduction lemma in [8].
Lemma 13 (Clearance). IfIL;T;pc;c e : Tt thenIl |- ¢ > pc
Proof. Proof is straightforward by induction on the typing judgments.

Lemma 14 (Variable substitution). If ILT, x: 7/;pc;c +— e

IL,T;pe;c = e[x —v] : 7.

Proof. Proof is by induction on the typing derivation of e.
Case LAM Given,

ILTipeic-v: 7
I, x:7spe;e = Ay:ty)[pc’]. e : 11 =,

inverting 53

/ /
ILT, x: 7, y:t1;pcsc e : 12

ITI-c > pc
IIIFc > C(my >, T9)
Applying lemma values host pc and Weakening lemma in 52
I, y:ty;pc’e vt
IH, 54, 57

IGT,y:ti;pc’sc b= e[x — v] i 7o

T and IL;T;pc;c +— v

(49)

(50)

&1y

7', then

(52)

(53)

(54)
(55)

(56)

(57

(58)

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
Lo B & B e ¥ S 2 U= o R B o 3 B & 1 B N O S N R e e R o N o) B & 4 B A O S Y=o - BN e) N) B - OV B S e

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 49
from 58, 55, 56 and LAM rule we get

I T;pe; e = A(y:t1)[pc]. e[x — v] : 72 (59)
(60)

Case BRACKET Given, II; ', x:71; pc; ¢ - (e1 | e2) : T We have to prove t
ILT, x:115pc;c = (er[x — |v]i] | e2[x — [v]o]) : 7

We first describe the case BRACKET. The proof for the case BRACKET-VALUES is analogous. From
BRACKET, we have

ILT, x:t;pcscb-ep 0 T (61)
ILT, x:t;pc’sc-eo: T (62)
Il |- (H™ u pc) € pc (63)

I H C €(1) (64)

Applying clearance (Lemma 13), we have IT | ¢ > pc’. Depending on whether v is a bracket value, we
have two cases

Casev = (v | vo):
From BRACKET-VALUES, we have

ILT, x:t;pc;c vy i T (65)
ILT, x:7t1;pc;c - vo : T (66)
I+ H" c €() (©7)

Since values can be typed under any pc which acts for the host under which value is typed
(Lemma 11), we have IT; T', x:71; pc’; ¢ b v; : ¥/ fori = {1, 2}. Applying induction to the premises

(61) and (62), we get
I T, x:t;pcsc - er[x =] ot (68)
T, x:7m5pc’sc b egx—>vo] i 7 (69)

and thus from [Bracket] we have
ILT, x:71;pc;c - (er[x — vi] | ea[x — vo]) i 7

Case v # (v1 | v2): Since values can be typed under any pc which acts for the place under which value
is typed (Lemma 11), we have IT; T, x:71; pc’; ¢ — v : 7. Applying induction to the premises (61)
and (62), we get

I, x:t;pc’sc - erfx—v] it (70)
T, x:t;pc’sc - ea[x—>v] i (71)

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

50 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

and thus from [Bracket] rule
ILT, x:115pc;e = (er[x — v] |ea[x —v]) i T

Case COMPARE: Straightforward using IH.

Case SELECT: Straightforward using IH.

Case RUN: Straightforward using IH and values pc lemma. (Same as LAM case.)
Case RET: Straightforward using [H. [

Lemma 15 (Type Substitution). Ler 7 be well-formed in T, X,T". If I;T, X,I;pc;c + e : T then
ILT,IV[X — t'];pc;c - e[X — '] s 7[X — 7).

Proof. Proof is by the induction on the typing derivation of II; I, X,I; pc;c —e : 7. [
Lemma 16 (Soundness). If e —> ¢’ then |e|, —™ |¢'|, for k € {1,2}.

Proof. By induction on the evaluation of e.
Case B-SPLIT: From rule B-SPLIT split, (f | f2) — f. then for k € {1,2} |split, (fi | f2)], —

L/]x

Case B-COMBINE: From rule B-COMBINE combine x = (f | f2)@pc ine — f, thenfork € {1, 2}
|combine x = (f1 | f2)@pc ine|, — |f];
Case B-COMPARECOMMON: From rule B-COMPARECOMMON we can say if
compare(1®2) SAYS T (£, | fig) and (far1 | foo) — f
then for k € {1,2}
|compare(1®©2) SAYS T (£ | f15) and (fa1 | fo2)ly
— |flk

Case B-Compare*: Similar to the case above.

Case B-Select™®: Similar to the case above.

Case B-STEP: |e], — |¢']; and |e]; = |€']; .

Other Cases All other cases in Figure 43 only expand brackets So, |e|, = ||, fork € {1,2}. [

Lemma 17 (Stuck expressions). If e gets stuck then |e|; is stuck for some i € {1, 2}.

Proof. By induction on the structure of e.

Case: split, e: E-SPLIT can not be applied, i.e. e is not of the form v.That means E-SPLIT can not
applied to |split, e|;. From LH. |e]; is stuck.

Case: combine x = ¢;@pc in e3: E-COMBINE can not be applied, i.e. e is not of the form {(7 ; ., V), (M g n¢ VIO-That

means E-COMBINE can not be applied to |combine x = e;@pc in ez],. From LH. |e;]; is stuck.

Case: compare’™ ¢; and ¢2: E-COMPARE can not be applied, i.e. e; and/or ey are/is not of the form
(7, w).That means E-COMPARE can not applied to |compare” e; and ez];. From L.H. either |e1|;
is stuck or |ez]; is stuck for i € {1, 2}.

O 0 N O U A~ w N =

w W W W W W wWw wWw W N N N NN NN NN =2 = = a2 a A A A
O N O U1 A W N =0 W N OO0, W NN =2, VN OO W NN =,

39

M
42
43
44
45
46

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 51

[E-COMPAREFAIL*] can not be applied, i.e. e; and/or e are/is not of the form (77, w) or
fail” That means [E-COMPARE*] can not applied to |compare™ e; and es],. From L.H. either
le1]; is stuck or |es]; is stuck for i € {1,2}.

[B-COMPARE*] can not be applied, i.e. [E-COMPARE*] not be applied to [compare™ e; and e2|;
fori € {1, 2}. This means |compare™ e; and ez|; is stuck for i € {1, 2}. From L.H. we can say either
le1 |, is stuck or |es]; is stuck for i € {1,2}.

Case: select™ e or eg: Same as compare.

Case: ret ¢@c: From E-RETSTEP rule we can say if ret e@c is stuck then e is stuck. From [.H. we can
say e stuck only when |e]; is stuck for i € {1, 2}.

Case: 77, e: E-SEALED step can not be taken. So E-SEALED step can not be taken for |, e|;. Which
means |e|, is stuck for i € {1, 2}.

BFAIL2 and B-FAILI steps can not be taken. Which means e is not of the forms (v | fail”) or
(fail™ | v). Which again, from L.H., implies either |e|, is stuck or |e], is stuck.

Case proj; e: Similar to the above case.

Case inj; e: Similar to the above case.

Case (e, e): Similar to the above case.

Case case e of inj;(x).e; | injy(x).e2: Since B-CASE, and E-CASE are not applicable, it follows that
e is not of the form (v | V'), or inj; v. It follows that |case e of inj;(x).e1 | injy(x).e2]; is also
stuck.

Case bind x = v in ¢’: Similar to the above case.

OJ

* *

Lemma 18 (Completeness). If |e]1 —™* vi1 and |elo —>™ vo, then there exists some v such that

e —* v

Proof. The rules in Figure 43 move brackets out of subterms, and therefore can only be applied a finite
number of times. Therefore, by Lemma 16, if e diverges, either |e|; or |e|2 diverge; this contradicts our
assumption.

Furthermore, by Lemma 17, if the evaluation of e gets stuck, either |e|; or |e]2 gets stuck. Therefore,
since we assumed |e|; —™* v;, then e must terminate. Thus, there exists some v such thate —* v. []

Lemma 19 (Soundness for global bracketed semantics). If {e,c) & t == {(¢/,¢') & 1 then
[{e,c) & t|, =* |{¢/, ") & V|, for k € {1,2}.

Proof. If ¢ = ¢’ and t = ¢ then the lemma statement holds following lemma 16. The cases where the
stack and the head of the configuration changes are the interesting ones.

Case B-RETV: Straightforward from [B-RetV] evaluation rule. The premise of the rule says Vk €
{1, 2}, the kth projection of the expression should take a step.

Case B-RET* : Same as the above case.

Case B-RUNLEFT: The lemma trivially holds for k = 1.

Case B-RUNRIGHT: The lemma trivially holds for k£ = 2.

O]

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
Lo B & B e ¥ S 2 U= o R B o 3 B & 1 B N O S N R e e R o N o) B & 4 B A O S Y=o - BN e) N) B - OV B S e

0 N o g b~ w N =

APA A WW W W W W W W W W NN NN DN NN =SS s a2
N =2 © W 00 N O O A W N = & W 0 N O U & W N = © W 0 N O g & W N = ©

43
44
45
46

52 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing
Lemma 20 (Dist Stuck expressions). If {e, c) & t gets stuck then |{e, c) & t|, is stuck for some k € {1, 2}.

Proof. Induction over structure of e.

Case (ret e@c’, c) & (E[expect”],c’) : : : This means [E-RetV] and [B-RET*] steps can not be taken.
So, [E-RetV] and [B-RetV] steps can not be taken for
|[{ret e@c’, c) & (E[expect™],c’) : : t];. This means e is not of the form v or (f; | f). From LH.
it is clear that |v|; or f; is stuck for i € {1, 2}.

Case (E[run’ e@c’],c) & t This can always take a E-RUN step and then can get stuck. In that case the
argument is same as case ret e@c as in lemma 17.

Case ((E[run” e@c'] | '), c) & ¢ Can not get stuck as E[run” e@c’] run can always take a step.

Case ((¢' | E[run” e@c’]),c) & t Can not get stuck as E[run” e@c’] run can always take a step.

Other Cases: In all other cases the active configuration and the stack does not change. So lemma state-
ment holds following lemma 17.

OJ

Lemma 21 (Completeness). If|{e,c) & t|s —* (v1,c) & empty and |{e,c) & t|s —>™* {(va,c) & empty,
then there exists some v such that {e,cy & t —* (v, c) & empty.

Proof. Similar argument as 18 [

Lemma 22 (Label Flowsto SelCmp). If Il |+ € = €1 and 11 |- € € €5 then 11 |+ € = (¢, © €2) and
HIFtc (L@ t)

Proof. Given,

Mi-¢c 6 (72)
MI-¢= 6y (73)

which implies

M- =6 (74)
III- ¢ = 6 (75)
O >64 (76)
IO =6 (77)
-6 = (78)
I 65 = (79)
74,75 and R-CONJR implies
D6 =6 A6 (80)

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 53

from 74, 75 and PAANDR
OI-& =6 (1)

78 and CONJL implies

M- Aty =€ (82)
76 and DISJR implies
M- >6 v 6 (83)

80, 82 and 83 together proves I | £ = ({1 @ o)
Similarly we can prove I | £ = (£ © £2)
[

Lemma 23 (Projection Preserves Types). If I';pc + e : 7, then T;pc - |e|; : T fori = {1,2}.
Proof. Proof is by induction on the typing derivation of I';pc — e : 7. The interesting case is e =
(e1 | e2). By BRACKET, we have IL; T'; pc’ - ¢; : 7 for some pc’ such that IT |- (H™ u pc”™) E pc'”.

Therefore, by Lemma 12(pc reduction), we have II; T'; pc - e; : 7. [

Lemma 24 (Subject Reduction(within a host)). Let II; T';pc;c e : tand I1 |+ ¢ > C(1). If e —> €'
then II; T; pc;c €' @ 7.

Proof. Case E-APP Given ¢ = (A(x: 71)[pc’].e) v and ¢ = e[x — v]. Also I;T;pc;c + A(x:
71)[pc’]. e v: T2. From the premises of APP, we have:

;T pe; e = A(x:1y)[pc’].e: 71 r, T2 (84)
ILT pe;e v 1y (85)
II I~ pc = pc’ (86)

From (84), we further have that IT; ', x : 71;pc’;c — e: T9. Since (86) holds, we can now apply
PC reduction to get II; I', x : 71;pc — e: To. Applying substitution preservation using (85), we have
IL T pes e = e[x — v]: To.
Case E-BINDM. Given e = bind x = (7, v) in e; and ¢’ = e1[x — v] and also
IL;T;pc;c = bindx = (7,v) ine; : T 87)

From the premises of (87) we have

I; T;pe;e = (7, v) : Csays © (88)
ILT;pc;c-v:7 (89)

O 0 N O U A~ w N =

w W W NN NN N DN DN DN NN =2 = s e e a2
N =2 & W 00 N O O A W N = & W 0 N O U & W N = ©

33

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

54 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

ILT,x:;pculicher:1 (90)
II-pcuter 91)
Il c > pc (92)

(Since IT |- ¢ > pc) applying pc reduction lemma in (90) we get IT; T, x : 7/;pc e1 : 7. Invoking
variable substitution lemma, we thus have IT; T; pc; ¢ - e1[x — v] : 7.

Case E-RETSTEP

ret e;@’’ — ret ej@c’ 93)
Given, e = ret e;@c’ and ¢’ = ret ¢}@c’ and also

ILT;pc;c - retej@c : 1 %94)
From the premises of (94) we get

ILT;pcicke: 7 (95)
where T = pc'® says 7/

IIIFc > pc (96)
III-c =ci) 7

and applying induction hypothesis on the premise of (93) we get
ILT;pese ey o 7 (98)
From (98), (96) and (97) we have ILI; T'; pc; ¢ - ret ej@c’ : t

E-COMPARE Given, e = (compare/?®233YSt (37, v} and (7,, v)) and ¢’ = (7;,q, v) and also,

IT; T; pc; ¢ - compare((19%) Says (17,, v) and (77, v) : ({1 @ L2) says T (99)
Inverting (99)

IL T pese b= (7, v) : 61 says T (100)

IL T pese = (g, v) : Lo says T (101)

c“ > {1 says T (102)

¢ > by says T (103)

II ¢ > pc (104)

(105)

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 55
Inverting (100) or (101) further, we get
1L pe;e-v: T (106)
From rule SEALED, (106) and (104) we can say II; I'; pc; ¢ = (7,0, V) : (€1 @ £2) says T

Case E-COMPAREFAIL*. Trivial, as fail® typechecks with any protected type, and based on our type-
system 7 is always a protected type.

Case E-SELECT. Given, e = select! 3357 (7, v{) or (7, v2) and ¢’ = (77, v1) where £ = {1 © (5.
The following is also given.

IL T pe; e - select’ ®3Y37 (3, vi) or (f,, v2) : £ says T (107)

Inverting (107) we get the following,

IL T pesc b= (g, v1) : €1 says T (108)
IL T pesc b= (g, vo) : L2 says T (109)
IIIFc > pe (110)

(111)

Further inverting (108) we get,
LT pese-vie T (112)

Thus from rule SEALED, (112) and (115) we can argue, II; I'; pc;c - (77, v1) : € says T

Case E-SELECTL,E-SELECTR . Similar to above. The only diffrence is we need to invert both (108)
and (109) and argue both IT; T'; pc; ¢ - (77, v1) : T and IL; T; pe; ¢ - (77, v2) : 7 holds.

Case E-SELECTFAIL. Trivial, as fail" typechecks for any protected type, and based on our type-
system 7 is always a protected type.

Case B-SELECTCOMMON. This case has a number of sub-cases based on whether f;; is a value or a
fail term. We will show few cases. Proof of the rest of the combinations will be similar.

Given, e = select ((77,, v1) | (7, v1)) or (T, V1) | (e, v2))
and ¢’ = (M, 00, V1) | ((e,00.) V2))

IL,T;pc;ct-e: (6 ©¢:) says T
Inverting the above we get,

IL T pes e = (77, v1) | (77, v2)) : €1 says T (113)

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

56 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

IL T pe;c ((ﬁf2 Vi) | (ﬁfz vh)) @ €o says T
II'l-c > pc

inverting 113 and 114 we get

II - H" = € (¢ says 1)
II - H" © € ({3 says T)
I (H" u pc) € pc’
ILT;pc’se b= (7, vi) : €1 says T
): {1 saysT
): o saysT
):ly saysT
From 116 and 117 and lemma 22 we get

I+ H = % (61 ©¢) says 1)

applying UNITM in 120 120, 121 , 122 we get:
ILT;pc;c-vi:t
ILT;pc;c-vo: 1

applying pc-reduction lemma , SEALED in 124 and 125 we get

ILT; pc’;c - (Moo v1) : ((1©62) says T
ILT; pe’sc b (T o) v2) : (1 ©) says T

(114)
(115)

(116)
(117)
(118)
(119)
(120)
(121)
(122)

(123)

(124)
(125)

(126)
(127)

from 126, 127 , 123 and BRACKET-VALUES we get I peie = (7,60 v1) | (i 0m) v2))

(61 © €2) says 7 Let us do another case, where

e = select (fail® 3837 | (57, V) or (7, v) | fail® 38YST)
and

¢ = ((Me,00, V) | (oee V')

Similar proof as above by inverting using BRACKET rule on
(Failt SAYST | (5, ') and (7, v) | fail® SYS)

Case B-SELECTCOMMONLEFT.
e = select (1"ail€1 saysrt | (ﬁt’l v)) or failfz Saysr+
and
e — (.Fai]_ﬁ@(’Q says | (ﬁglef2 V))

Proof is straightforward using BRACKET to invert (fail® $@¥S 7| (77, v)) and then using BRACKET-

FAIL-L rule to prove the conclusion.

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 57

Let us prove another case where
e = select ((ﬁfl V]_) | (ﬁfl VQ)) or (ﬁfg V3)

and
e = (Mo v1) | (e, v2))
andr = a

Proof is straightforward using BRACKET- VALUES to invert
((@g, v1) | (4, v2)) and then using BRACKET-FAIL-A rule to prove the conclusion.

Case B-COMPARECOMMON:
Similar to B-SELECTCOMMON.

Case B-COMPARECOMMONLEFT
Similar to B-SELECTCOMMONLEFT.

Case B-FAIL1 and B-FAIL2
Straightforward using BRACKET-FAIL-L. BRACKET-FAIL-R rules.
Case B-STEP Straightforward using Induction Hypothesis.

Case B-APP: Givene = (v1 | v2) VvV and ¢’ = (v |V'|; | va |v],)- Also given that T'; pc = (vq | v2) V' :
79 is well-typed, from APP, we have the following:

Iipe b (v | ve) 111 55 1 (128)
LipckV i1 (129)
I |- pc pc” (130)

Thus from BRACKET-VALUES, we have II | H™ = € ((11 ~, T2)™). That is, from the definition of

type protection (Figure 38), we have II |- H™ = € (11 ©— 75). From P-FUN, we thus have

- H =14 (131)
II - H = pc"™ (132)

We need to prove
Tipe = (v V)i [va [V]2) : 72

That is we need the following premises of BRACKET.

ILT; pc’ vy V] 7o (133)
;T pc’ = vo |V]yt 12 (134)
II |- H" upc™ = pc” (135)
I - H* = €(15) (136)

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

58 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

Let pc’ = pc”. We have (135) from (130) and (132). We already have (136) from (131). To prove
(133), we need the following premises:

/!

LD pd’ v i1 B 19 (137)
;T pc’ = V] 12 (138)
II |- pc’ = pc” (139)

The last premise (139) holds trivially (from reflexivity). Applying Lemma 11 (values can be typed under
any pc) to (128) we have (137). Applying Lemma 11 (values can be typed under any pc) and Lemma (23)
(projection preserves typing) to (129) we have (138). Thus from APP, we have (133). Similarly, (134)
holds. Hence proved.

Case B-TAPP Similar to B-APP.
Case B-BINDM Given e = bind x = (77, v1 | 77, v2) in e. We have that:

¢’ = (bind x =17, vy in |e]; | bind x = 7, v2 in |e]5)

Also I'; pc = bind x = (77, v1 | 77, v2) in e : 7. From BINDM, we have

Cipet (,v1 |7, v2) : €says T (140)
ILT,x:7;pculie:1 (141)
M-peulcr (142)

From (140) and BRACKET-VALUES, we have

[;pct1,v1:Csays7 (143)
T;pc 17, ve: €says 7 (144)
III- H = € (L says 1) (145)

Inverting 142 we get

IIiFe>=pcut (146)
We have to prove that

[ipet- (bindx =7, vy in|e]; | bindx =7, va in|ely) 1 T

For some pc we need the following premises to satisfy BRACKET:

ILT; pc -bindx =7, vy ine|; : 7T (147)
ILT;pe-bindx =7, vain ey : 7 (148)
IT |- (H" upc™) = pc” (149)

- H™ C € ™) (150)

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

59

A natual choice for pc is pc L €. From Lemma 11 (values can be typed under any pc) and 146, we have

;T pe-q,vi: 7
Applying Lemma 23 (bracket projection preserves typing) to (141), we have

I, x:7spet el : 7

From BINDM, we therefore have (147) and (148). Applying TRANS to (145) and (142), we have (150).

Thus we have all required premises.

Case B-SPLIT

Given e = split, (v1 | v2) and €’ = (T zepr (V1 [V2)), (Tegene (V1 [v2)))
From applying the SPLIT typying rule on split, (vi | v2) we get

Tipck (vi|ve): 7
II IF ¢ > pc
IT - pcc €L A(pct)

Inverting 151 with BRACKET-VALUES we get

ILT pcset=vi it
ILT pc;e=vo i 1
II-FH"E % (1)
ITI-c > pc

From 157,151, SEALEDK , and for any &, we get the following:

LT pese b (Megene (V1| v2)) 1 LA Csays T
ILT; pe;c b (Megene (vi | v2)) : R A Esays T

From 158, 159, and 157 and PAIR we get

I pese b= (e ne (V1 [v2)), (egene (Vi [v2))) 0 (L5 A £ says T x R° A € says T)

Case B-COMBINE

(151)
(152)
(153)

(154)
(155)
(156)
(157)

(158)
(159)

(160)

Given, e = combine x = (((Mzenr V1) | (lirene v2))s ((Megene V1) | (Migene v2)))@pc in e and ' =

(combine x = {(; 1z V1)s (M re ne v1))@pc in e | combine x = (1 s V1), (M genp V1))@pc in e)// From

applying the COMBINE typying rule we get

43

15T pes e b= (e e V1) | (zene v2))s ((krene V1) | (Migene v2))) (LS A £ says 7 x R A £ says 7}4

(161)

45
46

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

60 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

II IFc¢ > pc
III-tupc= ' sayst
ILT;pcul;ce:l sayst

Inverting 161 with PAIR we get

ILLspese b= ((epene vi) | (Mepene v2)) o LA Esays T
ILT; pe;e b ((erene Vi) | (e ne v2)) : R A Csays T

Inverting 165 and 166 with BRACKETVALUES and then with SEALEDK we get

ILTpe;e-vie T
ILT; pc;e v i T
III-FH = €(L° A €saysT)
II - H"Z €(R A €saysT)

From which we can write for 7 € {i, a}
I+ H = € says 1)
or, we can just write
M-HA"=¢
and when 7 € {i, a} we can write
IM+-H"Eupe
because of 163 we get
O-H e
which implies
III- H = € (L says 1)
Inverting 164 we get
IIFe>pcut
Hence a natural choice of the pc’ is pc L €. From 172 we get

Il H wpcE €upe

(162)
(163)
(164)

(165)
(166)

(167)
(168)
(169)
(170)

(171)

172)

(173)

(174)

(175)

(176)

177)

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

We already have from 163
[IL T pd L lse e : € says pe
From 167, 168, 175, 177, 178,

ILT;pc;c € : tsayst

where, ¢’ = (combine x = (T ;¢ V1)s (e genr V1) @pc in e | combine x = (7 1 np V1)s (Tire ae V1))@pC in

O

61

(178)

Lemma 25 (Subject Reduction(inter-host)). If IT;T; pc {e,c) &t : T and {e,c) & t = (e, ') & 1

hold, then I1; T; pc + (¢, ¢') & ' : 7.

Proof. Induction over typing derivation of {e,c) & 1.
Case E-RUN. Given, (E[run” e@'],c) & t =
{ret e@c,c’) & (E[expect™],c) :: t

ILT; pe - (E[run® e@c'],c) & t: T
need to prove
ILT; pc - (ret e@c,c’) & (E[expect®],c) :: t: 1
Inverting 179 we get

ILT; pc’;c - E[run® e@c] : 7/

applying lemma CTX to 181 we get
ILT; pc’;c k- run’ e@c : 7
inverting 185 we get
IL,T, pe;c’ e 7

where

~

7 = pc*® says t
- c> pc
pc’ T pe

IIIFc>C()

(179)

(180)

(181)
(182)
(183)
(184)

(185)

(186)

(187)
(188)
(189)
(190)

kOmm ~ (2] (8] E w N —_

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

62 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

applying pc-reduction on 186 with pc we get
ILT, pe;c e 7

applying clearance (Lemma 13) in 191

III-c > pe
applying clearance lemma in 186
III-c > pe
from 184 and 189 we get
pc E pc

from 193 and 186 190 and 193 and RET we get
ILT, pe;c’ - rete@c: 7
from 181 and 185 and Expect 9 lemma we get
IL;T;pc’; ¢ - Elexpect] : 7/
from 182, 183, 184,196 and TAIL rule we get
IL;T; pc - (E[expect™],c) : : t : [t]7
from 194,195,197 183 and HEAD rule we get
ILT; pc - {ret e@c, ¢’y & (E[expect®],c) :: t: 7
Case E-RETYV. Given,

(retvec,c') & (E[expect™],c) :: t —>
CEl e W & 1

(where 7/ = pc** says 1)

IL; T; pe + (ret vec, ¢’y & (E[expect™],¢) i1 t: 7
II IFc¢ > pc

need to prove

I T pe b CE[(1peie W)) &t 2 7

(191)

(192)

(193)

(194)

(195)

(196)

(197)

(198)

(199)
(200)

(201)

O 0 N O U A~ w N =

w W W W W W wWw wWw W N N N NN NN NN =2 = = a2 a A A A
0 N o Uk W NN =0 VW N U AW NN 2V N U AW NN 2

39

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing
inverting 199 we get
I; T; pc’; ' + retvec : 7/
/
II; T; pc - (E[expect™ |,c) :: t: [¢']r
pc C pc

I - > pe
inverting 202 we get

IT; F;pc'; vt
I |- c > (7"
O > pc

inverting 203
IT; T; pc; c E[expect’l] T
pc E pe

II'l-c > pc
ILT;pe b=t 7]

applying clearance lemma on 209
ITIFc > pc
from 213, 206, 207 and ValuesHost lemma
ILT; pese vt
pc reduction Lemma 12 in 214
I T pese v 77
applying UNITM rule in 215
IL T pese = (fpena v) 7
clearance lemma on 216
ITI-c > pc
from 216, 209 and RExpect 10 lemma

ILT; pe;e b E[(1peia V)] 2 T

63

(202)

(203)
(204)
(205)

(206)
(207)
(208)

(209)
(210)
211)
212)

213)

(214)

(215)

(216)

(217)

(218)

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

64 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

from 218, 210, 212, 217 and HEAD rule we get
I 05 pe b CE[(1peie V)]s) &t 2 7

Case E-DSTEP. Straightforward using Induction hypothesis
Case B-RUNLEFT. Given, ((E[run® e@c'] | e2),¢) & ¢
= ((ret e@c | ®),c) & ((E[expect™] | e2),c) :: ¢
and

ILT; pe - {(E[run® e@c'] | e2),c) &t : T

need to prove A
ILT; pe - {(ret e@c | o),c’) & {(E[expect?] | e2),c) :: t: 7

Inverting 220 we get
ILT; pc’sc - (E[run e@c'] | es) : 7/
LT pe -t [P
IIl-c > pc
pc € pc’
inverting 221 we get
ILT; pc”, ¢ - E[run® e@c'] : 7/
ILT: pc”,ct-eo: 7
III-H = %)
II |- H" u pc’ = pc”
applying lemma CTX to 225 we get
I T; pc”; ¢ - run e@c : ¢
inverting 229 we get
ILT, pe;c’ e ‘1:’

where

~

7 = pc* says t
IIIc>= pc”
pc’ C pe

III-c>C()

(219)

(220)

(221)
(222)
(223)
(224)

(225)
(226)
(227)
(228)

(229)

(230)

(231)
(232)
(233)
(234)

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing
applying pc-reduction on 230 with pc we get
ILT, pc’;c —e: 7

applying clearance in 235

- > pc
applying clearance lemma in 230
III-c > pe
from 224, 225 and 233 we get
pc E pc

from 237 and 230 234 and 237 and RET we get
ILT, pe;c’ - rete@c: 7t
from 225 and 229 and Expect 9 lemma we get
ILT; pc”; ¢ - E[expect™] : 7/
from 226, 227, 228, 241 we get
ILT; pc”; ¢ - (E[expect™] | ep) : 7/
from 242 and BULLL rule
I; T, pc;c’ - (rete@c| o) : 7
from 222, 223, 224,241 and TAIL rule we get
IL; T; pe - {(E[expect’] | ez),c) :: t: [T]r
from 238,242,243 223 and HEAD rule we get
ILT; pe - {(ret e@c | o), ") & ((E[expect] | e2),c) :: t: 7
Case B-RUNRIGHT. Same as above.
Case B-RETLEFT Same as above.
Case B-RETRIGHT Same as above.

Case B-RETV Same as above.
]

Theorem 3 (c-i Noninterference). IfII; T, x : ¢ says 7’ - {e,c) & empty : € says T where

65

(235)

(236)

(237)

(238)

(239)

(240)

(241)

(242)

(243)

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

w W W w W NN DN DN DN DN DN DN DD S s s s s s
AW NN 20O O O N R WD 2O VW N OO W NN =2 Vv

35

66 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

O(fail", 11, p,n) =0 !
O(x,11, p,7) =x 2
O((),H,p,ﬂ) =0 3
O(ne e,11, p, 7) =1; O(e, L, p, 7) N
7, O I, p,n) Il = p~ >
O(ﬁf v, H, p,ﬂ') _ { T]g (V)4 7T) I .)4 6
o otherwise
7
Alx: .O(e, 11, p, II e pt
O((x:7)[pel. e, 1T, p,) - { (lpel Otepm) T p = p :
o otherwise 9
10
AX . 11 11 T p"
O(AX[pc].e, 1, p,n) = [pel- Ofe, 11, p, 7) = pcj =P 1
o otherwise 1
Olee 10, p,m) = O(e, I, p,n) O, 10, p,) 13
Ole, 1L, p,7r) =
O(er, ex).T1, p,) _1° (e IL p.m) = o 1
(O(ey, 10, p,7), O(ea, 11, p,mr)) otherwise 15
O(proj; e, 11, p, 7) = proj; O(e,1I, p,) 16
9 H? 9 = 17
O(anl 67H7p77r) = O . O(e p ﬂ) ° 18
inj; O(e, 11, p,mr) otherwise
O(case e of inj;(x).e1 | injo(x).€2,1I1, p,7) = case Ofe, 11, p,7) of 19
inj; . O(ey, 10, p,7) 20
| injy . O(eq, 11, p,7) 21
O(bind x = e in ¢/, 11, p, n) =bind x = O(e, 11, p,x) in O(', 11, p, 1) 22
O(select e; or ey, 11, p, 1) = select O(ey, 11, p,7) or O(es, 11, p, 7) 23
O(compare e; and ey, I1, p, 7) = compare O(e1, 11, p,) and O(es, I1, p, 1) 24
Ole, 11, ¢, = t 25
O(e,c) & s, 11,4,) = (e) § = empty
O(e,IL 6, m)&O (s, 11, ¢,) 26
27
Ole, 11, ¢, = t
OWe,cy:: 5,11, ¢,7) = (e %) S = ety 28
O(e, 11,4,) :: O(s, 11,4,) 29
O(E[run? e€c],11, ¢, x) = O(E[e], 1L, ¢,) 30
O(ret e@c, 11, ¢, 1) =0O(e, 11, ¢,) 31
O(split; e, 11, ¢, 7) = split; O(e, 11, ¢, 1) 32
O(combine x = {eq, e2)@pc in e, I, ¢, 1) = combine x = (O(ey, 1L, ¢, 1), O(es, I, £,) Yepc in Ofe, I, €,) 33
34
Fig. 44. Observation function for intermediate FLAQR terms. 35
36
(1) ILT; pe;c b= v; : € says 7, i € {1,2} 37
(2) (e[(11 |)], €) & empty —* (v,) & empty .
) MUI-H = andl |t H" € ¢, ne {c,i}. 39
40
then, O(|v|, 1L €,) = O(|v],, 1L, €, 7) 41
42
Proof. From Subject reduction of bracketed FLAQR constructs we can write 43
44
IL;T; pc = {v,c) & empty : £ says T 45
46

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 67

We will write |v]; as v;. We need to show O(vy,II, £, 1) = O(va, 1, £, 7). Since v; has protected type, we
know that it is of form (77, v}) Since II |- ¢* C ¢" for 7 € {c, i}, we just have to show

(7, OWLIL £, 7)) = (7, O(v), 11, €,1))

Which is true if we can show

OWLIL 6,) = Oy, 11, ¢,).

Which can be easily shown by induction over structure of v;s. [

Theorem 4 (Availability Noninterference). If
ILT, x: € says 7' + {e,c) & empty : Lo says T where

(1) I pe;c = fi: €says 7 ie {1,2}
(2) delx = (fi |)], ¢) & empty —* (£, ¢) & empty
(3) I H > ¢ says 7" and H" € Ajg) and

IT |- Q guards (£g says 7)

then |f|, # failf@ S3YST — | f|, # failfe SAYST

Proof. From subject reduction (24 and 25) we know, II;;pc;c + |f]; : €g says 7. Because

I I+ Q guards ({g says 7) and H* € Ajg) we can write IT |/ H** > {g says 7 from rule Q-GUARD .
This ensures if | f|; # fail‘@ S3YS 7 then |f], # fail‘@ S3YS 7 and vice-versa. []

Appendix B. Correctness of Blame Semantics.

In the following proofs, a possible faulty set 7 is referred as a faulty set that satisfies the blame
constraint, or 7 implied by C. And II |- b > 7 is equivalent to saying II | b* > 7.

Lemma 26 (Reach ConjL). IfI1 |- b* > tthen 1 |- b A p™ >t

Proof. Given, IT |- b** > ¢, which means #* = 1. So from CONJL we can write: IT |- b A p* > ¢,
which is same as writing IT |- b A p** >t. []

Lemma 27 (Reach ConjR Type). If Il |- b > ¢y saystand Il |+ b > {3 sayst then Il |- b >
(61 ©¢3) says

Proof. If I |- b > tthenII |- b > ({1 © {2) says 7 is true as well from A-TYPE. If II |- b > 7 then it
is obvious that II |- b* > £7 and II |- b* > 5. Which along with R-CONJR implies, II |- b* > {7 A £5.
Thus from A-AVAIL we can write II | b > (6 ©) says 7 [

Lemma 28 (FAIL RESULT ONESTEP TO FAIL). If (e, c) & s)¢ — ((fail,¢') & ') and e is a
source level term, then e must be of the form compare™ v and ve and the evaluation step that has been
taken to transition from e to fail® is either C-COMPAREFAIL or C-COMBINEFAIL.

Proof. Trivial(by inspection on evaluation rules). [

Lemma 29 (FAIL SUBEXP ONESTEP). If ((e,c) & s)¢ — (/,¢'> & §')C and e is a source level
term but €' has a fail term in it then the evaluation step that has been taken is either C-COMPAREFAIL
or C-COMBINEFAIL.

O 0 N O U A~ w N =

A B B B B BA BA W W W WWWWWWW NN NN NN == S g a3 a3
Lo B & B e ¥ S 2 U= o R B o 3 B & 1 B N O S N R e e R o N o) B & 4 B A O S Y=o - BN e) N) B - OV B S e

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

68 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

L(x,y,C,€1,€2) = match (x,y) with
| (@7 v1), (7 v2)) =
ifCE €, € FthenC
elseif C &= €y € F thenC
elseif C=¢e F thenC
else L(vy,v9,C, ¢, C)
| (ne ex.me e2) = L(e1,e2.C. 61,)
| (in3f e1,in3} e2) = L(e1,ea,C, 01, o)
| (Cerr, e12)", {ean, e22)") =
L(e11,e21, (L(e12, €22,C, (1, 62)), {1, Ca)
| (run® e1@p, run” es@p) = L(e1,e2,C, €1, ¢€2)
| (select”™ e; or es, select” ¢ orey) =
L(e1, e, (L(ea,e5,C,l1,2)), (1, o)
| (compare” e; and es, compare’ €} and e}) =
L(e1, e, (L(ea,e5,C 1, 62)), 1, a)
| (A(x:7)[pc]. e1, A(x:7)[pc]. e2) = L(e1,ea,C, €1, €2)
| (AX[pc].e1, AX[pc].e2) = L(e1,e2,C,l1,L2)
| (proj; e1,proj; ea) = L(e1,e2,C,¢1,42)
| (bind x; = e1 ine€},bind xo = ey iney) =
L(e1,e2, L(e),e5,C, 01, 0),C 0, o)
| (case™ ey of inji(z).e2 | inj5(2).e3,
case’ ¢} of inj(z).¢} | inj}(z).€5) =
L(eq, e, L(ea,eh, Lles,ey,C,l1,02),01,62),61,2)
| (fi. fo) =
if i = fo thenC
elseif CE {1 € F thenC
else if CE €y € F then(C
else NORM(¢1,C) OR NORM(f2,C)

Fig. 45. Function L to construct blame constraint C.

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 69

NORM(¢,C) => match £ with
| €1 A €3 => NORM(¢1,C) AND NORM(¢2,C)
| €1 v €2 => NORM(¢1,C) OR NORM({2,C)
| €1 B €5 => NORM(¢£1,C) OR NORM(¢,C)
| €1 B 62 => NORM(£1,C) AND NORM(¢2,C)
| p=>DNF(p** e F AND C)

DNF(¢ € F AND C) => match C with
| F=@ =>¢eF
|t e F=>teF AND '€ F
|C; OR Cy => DNF(£€ F AND C;) OR DNF(£ € F AND Cy)
|C;y AND Cy =>C; AND Cy AND €€ F

Fig. 46. Helper functions (NORM and DNF) to construct blame constraint C: NORM and DNF.
Proof. Trivial(by inspection on evaluation rules). [
Lemma 30 (INTRO GTR). IfII |- €1 > 7 then forany o 11 |- €1 A€o > T
Proof. Proof is straightforward from fail judgements > (Figure 14) rules and CONJL rule. []

Lemma 31 (FAIL ONESTEP NON-EMPTY BLAME SET). If {{e,c) & s)¢ — (', c') & §' >C/, eis
a source level term, and ¢’ contains fail®, then for any F that satisfies C' the following condition holds:
b > 1, whereb = /\erff

Proof. Since transition from e to ¢’ introduces a fail” term, from lemma 29, we know that the eval-
uation step that was taken is either C-COMPAREFAIL or C-COMBINEFAIL. Without loss of gener-
ality we can state that ¢ = E[compare®®2S8YS™ (7, ;) and (7, v2)] or e = E[combine x =
Ty zne V1)s (Myrne v2))@C ine'] and C" = L(v1,v2,C, €1, L2), or C' = NORM(Z,C). In the following
proof for F and J' that satisfies C and C’ respectively, b and b" will mean Ay f and Ay qer f
respectively. There are three possibilities for C’.

(1) C' = ((£1 € F) AND C) OR ((f2 € F) AND C) : This case happens only when C-COMPAREFAIL

step is taken. It is straightforward to say that, for any F that satisfies C, 7/ = F u {(;} satisfies C’,
for i € {1,2}. If b is conjunction of labels in F then b A ¢;, i € {1, 2} are conjunction of labels in
F'. We know, II |- ¢; > ({1 @ l2) says 7. From lemma 30 (ITRO GTR) we can write for label b,
ITIF (6 A D) > (& @ ¢2) says 7'. Beacuse conjunctions of labels in F” are of form &' = (¢; A b),
we can say that for any F’ that satisfies C’ the following condition holds

b > (6, ®Ly) says 7/, where b’ = /\erf’ f.

O 0 N O U A~ w N =

w W W W w w W N N NN N NN NN =2 = = a2 A A A
o U1 A W NN =20 VW N U W20 VW N0 W N2

37

0 N o g b~ w N =

70 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

(2) C' = (£ € F) AND C : Here either ¢ is some inner layer in 7, i.e. 7 = ({1 @ {2) says 7/ =
(61 ® €2) says (...(€ says 7”)...) when compare statement (i.e. C-COMPAREFAIL) got executed;
or £ is some program counter label when combine statement (i.e. C-COMBINEFAIL) got executed.
It is straightforward to say that, for any F that satisfies C, ' = {¢} u F satisfies . If b is con-
junction of labels in F then £ A b is conjunction of labels in F’. We know II |- £ > 7. From lemma
ITRO GTR 30 we can write for any label b, IT |- (¢ A b) > 7. Beacuse conjunctions of labels in
F' are of the form b' = (¢ A b), we say that for any F” that satisfies C’ the following condition
holds

I & > 1, where b’ = /\er]—" f.

(3) C’ = C : This case occurs when C-COMPAREFAIL or C-COMBINEFAIL rule does not update C
beacuse the label ¢ that is responsible for generating fail is already included in all possible F in
C.Thatmeans C = € € F and II |- € > 7 (since the end result is fail and ¢ is the responsible label).
Thus it is straightforward from lemma 30 that for label b, where b = by A ...0... Ab I |- b > 1.
Thus we have, I b > 7, where b = Ayser f-

L]
Lemma 32 (GTRDOT OR). IfII | ¢ > {1 says T then I |- € > ({1 v {3) says 7.
Proof. Proof is straightforward inspecting > rule (Figure 14) and using DISJR. []

Lemma 33 (FAIL RESULT ONESTEP). Given,

(1) ILT; pe;c - e, c) & sC : 1
(2) {Le,c) &)¢ — ((Fail”,c) & s)C

then for every F that satisfies C' it must be the case that 11 |- b’ > 7', where b = N\ ;. f

Proof. Let us proof this by induction over typing derivation II; I'; pc; ¢ - e : 7. In the proof b is always

/\fe]—'f'

e Case E-APPFAILL: ¢ = (A(x:71)[pc]. fail”p_”)el and ¢’ = fail™. From IH we get, I |- b >
7, which is what we wanted.

e Case E-SEALEDFAIL: ¢ = 75, fail® and ¢/ = fail?SayS~
(e fail™, c) & s)¢ — ((Faill SAYST ¢) &)¢
Given, II;T'; pc; c - ne fail™ : € says 7.
Therefore from induction hypothesis we have, II |- & > 7, C does not get updated during the
evaluation step. Thus from the rule A-TYPE we have, Il |- b > € says 1,

e Case E-INJFAIL: e = inj" "™ fail% and ¢’ = fail(+72)
inj("7) failn — fail(mim)
Given, IT; T'; pc; ¢ injl-(TlJrQ) fail™ : (11 + 12)
From IH we can say for every F that satisfies C, II |- b > T1;

C does not get updated because of the evaluation step. Using rule A-SUM, we can write the fol-
lowing, IT |+ b > (71 + 72)

O 0 N O U A~ w N =

0 N o g b~ w N =

A bA A A WWWW W W W W W W NN NN NN DN DN NN =SS s
w N =20 W N O U W N =20 VW N U WN =2 VW N, W N =2

44
45
46

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 71

e Case E-CASEFAIL: From CASE typing rule we know II |- 7,2 > 7° for i € {1,2}. IH gives us
II I+ b > 7;. Thus we can write I |+ b > 7.
e Case E-PROJFAIL: Same as case E-APPFAIL as the type annotation of fail does not change.

e Case E-SELECTFAIL:
e — select((3®la) SAYS 7 £,4103 SAYS T . £ 1104 SAYS T
¢ — fail(lsOfs) says

e, ey &)¢ —> ((faill30ha) SAYS T oy g o\C

Given,
II; T; pe; ¢ - select(@94) SAYST ¢ or £ (05,0 44) says T (244)
From IH,
III-b>¢f3saysT (245)
III-b> ¢ saysT (246)

Applying Lemma 27 with 245 and 246

IMI-b> (30)says T (247)
(248)

e Case E-COMPAREFAILL:
e = compare(3®(SAYS T (£311/5 SAYS T and (7, vo)
(e, c) & $)¢ — ((Failfs® SAYST o5 & \C
From IH we get,

III-b>¢f3saysT (249)
III-b > €4sayst (250)

using A-TYPE, or A-AVAIL or A-INTEGCOM we can write the following
II-b> (t3@®y) sayst 251)

e Case E-COMPAREFAILR: same as E-COMPAREFAILL

o Case C-COMPAREFAIL: Trivially true based on definition of £. and lemma 31.

e Case E-COMBINEFAIL:
e = combine x = (v1,v9)@pc in ¢'. Let us assume II; T'; pc; ¢ €' : € says 7, which means the
whole term has type ¢ says 7. From IH II |- b > ¢ says 7, which trivially proves this case.

e Case E-TAPPFAIL:
e = fail™lrel 7 and ((Fail"™ Pl 1 7y o) & $¢ — (Fail™ X2l) & $)€ Given, 1T |- b >
VX[pc]. 7, which is same as saying Il I b > 7[X > '] where b = /\ ;.7 f

0 N o g b~ w N =

A B B B B B B W W WWWW W WWWNDN NN NN 2= a 2 a3 a3
o 00 A W N =20 W N OO O WD =20 VN0 WD 2O VW N OO0 W N2 v

72

P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

e Case E-RETFAIL: IH gives us I |- b > 7, Then from A-TYPE II |- b > pc*® says 7.
o Other cases: neither fail propagates nor any change in C.

[

Theorem 1 (Sound blame). Given,

(1) ILT; pe; e - (eye) & empty>C"m’f ' T
(2) {e,c) & empty)Cint —* ((failT,c) & empty)*

where e is a source-level expression,

11

then for each possible faulty set F; implied by C’, there is a principal b; = /\pe F P such that 11 |-
b,‘ia > T

Proof. e does not have any fail terms in it and it steps to a fail term. From lemma 29 we know that
there has to be at least one C-COMPAREFAIL or C-COMBINEFAIL step taken during the evaluation.
Either e takes single step or multiple steps to produce the fail® term as the end result.

(1) fail® is produced via single step: If ¢ takes a single step ,

e From lemma 29 we know e is either of the form compare(3®) y; and vy, or combine x =
v@pc in eg and from lemma 31 we know that I |- b; > T

o Another possibility is that, the last evaluation step produces the fail® result.
e, c) & empty)d —* (e, 1,cp1) & 5,11 —> ({fail",c) & empty)C From lemma
28 we know e,_1 is either compare™ v; and vo or combine x = v@pc in e and then from
lemma 31 we know Il |- b; > 7T

(2) fail" is produced by propagation of a fail term: This means the evaluation takes more than

one step. Let us prove it by induction over structure of e.

e, c) & empty)yD —* ({es, c;) & ;)¢ —* ((fail™,c,) & s,)%

Without loss of generality we can say that the fail term that propagates till the end is intro-
duced first in expression e;. That means there exists an expression e;_; such that it takes C-
COMPAREFAIL or C-COMBINEFAIL evaluation rule to step to e;.

(e, c) & empty)D —* ({e;_1,ci-1) & si_1)C1 —> Uei, i) & 5,)C

—* {(fail", c) & empty)©

(e;—1 can be e itself). From lemma 31, we know that because the step that is taken is C-
COMPAREFAIL or C-COMBINEFAIL we have

for faulty set F satisfying C; I |- b; > 1; where b; = /\fe = f

From e; onwards any step taken is either going to propagate fail or is going to not touch the fail
term at all. For every evaluation step the invariant I |- b; > 7; holds following lemma 33.

"I other words, e does not contain any fail terms.

0 N o b~ w N =

A B B B B A AW W WWWWWWWW NN DN DN NN =SS a3 a3 a3 a2
o U A W N =20 W N U W N 2O VN U W N2 VW N OO W N2

	Introduction
	Motivating examples.
	Tolerating failure and corruption
	Using best available services

	Specifying FLAQR policies
	FLAQR syntax and semantics
	Global semantics

	FLAQR typing rules
	Availability Attackers
	Security Properties
	Soundness of failure
	Noninterference
	Confidentiality and Integrity Noninterference
	Availability Noninterference

	Examples revisited
	Tolerating failure and corruption
	Using best available services

	Secret sharing with FLAQR
	Motivating example of secret sharing : password splitting.
	(2,2) secret sharing in FLAQR+
	Semantics and types for secret sharing
	Extending the blame semantics
	Security properties
	Password splitting example with FLAQR+.

	Related work
	Conclusion
	Acknowledgements
	References
	Appendix A. Complete FLAQR rule set and noninterference proofs
	Appendix B. Correctness of Blame Semantics.

