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Abstract. Availability is crucial to the security of distributed systems, but guaranteeing availability is hard, especially when
participants in the system may act maliciously. Quorum replication protocols provide both integrity and availability: data and
computation is replicated at multiple independent hosts, and a quorum of these hosts must agree on the output of all operations
applied to the data. Unfortunately, these protocols have high overhead and can be difficult to calibrate for a specific application’s
needs. Ideally, developers could use high-level abstractions for consensus and replication to write fault-tolerant code that is
secure by construction.

This paper presents Flow-Limited Authorization for Quorum Replication (FLAQR), a core calculus for building distributed
applications with heterogeneous quorum replication protocols while enforcing end-to-end information security. Our type system
ensures that well-typed FLAQR programs cannot fail (experience an unrecoverable error) in ways that violate their type-level
specifications. We present noninterference theorems that characterize FLAQR’s confidentiality, integrity, and availability in
the presence of consensus, replication, and failures, as well as a liveness theorem for the class of majority quorum protocols
under a bounded number of faults. Additionally, we present an extension to FLAQR that supports secret sharing as a form of
declassification and prove it preserves integrity and availability security properties.

1. Introduction

Failure is inevitable in distributed systems, but its consequences may vary. The consequences of failure
are particularly severe in centralized system designs, where single points-of-failure can render the entire
system inoperable. Even distributed systems are sometimes built using a single, centralized authority
to execute security-critical tasks. If this trusted entity is compromised, the security of the entire system
may be compromised as well.

Building reliable decentralized systems, which have no single point-of-failure, is a complex task. Quo-
rum replication protocols such as Paxos [1] and PBFT [2], and blockchains such as Bitcoin [3] replicate
state and computation at independent hosts and use consensus protocols to ensure the integrity and avail-
ability of operations on system state. In these protocols, there is neither centralization of function nor
centralization of trust: all honest hosts work to replicate the same computation on the same data, and this
redundancy helps the system tolerate a bounded number of node failures and corruptions.

Within a single trust domain such as a corporate data center, replicas likely have uniform trust rela-
tionships and may be treated interchangeably. However, many large-scale systems depend on services
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(a) More Integrity (b) More Availability

(c) More Integrity and Availability (d) Heterogeneous Trust

Fig. 1. Integrity-Availability Trade-off

hosted by multiple external services. Even when a service’s internal components are replicated, devel-
opers must take into account the failure properties of external dependencies when considering their own
robustness.

Information flow control (IFC) has been used to enforce decentralized security in distributed systems
for confidentiality and integrity (e.g., Fabric [4] and DStar [5]). Less attention has been paid to enforcing
decentralized availability policies with IFC. In particular, no language (or protocol) we are aware of
addresses systems that compose multiple quorums or consider quorum participants with arbitrary trust
relationships.

To build a formal foundation for such languages, we present FLAQR, a core calculus for Flow-Limited
Authorization [6] for Quorum Replication. FLAQR uses high-level abstractions for replication and con-
sensus that help manage tradeoffs between the availability and integrity of computation and data.

Consider the scenarios in Figure 1. Shaded boxes represent hosts in a distributed system. Dashed lines
denote outputs that contribute to the final result, a value v. Dotted lines denote ignored outputs and solid
lines indicate the flow of data from an initial expression e distributed to hosts to the collected result.
Results are accompanied by labels that indicate which hosts influenced the final result.

In Figure 1b, e is distributed to hosts alice and bob. The hosts’ results are compared and, if they
match, the result is produced. Since a value is output only if the values match, we can treat the output
of this protocol as having more integrity than just alice or bob. While both alice and bob technically
influence the output, neither host can unilaterally control its value. However, either host can cause the
protocol to fail.
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By contrast, the protocol in Figure 1a prioritizes availability over integrity: if either alice or bob
produce a value, the protocol outputs a value—in this case alice’s. Here, neither host can unilaterally
cause a failure; the protocol only fails if both alice and bob fail. Either alice or bob (but not both)
has complete control over the result in the event of the other’s failure, so we should treat the output as
having less integrity than just alice or bob.

With an adequate number of hosts, we can combine these two techniques to form the essential compo-
nents of a quorum system. In Figure 1c, e is replicated to alice, bob, and carol. This protocol outputs a
value if any two hosts have matching outputs. Since alice and bob both output v, the protocol outputs v
and attaches alice and bob’s signatures. The non-matching value v1 from carol is ignored. Hence, this
protocol prevents any single host from unilaterally controlling the failure of the protocol or its output.

Figure 1c is similar in spirit to consensus protocols such as Paxos or PBFT where quorums of in-
dependent replicas are used to tolerate a bounded number of failures. FLAQR also permits us to write
protocols where principals have differing trust relationships. Figure 1d illustrates a protocol that toler-
ates failure (or corruption) of either alice or bob, but requires dave’s output to be part of any quorum.
This protocol will fail if both alice and bob fail to produce matching outputs, but can also fail if dave
fails to produce a matching output. This example illustrates the distributed systems where the hosts do
not have homogeneous trust.

The main contributions of this paper are:

‚ An extension of the static fragment of the Flow Limited Authorization Model (FLAM) [6] with
availability policies and algebraic operators representing the effective authority of consensus and
replication protocols (§3-§5).

‚ A formalization of the FLAQR language (§4) and accompanying results:

* A liveness theorem for majority-quorum FLAQR protocols (§7.1) which experience a
bounded number of faults using a novel proof technique: a blame semantics that associates
failing executions of a FLAQR program with a set of principals who may have caused the
failure.

* Noninterference theorems for confidentiality, integrity, and availability (§7.2).
* An extension to FLAQR adding support for simple secret sharing, and results demonstrating

it preserves integrity and availability noninterference as well as our liveness theorem, despite
introducing an additional source of failure due to mismatched shares (§9).

This paper is an expanded and updated version of an article previously published in the proceedings
of the 35th Computer Security Foundations Symposium [7]. This version adds support for secret sharing
(Section 9) and extensions of our previous results that demonstrate these new terms neither impact
integrity and availability noninterference, nor majority liveness, despite introducing an additional source
of failure. In addition, we corrected a minor issue in the original blame semantics, and include complete
rule sets and proofs for our formalization and theoretical results.

Non-goals. The design of FLAQR is motivated by application-agnostic consensus protocols such as
Paxos [1] and PBFT [2], but our present goal is not to develop a framework for verifying implementations
of such protocols (although it would be interesting future work). Rather, the goal is to develop security
abstractions that make it easier to create components with application-specific integrity and availability
guarantees, and compose them in a secure and principled way.

In particular, the FLAQR system model lacks some features that a protocol verification model would
require, most notably a concurrent semantics, asynchronous message delivery, and arbitrary communi-
cation patterns. Although this simplifies some aspects of consensus protocols, our model retains many
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1 getBalance(acct):
2 bal_a = fetch bal(acct) @ alice;
3 bal_b = fetch bal(acct) @ bob;
4 bal_c = fetch bal(acct) @ carol;
5
6 if (bal_a==bal_b && bal_a != fail)
7 return bal_a;
8 else if (bal_b==bal_c && bal_b != fail)
9 return bal_b;

10 else if (bal_c==bal_a && bal_c != fail)
11 return bal_c;
12 else return fail;

Fig. 2. Majority quorum

of the core challenges present in fault tolerance models. For example, perfect fault detection is impos-
sible and faulty hosts can manipulate data to cause failures to manifest at other hosts. We argue that
even in a synchronous, deterministic model with RPC-style communication, the challenges of specify-
ing and enforcing policies remain quite difficult to solve, and are among the primary security concerns
of high-level application developers.

2. Motivating examples.

In this section we present two motivating examples. The first example highlights the trade-off between
integrity and availability. The second example highlights the need for availability policies in distributed
systems.

2.1. Tolerating failure and corruption

If a bank’s deposit records are stored in a single node, then customers will be unable to access their
accounts if that node is unavailable or is compromised. To eliminate this single point-of-failure, banks
can replicate their records on multiple hosts as illustrated in Figure 1c. If a majority of hosts agree on
an account balance, then the system can tolerate the remaining minority of hosts failing or returning
corrupted results.

Consider a quorum system with three hosts: alice, bob, and carol. To tolerate the failure of a single
node, balance queries attempt to contact all three hosts and compare the responses. As long as the client
receives two responses with the same balance, the client can be confident the balance is correct even if
one node is compromised or has failed.

Figure 2 illustrates a pseudocode implementation of getBalance in this system. The code fetches
balances from the three hosts (lines 2-4). The function returns the balance if each fetched value matches,
otherwise the function returns fail (lines 6-12).

The downside of this approach is that it is quite verbose and repetitive compared to a single-line fetch
without any fault tolerance. Small mistakes in any of these lines could have significant consequences.
For example, suppose a programmer typed bal_b instead of bal_c on line 8. This small change gives
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1 highestBalance(acct_1 , acct_2):
2 bal_1:= fetch getBalance(acct_1) @ b;
3 bal_2:= fetch getBalance(acct_2) @ b';
4
5 if (bal_1==fail) && (bal_2==fail) then
6 return fail;
7 else if (bal_1==fail) then
8 return acct_2;
9 else if (bal_2==fail) then

10 return acct_1;
11
12 if (bal_1 > bal_2) then
13 return acct_1;
14 else
15 return acct_2;

Fig. 3. Available largest balance

bob (or an attacker in control of bob’s node) the ability to unilaterally choose the return value of the
function, even when alice and carol agree on a different value.

2.2. Using best available services

Real world applications often consist of communication between entities with mutual distrust. The
pseudocode in Figure 3 communicates with two banks, represented by b and b’, during a distributed
computation. A user has two accounts acc_1, and acc_2 with b and b’ respectively. The user has linked
both accounts to a service and specifies the bill should be paid

(1) as long as at least one account is available
(2) using the highest-balance account, if available

Lines 7-10 take care of point(1), ensuring the comparison on line 12 does not get stuck if a fetch returns
fail. Lines 12-15 cover point (2), returning the account with the highest balance when both balances
are available.

This example shows how availability of data can effect the final result of an application and thus high-
lights the importance of enforcing availability in distributed computations. As in the previous example,
the programmer must reason about failures due to unavailable hosts and make the correct comparisons
to implement the (implicitly) desired policy. Furthermore, the programmer may be unaware of the avail-
ability guarantees offered by b and b’. For example, if b and b’ rely on the same replicas to implement
getBalance, the availability of highestBalance may be lower than expected.

Finally, in both of the above examples, an attacker should not be able to read an account balance,
or infer which account balance was greater. With the FLAQR type-system, programmers can not only
specify and enforce availability and integrity, but also confidentiality—crucial for dealing with sensitive
information. Moreover, FLAQR enables programmers to write fault-tolerant code concisely, with explicit
primitives for consensus and replication operations that clarify the programmer’s intentions.
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3. Specifying FLAQR policies

FLAQR policies are specified using an extension of the FLAM [6, 8] principal algebra that includes
availability policies.1 FLAM principals represent both the authority of entities in a system as well as
bounds on the information flow policies that authority entails. For example, Alice’s authority is repre-
sented by the principal alice. Authority projections allow us to refer to specific categories of Alice’s
authority. The principal alicec refers to Alice’s confidentiality authority: what Alice may read. Principal
alicei refers to Alice’s integrity authority: what Alice may write or influence.2 Principal alicea refers
to her availability authority: what Alice may cause to fail. A principal always acts for any projection
of its authority, so for example alice ě alicea. We refer to the set of all primitive principals such as
alice and bob as N .

We can write the conjunction of two principals with the Boolean connective ^ as alice ^ bob,
denoting the combined authority of Alice and Bob. Put another way, alice ^ bob is a principal both
Alice and Bob trust. The disjunction of two principals’ authority is written using the connective _ as
alice _ bob. This is a principal whose authority is less than both Alice and Bob; either Alice or Bob
can act on behalf of the principal alice _ bob. Put another way alice _ bob is a principal that trusts
both Alice and Bob. Authority projections distribute over ^ and _, so for example palice ^ bobqi ”

alicei ^ bobi.
The confidentiality, integrity, and availability authorities make up the totality of a principal’s authority,

so writing alicec ^ alicei ^ alicea is equivalent to writing alice. For brevity, we sometimes write
aliceci as a shorthand for alicec ^ alicei when we wish to include all but one kind of authority. Our
complete formalization of the acts-for relation is presented in Figures 39 and 40 in Appendix A.

In addition to conjunctions and disjunctions of authority, FLAQR also introduce two new operators:
partial conjunction ( ‘ ), and partial disjunction ( a ). These operations are necessary to represent
the tradeoffs between integrity and availability mediated by consensus and replication. Consider the
“more integrity” protocol from Figure 1b. It is reasonable to think of the consensus value v as having
more integrity than (or at least, “not less integrity than”) Alice or Bob alone, but it turns out to be
useful to distinguish between this authority and the combined integrity authority of Alice and Bob,
(alicei ^ bobi). A principal with integrity authority (alicei ^ bobi) may act arbitrarily on behalf of
both Alice and Bob since it is trusted by them. In contrast, the integrity of the value produced in Figure 1b
is not fully trusted by Alice and Bob. Instead, Alice and Bob only trust the value when Alice and Bob
agree on it. If they do not agree, that trust is revoked and no value is produced. For this reason, we
describe the integrity of consensus values such as v as the partial conjunction of Alice and Bob, written
alicei ‘ bobi.

Similarly, for replication protocols like that in Figure 1a, we want to distinguish the integrity of values
that may have been received from either Alice or Bob due to failure, from the integrity of values that
may have been influenced by both Alice and Bob: alicei _ bobi. The integrity of a value produced by
either Alice or Bob is written as the partial disjunction alicei a bobi. This principal does not have the
same integrity authority as Alice or Bob alone since we cannot guarantee which host’s value will be used
in the event of a failure. However, the value does have more integrity than alicei _ bobi, since only
Alice or Bob (and not both) may have influenced it.

We compare the authority of principals using the acts-for relation ě, which partially orders (equiv-
alence classes of) principals by increasing authority. We form the set of all principals P as the closure

1Specifically, we extend the static fragment of FLAM’s principal algebra defined by FLAC [8].
2Prior FLAM-based formalizations have used Ñ and Ð for confidentiality and integrity, respectively.
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rPANDLs

Π , pi ě p
k P t1, 2u

Π , p1 ‘ p2 ě p
rPANDRs

Π , p ě p1
Π , p ě p2

Π , p ě p1 ‘ p2
rANDPANDs Π , p ^ q ě p ‘ q

rPANDPORs Π , p ‘ q ě p a q rPROJPANDLs Π , pπ ‘ qπ ě pp ‘ qqπ

rPROJPANDRs Π , pp ‘ qqπ ě pπ ‘ qπ rPROJPORLs Π , pπ a qπ ě pp a qqπ

rPROJPORRs Π , pp a qqπ ě pπ a qπ rPORORs Π , p a q ě p _ q

Fig. 4. Selected acts-for rules for partial conjunction and disjunction.

Fig. 5. The FLAQR authority lattice for the principal set tK, x, y,Ju.

of the set N Y tJ,Ku over the operations ^, _, ‘ , a , and authority projections c, i, and a. We say
Alice acts for Bob (or equivalently, Bob trusts Alice) and write alice ě bob when Alice has at least as
much authority as Bob. The ě relation forms a lattice with join ^, meet _, greatest element J, and least
element K.

In addition to the trust relationships such as p ^ q ě p and p ě pi implied by the principal algebra,
explicit delegations of trust such as p ě q (for any p, q in P) may expressed using a delegation context
Π. An acts-for judgment has the form Π , p ě q and means that p acts for q in context Π. While FLAC
has a feature that allows dynamic extensions of Π, for simplicity we fix Π to a static set of delegations
in FLAQR.
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We extend the acts-for relation defined by Arden et al. [8] with new rules for availability authority
and partial conjunction and disjunction. Figure 4 presents a selection of these rules—we have omitted
the distributivity rules for brevity. In Figure 4, an acts f or judgement of form Π , p ě q, states that p
has at least as much authority as q in delegation context Π. Figures 39 and 40 in Appendix A together
present the complete formalization of the ě relation. In Figure 40 we present only the extensions to this
relation introduced by FLAQR.

As a consequence of these new acts-for rules we have additional distinct points in the authority lattice.
Figure 5 illustrates the authority sublattice over elements tK, x, y,Ju. Figure 5 shows the trust ordering
of all possible distinct combinations of elements that can be formed on the set tK, x, y,Ju with opera-
tions ^, _, ‘ and a over them. The relationship between principals K, x, y, x ^ y, x _ y, and J is
the same as in FLAM, but Figure 5 also includes principals constructed using partial conjunctions and
disjunctions. For example, x ^ px ‘ yq is the least upper bound of x ^ px a yq and x ‘ y. This is due to
rule PANDPOR in Figure 4, which lets us simplify x ^ px a yq ^ x ‘ y to x ^ px ‘ yq.

To compare the restrictiveness of information flow policies, we use the flows-to relation Ď, which
partially orders principals by increasing policy restrictiveness, rather than by authority. For example,
we say Alice’s integrity flows to Bob’s integrity and write alicei Ď bobi if Bob trusts information
influenced by Alice at least as much as information he influenced himself. Likewise, we write alicec Ď

bobc if Alice trusts Bob to protect the confidentiality of her information, and alicea Ď boba if Bob is
trusted to keep Alice’s data available. The flows-to relation behaves similarly to a sub-typing relation.
Treating information labeled alicecia (i.e. alice) as though it was labeled bobcia (i.e. bob) is only safe
(doesn’t violate anyone’s policies) if alicecia Ď bobcia (i.e. alice Ď bob).

One advantage of the FLAM principal algebra is that we can define the flows-to relation, as well as
the upper and lower bounds of information flow policies, in terms of the acts-for relation, simplifying
our formalism.

p Ď q ô qc ě pc and pi ě qi and pa ě qa

p \ q fi ppc ^ qcq ^ ppi _ qiq ^ ppa _ qaq

p [ q fi ppc _ qcq ^ ppi ^ qiq ^ ppa ^ qaq

Based on this, the equivalence classes of ě and Ď are identical, meaning that the lattice formed by Ď

with joins \ and meets [ has the same elements as the acts-for lattice. A flow from p to q is secure
only when qc is at least as confidential as pc, qi trusts information influenced by pi, and qa cannot cause
failures that pa cannot.

4. FLAQR syntax and semantics

Figures 6 and 7 present the FLAQR syntax and selected evaluation rules. For space and exposition pur-
poses, we omit some term annotations and standard lambda calculus rules in order to focus on FLAQR’s
contributions, but the complete, annotated FLAQR syntax and semantics can be found in Figures 29 and
31 in the Appendix.

FLAQR is based on FLAC [8, 9], a monadic calculus in the style of Abadi’s Polymorphic DCC [10].
In addition to standard extensions to System F [11–13] such as pairs and tagged unions, an Abadi-style
calculus supports monadic operations on values in a monad indexed by a lattice of security labels. Such
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π P tc, i, au (projections)
n P N (primitive principals)
x P V (variable names)

p, ℓ, pc ::“ n
ˇ

ˇ J
ˇ

ˇ K
ˇ

ˇ pπ
ˇ

ˇ p ^ p
ˇ

ˇ p _ p
ˇ

ˇ p \ p
ˇ

ˇ p [ p
ˇ

ˇ p a p
ˇ

ˇ p ‘ p

τ ::“ unit
ˇ

ˇ X
ˇ

ˇ pτ` τq
ˇ

ˇ pτˆ τq
ˇ

ˇ τ
pc

ÝÑ τ
ˇ

ˇ @Xrpcs. τ
ˇ

ˇ ℓ says τ

v ::“ pq
ˇ

ˇ pηℓ vq
ˇ

ˇ inj
pτ`τq
i v

ˇ

ˇ xv, vy
τ

ˇ

ˇ λpx :τqrpcs. e
ˇ

ˇ ΛXrpcs. e

f ::“ v
ˇ

ˇ failτ

e ::“ f
ˇ

ˇ x
ˇ

ˇ e e
ˇ

ˇ e τ
ˇ

ˇ ηℓ e
ˇ

ˇ xe, ey
τ

ˇ

ˇ proji e
ˇ

ˇ inj
pτ`τq
i e

ˇ

ˇ bind x “ e in e
ˇ

ˇ caseτ e of injτ1pxq.e | injτ2pxq.e
ˇ

ˇ runτ e@p
ˇ

ˇ ret e@p
ˇ

ˇ expectτ

ˇ

ˇ selectτ e or e
ˇ

ˇ compareτ e and e

Fig. 6. FLAQR Syntax. Shaded terms are new to FLAQR. Underlined terms are used during evaluation and not available at the
source level.

a value has a type of the form ℓ says τ, meaning that it is a value of type τ, protected at level ℓ, where ℓ
is an element of the security lattice. Here we focus on FLAQR’s additions to FLAC and DCC, and refer
the readers to Figures 33 and 34 in the Appendix for our complete formalization.

FLAQR builds on FLAC’s expressive principal algebra and type system to model distributed security
policies for applications that use replication and consensus. FLAC supports arbitrary policy downgrades
through dynamic delegations of authority, but for simplicity we omit these features in FLAQR.

The monadic unit or return term ηℓ e protects the value that e evaluates to at level ℓ (E-SEALED).3

Protected values, pηℓ vq cannot be operated on directly. Instead, a bind expression must be used to bind
the protected value to a variable whose scope is limited to the body of the bind term (E-BINDM). The
body performs the desired computation and “returns” the result to the monad, ensuring the result is
protected. These rules (E-SEALED and E-BINDM) FLAQR inherits from FLAC. The remaining rules of
Figure 7 are specific to FLAQR.

The primary novelty in the FLAQR calculus is the introduction of compare and select terms for
expressing consensus and replication operations. We represent the consensus problem as a comparison
of two values with the same underlying type but distinct outer security labels. In other words, we want
to check the equality of values produced by two different principals. If the values match, we can treat

3Polymorphic DCC does not define a term similar to pηℓ vq and thus does not have an rule equivalent to E-SEALED. This
approach enables us to distinguish where a value may be created (e.g., on a host authorized to read and create values protected
at ℓ) and use more permissive rules to control where a sealed value may flow.
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rE-SEALEDs ηℓ v ÝÑ pηℓ vq rE-BINDMs bind x “ pηℓ vq in e ÝÑ erx ÞÑ vs

rE-COMPAREs compare pηℓ1 vq and pηℓ2 vq ÝÑ pηℓ1‘ℓ2
vq

rE-COMPAREFAILs
v1 ‰ v2 τ “ pℓ1 ‘ ℓ2q says τ1

compare pηℓ1 v1q and pηℓ2 v2q ÝÑ failτ

rE-COMPAREFAILLs

τ1 “ ℓ1 says τ τ1 “ pℓ1 ‘ ℓ2q says τ

f2 “

#

pηℓ2 vq

failℓ2 says τ

compare pfailτ1q and f2 ÝÑ failτ
1

rE-COMPAREFAILRs
τ2 “ ℓ2 says τ τ1 “ pℓ1 ‘ ℓ2q says τ

compare pηℓ1 vq and failτ2 ÝÑ failτ
1

rE-SELECTs select pηℓ1 v1q or pηℓ2 v2q ÝÑ pηℓ1aℓ2
v1q

rE-SELECTLs select pηℓ1 vq or pfailℓ1 says τq ÝÑ pηℓ1aℓ2
vq

rE-SELECTFAILs

@i P t1, 2u τi “ ℓi says τ
τ1 “ pℓ1 a ℓ2q says τ

select pfailτ1q or pfailτ2q ÝÑ failτ
1

rE-RETSTEPs
e ÝÑ e1

ret e@c ÝÑ ret e1@c
rE-STEPs

e ÝÑ e1

Eres ÝÑ Ere1s

Fig. 7. FLAQR local semantics

E ::“ r¨s
ˇ

ˇ E e
ˇ

ˇ v E
ˇ

ˇ ηℓ E
ˇ

ˇ bind x “ E in e
ˇ

ˇ ret E@p
ˇ

ˇ select E or e
ˇ

ˇ select f or E
ˇ

ˇ compare E and e
ˇ

ˇ compare f and E

Fig. 8. FLAQR evaluation context

them as having the (partially) combined integrity of the principals. If not, then the principals failed to
reach consensus.

Rule E-COMPARE defines the former case: two syntactically equal values protected at different labels
evaluate to a value that combines labels using the compare action on labels ‘ . Intuitively, ℓ1 ‘ ℓ2
determines the increase in integrity and the corresponding decrease in availability inherent in requiring
a consensus. We define ‘ formally in Definition 1.
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rE-APPFAILs λpx :τqrpcs. e failτ ÝÑ erx ÞÑ failτs rE-SEALEDFAILs ηℓ fail
τ

ÝÑ failℓ says τ

rE-INJFAILs inj
pτ1`τ2q

i failτi ÝÑ failpτ1`τ2q rE-PROJFAILs proji fail
pτ1ˆτ2q

ÝÑ failτi

Fig. 9. fail propagation rules.

Definition 1 (Compare action on principals).

ℓ1 ‘ ℓ2 fi pℓc1 ^ ℓc2q ^ pℓi1 ‘ ℓi2q ^ pℓa1 _ ℓa2q

We also lift this notation to says types by defining

ℓ1 says τ‘ ℓ2 says τ fi pℓ1 ‘ ℓ2q says τ

As discussed in Section 3, the integrity authority of compare is not as trusted as the conjunction of
ℓ1 and ℓ2’s integrity. Instead, we represent the limited “increase” in integrity authority4 using a partial
conjunction in Definition 1. In contrast, the decrease in availability is represented by a (full) ℓa1_ℓa2 since
either ℓ1 or ℓ2 could unilaterally cause the compare expression to fail.

The decreased availability resulting from applying compare is more apparent in rules E-COMPAREFAIL, E-
COMPAREFAILL and E-COMPAREFAILR. In E-COMPAREFAIL, two unequal values are compared,
resulting in a failure. Failure is represented syntactically using a failτ term. We use a type annotation
τ on many terms in our formal definitions so that our semantics is well defined with respect to failure
terms, but we omit most of these annotations in Figure 7. These annotations are only necessary for our
formalization and would be unnecessary in a FLAQR implementation.

A compare term may also result in failure if either subexpression fails. Rule E-COMPAREFAILL
and E-COMPAREFAILR, defines how failure of an input propagates to the output. In fact, most FLAQR
terms result in failure when a subexpression fails. Figure 9 presents selected failure propagation rules
(complete failure propagation rules are presented in Figure 32). Note that fail terms are treated similarly
to values, but are distinct from them. For example, in E-APPFAIL, applying a lambda term to a fail term
substitutes the failure as it would a value, but in E-SEALEDFAIL the failure is propagated beyond the
monadic unit term. This latter behavior captures the idea that failures cannot be hidden or isolated in the
same way as secrets or untrusted data.

Failures are tolerated using replication. A select term will evaluate to a value as long as at least one
of its subexpressions does not fail. For example, rule E-SELECTL returns its left subexpression when
the right subexpression fails. In contrast to compare, applying select increases availability since either
subexpression can be used, but reduces integrity since influencing only one of the subexpressions is
potentially sufficient to influence the result of evaluating select. The effect of a select statement on
the labels of its sub-expressions is captured with the select action a .

Definition 2 (Select action on principals).

ℓ1 a ℓ2 fi pℓc1 ^ ℓc2q ^ pℓi1 a ℓi2q ^ pℓa1 ^ ℓa2q

4Strictly speaking, x ‘ y is not an increase in integrity over x (or y); x ‘ y and x are incomparable.



12 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

rE-DSTEPs
e ÝÑ e1

xEres, cy & t ùñ xEre1s, cy & t

rE-RUNs xErrunτ e@c1s, cy & t ùñ xret e@c, c1y & xErexpectτs, cy :: t

rE-RETVs xret v@c, c1y & xErexpectpcia says τ1s, cy :: t ùñ xErpηpcia vqs, cy & t

rE-RETFAILs xret pfailτ
1

q@c, c1y & xErexpectpcia says τ1s, cy :: t ùñ xErfailpcia says τ1s, cy & t

Fig. 10. Global semantics

s ::“ xe, cy & t

t ::“ empty
ˇ

ˇ xErexpectτs, cy :: t

Fig. 11. Global configuration stack

We define the select action on types similarly to compare:

ℓ1 says τa ℓ2 says τ “ pℓ1 a ℓ2q says τ

The end result of a select statement, select pηℓ1 vq or pηℓ2 vq, will have integrity of either ℓi1 or ℓi2
since only one of the two possible values will be used. We use a partial disjunction to represent this
integrity since the result does not have the same integrity as ℓ1 or ℓ2, but does have more integrity than
ℓ1 _ ℓ2 since it is never the case that both principals influence the output.

4.1. Global semantics

We capture the distributed nature of quorum replication by embedding the local semantic rules within
a global distributed semantics defined in Figure 10. This semantics uses a configuration stack s “

xe, cy & t (Figure 11) to keep track of the currently executing expression e, the host on which it is
executing c, and the remainder of the stack t. We also make explicit use of the evaluation contexts from
Figure 7 to identify the reducible subterms across stack elements.

The core operation for distributed computation is runτ e@p which runs the computation e of type τ on
node p. Local evaluation steps are captured in the global semantics via rule E-DSTEP. This rule says
that if e steps to e1 locally, then Eres steps to Ere1s globally.

Rule E-RUN takes an expression e at host c, pushes a new configuration on the stack containing e at
host c1 and places an expect term at c as a place holder for the return value.

Once the remote expression is fully evaluated, rule E-RETV pops the top configuration off the stack
and replaces the expect term at c with the protected value pηpcia vq. Rule E-RETFAIL serves the same
purpose for fail terms, but is necessary since fail terms are not considered values (see Figure 6). The
label pcia reflects both the integrity and availability context of the caller (c) as well as the integrity and
availability of the remote host (c1). We discuss this aspect of remote execution in more detail in Section 5.
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Π;Γ; pc; c $ e : τ

rUNITs
Π , c ě pc

Π;Γ; pc; c $ pq : unit
rFAILs

Π , c ě pc
Π;Γ; pc; c $ failτ : τ

rEXPECTs
Π , c ě pc

Π;Γ; pc; c $ expectτ : τ

rLAMs

Π;Γ, x :τ1; pc1; u $ e : τ2 Π , c ě pc

u “ C(τ1
pc1

ÝÑ τ2) Π , c ě u

Π;Γ; pc; c $ λpx :τ1qrpc1s. e : τ1
pc1

ÝÑ τ2

rAPPs

Π;Γ; pc; c $ e1 : τ1 pc1

ÝÑ τ
Π;Γ; pc; c $ e2 : τ1 Π , pc Ď pc1

Π , c ě pc
Π;Γ; pc; c $ e1 e2 : τ

rUNITMs

Π;Γ; pc; c $ e : τ Π , pc Ď ℓ
Π , c ě pc

Π;Γ; pc; c $ ηℓ e : ℓ says τ
rSEALEDs

Π;Γ; pc; c $ v : τ Π , c ě pc
Π;Γ; pc; c $ pηℓ vq : ℓ says τ

rBINDMs

Π;Γ; pc; c $ e1 : ℓ says τ1 Π , ℓ \ pc Ď τ
Π;Γ, x :τ1; ℓ \ pc; c $ e : τ Π , c ě pc

Π;Γ; pc; c $ bind x “ e1 in e : τ
rRUNs

Π;Γ; pc1; c1 $ e : τ1 Π , pc Ď pc1

Π , c ě pc Π , c ě C(τ1)
τ “ pc1ia says τ1

Π;Γ; pc; c $ runτ e@c1 : τ

rRETs

Π;Γ; pc; c $ e : τ Π , c1 ě C(τ)
Π , c ě pc

Π;Γ; pc; c $ ret e@c1 : pcia says τ

rCOMPAREs

@i P t1, 2u.Π;Γ; pc; c $ ei : ℓi says τ
Π , c ▷ ℓi says τ Π , c ě pc

Π;Γ; pc; c $ compare e1 and e2 : pℓ1 ‘ ℓ2q says τ

rSELECTs

@i P t1, 2u.Π;Γ; pc; c $ ei : ℓi says τ
Π , c ě pc

Π;Γ; pc; c $ select e1 or e2 : pℓ1 a ℓ2q says τ

Fig. 12. Typing rules for expressions

5. FLAQR typing rules

As we have a local and global semantics, we have two corresponding forms of typing judgements: lo-
cal typing judgments for expressions and global typing judgments for the stack. Local typing judgments
have the form Π;Γ; pc; c $ e : τ. Π is the program’s delegation context and is used to derive acts-for
relationships with the rules in Figures 4 and 40. Γ is the typing context containing in-scope variable
names and their types. The pc label tracks the information flow policy on the program counter (due to
control flow) and on unsealed protected values such as in the body of a bind.

Figure 12 presents a selection of local typing rules. Each typing rule includes an acts-for premise of
the form Π , c ě pc. This enforces the invariant that each host principal c has control of the program
it executes locally. Thus for any judgment Π;Γ; pc; c $ e : τ pc should never exceed the authority of c,
the principal executing the expression. Rules FAIL and EXPECT type fail and expect terms according
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to their type annotation τ. Rule LAM types lambda abstractions. Since functions are first-class values,
we have to ensure that the pc annotation on the lambda term preserves the invariant Π , c ě pc. The
clearance of a type τ, written C(τ), is an upper bound on the pc annotations of the function types in

τ. By checking that Π , c ě C(τ1
pc1

ÝÑ τ2) holds (along with similar checks in RUN and RET), we
ensure the contents of the lambda term is protected when sending or receiving lambda expressions, and
that hosts never receive a function they cannot securely execute. Due to space constraints, the definition
of C(¨) is presented in Appendix A, in Figure 35. The APP rule requires the pc label at any function
application to flow to the function’s pc label annotation. Hence the premise Π , pc Ď pc1.

Protected terms ηℓ e are typed by rule UNITM as ℓ says τ where τ is the type of e. Additionally, it
requires that Π , pc Ď ℓ. This ensures that any unsealed values in the context are adequately protected
by policy ℓ if they are used by e. The SEALED rule types protected values pηℓ vq. These values are well-
typed at any host, and does not require Π , pc Ď ℓ since no unsealed values in the context could be
captured by the (closed) value v.

Computation on protected values occurs in bind terms bind x “ e1 in e. The policy protecting e must
be at least as restrictive as the policy on e1 so that the occurrences of x in e are adequately protected.
Thus, rule BINDM requires Π , ℓ \ pc Ď τ, and furthermore e is typed at a more restrictive program
counter label ℓ \ pc to reflect the dependency of e on the value bound to x.

Rule RUN requires that the pc at the local host flow to the pc1 of the remote host, and that e be well-
typed at c1, which implies that c1 acts for pc1. Additionally, c must act for the clearance of the remote
return type τ1 to ensure c is authorized to receive the return value. The type of the run expression is
pc1ia says τ1, which reflects the fact that c1 controls the availability of the return value and also has some
influence on which value of type τ1 is returned. Although c1 may not be able to create a value of type
τ1 unless pc1ia flows to τ1, if c1 has access to more than one value of type τ1, it could choose which one
to return. Rule RET requires that expression e is welltyped at c and that c1 is authorized to receive the
return value based on the clearance of τ.

The COMPARE rule gives type pℓ1 ‘ ℓ2q says τ to the expression compare e1 and e2 where e1 and e2
have types ℓ1 says τ and ℓ2 says τ respectively. Additionally, it requires that c, the host executing the
compare, is authorized to fully examine the results of evaluating e1 and e2 so that they may be checked
for equality.5 This requirement is captured by the premise Π , c ▷ ℓi says τ, pronounced “c reads
ℓi says τ”. The inference rules for the reads judgment are found in Figure 37 in Appendix A.

Finally, the SELECT rule gives type pℓ1 a ℓ2q says τ to the expression select e1 or e2 where e1 and
e2 have types ℓ1 says τ and ℓ2 says τ respectively.

The typing judgment for the global configuration is presented in Figure 13 and consists of three rules.
Rule HEAD shows that the global configuration xe, cy & t, is well-typed if the expression e is well-typed
at host c with program counter pc1 where Π , pc Ď pc1 and the tail t is well-typed. rτ1sτ means that
the tail of the stack is of type τ while the expression in the head of the configuration is of type τ1. We
introduced rules TAIL(when t ‰ empty) and EMP(when t “ empty) to typecheck the tail t.

xErexpectτ
1

s, cy :: t is well-typed with type rτ1sτ, if expression Erexpectτ
1

s is well-typed with type
τ̂ at host c. And, the rest of the stack t needs to be well-typed with type rτ̂sτ. Rule EMP says the tail is
empty and the type of the expression in the head of the configuration is τ, in which case the type of the
whole stack is rτsτ.

5Assuming a more sophisticated mechanism for checking equality that reveals less information to the host such as zero-
knowledge proofs or a trusted execution environment could justify relaxing this constraint.
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Π;Γ; pc $ xe, cy & t : τ

rHEADs

Π;Γ; pc1; c $ e : τ1 Π;Γ; pc $ t : rτ1sτ
Π , pc Ď pc1 Π , c ě pc

Π;Γ; pc $ xe, cy & s : τ

Π;Γ; pc $ xe, cy :: t : rτ1sτ

rTAILs

Π;Γ; pc1; c $ Erexpectτ
1

s : τ̂ Π;Γ; pc $ t : rτ̂sτ
Π , pc Ď pc1 Π , c ě pc

Π;Γ; pc $ xErexpectτ
1

s, cy :: t : rτ1sτ
rEMPs Π;Γ; pc $ empty : rτsτ

Fig. 13. Typing rules for configuration stack

6. Availability Attackers

Availability attackers are different from traditional integrity and confidentiality attackers. While an
integrity attacker’s goal is to manipulate data and a confidentiality attacker’s goal is to learn secrets,
an availability attacker’s goal is to cause failures. In our model, an availability attacker can substitute a
value only with a fail term. Integrity attackers may also cause failures in consensus based protocols
when consensus is not reached because of data manipulation. In FLAQR this scenario is relevant during
executing a compare statement: if one of the values in the compare statement is substituted with a wrong
(mismatching) value then a fail term is returned. Thus we need to consider an availability attacker’s
integrity authority when reasoning about its power to fail a program. Specifically, the authority of
principal ℓ as an availability attacker is ℓia.

We consider a static but active attacker model similar to those used in Byzantine consensus proto-
cols. By static we mean which principal or collection of principals can act maliciously is fixed prior
to program execution. By active we mean that the attackers may manipulate inputs (including higher-
order functions) during run time. We formally define the power of an availability attacker with respect
to quorum systems.

Availability attackers in FLAQR are somewhat different than integrity and confidentiality attackers
because we want to represent multiple possible attackers but limit which attackers are active for a par-
ticular execution. This goal supports the bounded fault assumptions found in consensus protocols where
system configurations assume an upper bound on the number of faults possible.

A quorum system Q is represented as set of sets of hosts (or principals) e.g. Q “ tq1, q2, . . . , qnu.
Here each qi represents a set of principals whose consensus is adequate for the system to make progress.
We define availability attackers in terms of the toleration set JQK of a quorum system Q. The toleration
set is a set of principals where each principal represents an upper bound on the authority of an attacker
the quorum can tolerate without failing.

Example.

(1) The toleration set for quorum Q1 “ tq1 :“ ta, bu; q2 :“ tb, cu; q3 :“ ta, cuu is JQ1K “ taia, bia, ciau,
(2) For heterogeneous quorum system Q2 “ tq1 :“ tp, qu; q2 :“ truu the toleration set is JQ2K “ tpia ^

qia, riau
(3) For Q3 “ tq :“ taliceuu the toleration set is JQ3K “ tu, i.e. Q3 can not tolerate any fault.
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rA-PAIRs
Π , ℓ Í τi i P t1, 2u

Π , ℓ Í pτ1 ˆ τ2q
rA-SUMs

Π , ℓ Í τi i P t1, 2u

Π , ℓ Í pτ1 ` τ2q
rA-FUNs

Π , ℓ Í τ2

Π , ℓ Í τ1
pc1

ÝÝÑ τ2

rA-TYPEs
Π , ℓ Í τ

Π , ℓ Í ℓ1 says τ
rA-AVAILs

Π , ℓa ě ℓ1a

Π , ℓ Í ℓ1 says τ
rA-INTEGCOMs

Π , ℓi ě ℓ j
i, j P t1, 2u

Π , ℓ Í pℓ1 ‘ ℓ2q says τ

Fig. 14. fails judgments.

An availability attacker’s authority is at most equivalent to a (single) principal’s authority in the toler-
ation set. We define the set of all such attackers for a quorum Q as

AJQK “ tℓ | Dℓ1 P JQK.Π , ℓ1 ě ℓu.

which includes weaker attackers who a principal in the toleration set may act on behalf of.
The fails relation (Í) determines whether a principal can cause a program of a particular type to

evaluate to fail. Similar to the reads judgment, the fails judgment not only considers the outermost
says principal, but also any nested says principals whose propagated failures could cause the whole
term to fail. Figure 14 defines the fails judgment, written Π , l Í τ, which describes when a principal l
can fail an expression of type τ in delegation context Π.

Consider an expression ηℓ pηℓ1 eq and an attacker principal la. If Π , lca ě ℓ1c, and Π . lca ě ℓc, then
the attacker learns nothing by evaluating ηℓ pηℓ1 eq. Similarly, if Π , lia ě ℓ1i and Π . lia ě ℓi, then the
attacker cannot influence the value ηℓ pηℓ1 eq.

In contrast, if Π , laa ě ℓ1a, and Π . laa ě ℓa, an availability attacker may cause ηℓ1 e to evaluate
to failℓ

1 says τ, which steps to failℓ says pℓ1 says τq by E-SEALEDFAIL. The fails relation reflects
this possibility. Using A-TYPE and A-AVAIL ( or A-INTEGCOM if ℓ1 was of form pℓ1 ‘ ℓ2q ) we get
Π , la Í ℓ says pℓ1 says τq.

We use the fails relation and the attacker set to define which availability policies a particular quorum
system is capable of enforcing. We say Q guards τ if the following rule applies:

rQ-GUARDs
@ℓ P AJQK .Π . ℓ Í τ

Π , Q guards τ

Definition 3 (Valid quorum type). A type τ is a valid quorum type with respect to quorum system Q and
delegation set Π if the condition Π , Q guards τ is satisfied.

Example. If Q “ tq1 :“ ta, bu; q2 :“ tb, cu; q3 :“ ta, cuu and ℓQ “ pa ‘ bq a pb ‘ cq a pa ‘ cq then
ℓQ says pa says τq is not a valid quorum type because Π . Q guards pℓQ says pa says τqq as Π , aia Í

ℓQ says pa says τq and aia P AJQK. But it is a valid quorum type for heterogeneous quorum system Q1 “ tq1 :“

ta, bu; q2 :“ ta, cuu as aia R AJQ1K.

7. Security Properties

To evaluate the formal properties of FLAQR, we prove that FLAQR preserves noninterference for
confidentiality, integrity, and availability (section 7.2). These theorems state that attackers cannot learn
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C ::“ F “ H
ˇ

ˇ B
B ::“ ℓ P F

ˇ

ˇ B1 OR B2

ˇ

ˇ B1 AND B2

Fig. 15. Blame constraint syntax

rC-CONJs
C ( ℓ1 P F C ( ℓ2 P F

C ( ℓ1 ^ ℓ2 P F rC-DISJs
Di P t1, 2u. C ( ℓi P F

C ( ℓ1 _ ℓ2 P F rC-PARANDs
Di P t1, 2u. C ( ℓi P F

C ( ℓ1 ‘ ℓ2 P F

rC-PARORs
C ( ℓ1 P F C ( ℓ2 P F

C ( ℓ1 a ℓ2 P F rC-INs
Π , ℓ1 ě pπ π P ti, au

ℓ1 P F ( pπ P F

rC-ORs
C1 ( pπ P F C2 ( pπ P F π P ti, au

C1 OR C2 ( pπ P F
rC-ANDs

Di P t1, 2u. Ci ( pπ P F π P ti, au

C1 AND C2 ( pπ P F

Fig. 16. Blame membership: To apply C-IN, C-OR and C-AND the label p needs to be a primitive principal in N Y tK,Ju.
The blame semantics rules ensure all statements added to the blame set only refer to primitive principals. This rule set differs
from the originally published one [7], which didn’t correctly handle compound principals such as p ^ q.

secret inputs, influence trusted outputs, or control the failure behavior of well-typed FLAQR programs.
In addition, we also prove additional theorems that formalize the soundness of our type system with
respect to a program’s failure behavior.

7.1. Soundness of failure

FLAQR’s semantics uses the compare and select security abstractions and the failure propagation
rules to model failure and failure-tolerance in distributed programs, and FLAQR’s type system lets us
reason statically about this failure behavior. To verify that such reasoning is sound, we prove two related
theorems regarding the type of a program and the causes of potential failures.

In pursuit of this goal, this section introduces our blame semantics which reasons about failure-causing
(faulty) principals during program execution. The goal is to record the set of principals which may
cause run-time failures as a constraint on the set of faulty hosts F . Figure 15 presents the syntax of
blame constraints, which are boolean formulas representing a lower bound on the contents of F . Atomic
constraints ℓ P F denote that label ℓ is in faulty set F . This initial blame constraint (Cinit) is represented
using the toleration set of the implied quorum system.

Definition 4 (Initial blame constraint). For toleration set JQK of the form tpp11 ^ ...^ p1m1
q
ia
, ...,

ppk
1 ^ ...^ pk

mk
q
ia

u the initial blame constraint Cinit is defined as a (logical) disjunction of conjunctions:

Cinit fi pp11 P F AND ... AND p1
m1

P Fq OR ... OR ppk
1 P F AND ... AND pk

mk
P Fq

Each disjunction represents a minimal subset of a possible satisfying assignment for the faulty set
F . For brevity, we will refer to these subsets as the possible faulty sets implied by a particular blame
constraint. Observe that for quorum system Q, there is a one-to-one correspondence between every
ti P JQK and every possible faulty set F1, ...,Fk in Cinit where Fi is the set implied by the ith disjunction
in Cinit such that ti “ bi

ia, where bi “
Ź

pPFi
p.
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rC-COMPAREFAILs
v1 ‰ v2 C1 :“ Lpv1, v2, C, ℓ1, ℓ2q

xxcompare pηℓ1 v1q and pηℓ2 v2q, cy & syC ùñ xxfailpℓ1‘ℓ2q says τ, cy & syC
1

Fig. 17. E-COMPAREFAIL with Blame Semantics.

Evaluation rule C-COMPAREFAIL, in Figure 17, shows how function L (discussed below) updates the
blame constraint from C to C1. We omit the blame-enabled versions of other evaluation rules since they
simply propagate the blame constraint without modification.

Example.

(1) Quorum system Q1 “ tq1 “ ta, bu; q2 “ tb, cu; q3 “ ta, cuu has toleration set JQ1K “

taia, bia, ciau and three possible faulty sets in Cinit: F “ tau or F “ tbu or F “ tcu

(2) Quorum system Q2 “ tq1 :“ tp, qu; q2 :“ truu has toleration set JQ2K “ tpia ^ qia, riau and two
possible faulty sets in Cinit: F “ tp, qu or F “ tru.

While Cinit is defined statically according to the type of the program, rule C-COMPAREFAIL updates
these constraints according to actual failures that occur during the program’s execution. This approach
identifies “unexpected” failures not implied by Cinit.

For example, Q2 “ tq1 :“ tp, qu; q2 :“ truu has two possible faulty sets F “ tp, qu or F “ tru.
The initial blame constraint is Cinit ::“ pp P F AND q P Fq OR pr P Fq

Placing blame for a specific failure in a distributed system is challenging, (and often impossible!). For
example, when a comparison of values signed by ℓ1 and ℓ2 fails, it is unclear who to blame since either
principal (or a principal acting on their behalf) could have influenced the values that led to the failure.
We do know, however, that at least one of them is faulty; recording this information helps constrain the
contents of possible faulty sets.

We can reason about principals that must be in F by considering all possible faulty sets implied by
the blame constraints. We write C ( ℓ P F (read as C entails ℓ P F), when every possible faulty set in
C, has the ℓ P F clause. Figure 16 presents inference rules for the ( relation.

The rules C-IN, C-OR and C-AND are defined for a primitive principal pπ in N Y tK,Ju, where
π P ti, au. Whereas rules C-CONJ, C-DISJ, C-PARAND and C-PAROR are defined for compound
principals such as p ^ q, p a q etc. The blame semantics rules (particularly, the L and NORM functions)
ensure all statementss added to the blame set only refer to primitive principals. This rule set differs
from the rule set presented in the originally published one [7], which didn’t correctly handle compound
principals such as p ^ q. For example, if C ( p and C ( q, then with the old ruleset from [7], we can not
prove C ( p ^ q, because the blame semantics did not add the compound principal p ^ q to F . Instead
the blame semantics add p P F and q P F to the blame set as two different statements. But with our
corrected ruleset we can prove C ( p ^ q, given C ( p and C ( q (using C-CONJ and C-IN).

Let us see another example. Since ℓ1 is included in all satisfying choices of F below, we can say
C ( ℓ1 P F(using C-CONJ,C-IN, and possibly C-IN).

C “pℓ1 P F AND ℓ2 P Fq OR pℓ1 P F AND ℓ3 P Fq

OR pℓ1 P F AND ℓ4 P Fq OR pℓ1 P F AND ℓ5 P Fq
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The L function (full definition in Figure 45) is used by rule C-COMPAREFAIL to update C. For an
expression:

compare pηℓ1 v1q and pηℓ2 v2q

with v1 ‰ v2, Lpv1, v2, C, ℓ1, ℓ2q updates the formulas in C to reflect that either ℓ1 or ℓ2 is faulty. If ℓ1 or
ℓ2 already must be faulty, specifically if C ( ℓ1 P F or C ( ℓ2 P F , then the function does not update
any formulas. This approach avoids blaming honest principals when the other principal is already known
to be faulty.

If neither ℓ1 nor ℓ2 are known to be faulty. then function L is called recursively on inner layers (i.e.,
nested pη q expressions) of v1 and v2 until a subexpression protected by a known-faulty principal is
found. If no such layer is present, then the principal protecting the innermost layer is added to C (or
the outer principals if there are no inner layers). Only this principal has seen the unprotected value and
thus could have knowingly protected the wrong value. Observe that for well-typed compare expressions,
only the outer layer of compared terms may differ in protection level, so there is less ambiguity when
blaming an inner principal.

Updated constraints are kept in disjunctive normal form. Specifically, for compared terms pηℓ1 v1q

and pηℓ2 v2q, with v1 ‰ v2, with initial constraint: Cinit ::“ pp P F AND q P Fq OR pr P Fq, then
Lpv1, v2, Cinit, ℓ1, ℓ2q returns

C1 “pp P F AND q P F AND ℓ1 P Fq

OR pp P F AND q P F AND ℓ2 P Fq

OR pr P F AND ℓ1 P Fq OR pr P F AND ℓ2 P Fq

We can now state the soundness theorem for our blame semantics, and apply it to prove a liveness
result. Theorem 1 states that for any well-typed FLAQR program with a failing execution, and the faulty
sets Fi implied by C1 (the final constraint computed by the blame semantics), it must be the case that the
program’s type τ reflects the ability of the (possibly colluding) principals in Fi to fail the program.

Theorem 1 (Sound blame). Given,

(1) Π;Γ; pc; c $ xxe, cy & emptyyCinit : τ

(2) xxe, cy & emptyyCinit ÝÑ˚ xxfailτ, cy & emptyyC
1

where e is a source-level expression,6

then for each possible faulty set Fi implied by C1, there is a principal bi “
Ź

pPFi
p such that Π ,

bi
ia Í τ.

Proof. Either e takes single step or multiple steps to produce the failτ term as the end result. For both
the cases we prove it by induction over structure of e. See Appendix B for full proof. l

While Theorem 1 characterizes the relationship between a program’s type and the possible faulty sets
for a failing execution, it does not explicitly tell us anything about the fault-tolerance of a particular

6In other words, e does not contain any fail terms.
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program. Since the type of a FLAQR program specifies its availability policy (in addition to its confi-
dentiality and integrity), different FLAQR types will be tolerant of different failures. Below, we prove a
liveness result for a common case, majority quorum protocols.

Definition 5 (Majority quorum system). An m{n majority quorum system is a quorum system that
always requires at least m of its hosts to reach consensus, where m ą n ´ m.

Theorem 2 (Majority Liveness). If e is a source-level expression and:

(1) Π;Γ; pc; c $ xxe, cy & emptyyCinit : τ

(2) Π , Q guards τ
(3) Q is a m{n majority quorum system
(4) xxe, cy & emptyyCinit ÝÑ˚ xxfailτ, cy & emptyyC

1

then for every possible faulty set F 1 implied by C1, |F 1| ą pn ´ mq.

Proof. From (2), we know τ is a valid quorum type for Q so @ℓ P AJQK .Π . ℓ Í τ. Since AJQK
is a superset of JQK, we also have @t P JQK.Π . t Í τ. Furthermore, from Definition 4, for each
possible faulty set Fi implied by Cinit, we know there is a principal ti P JQK such that ti “ bi

ia, where
bi “

Ź

pPFi
p. Therefore, for each such bi, we know Π . bi

ia Í τ.
Since Q is an m{n majority quorum system, every quorum is of size m and every faulty set in Cinit

is of size pn ´ mq. For contradiction, assume there exists a faulty set F 1 satisfying C1 that has size
pn ´ mq. Then by the definition of L, all possible faulty sets implied by C1 also have size pn ´ mq since L
monotonically increases the size of all possible faulty sets or none of them. Furthermore, each possible
faulty set implied by Cinit is a subset (or equal to) a possible faulty set implied by C1, so |F 1| “ pn ´ mq

implies Cinit “ C1.
From Theorem 1 we know for every possible faulty set F 1

i implied by C1, it must be the case that
Π , b1

i
ia

Í τ, where
Ź

pPF 1
i

p. However, since Cinit “ C1, we have a contradiction since (2) implies
Π . b1

i
ia

Í τ. Thus there cannot exist a possible faulty set of size (at least) pn ´ mq implied by C1, and
all possible faulty sets must have size greater than pn ´ mq. l

7.2. Noninterference

We prove noninterference by extending the FLAQR syntax with bracketed expressions in the style of
Pottier and Simonet [14]. Figure 43 shows selected bracketed evaluation rules and Figure 42a and 42b
show the typing rules for bracketed terms. The soundness and completeness of the bracketed semantics
are proved the Appendix A (Lemmata 16 - 21).

Noninterference often is expressed with a distinct attacker label. We use H to denote the attacker. This
means the attacker can read data with label ℓ if Π , ℓc Ď Hc and can forge or influence it if Π , Hi Ď ℓi

and can make it unavailable if Π , Ha Ď ℓa

An issue in typing brackets is how to deal with fail terms. Our confidentiality and integrity results
are failure-insensitive in the sense that they only apply to terminating executions. This is similar to
how termination-insensitive noninterference is typically characterized for potentially non-terminating
programs.

Traditionally, bracketed typing rules require that bracketed terms have a restrictive type, ensuring that
only values derived from secret (or untrusted) inputs are bracketed. In FLAQR, there are several scenarios
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where a bracketed value may not have a restrictive type. For example, when a run expression is evaluated
within a bracket, it pushes an element onto the configuration stack, but only in one of the executions.
Another example is when a bracketed value occurs in a compare expression, but the result is no longer
influenceable by the attacker H. For these scenarios, several of the typing rules in Figure 42a permit
bracketed values to have less restrictive types. Because of these rules, subject reduction does not directly
imply noninterference as it does in most bracketed approaches, but the additional proof obligations are
relatively easy to discharge.

Can have less restrictive type
Term π “ i π “ a

pv | v1q No Yes
pv | failτq Yes No

pv | vq Yes Yes
pfailτ | failτq Yes Yes

The table above summarizes how bracketed terms are typed depending on whether we are concerned
with integrity or availability. For integrity, unequal bracketed values must have a restrictive type (i.e.,
one that protects H), but equal bracketed values may have a less restrictive type. For availability, only
bracketed terms where one side contains a value and the other a failure must have a restrictive type.

7.2.1. Confidentiality and Integrity Noninterference
To prove confidentiality (integrity) noninterference we need to show that given two different secret

(untrusted) inputs to an expression e the evaluated public (trusted) outputs are equivalent. Equivalence
is defined in terms of an observation function O adapted from FLAC [8] in Appendix A, Figure 44.

Theorem 3 (c-i Noninterference). If Π;Γ, x : ℓ1 says τ1 $ xe, cy & empty : ℓ says τ where

(1) Π;Γ; pc; c $ vi : ℓ
1 says τ1, i P t1, 2u

(2) xerx ÞÑ pv1 | v2qs, cy & empty ÝÑ˚ xv, cy & empty
(3) Π , Hπ Ď ℓ1 and Π . Hπ Ď ℓ, π P tc, iu.

then, Optvu1,Π, ℓ, πq “ Optvu2,Π, ℓ, πq

Proof. From subject reduction we can prove that tvu1 and tvu2 have same type. By induction over the
structure of projected values, tvui, we can show Optvu1,Π, ℓ, πq “ Optvu2,Π, ℓ, πq Please refer to the
Appendix A for full proof. l

7.2.2. Availability Noninterference
Similar to [15] our end-to-end availability guarantee is also expressed as noninterference property.

Specifically, if one run of a well-typed FLAQR program running on a quorum system terminates suc-
cessfully (does not fail), then all other runs of the program also terminate.

This approach treats “buggy” programs where every execution returns fail regardless of the choice
of inputs as noninterfering. This behavior is desirable because here we are concerned with proving
the absence of failures that attackers can control. For structured quorum systems with a liveness result
such as Theorem 2 for m{n majority quorums, we can further constrain when failures may occur. For
example, Theorem 2 proves failures can only occur when more than pn ´ mq principals are faulty. In
contrast, Theorem 4 applies to arbitrary quorum systems provided they guard the program’s type, but
cannot distinguish programs where all executions fail.
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1 pλpx :τaqrpcs. λpy :τbqrpcs. λpz :τcqrpcs.
2 pselect
3 pcompare x and yq

4 or
5 pselect
6 pcompare y and zq

7 or
8 pcompare x and zqqqq

9 prunτa ea@aq prunτb eb@bq prunτc ec@cq

Fig. 18. FLAQR implementation of majority quorum example

Theorem 4 (Availability Noninterference). If
Π;Γ, x : ℓ says τ1 $ xe, cy & empty : ℓQ says τ where

(1) Π;Γ; pc; c $ fi : ℓ says τ1, i P t1, 2u

(2) xerx ÞÑ p f1 | f2qs, cy & empty ÝÑ˚ x f , cy & empty
(3) Π , H Í ℓ says τ1 and Hia P AJQK and

Π , Q guards pℓQ says τq

then t f u1 ‰ failℓQ says τ ðñ t f u2 ‰ failℓQ says τ

Proof. From subject reduction (see Lemma 25 in the Appendix) we know, Π;Γ; pc; c $ t f ui :
ℓQ says τ. Because Π , Q guards pℓQ says τq and Hia P AJQK we can write Π . Hia Í ℓQ says τ

from rule Q-GUARD . This ensures if t f u1 ‰ failℓQ says τ, then t f u2 ‰ failℓQ says τ, and vice-
versa. l

8. Examples revisited

We are now ready to implement the examples from section 2 with FLAQR semantics. To make these
implementations intuitive we assume that our language supports integer (int) types, a mathematical
operator > (greater than), and ternary operator :?. Beacuse int is a base type C(int) returns K. The
examples also read from the local state of the participating principals. Which is fine because there are
standard ways to encode memory (reads/writes) into lambda-calculus.

8.1. Tolerating failure and corruption

In this FLAQR implementation (Figure 18) of 2{3 majority quorum example of section 2.1, we refer
principals representing alice, bob and carol as a, b and c respectively. The program is executed at host
c1 with program counter pc. Which means condition Π , c1 ě pc holds. The program body consists
of a function of type τ f “(τa

pc
ÝÑ τb

pc
ÝÑ τc

pc
ÝÑ pppaia ‘ biaq a pbia ‘ ciaq a paia ‘ ciaqq says τq) and

the three arguments to the function are run statements. Here τ is pa ^ b ^ cqc says int. Which means
C(τ f) “ pc. The function body can be evaluated at c1, as condition Π , c1 ě pc is true.

Here ea, eb and ec are the expressions that read the balances for account acct from the local states of
a, b and c respectively. The program counter at a, b, and c are a, b and c respectively. The data returned
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1 pλparg1 :τbqrpcs. pλparg2 :τb1 qrpcs.
2 pselect
3 pbind x “ arg1 in pbind y “ arg2 in
4 pbind x1 “ x in pbind y1 “ y in
5 pηd pηpbc^b1cq px1 ą y1 ? x1 : y1qqqqqqq

6 or
7 pselect parg1q or parg2qqqqqprunτb1 e1@b1qqprunτb e@bq

Fig. 19. FLAQR implementation of available largest balance example

from a has type τa, which is basically aia says τ. Similarly τb is bia says τ and τc is cia says τ. Because
each run returns a balance, the base type of τ is an int type, and it is protected with confidentiality label
pa^b^cqc, meaning anyone who can read all the three labels (a, b and c), can read the returned balances.

In order to typecheck the run statements the conditions Π , pc Ď a, Π , pc Ď b, and Π , pc Ď c
need to hold. The condition Π , c1 ě C(τa) is trivially true as C(τa) “ K. Similarly C(τb) “ K and
C(τc) “ K as well.

The host executing the code need to be able to read the return values from the three hosts. This
means conditions Π , c1 ▷ aia says τ Π , c1 ▷ bia says τ and Π , c1 ▷ cia says τ need to
hold in order to typecheck the compare statements. The type of the whole program is pppaia ‘ biaq a

pbia ‘ ciaq a paia ‘ ciaqq says τq , which is a valid quorum type for Q “ tq1 :“ ta, bu; q2 :“

tb, cu; q3 :“ ta, cuu.
Based on the security properties defined in section 7 this program offers the confidentiality, integrity

and availability guaranteed by quorum system Q. Therefore, the result cannot be learned or influenced
by unauthorized principals, and will be available as long as two hosts out of a, b, and c are non-faulty.

The toleration set here is JQK “ taia, bia, ciau. So, the program is not safe against an attacker with
label la “ aia ^ bia (or, ai ^ ba), for example. This is because Et P JQK.Π , t ě la. Since Π , la ě aia,
principal la can fail two compare statements on lines 3 and 8. And, because Π , la ě bia, la can also fail
another two compare statements (one overlapping compare statment) on lines 3 and 6. Thus the whole
program evaluates to fail. This FLAQR code also helps prevent incorrect comparisons. For instance,
replacing z with y on line 8 will not typecheck.

8.2. Using best available services

The code in Figure 19 is the FLAQR implementation of Figure 3. The program runs at a host c with
program counter pc. The expressions e and e1 read account balances from principals b and b1, represent-
ing the banks. The values returned from b and b1 have types τb “ pbia says pbc ^ b1cq says intq and
τb1 “ pb1ia says pbc ^ b1cq says intq respectively.

The type of the whole program is ppd a bia a b1iaq says pbc ^ b1cq says intq. Here d “ pc \ b \ b1.
In order to typecheck the run statements, the conditions Π , pc Ď b and Π , pc Ď b1 need to
hold. The program counter at b is b and b1 is b1. The bind statements (lines 3-4) typecheck because
conditions Π , pc \ bia Ď d, Π , pc \ bia \ b1ia Ď d, Π , pc \ bia \ b1ia \ bc Ď d, and Π ,

pc \ bia \ b1ia \ bc \ b1c Ď d hold, because of our choice of d.
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9. Secret sharing with FLAQR

Secret sharing is a cryptographic mechanism used in several distributed systems protocols such
as oblivious transfer, multiparty communication, byzantine agreement, etc. In this section we extend
FLAQR with two new language constructs to support secret sharing. We call this extended version of our
programming model FLAQR`. Secret sharing is a process of splitting a secret into n shares and distribut-
ing the shares among n hosts (or principals in our setting). When an adequate number of hosts, say t,
combine their respective shares, the secret is reconstructed [16, 17]. Sometimes this process is referred
as (t,n)-threshold secret sharing scheme [16, 18], i.e. a quorum of t hosts (where 1 ă t ď n) out of those
n hosts need to combine their shares to retrieve the initial secret value. With pt ´ 1q or fewer shares,
adversaries learn nothing about the secret.

Secret sharing is most commonly described in terms of a mathematical polynomial, say ppxq, of
degree pt ´ 1q, pp0q being the secret value [16]. The polynomial’s values at n different co-ordinates are
distributed as the secret shares, and by knowing t of these values one can reconstruct7 the polynomial,
and hence they can find the secret value pp0q.

For simplicity, we extend FLAQR to only supports (2,2)-threshold secret sharing, but later we explain
that extending this framework to support (t,n)-threshold secret sharing for 2 ă n and t ă n would be
straightforward. We model secret shares abstractly using a value sealed by new kinds of principals k.L
and k.R. We call k a key principal because, unlike the principals in P , a new, unique key principal k is
created each time secret shares are created. In contrast, the principals in P are statically known. The
principals k.L and k.R represent the two associated shares of the key principal k. We will be refering to
(2,2)-threshold secret sharing simply as (2,2) secret sharing in the following sections.

9.1. Motivating example of secret sharing : password splitting.

Figure 20 presents a simple (2,2) secret sharing example and the corresponding pseudocode is shown
in Figure 21. A (secret) password s belongs to bob who wants keep a backup of it. Bob creates two
secret-shares of s as s_1 and s_2 and sends them to alice and carol respectively. That is, anyone who
wants to get access to s has to either get it directly from bob, or needs to get both s_1 and s_2 from
alice and carol and reproduce it. Later, dave fetches the secret shares from alice and carol and
combines them to produce the password s.

An advantage of secret sharing is that it permits the secure transmission of secrets without requiring
key distribution or public-key infrastructure (PKI). Instead, any party who possesses t shares may recover
the secret. This can also be a liability, however, since an adversary needs to only obtain the shares to
access the secret, too. Thus, considering the flow of shares between principals is central to the security
of a secret sharing scheme. In the example in Figure 21, alice and carol are unable to access the secret
only because they possess a single share; a coding error can transmit both shares to either alice or
carol obviating the cryptographic protection. For this reason, embedding secret sharing in a language
like FLAQR makes sense because the type system ensures the code only permits authorized flows.

9.2. p2, 2q secret sharing in FLAQR`

Our abstractions for secret sharing in FLAQR`make use of the ηℓ term to represent sealed secret
shares. However, aspects of secret sharing schemes differ from the use of ηℓ in prior FLAC-based

7Typically using Lagrange interpolation [17].
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bob (s_1,s_2) := split(s)

alice carol

dave s := combine(s_1,s_2)

s_1 s_2

s_1 s_2

Fig. 20. Overview of p2, 2q secret sharing: bob shares his secret shares with alice and carol. Later, alice and carol forward
their respective shares to dave. Finally, dave reproduces the initial secret s with the shares he received from alice and carol.

1 splitCombinePassword ():
2 (s_1 ,s_2) := split(s) @ bob;
3 send s_1 to alice;
4 send s_2 to carol;
5 con := func(); // func() returns a bool
6 if(con)
7 fetch s_1 from alice;
8 fetch s_2 from carol;
9 s' := combine(s_1 ,s_2) @ dave;

10 else return;

Fig. 21. Creating two secret shares from a secret and then reconstructing the secret from the two secret shares using functions
of a p2, 2q secret sharing protocol.

languages [8, 19, 20]. Here, in addition to the sealed values generated by the ηℓ term, sealed values
may also be created when splitting a secret into shares. In the previous approaches, a value sealed by ηℓ
serves as a reasonable model for signed and encrypted values. Specifically, the confidentiality component
ℓc behaves like a public-key encrypted value: anyone can encrypt values at ℓc, but only authorized parties
(which possess the associated private key) can distinguish the values protected at ℓc. Since ηℓ can only be
applied in contexts where pcěℓi (see UNITM), the integrity component behaves like a digitally signed
value: only authorized principals can cause a value to be signed with ℓi integrity, but anyone can use
high-integrity values.8 Obviously then, enforcing these policies cryptographically would require public-
key infrastructure.

Secret sharing behaves differently from the above interpretations: rather than authorization being
based on possession of a long-lived private key (a reasonable proxy for identity), secret sharing implic-
itly authorizes any party possessing t shares. Therefore using identity-based principals such as alice
or bob is inappropriate since, even if a shared secret is intended for alice, anyone with t shares will
be able to distinguish the secret. Even alice must have t shares to access the secret. An abstraction for
secret sharing should capture this behavior, but doing so in FLAQR`requires new concepts.

8There doesn’t appear to be a natural cryptographic analog for the availability component.
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rE-SPLITs
k is fresh

splitℓ v ÝÑ xpηk.Lc^ℓ vq, pηk.Rc^ℓ vqy

rE-COMBINEs combine x “ xpηk.Lc^ℓ vq, pηk.Rc^ℓ vqy@pc in e ÝÑ erx ÞÑ vs

Fig. 22. FLAQR` semantics for secret sharing (splitting secrets and combining shares).

rSPLITs

Π;Γ; pc; c $ e : τ Π , c ě pc
Π , pc Ď ℓ \ △(pci)

Π;Γ; pc; c $ splitℓ e : pLc ^ ℓ says τˆ Rc ^ ℓ says τq

rCOMBINEs

Π;Γ; pc; c $ e : pLc ^ ℓ says τˆ Rc ^ ℓ says τq
Π , c ě pc Π;Γ, x :τ; ℓ \ pc; c $ e1 : ℓ1 says τ

Π , ℓ \ pc Ď ℓ1 says τ

Π;Γ; pc; c $ combine x “ e@pc in e1 : ℓ1 says τ

rSEALEDKs

Π;Γ; pc; c $ v : τ
Π , c ě pc K P tLc,Rcu

Π;Γ; pc; c $ pηk.K^ℓ vq : K ^ ℓ says τ

Fig. 23. FLAQR` typing rules for secret sharing.

We extend the set of principals P with new primitive principals L and R representing the left and right
shares of our p2, 2q secret sharing scheme. The set of all principals P for FLAQR`is thus the closure of
the set N Y tJ,K, L,Ru over the same operations as FLAQR. In the following we are only interested in
the confidentiality projections Lc and Rc, since secret sharing only concerns enforcing the confidentiality
of the secret.

Another aspect of secret sharing that departs from prior uses of FLAC principals is that each time
shares are created, they are protected by a different secret. Consequently, shares created from different
invocations cannot be mixed, even when the underlying value is the same. For this reason, we define
key principals, a new type of principal generated dynamically at runtime. For our purposes, each k P

K, where K is the set of all key principals, is equipped with a left and right principal, k.Lc and k.Rc.
Importantly, since key principals are generated dynamically, they are not directly representable statically.
The principals Lc and Rc are the static representation for the left and right principals of any key principal,
but the shares of different key principals cannot be distinguished at the type level.

9.3. Semantics and types for secret sharing

Figure 22 presents the semantic rules added to FLAQR`. Expression splitℓ v produces two secret
shares, sealed with principals k.Lc ^ ℓ and k.Rc ^ ℓ from the secret value v (rule E-SPLIT) using a fresh
key principal k. The ℓ annotation specifies an additional policy to seal the secret with an addition to
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the key principal. Primarily ℓ is used for integrity and availability components since k.Lc and k.Rc are
confidentiality projections.

Two shares are combined with expression

combine x “ xpηk.Lc^ℓ vq, pηk.Rc^ℓ vqy@pc in e

Rule E-COMBINE evaluates these terms to erx ÞÑ vs revealing the secret v and substituting it for x in
the body e. Notice that the key principal is the same on both sides of the pair. As discussed below in
Section 9.4, mismatched key principals result in failure. The additional pc annotation on combine terms
is used by the extended blame semantics, discussed in Section 9.4.

For simplicity, our extension only supports (2,2)-threshold secret sharing, but we believe extending
this framework to support (t,n)-threshold secret sharing for 2 ă n and t ă n would be straightforward.
For example, given some t and n, we could redefine E-SPLIT to generate a tuple containing n shares
sealed by principals k.S c

1, k.S
c
2, ..., k.S

c
n. E-COMBINE would be replaced by

`n
t

˘

rules: one for each valid
t-sized subset of shares.

Figure 23 presents the FLAQR` typing rules for split and combine. The last premise in the SPLIT
rule involves the view [20] of the pc’s integrity, △(pci). The view of a principal was introduced by
Ceccetti et al [20] to specify an upper bound on the confidentiality that may be robustly declassified [21]
based on the integrity of the context performing the declassification and the data itself. These restrictions
ensure an attacker cannot influence what (or whether) information is declassified. Below, we extend the
definition of view with the principals’ availability projection counterpart as well.

Definition 6 (view of a principal). Let ℓ “ pc ^ qi ^ ra be a FLAM [6] label (principal) expressed in
normal form. The view of ℓ, written as △(ℓ), is defined as △(pc ^ qi ^ ra) fi qc.

The premise Π , pc Ď ℓ \ △(pci) in SPLIT serves two purposes. First, it ensures the confidentiality
of control flow and the unsealed values in the context, represented by pc, are no more restrictive than the
upper bound on declassification △(pci) (or the confidentiality of ℓ if no declassification takes place).
Second, it ensures the label ℓ protects the availability and integrity of the context; only confidentiality
may be downgraded by split terms.

When shares are combined to reveal the secret, the rule COMBINE ensures the combined pair contains
a left and right share (although not which key principal they are associated with), and that the body of
the combine term protects the result with a principal at least as restrictive as the upper bound of ℓ and
the context pc the combine occurs in.

In some sense, splitℓ and combine function as an alternative to ηℓ and bind. The difference is that
split seals values using a key principal in addition to a label ℓ, and permits secrets more restrictive than
ℓ to be sealed. Combine is similar to a bind that declassifies its bound value, dropping the key principals
k.L and k.R from the protection requirements on the body of the combine. Note that it is not possible for
a type-safe program to bind a secret share. Since a premise of bind would require the body accessing
the unsealed share on host c to typecheck at pc \ pLc ^ ℓq, this would violate the invariant that c must
act for the pc of the programs it executes.9

We need one more typing rule, SEALEDK, to preserve the types of the values sealed with labels k.Lc

and k.Rc, for any freshly generated key k P K. The existing SEALED rule is not enough as it does not
handle the values protected with these new key principals. Although, the consequence of having this

9Recall this invariant is enforced by the Π , c ě pc premise included in all typing rules.
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rE-SPLITFAILs
k is fresh

splitℓ fail
τ ÝÑ failpLc^ℓ says τˆRc^ℓ says τq

rE-COMBINEFAILs
k1 ‰ k2

combine x “ xpηk1.Lc^ℓ vq, pηk2.Rc^ℓ vqy@pc in e ÝÑ erx ÞÑ failτs

rE-COMBINEFAILLs combine x “ xfailLc^ℓ says τ, f y@pc in e ÝÑ erx ÞÑ failτs

rE-COMBINEFAILRs combine x “ xv, failRc^ℓ says τy@pc in e ÝÑ erx ÞÑ failτs

Fig. 24. fail propagation rules in FLAQR`

rC-COMBINEFAILs
k1 ‰ k2 C1 :“ NORM(pc, C)

xxcombine x “ xpηk1.Lc^ℓ v1q, pηk2.Rc^ℓ v2qy@pc in pηℓ xq, cy & syC ùñ xxfailℓ says τ, cy & syC
1

Fig. 25. E-COMBINEFAIL with Blame Semantics.

rule is that, inspite of being well-typed, a FLAQR` program can produce mismatching shares with two
different keys (say k1 and k2) during run-time. We handle such cases with mismatching shares with our
extended blame semantics in section 9.4.

9.4. Extending the blame semantics

As with other FLAQR terms, fail values propagate through split and combine. Figure 24 presents
fail propagation rules for split and combine statements. These rules are straightforward propagation
rules except for E-COMBINEFAIL, which evaluates to fail if the key principals sealing the shares are
mismatched.

The introduction of E-COMBINEFAIL rule creates an additional source of failure besides compare
terms with mismatched values. Rule C-COMBINEFAIL extends FLAQR’s blame semantics to account
for this. Unlike the case for compare, we cannot blame the failure on the principal that sealed the mis-
matched values given to combine. The failure in this case is due to pairing together shares generated
by different split evaluations. Rather than blaming the creators of the sealed value, we instead want
to blame the principals that influenced this pairing. This influence is represented by the label of the
pc. Hence, when k1 and k2 do not match, C-COMBINEFAIL adds pc to the blame set. The function L
used in C-COMPAREFAIL is unnecessary here because it is unnecessary to examine any subterms of the
combined pair—only the outer key principals contribute to a combine failure.

The NORM function10 in the premise of C-COMBINEFAIL is used to add the new (potentially malicious)
pricipal pc in the exisiting blame set C, in a normalized form. For example, if pc “ pa ^ bq _ c and if

10This normalization function was not present in the original FLAQR publication [7], which is an error. Normalization of the
statements added to the blame set is required to ensure compound principals are correctly handled.
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C :“ pℓ1 P Fq OR pℓ2 P Fq, then calling NORMppc, Cq will return a blame set

C1 :“pa P F AND b P F AND ℓ1 P Fq OR pa P F AND b P F AND ℓ2 P Fq

OR pc P F AND ℓ1 P Fq OR pc P F AND ℓ1 P Fq

In case of C-COMPAREFAIL (Figure 17), the NORM function was called from within the L function (see
Figure 45). Figure 46 contains the complete definition of the NORM function.

9.5. Security properties

By design, split and combine are interfering with respect to confidentiality: they can cause secret
values to be declassified. However, we would like to ensure that integrity and availability noninterference
are unaffected.

In order to prove integrity and availability noninterference for FLAQR` programs we extend the brack-
eted semantics (Figure 26) and observation function (Figure 27) with rules for split and combine, and
add the corresponding cases for split and combine terms to the proofs for the lemmas and theorems
of FLAQR`. The noninterference theorem statements for FLAQR` are identical to Theorems 3 and 4,
though Theorem 3 only holds for π “ i in FLAQR`. Since the new static principals L and R are only
used in confidentiality projections, rules such as Q-GUARD and the fails are unaffected by the new terms
for secret sharing, the proofs of these theorems is largely unchanged from those for FLAQR. However,
ensuring the new terms did not break an essential lemma such as subject reduction (Lemma 24) required
careful design of the new evaluation, failure propagation, bracketed semantics, and typing rules.

Although we protect the robustness (in theory) of what values may be declassified via split and
combine, secret sharing is inherently non-robust since the party possessing the shares decides whether
to reveal the secret. To formalize the protections that split and combine do offer, a weaker form of
robust declassification would be required that permits secure uses of split and prohibits insecure ones
(such as those violating the premise Π , pc Ď ℓ \ △(pci)). Such a definition is not immediately
clear to us, and we leave further investigation to future work. Since split and combine permit non-
robust declassification, they could potentially permit malleability attacks [20]. Since secret shares cannot
be unsealed via bind, the possibility for such attacks is limited, but we leave formalization of these
limitations to future work.

For compare statements failures are generated because of two mismatching values. For combine state-
ments the contents of the secret shares are irrelevant. Instead the failures happen due to mismatching keys
of the secret shares. Hence, we can only blame the control flow of the program for putting the two mis-
matching secret shares together. Because, the program counter tracks the control flow of the program,
we dynamically blame the program counter pc in the C-COMBINEFAIL rule by adding it to the blame
set when a fail term is returned while combining two shares. Our Theorem 1 (Sound blame) still holds,
even though combine statement we incorporates a new source of failure. This is because of the premise
Π , pc Ď ℓ1 says τ in COMBINE typing rule allows us to show Π , pc Í ℓ1 says τ (using P-LBL
and A-AVAIL). Since, Theorem 1 holds Theorem 2 (Majority liveness) holds as well, as it depends on
Theorem 1.

9.6. Password splitting example with FLAQR`.

Figure 28 presents the FLAQR`implementation of the example we discussed in Section 9.1. The pro-
gram executes at host c1 with program counter pc, such that Π , c1 ě pc. The host a has program
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rB-SPLITs splitℓ pv1 | v2q ÝÑ xpηk.Lc^ℓ pv1 | v2qq, pηk.Rc^ℓ pv1 | v2qqy

rB-COMBINEs combine x “ pv1 | v2q@pc in e ÝÑ pcombine x “ v1@pc in e | combine x “ v2@pc in eq

Fig. 26. Bracketed semantics for FLAQR` terms.

Opsplitl e,Π, ℓ, πq “ splitl Ope,Π, ℓ, πq

Opcombine x “ xe1, e2y@pc in e,Π, ℓ, πq “

combine x “ xOpe1,Π, ℓ, πq,Ope2,Π, ℓ, πqy@pc in Ope,Π, ℓ, πq

Fig. 27. Observation function for intermediate FLAQR` terms (extended from FLAC [8]).

counter a, host b has program counter b and host c has program counter c. The program basically con-
sists of a function body (lines 1-5) and an argument to it (line 6). Particularly, the function body is of
type τb

pc
ÝÑ ℓ1 says int, where τb = bia says pLc ^ b says int ˆ Rc ^ b says intq. The function body

takes the value of running a split statement at host b (i.e. runτb psplitb vq@b), which splits b’s secret
v. The argument type is τb. This means the pair of the secret shares created at and returned by b is tainted
with b’s integrity and availability. In order to typecheck the run statement pc needs to flow to b, i.e. the
condition Π , pc Ď b needs to hold. The condition Π , c ě C(pLc ^ b says int ˆ Rc ^ b says intq)
satisfies trivially, as C(pLc ^ b says int ˆ Rc ^ b says intq) “ K. The function body can be executed
at c1 as C(τb

pc
ÝÑ ℓ1 says int) “ pc and we mentioned earlier that the condition Π , c1 ě pc is true.

The run statements on line 3 and 4 indicates that the left share is tainted by a’s and the right share
is tainted by c’s integrity and availability. Which means a and c have seen and approved on the secret
shares created by b. To make the run statements on lines 3 and 4 well-typed, the conditions Π , pc Ď a
Π , pc Ď c should satisfy. We choose label ℓ such that Π , pc \ aia \ bia \ cia Ď ℓ. The bind
statements (lines 2-4) typecheck because the conditions Π , pc \ bia Ď ℓ, Π , pc \ bia \ aia Ď ℓ and
Π , pc \ bia \ aia \ cia Ď ℓ hold due to our choice of ℓ.

10. Related work

FLAM [6, 22] offers an algebra to integrate authorization logics and information flow control policies.
FLAM also introduces a security condition, robust authorization, that is useful to ensure security when
delegations and revocations change the meaning of confidentiality and integrity policies. In FLAQR we
extend FLAM algebra with availability policies, and new binary operations to represent integrity and
availability policies of the output of quorum based protocols. FLAC [9][8] embeds its types with FLAM
information flow policies. FLAC supports dynamic delegation of authority, but this feature is omitted in
FLAQR.

A limited number of previous approaches [15, 23] combine availability with more common confi-
dentiality and integrity policies in distributed systems. Zheng and Myers [23] extend the Decentralized
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1 λparg :bia says pLc ^ bia says int ˆ Rc ^ bia says intqqrpcs.
2 pbind s “ arg in
3 pbind s1 “ prunτa pproj1 sq@aq in
4 pbind s2 “ prunτc pproj2 sq@cq in
5 pcombine sec “ xs1, s2y@pc in pηℓ secqqqqq

6 prunτb psplitbia vq@bq

where

τa “ aia says pLc ^ b says intq

τb “ bia says pLc ^ b says int ˆ Rc ^ b says intq

τc “ cia says pRc ^ b says intq

Fig. 28. A simple example of secret sharing in FLAQR`.

Label Model [24] with availability policies, but focus primarily tracking dependencies rather than ap-
plying mechanisms such as consensus and replication to improve availability and integrity. Zheng and
Myers later introduce the language Qimp [15] with a type system explicitly parameterized on a quorum
system for offloading computation while enforcing availability policies. Instead of treating quorums
specially, FLAQR quorums emerge naturally using compare and select and enable application-specific
integrity and availability policies that are secure by construction.

Hunt and Sands [25] present a novel generalisation of information flow lattices that captures disjunc-
tive flows similar to the influence of replicas in FLAQR on a select result. Our partial-or operation was
inspired by their treatment of disjunctive dependencies.

Models of distributed system protocols are often verified with model checking approaches such as
TLA+ [26]. Model checking programs is typically undecidable, making it ill-suited to integrate di-
rectly into a programming model in the same manner as a (decidable) type system. To make verification
tractable, TLA+ models are often simplified versions of the implementations they represent, potentially
leading to discrepancies. FLAQR is designed as a core calculus for a distributed programming model,
making direct verification of implementations more feasible.

BFT protocols [2, 27] use consensus and replication to protect the integrity and availability of op-
erations on a system’s state. Each instance of a BFT protocol essentially enforces a single availability
policy and a single integrity policy. While composing multiple instances is possible, doing so provides
no end-to-end availability or integrity guarantees for the system as a whole. FLAQR programs, by con-
strast, routinely compose consensus and replication primitives to enforce multiple policies while also
providing end-to-end system guarantees.

Our blame semantics presented in Section 7.1 has some resemblance to the idea of blame used to
detect contract violations [28] and applied to gradual typing [29]. In our system, blame is necessarily
ambiguous since perfect fault detection is not possible. Hence, rather than identifying a single program
point responsible for a contract or type violation, our semantics builds constraints that specify a set of
principals that may be responsible for a given failure.

In [30] Clarkson and Schneider talks about integrity measures such as contamination and suppression.
The idea of suppression can be equivalent to the idea of unavailability. Although in [30] suppression
happens due to untrusted input making trusted output unavailable. In FLAQR, unavailibity is caused by
both unavailable and untrusted (via compare statement) inputs.
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11. Conclusion

In this work, we extend Flow Limited Authorization Model [6] with availability policies. We intro-
duce a core calculus and type-system, FLAQR, for building decentralized applications that are secure
by construction. We identify a trade-off relation between integrity and availability, and introduce two
binary operations partial-and and partial-or, specifically to express integrities of quorum based repli-
cated programs. We define f ails relation and judgments that help us reason about a principal’s authority
over availability of a type. We introduce blame semantics that associate failures with malicious hosts
of a quorum system to ensure that quorums can not exceed a bounded number of failures without caus-
ing the whole system to fail. FLAQR ensures end-to-end information security with noninterference for
confidentiality, integrity and availability. Finally we present FLAQR`, which is an extension of FLAQR
with language constructs that support secret sharing between hosts with mutual distrust. We extend our
failure propagation rules and blame semantics to assign blame to appropriate principals when a secret
sharing round fails.
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Appendix A. Complete FLAQR rule set and noninterference proofs

In the following proofs we use the simple and the annotated FLAQR syntax interchageably.

Lemma 1 (UniqueType). If Π;Γ; pc; c $ e : τ and Π;Γ; pc; c $ e : τ̊ then τ “ τ̊

Proof. Straightforward by induction on typing derivation of e. l

Lemma 2 (WaitUniqueT). If Π;Γ; pc; c $ Erexpectτ̂s : τ and Π;Γ; pc; c $ Erexpectτ̂s : τ1 then τ “

τ1.

Proof. Straightforward using induction over structure of E. l

Lemma 3 (stackUniqueT). If type of the tail Π;Γ; pc $ t : rτ̂sτ and Π;Γ; pc $ t : rτ̂sτ1 then τ “ τ1.

Proof. The proof is by induction over typing derivation of s. l

Lemma 4 (distUniqueT). If Π;Γ; pc $ xe, cy & s : τ and Π;Γ; pc $ xe, cy & s : τ1 then τ “ τ1.

Proof. Straightforward proof using lemmas UniqueType 1 and 2. l



34 P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

π P tc, i, au (projections)
n P N (primitive principals)
x P V (variable names)

p, ℓ, pc ::“ n
ˇ

ˇ J
ˇ

ˇ K
ˇ

ˇ pπ
ˇ

ˇ p ^ p
ˇ

ˇ p _ p
ˇ

ˇ p \ p
ˇ

ˇ p [ p
ˇ

ˇ p a p
ˇ

ˇ p ‘ p

τ ::“ unit
ˇ

ˇ X
ˇ

ˇ pτ` τq
ˇ

ˇ pτˆ τq
ˇ

ˇ τ
pc

ÝÑ τ
ˇ

ˇ @Xrpcs. τ
ˇ

ˇ ℓ says τ

v ::“ pq
ˇ

ˇ pηℓ vq
ˇ

ˇ inj
pτ`τq
i v

ˇ

ˇ xv, vy
τ

ˇ

ˇ λpx :τqrpcs. e
ˇ

ˇ ΛXrpcs. e

f ::“ v
ˇ

ˇ failτ

e ::“ f
ˇ

ˇ x
ˇ

ˇ e e
ˇ

ˇ e τ
ˇ

ˇ ηℓ e
ˇ

ˇ xe, ey
τ

ˇ

ˇ proji e
ˇ

ˇ inj
pτ`τq
i e

ˇ

ˇ bind x “ e in e
ˇ

ˇ caseτ e of injτ1pxq.e | injτ2pxq.e
ˇ

ˇ runτ e@p
ˇ

ˇ ret e@p
ˇ

ˇ selectτ e or e
ˇ

ˇ compareτ e and e
ˇ

ˇ expectτ
ˇ

ˇ splitτℓ e
ˇ

ˇ combineτx “ e1@pc in e2

Fig. 29. Type annotated FLAQR Syntax (Full version).

E ::“ r¨s
ˇ

ˇ E e
ˇ

ˇ v E
ˇ

ˇ E τ
ˇ

ˇ xE, ey
τ

ˇ

ˇ x f , Ey
τ

ˇ

ˇ ηℓ E
ˇ

ˇ proji E
ˇ

ˇ injτi E
ˇ

ˇ bind x “ E in e
ˇ

ˇ caseτ E of injτ1pxq.e | injτ2pxq.e
ˇ

ˇ ret E@p
ˇ

ˇ selectτ E or e
ˇ

ˇ selectτ f or E
ˇ

ˇ compareτ E and e
ˇ

ˇ compareτ f and E
ˇ

ˇ splitτℓ E
ˇ

ˇ combineτx “ E@pc in e
ˇ

ˇ combineτx “ v@pc in E

Fig. 30. Evaluation context.

Lemma 5 (Γ-Weakening). If Π;Γ; pc; c $ e : τ and for all τ1 and x R dompΓq, Π;Γ, x :τ1; pc; c $ e : τ

Proof. By Induction on structure of e. l

Lemma 6 (CTXif). If Π;Γ; pc; c $ Ervs : τ and x R dompΓq then Dτ1, such that Π;Γ, x :τ1, pc; c $

Erxs : τ and Π;Γ; pc; c $ v : τ1.
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e ÝÑ e1

rE-APPs pλpx :τqrpcs. eq v ÝÑ erx ÞÑ vs rE-TAPPs pΛXrpcs. eq τ ÝÑ erX ÞÑ τs

rE-UNPAIRs proji xv1, v2y
τ

ÝÑ vi rE-SEALEDs ηℓ v ÝÑ pηℓ vq

rE-BINDMs bind x “ pηℓ vq in e ÝÑ erx ÞÑ vs

rE-CASEs pcaseτ pinjτi vq of injτ1pxq.e1 | injτ2pxq.e2q ÝÑ eirx ÞÑ vs

rE-COMPAREs
v1 “ v2

comparepℓ1‘ℓ2q says τ pηℓ1 v1q and pηℓ2 v2q ÝÑ pηℓ1‘ℓ2
v1q

rE-COMPAREFAILs
v1 ‰ v2

comparepℓ1‘ℓ2q says τ pηℓ1 v1q and pηℓ2 v2q ÝÑ failpℓ1‘ℓ2q says τ

rE-COMPAREFAILLs comparepℓ1‘ℓ2q says τ failℓ1 says τ and f2 ÝÑ failpℓ1‘ℓ2q says τ

rE-COMPAREFAILRs comparepℓ1‘ℓ2q says τ f1 and failℓ2 says τ ÝÑ failpℓ1‘ℓ2q says τ

rE-SELECTs
fi “ pηℓi wiq f j P tpηℓ j

v jq, fail
ℓ j says τu

selectpℓ1aℓ2q says τ f1 or f2 ÝÑ pηℓ1aℓ2
viq

rE-SELECTFAILs selectpℓ1aℓ2q says τ pfailℓ1 says τq or pfailℓ2 says τq ÝÑ failpℓ1aℓ2q says τ

rE-RETSTEPs
e ÝÑ e1

ret e@c ÝÑ ret e1@c
rE-SPLITs

k is fresh
splitτℓ v ÝÑ xpηk.Lc^ℓ vq, pηk.Rc^ℓ vqy

rE-COMBINEs combineτx “ xpηk.L^ℓ vq, pηk.R^ℓ vqy@pc in e ÝÑ erx ÞÑ vs rE-STEPs
e ÝÑ e1

Eres ÝÑ Ere1s

Fig. 31. Full FLAQR local semantics

Proof. By induction on structure of E. l

Lemma 7 (CTXonlyif). Π;Γ; pc; c $ v : τ1 and Π;Γ, x :τ1, pc; c $ Erxs : τ then Π;Γ; pc; c $ Ervs : τ,
when x R FVpEq(FV returns the free variables).

Proof. Proof by induction over structure of E. l

Lemma 8 (CTXiff). Π;Γ; pc; c $ Ervs : τ iff Dτ1, such that Π;Γ, x :τ1, pc; c $ Erxs : τ and Π;Γ; pc; c $

v : τ1 when x R dompΓq.

Proof. Straightforward from lemma 6 and 7. l

Lemma 9 (Expect). If Π;Γ; pc; c $ Ervs : τ and Π;Γ; pc; c $ v : τ1 then Π;Γ; pc; c $ Erexpectτ
1

s : τ.
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e ÝÑ failτ

rE-APPFAILLs λpx :τqrpcs. failτ
pc

ÝÑτ1

e ÝÑ failτ
1

rE-APPFAILs λpx :τqrpcs. e failτ ÝÑ erx ÞÑ failτs rE-TAPPFAILs fail@Xrpcs. τ τ1 ÝÑ failτrX ÞÑτ1
s

rE-SEALEDFAILs ηℓ fail
τ

ÝÑ failℓ says τ rE-INJFAILs inj
pτ1`τ2q

i failτi ÝÑ failpτ1`τ2q

rE-CASEFAILs caseτ failτ
1

of inj1pxq.e1 | inj2pxq.e2 ÝÑ failτ

rE-PAIRFAILLs xfailτ1 , f2y
pτ1ˆτ2q

ÝÑ failpτ1ˆτ2q rE-PAIRFAILRs x f1, failτ2y
pτ1ˆτ2q

ÝÑ failpτ1ˆτ2q

rE-PROJFAILs proji fail
pτ1ˆτ2q

ÝÑ failτi

rE-SPLITFAILs
k is fresh

splitℓ fail
τ

ÝÑ failpLc^ℓ says τˆRc
^ℓ says τq

rE-COMBINEFAILs
k1 ‰ k2

combine x “ xpηk1.Lc^ℓ vq, pηk2.Rc^ℓ vqy@pc in e ÝÑ erx ÞÑ failτs

rE-COMBINEFAILLs combine x “ xfailLc^ℓ says τ, f y@pc in e ÝÑ erx ÞÑ failτs

rE-COMBINEFAILRs combine x “ xv, failRc
^ℓ says τ

y@pc in e ÝÑ erx ÞÑ failτs

Fig. 32. All propagation of fail terms.

Proof. Straightforward using lemma CTXonlyif 7. l

Lemma 10 (RExpect). Π;Γ; pc; c $ v : τ1 and Π;Γ; pc; c $ Erexpectτ
1

s : τ then Π;Γ; pc; c $ Ervs : τ.

Proof. Straightforward from lemma CTXonlyif 7. l

Lemma 11 (Values PC). Let Π;Γ; pc; c $ v : τ. If Π , c1 ě pc1 and Π , c1 ě C(τ) then Π;Γ; pc1; c1 $

v : τ.

Proof. Given that,

Π , c1 ě pc1 (1)

Π , c1 ě C(τ) (2)

Using induction over values.

Case UNITM. Using UNIT typing rule and (1) we have Π;Γ; pc1; c1 $ pq : unit
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Π;Γ; pc; c $ e : τ

rVARs
Γpxq “ τ Π , c ě pc

Π;Γ; pc; c $ x : τ
rUNITs

Π , c ě pc
Π;Γ; pc; c $ pq : unit

rFAILs
Π , c ě pc

Π;Γ; pc; c $ failτ : τ
rLAMs

Π;Γ, x :τ1; pc1; u $ e : τ2 Π , c ě pc

u “ C(τ1
pc1

ÝÑ τ2) Π , c ě u

Π;Γ; pc; c $ λpx :τ1qrpc1s. e : τ1
pc1

ÝÑ τ2

rAPPs

Π;Γ; pc; c $ e1 : τ1
pc1

ÝÑ τ
Π;Γ; pc; c $ e2 : τ1 Π , pc Ď pc1 Π , c ě pc

Π;Γ; pc; c $ e1 e2 : τ

rTLAMs

Π;Γ, X; pc1; u $ e : τ Π , c ě pc
u “ C(τ) Π , c ě u

Π;Γ; pc; c $ ΛXrpc1s. e : @Xrpc1s. τ

rTAPPs

Π;Γ; pc; c $ e : @Xrpc1s. τ
Π , pc Ď pc1 Π , c ě pc
Π;Γ; pc; c $ pe τ1q : τrX ÞÑ τ1s

τ1 is well-formed in Γ

rPAIRs

Π;Γ; pc; c $ e1 : τ1 Π;Γ; pc; c $ e2 : τ2
Π , c ě pc

Π;Γ; pc; c $ xe1, e2y
pτ1ˆτ2q : pτ1 ˆ τ2q

rUNPAIRs
Π;Γ; pc; c $ e : pτ1 ˆ τ2q Π , c ě pc

Π;Γ; pc; c $ proji e : τi

rINJs
Π;Γ; pc; c $ e : τi Π , c ě pc

Π;Γ; pc; c $ inj
pτ1`τ2q

i e : pτ1 ` τ2q

rCASEs

Π;Γ; pc; c $ e : pτ1 ` τ2q Π , pc Ď τ
Π , c ě pc Π , τi

a ě τa

Π;Γ, x :τ1; pc; c $ e1 : τ Π;Γ, x :τ2; pc; c $ e2 : τ

Π;Γ; pc; c $ caseτ e of inj
pτ1`τ2q

1 pxq.e1 | inj
pτ1`τ2q

2 pxq.e2 : τ

rUNITMs

Π;Γ; pc; c $ e : τ Π , pc Ď ℓ
Π , c ě pc

Π;Γ; pc; c $ ηℓ e : ℓ says τ
rSEALEDs

Π;Γ; pc; c $ v : τ Π , c ě pc
Π;Γ; pc; c $ pηℓ vq : ℓ says τ

Fig. 33. Typing rules for expressions (Full version) Part 1/2.
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Π;Γ; pc; c $ e : τ

rBINDMs

Π;Γ; pc; c $ e1 : ℓ says τ1 Π , ℓ \ pc Ď τ
Π;Γ, x :τ1; ℓ \ pc; c $ e : τ Π , c ě pc

Π;Γ; pc; c $ bind x “ e1 in e : τ

rRUNs

Π;Γ; pc1; c1 $ e : τ1 Π , pc Ď pc1

Π , c ě pc Π , c ě C(τ1)
τ “ pc1ia says τ1

Π;Γ; pc; c $ runτ e@c1 : τ
rRETs

Π;Γ; pc; c $ e : τ Π , c1 ě C(τ)
Π , c ě pc

Π;Γ; pc; c $ ret e@c1 : pcia says τ

rCOMPAREs

@i P t1, 2u.Π;Γ; pc; c $ ei : ℓi says τ
Π , c ▷ ℓi says τ Π , c ě pc

Π;Γ; pc; c $ comparepℓ1‘ℓ2q says τ e1 and e2 : pℓ1 ‘ ℓ2q says τ

rSELECTs

@i P t1, 2u.Π;Γ; pc; c $ ei : ℓi says τ
Π , c ě pc

Π;Γ; pc; c $ selectpℓ1aℓ2q says τ e1 or e2 : pℓ1 a ℓ2q says τ

rEXPECTs
Π , c ě pc

Π;Γ; pc; c $ expectτ : τ

rSPLITs

Π;Γ; pc; c $ e : τ Π , c ě pc
Π , pc Ď ℓ \ △(pci)

τ1 “ pLc ^ ℓ says τˆ Rc ^ ℓ says τq

Π;Γ; pc; c $ splitτ
1

ℓ e : pLc ^ ℓ says τˆ Rc ^ ℓ says τq

rCOMBINEs

Π;Γ; pc; c $ e : pLc ^ ℓ says τˆ Rc ^ ℓ says τq
Π , c ě pc Π;Γ, x :τ; ℓ \ pc; c $ e1 : ℓ1 says τ

Π , ℓ \ pc Ď ℓ1 says τ

Π;Γ; pc; c $ combineℓ
1 says τx “ e@pc in e1 : ℓ1 says τ

rSEALEDKs

Π;Γ; pc; c $ v : τ
Π , c ě pc K P tLc,Rcu

Π;Γ; pc; c $ pηk.K^ℓ vq : K ^ ℓ says τ

Fig. 34. Typing rules for expressions (Full version). Part 2/2

Case PAIR. Given

Π;Γ; pc; c $ xv1, v2y
pτ1ˆτ2q : pτ1 ˆ τ2q (3)
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C(τ1
pc

ÝÑ τ2) “ C(τ1) \ pc \ C(τ2)

C(@Xrpcs. τ) “ pc \ C(τ)

C(ℓ says τ) “ C(τ)

C(pτ1 ` τ2q) “ C(τ1) \ C(τ2)

C(pτ1 ˆ τ2q) “ C(τ1) \ C(τ2)

C(unit) “ K

Fig. 35. Clearance function

C punitq “ unit

C ppτ1 ` τ2qq “ pC pτ1q ` C pτ2qq

C ppτ1 ˆ τ2qq “ pC pτ1q ˆ C pτ2qq

C pτ1
pc

ÝÑ τ2q “ C pτ1q
pc

ÝÑ C pτ2q

C pΛXrpcs. τq “ ΛXrpcs.C pτq

C ppℓ1 a ℓ2q says τq “ pℓ1 _ ℓ2q says C pτq

C ppℓ1 ‘ ℓ2q says τq “ pℓ1 ^ ℓ2q says C pτq

(otherwise) C pℓ says τq “ ℓ says C pτq

Fig. 36. C function on types.

rR-UNITs Π , p ▷ pq rR-TFUNs
Π , p ▷ τ

Π , p ▷ @Xrpcs. τ
rR-SUMs

Π , p ▷ τ1
Π , p ▷ τ2

Π , p ▷ pτ1 ` τ2q

rR-PRODs

Π , p ▷ τ1
Π , p ▷ τ2

Π , p ▷ pτ1 ˆ τ2q
rR-LBLs

Π , pc ě ℓc

Π , p ▷ τ

Π , p ▷ ℓ says τ
rR-FUNs

Π , p ▷ τ1
Π , p ▷ τ2

Π , p ▷ τ1
pc

ÝÑ τ2

Fig. 37. Reads judgments.

Inverting (3) we get

Π;Γ; pc; c $ v1 : τ1 (4)

and

Π;Γ; pc; c $ v2 : τ2 (5)
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$ ℓ Ď τ

rP-UNITs Π $ ℓ Ď unit rP-PAIRs
Π $ ℓ Ď τ1 Π $ ℓ Ď τ2

Π $ ℓ Ď pτ1 ˆ τ2q

rP-FUNs
Π $ ℓ Ď τ2 Π $ ℓ Ď pc1

Π $ ℓ Ď τ1
pc1

ÝÑ τ2

rP-TFUNs
Π $ ℓ Ď τ Π $ ℓ Ď pc1

Π $ ℓ Ď @Xrpc1s. τ

rP-LBLs
Π , ℓ Ď ℓ1

Π $ ℓ Ď ℓ1 says τ

Fig. 38. Type protection levels

By applying induction hypothesis on (4) and (5), we get

Π;Γ; pc1; c1 $ v1 : τ1 (6)

and

Π;Γ; pc1; c1 $ v2 : τ2 (7)

From rule PAIR, (6), (7), and (1) we get Π;Γ; pc1; c1 $ xv1, v2y
pτ1ˆτ2q : pτ1 ˆ τ2q

Case INJ. Similar to case PAIR.

Case SEALED. Given

Π;Γ; pc; c $ pηℓ vq : ℓ says τ (8)

Inverting (8) we get

Π;Γ; pc; c $ v : τ (9)

By applying induction hypothesis on (9) we get

Π;Γ; pc1; c1 $ v : τ (10)

Thus from rule [SEAL], (1) and (10) we get Π;Γ; pc1; c1 $ pηℓ vq : ℓ says τ

Case LAM. We have

Π;Γ; pc; c $ λpx :τ1qrpc2s. e : τ1
pc2

ÝÝÑ τ2 (11)
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Π , p ě q

rBOTsΠ , p ě K rTOPsΠ , J ě p rREFLsΠ , p ě p rTRANSs
Π , pěq Π ,qěr

Π , pěr

rPROJs
Π , p ě q
Π , pπ ě qπ

rPROJRs Π , p ě pπ

rPROJIDEMPs Π , ppπqπ ě pπ rPROJBASISs
π ‰ π1

Π , K ě ppπqπ
1

rPROJDISTCONJs Π , pπ ^ qπ ě pp ^ qqπ rPROJDISTDISJs Π , pp _ qqπ ě pπ _ qπ

rCONJLs

Π , pk ě p
k P t1, 2u

Π , p1 ^ p2 ě p
rCONJRs

Π , p ě p1
Π , p ě p2

Π , p ě p1 ^ p2
rCONJBASISsΠ , pc ^ pi ^ pa ě p

rDISJLs

Π , p1 ě p
Π , p2 ě p

Π , p1 _ p2 ě p
rDISJRs

Π , p ě pk

k P t1, 2u

Π , p ě p1 _ p2
rDISJBASISs

π ‰ π1

Π , K ě pπ _ qπ
1

rCONJDISTDISJLs Π , pp ^ qq _ pp ^ rq ě p ^ pq _ rq

rCONJDISTDISJRs Π , p ^ pq _ rq ě pp ^ qq _ pp ^ rq

rDISJDISTCONJLs Π , pp _ qq ^ pp _ rq ě p _ pq ^ rq

rDISJDISTCONJRs Π , p _ pq ^ rq ě pp _ qq ^ pp _ rq

Fig. 39. Static principal lattice rules, adapted from FLAC [8].

Inverting (11) we get

Π;Γ, x :τ1; pc2; u $ e : τ2 (12)
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rPANDLs

Π , pi ě p
k P t1, 2u

Π , p1 ‘ p2 ě p
rPANDRs

Π , p ě p1
Π , p ě p2

Π , p ě p1 ‘ p2
rANDPANDs Π , p ^ q ě p ‘ q

rPANDPORs Π , p ‘ q ě p a q rPROJPANDLs Π , pπ ‘ qπ ě pp ‘ qqπ

rPROJPANDRs Π , pp ‘ qqπ ě pπ ‘ qπ rPROJPORLs Π , pπ a qπ ě pp a qqπ

rPROJPORRs Π , pp a qqπ ě pπ a qπ rPORORs Π , p a q ě p _ q

rANDDISTPORRs Π , p ^ pq a rq ě pp ^ qq a pp ^ rq

rPORDISTANDRs Π , p a pq ^ rq ě pp a qq ^ pp a rq

rANDDISTPORLs Π , pp ^ qq a pp ^ rq ě p ^ pq a rq

rPORDISTANDLs Π , pp a qq ^ pp a rq ě p a pq ^ rq

rORDISTPORRs Π , p _ pq a rq ě pp _ qq a pp _ rq

rORDISTPORLs Π , pp _ qq a pp _ rq ě p _ pq a rq

rPORDISTORRs Π , p a pq _ rq ě pp a qq _ pp a rq

rPORDISTORLs Π , pp a qq _ pp a rq ě p a pq _ rq

rANDDISTPANDRs Π , p ^ pq ‘ rq ě pp ^ qq ‘ pp ^ rq

rPANDDISTANDRs Π , p ‘ pq ^ rq ě pp ‘ qq ^ pp ‘ rq

rANDDISTPANDLs Π , pp ^ qq ‘ pp ^ rq ě p ^ pq ‘ rq

rPANDDISTANDLs Π , pp ‘ qq ^ pp ‘ rq ě p ‘ pq ^ rq

rORDISTPANDRs Π , p _ pq ‘ rq ě pp _ qq ‘ pp _ rq

rORDISTPANDLs Π , pp _ qq ‘ pp _ rq ě p _ pq ‘ rq

rPANDDISTORRs Π , p ‘ pq _ rq ě pp ‘ qq _ pp ‘ rq

rPANDDISTORLs Π , pp ‘ qq _ pp ‘ rq ě p ‘ pq _ rq

Fig. 40. FLAQR Partial conjunction and disjunction acts-for rules.
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Syntax

v ::“ . . .
ˇ

ˇ pv | vq

f ::“ . . .
ˇ

ˇ p f | f q

e ::“ . . .
ˇ

ˇ pe | eq

temptyuk “ empty

txe, cy :: suk “ xteuk, cy :: tsuk

txe, cy & suk “ xteuk, cy & tsuk

tErexpectτsuk “ tEukrexpectτs

tErpe1 | e2qsuk “ tEukreks

tsplitℓ euk “ splitℓ teuk

tcombine x “ e@pc in e1uk “ combine k “ teuk@pc in te1uk

tcomparepℓ1‘ℓ2q says τ f1 and f2uk “ comparepℓ1‘ℓ2q says τ t f1uk and t f2uk

tselectpℓ1aℓ2q says τ f1 or f2uk “ selectpℓ1aℓ2q says τ t f1uk or t f2uk

tret e@cuk “ ret teuk@c

trunτ e@cuk “ runτ teuk@c

tproji euk “ proji teuk

tcase e1 of inj1pxq.e2 | inj2pxq.e3uk “ case te1uk of inj1pxq.te2uk | inj2pxq.te3uk

tpe | ‚qu2 “ ‚

Fig. 41. Projection for bracketed expressions.

Π , c ě pc (13)

u “ C(τ1
pc2

ÝÝÑ τ2) (14)

Π , c ě C(τ1
pc2

ÝÝÑ τ2) (15)

Applying IH on 12

Π;Γ, x :τ1; pc2; u $ e : τ2 (16)

given in lemma statement

Π , c1 ě pc1 (17)

Π , c1 ě C(τ1
pc2

ÝÝÑ τ2) (18)
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rBRACKETs

Π , pHπ \ pcq Ď pc1 e1 “ v1 ðñ e2 ‰ v2
Π;Γ; pc1; c $ e1 : τ Π;Γ; pc1; c $ e2 : τ

Π $ Hπ Ď C (τ) Π , c ě pc
Π;Γ; pc; c $ pe1 | e2q : τ

rBRACKET-VALUESs

Π;Γ; pc; c $ v1 : τ Π;Γ; pc; c $ v2 : τ
Π $ Hπ Ď C (τ) Π , c ě pc

Π;Γ; pc; c $ pv1 | v2q : τ

rBULLRs
Π;Γ; pc; c $ e : τ

Π;Γ; pc; c $ pe | ‚q : τ
rBULLLs

Π;Γ; pc; c $ e : τ

Π;Γ; pc; c $ p‚ | eq : τ

rBRACKET-FAIL-Ls
Π;Γ; pc; c $ e : τ

Π;Γ; pc; c $ pe | failτq : τ

rBRACKET-FAIL-Rs
Π;Γ; pc; c $ e : τ

Π;Γ; pc; c $ pfailτ | eq : τ

rBRACKET-FAIL-As
Π;Γ; pc; c $ ei : τ ei ­“ failτ π “ a

Π;Γ; pc; c $ pe1 | e2q : τ

rBRACKET-SAMEs
Π;Γ; pc; c $ v : τ

Π;Γ; pc; c $ pv | vq : τ

(a) Typing rules for bracketed expressions.

rBRACKET-STACKs

Π;Γ; pc1; c $ e : τ1 Π , pc Ď pc1

@i P t1, 2u.Π;Γ; pc $ si : rτ1sτ

Π;Γ; pc $ xe, cy & ps1 | s2q : τ

rBRACKET-HEADs

Π;Γ; pc1; c $ pe1 | e2q : τ1 Π , pc Ď pc1

Π;Γ; pc $ s : rτ1sτ

Π;Γ; pc $ xpe1 | e2q, cy & s : τ

(b) Typing rules for bracketed configuration stack.

Fig. 42. Bracketed typing rules.

from 17, 18, 16 and LAM rule we get

Π;Γ; pc1; c1 $ λpx :τ1qrpc2s. e : τ1
pc2

ÝÝÑ τ2 (19)

(20)

(21)
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rB-STEPs
ei ÝÑ e1

i e1
j “ e j ti, ju “ t1, 2u

pe1 | e2q ÝÑ pe1
1 | e1

2q
rB-APPs pv1 | v2q v ÝÑ pv1 tvu1 | v2 tvu2q

rB-TAPPs pv | v1q τ ÝÑ pv τ | v1 τq

rB-BINDMs bind x “ pv | v1q in e ÝÑ pbind x “ v in teu1 | bind x “ v1 in teu2q

rB-COMPARECOMMONs
tcompareℓ1‘ℓ2 says τ p f11 | f12q and p f21 | f22qui ÝÑ fi @i P t1, 2u

compareℓ1‘ℓ2 says τ p f11 | f12q and p f21 | f22q ÝÑ p f1 | f2q

rB-COMPARECOMMONRIGHTs
tcompareℓ1‘ℓ2 says τ p f11 | f12q and f ui ÝÑ fi @i P t1, 2u

compareℓ1‘ℓ2 says τ p f11 | f12q and f ÝÑ p f1 | f2q

rB-COMPARECOMMONLEFTs
tcompareℓ1‘ℓ2 says τ f and p f21 | f22qui ÝÑ fi @i P t1, 2u

compareℓ1‘ℓ2 says τ f and p f21 | f22q ÝÑ p f1 | f2q

rB-SELECTCOMMONs
tselectℓ1aℓ2 says τ p f11 | f12q or p f21 | f22qui ÝÑ fi @i P t1, 2u

selectℓ1aℓ2 says τ p f11 | f12q or p f21 | f22q ÝÑ p f1 | f2q

rB-SELECTCOMMONLEFTs
tselectℓ1aℓ2 says τ p f11 | f12q or f ui ÝÑ fi @i P t1, 2u

selectℓ1aℓ2 says τ p f11 | f12q or f ÝÑ p f1 | f2q

rB-SELECTCOMMONRIGHTs
tselectℓ1aℓ2 says τ f or p f21 | f22qui ÝÑ fi @i P t1, 2u

selectℓ1aℓ2 says τ f or p f21 | f22q ÝÑ p f1 | f2q

rB-FAIL1s ηℓ pv | failτq ÝÑ ppηℓ vq | failℓ says τq rB-FAIL2s ηℓ pfailτ | vq ÝÑ pfailℓ says τ | pηℓ vqq

rB-FAILs ηℓ pfailτ | failτq ÝÑ failτ

rB-RUNLEFTs xpErrunτ e1@c1s | e2q, cy & s ùñ xpret e1@c | ‚q, c1y & xpErexpectτs | e2q, cy :: s

rB-RUNRIGHTs xpe1 | Errunτ e2@c1sq, cy & s ùñ xp‚ | ret e2@cq, c1y & xpe1 | Erexpectτsq, cy :: s

rB-RETLEFTs

f 1 “

#

pηℓ vq if f “ v
failℓ says τ if f “ failτ

xpret f@c | ‚q, c1y & xpErexpectℓ says τs | e2q, cy :: s ùñ xpEr f 1s | e2q, cy & s

rB-RETRIGHTs

f 1 “

#

pηℓ vq if f “ v
failℓ says τ if f “ failτ

xp‚ | ret f@cq, c1y & xpe2 | Erexpectℓ says τsq, cy :: s ùñ xpe2 | Er f 1sq, cy & s

rB-RETVs

f 1
i “

#

pηℓ vq if fi “ v
failℓ says τ if fi “ failτ

xret p f1 | f2q@c, c1y & xErexpectℓ says τs, cy :: s ùñ xErp f 1
1 | f 1

2qs, cy & s

Fig. 43. Selected bracketed Evaluation Rules.
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Case TLAM. Similar to case LAM.

Case BRACKET. Given,

Π;Γ; pc; c $ pv1 | v2q : τ (22)

inverting 22 we get

Π $ Hπ Ď C (τ) (23)

Π;Γ; pc; c $ v1 : τ (24)

Π;Γ; pc; c $ v2 : τ (25)

IH on 24 and 25

Π;Γ; pc1; c1 $ v1 : τ (26)

Π;Γ; pc1; c1 $ v2 : τ (27)

and given in lemma statement,

Π , c1 ě pc1 (28)

from 26,27, 28 and 23 we get

Π;Γ; pc1; c1 $ pv1 | v2q : τ (29)

l

Lemma 12 (pc reduction). Let Π;Γ; pc; c $ e : τ. For all pc, pc1, such that Π , pc1 Ď pc and
Π , c ě pc1 then Π;Γ; pc1; c $ e : τ holds.

Proof. Proof is by induction on the derivation of the typing judgment. Given that,

Π , pc1 Ď pc (30)

Π , c ě pc1 (31)

Case RUN. From the premises of RUN typing rule
Π;Γ; pc; c $ runτ e@c1 : τ
we get

Π;Γ; pc2; c1 $ e : τ1 (32)

Π , pc Ď pc2 (33)

Π , c ě pc (34)

Π , c ě C(τ1) (35)
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where τ1 “ pc2ia says τ1.

From 36 and 33 we have

Π , pc1 Ď pc2 (36)

From 32, 31 35, 36 we get

(37)

Π;Γ; pc1; c $ runτ e@c1 : τ
Case RET. From the premises of RET typing rule
Π;Γ; pc; c $ ret e@c1 : pcia says τ
we get

Π;Γ; pc; c $ e : τ (38)

Π , c1 ě pC(τ)q (39)

Π , c ě pc (40)

Applying Induction hypothesis to 38 we get

Π;Γ; pc1; c $ e : τ (41)

From 41, 39 and 31 we get

(42)

Π;Γ; pc1; c $ ret e@c1 : pcia says τ
Case COMPARE: Straightforward using IH and 31.
Case SELECT: Straightforward using IH and 31.
Case BRACKET: From the premises Bracket typing rule
Π;Γ; pc; c $ pe1 | e2q : τ,
we get,

Π , pHπ \ pcq Ď pc2 (43)

e1 “ v1 ðñ e2 ‰ v2 (44)

Π;Γ; pc2; c $ e1 : τ (45)

Π;Γ; pc2; c $ e2 : τ (46)

Π $ Hπ Ď C (τ) (47)

Π , c ě pc (48)
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From and 30 we can write

Π , pHπ \ pc1q Ď pHπ \ pcq (49)

From 49 and 43 we get

Π , pHπ \ pc1q Ď pc2 (50)

Thus from 50,45,46,47 and 31 we can write

(51)

Π;Γ; pc1; c $ pe1 | e2q : τ
Case BRACKET-VALUES: Straightforward using IH and 31.
Case BRACKET-* : Straightforward using IH and 31.
Other Cases : Straightforward from 31 and pc reduction lemma in [8]. l

Lemma 13 (Clearance). If Π;Γ; pc; c $ e : τ then Π , c ě pc

Proof. Proof is straightforward by induction on the typing judgments. l

Lemma 14 (Variable substitution). If Π;Γ, x : τ1; pc; c $ e : τ and Π;Γ; pc; c $ v : τ1, then
Π;Γ; pc; c $ erx ÞÑ vs : τ.

Proof. Proof is by induction on the typing derivation of e.
Case LAM Given,

Π;Γ; pc; c $ v : τ1 (52)

Π;Γ, x :τ1; pc; c $ λpy :τ1qrpc1s. e : τ1
pc1

ÝÑ τ2 (53)

inverting 53

Π;Γ, x :τ1, y :τ1; pc1; c $ e : τ2 (54)

Π , c ě pc (55)

Π , c ě C(τ1
pc1

ÝÑ τ2) (56)

Applying lemma values host pc and Weakening lemma in 52

Π;Γ, y :τ1; pc1; c $ v : τ1 (57)

IH, 54, 57

Π;Γ, y :τ1; pc1; c $ erx ÞÑ vs : τ2 (58)
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from 58, 55, 56 and LAM rule we get

Π;Γ; pc; c $ λpy :τ1qrpc1s. erx ÞÑ vs : τ2 (59)

(60)

Case BRACKET Given, Π;Γ, x :τ1; pc; c $ pe1 | e2q : τWe have to prove t

Π;Γ, x :τ1; pc; c $ pe1rx ÞÑ tvu1s | e2rx ÞÑ tvu2sq : τ

We first describe the case BRACKET. The proof for the case BRACKET-VALUES is analogous. From
BRACKET, we have

Π;Γ, x :τ1; pc1; c $ e1 : τ (61)

Π;Γ, x :τ1; pc1; c $ e2 : τ (62)

Π , pHπ \ pcq Ď pc1 (63)

Π $ Hπ Ď C (τ) (64)

Applying clearance (Lemma 13), we have Π , c ě pc1. Depending on whether v is a bracket value, we
have two cases

Case v “ pv1 | v2q:
From BRACKET-VALUES, we have

Π;Γ, x :τ1; pc; c $ v1 : τ1 (65)

Π;Γ, x :τ1; pc; c $ v2 : τ1 (66)

Π $ Hπ Ď C (τ1) (67)

Since values can be typed under any pc which acts for the host under which value is typed
(Lemma 11), we have Π;Γ, x :τ1; pc1; c $ vi : τ

1 for i “ t1, 2u. Applying induction to the premises
(61) and (62), we get

Π;Γ, x :τ1; pc1; c $ e1rx ÞÑ v1s : τ (68)

Π;Γ, x :τ1; pc1; c $ e2rx ÞÑ v2s : τ (69)

and thus from [Bracket] we have

Π;Γ, x :τ1; pc; c $ pe1rx ÞÑ v1s | e2rx ÞÑ v2sq : τ

Case v ‰ pv1 | v2q: Since values can be typed under any pc which acts for the place under which value
is typed (Lemma 11), we have Π;Γ, x :τ1; pc1; c $ v : τ1. Applying induction to the premises (61)
and (62), we get

Π;Γ, x :τ1; pc1; c $ e1rx ÞÑ vs : τ (70)

Π;Γ, x :τ1; pc1; c $ e2rx ÞÑ vs : τ (71)
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and thus from [Bracket] rule

Π;Γ, x :τ1; pc; c $ pe1rx ÞÑ vs | e2rx ÞÑ vsq : τ

Case COMPARE: Straightforward using IH.
Case SELECT: Straightforward using IH.
Case RUN: Straightforward using IH and values pc lemma. (Same as LAM case.)
Case RET: Straightforward using IH. l

Lemma 15 (Type Substitution). Let τ1 be well-formed in Γ, X,Γ1. If Π;Γ, X,Γ1; pc; c $ e : τ then
Π;Γ,Γ1rX ÞÑ τ1s; pc; c $ erX ÞÑ τ1s : τrX ÞÑ τ1s.

Proof. Proof is by the induction on the typing derivation of Π;Γ, X,Γ1; pc; c $ e : τ. l

Lemma 16 (Soundness). If e ÝÑ e1 then teuk ÝÑ˚ te1uk for k P t1, 2u.

Proof. By induction on the evaluation of e.
Case B-SPLIT: From rule B-SPLIT splitℓ p f1 | f2q ÝÑ f , then for k P t1, 2u tsplitℓ p f1 | f2quk ÝÑ

t f uk

Case B-COMBINE: From rule B-COMBINE combine x “ p f1 | f2q@pc in e ÝÑ f , then for k P t1, 2u

tcombine x “ p f1 | f2q@pc in euk ÝÑ t f uk
Case B-COMPARECOMMON: From rule B-COMPARECOMMON we can say if
comparepℓ1‘ℓ2q says τ p f11 | f12q and p f21 | f22q ÝÑ f
then for k P t1, 2u

tcomparepℓ1‘ℓ2q says τ p f11 | f12q and p f21 | f22quk
ÝÑ t f uk

Case B-Compare*: Similar to the case above.
Case B-Select*: Similar to the case above.
Case B-STEP: teui ÝÑ te1ui and teu j “ te1u j .
Other Cases All other cases in Figure 43 only expand brackets So, teuk “ te1uk for k P t1, 2u. l

Lemma 17 (Stuck expressions). If e gets stuck then teui is stuck for some i P t1, 2u.

Proof. By induction on the structure of e.

Case: splitℓ e: E-SPLIT can not be applied, i.e. e is not of the form v.That means E-SPLIT can not
applied to tsplitℓ eui. From I.H. teui is stuck.

Case: combine x “ e1@pc in e2: E-COMBINE can not be applied, i.e. e is not of the form xpηk.L^ℓ vq, pηk.R^ℓ vqy.That
means E-COMBINE can not be applied to tcombine x “ e1@pc in e2uk. From I.H. te1ui is stuck.

Case: compareτ e1 and e2: E-COMPARE can not be applied, i.e. e1 and/or e2 are/is not of the form
pηℓ wq.That means E-COMPARE can not applied to tcompareτ e1 and e2ui. From I.H. either te1ui
is stuck or te2ui is stuck for i P t1, 2u.
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[E-COMPAREFAIL*] can not be applied, i.e. e1 and/or e2 are/is not of the form pηℓ wq or
failτ

1

.That means [E-COMPARE*] can not applied to tcompareτ e1 and e2ui. From I.H. either
te1ui is stuck or te2ui is stuck for i P t1, 2u.

[B-COMPARE*] can not be applied, i.e. [E-COMPARE*] not be applied to tcompareτ e1 and e2ui
for i P t1, 2u. This means tcompareτ e1 and e2ui is stuck for i P t1, 2u. From I.H. we can say either
te1ui is stuck or te2ui is stuck for i P t1, 2u.

Case: selectτ e1 or e2: Same as compare.
Case: ret e@c: From E-RETSTEP rule we can say if ret e@c is stuck then e is stuck. From I.H. we can

say e stuck only when teui is stuck for i P t1, 2u.
Case: ηℓ e: E-SEALED step can not be taken. So E-SEALED step can not be taken for tηℓ eui. Which

means teui is stuck for i P t1, 2u.
BFAIL2 and B-FAIL1 steps can not be taken. Which means e is not of the forms pv | failτq or
pfailτ | vq. Which again, from I.H., implies either teu1 is stuck or teu2 is stuck.

Case proj j e: Similar to the above case.
Case inj j e: Similar to the above case.
Case xe, ey: Similar to the above case.
Case case e of inj1pxq.e1 | inj2pxq.e2: Since B-CASE , and E-CASE are not applicable, it follows that

e is not of the form pv | v1q, or inj j v. It follows that tcase e of inj1pxq.e1 | inj2pxq.e2ui is also
stuck.

Case bind x “ v in e1: Similar to the above case.

l

Lemma 18 (Completeness). If teu1 ÝÑ˚ v1 and teu2 ÝÑ˚ v2, then there exists some v such that
e ÝÑ˚ v.

Proof. The rules in Figure 43 move brackets out of subterms, and therefore can only be applied a finite
number of times. Therefore, by Lemma 16, if e diverges, either teu1 or teu2 diverge; this contradicts our
assumption.

Furthermore, by Lemma 17, if the evaluation of e gets stuck, either teu1 or teu2 gets stuck. Therefore,
since we assumed teui ÝÑ˚ vi, then e must terminate. Thus, there exists some v such that e ÝÑ˚ v. l

Lemma 19 (Soundness for global bracketed semantics). If xe, cy & t ùñ xe1, c1y & t1 then
txe, cy & tuk ùñ˚ txe1, c1y & t1uk for k P t1, 2u.

Proof. If c “ c1 and t “ t1 then the lemma statement holds following lemma 16. The cases where the
stack and the head of the configuration changes are the interesting ones.

Case B-RETV: Straightforward from [B-RetV] evaluation rule. The premise of the rule says @k P

t1, 2u, the kth projection of the expression should take a step.
Case B-RET* : Same as the above case.
Case B-RUNLEFT: The lemma trivially holds for k “ 1.
Case B-RUNRIGHT: The lemma trivially holds for k “ 2.

l
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Lemma 20 (Dist Stuck expressions). If xe, cy & t gets stuck then txe, cy & tuk is stuck for some k P t1, 2u.

Proof. Induction over structure of e.

Case xret e@c1, cy & xErexpectτs, c1y :: t: This means [E-RetV] and [B-RET*] steps can not be taken.
So, [E-RetV] and [B-RetV] steps can not be taken for
txret e@c1, cy & xErexpectτs, c1y :: tui. This means e is not of the form v or p f1 | f2q. From I.H.
it is clear that tvui or fi is stuck for i P t1, 2u.

Case xErrunτ e@c1s, cy & t This can always take a E-RUN step and then can get stuck. In that case the
argument is same as case ret e@c as in lemma 17.

Case xpErrunτ e@c1s | e1q, cy & t Can not get stuck as Errunτ e@c1s run can always take a step.
Case xpe1 | Errunτ e@c1sq, cy & t Can not get stuck as Errunτ e@c1s run can always take a step.
Other Cases: In all other cases the active configuration and the stack does not change. So lemma state-

ment holds following lemma 17.

l

Lemma 21 (Completeness). If txe, cy & tu1 ÝÑ˚ xv1, cy & empty and txe, cy & tu2 ÝÑ˚ xv2, cy & empty,
then there exists some v such that xe, cy & t ÝÑ˚ xv, cy & empty.

Proof. Similar argument as 18 l

Lemma 22 (Label Flowsto SelCmp). If Π , ℓ Ď ℓ1 and Π , ℓ Ď ℓ2 then Π , ℓ Ď pℓ1 a ℓ2q and
Π , ℓ Ď pℓ1 ‘ ℓ2q

Proof. Given,

Π , ℓ Ď ℓ1 (72)

Π , ℓ Ď ℓ2 (73)

which implies

Π , ℓi ě ℓi1 (74)

Π , ℓi ě ℓi2 (75)

Π , ℓa ě ℓa1 (76)

Π , ℓa ě ℓa2 (77)

Π , ℓc1 ě ℓc (78)

Π , ℓc2 ě ℓc (79)

74, 75 and R-CONJR implies

Π , ℓi ě ℓi1 ^ ℓi2 (80)



P. Mondal et al. / Flow-Limited Authorization for consensus, replication, and secret sharing 53

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

from 74, 75 and PAANDR

Π , ℓi ě ℓi1 ‘ ℓi2 (81)

78 and CONJL implies

Π , ℓc1 ^ ℓc2 ě ℓc (82)

76 and DISJR implies

Π , ℓa ě ℓa1 _ ℓa2 (83)

80, 82 and 83 together proves Π , ℓ Ď pℓ1 ‘ ℓ2q

Similarly we can prove Π , ℓ Ď pℓ1 a ℓ2q

l

Lemma 23 (Projection Preserves Types). If Γ; pc $ e : τ, then Γ; pc $ teui : τ for i “ t1, 2u.

Proof. Proof is by induction on the typing derivation of Γ; pc $ e : τ. The interesting case is e “

pe1 | e2q. By BRACKET, we have Π;Γ; pc1 $ ei : τ for some pc1 such that Π , pHπ \ pcπq Ď pc1π.
Therefore, by Lemma 12(pc reduction), we have Π;Γ; pc $ ei : τ. l

Lemma 24 (Subject Reduction(within a host)). Let Π;Γ; pc; c $ e : τ and Π , c ě C(τ). If e ÝÑ e1

then Π;Γ; pc; c $ e1 : τ.

Proof. Case E-APP Given e “ pλpx : τ1qrpc1s. eq v and e1 “ erx ÞÑ vs. Also Π;Γ; pc; c $ λpx :
τ1qrpc1s. e v : τ2. From the premises of APP, we have:

Π;Γ; pc; c $ λpx :τ1qrpc1s. e : τ1
pc1

ÝÑ τ2 (84)

Π;Γ; pc; c $ v : τ1 (85)

Π , pc Ď pc1 (86)

From (84), we further have that Π;Γ, x : τ1; pc1; c $ e : τ2. Since (86) holds, we can now apply
PC reduction to get Π;Γ, x : τ1; pc $ e : τ2. Applying substitution preservation using (85), we have
Π;Γ; pc; c $ erx ÞÑ vs : τ2.

Case E-BINDM. Given e “ bind x “ pηℓ vq in e1 and e1 “ e1rx ÞÑ vs and also

Π;Γ; pc; c $ bind x “ pηℓ vq in e1 : τ (87)

From the premises of (87) we have

Π;Γ; pc; c $ pηℓ vq : ℓ says τ1 (88)

Π;Γ; pc; c $ v : τ1 (89)
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Π;Γ, x : τ1; pc \ ℓ; c $ e1 : τ (90)

Π $ pc \ ℓ Ď τ (91)

Π , c ě pc (92)

(Since Π , c ě pc) applying pc reduction lemma in (90) we get Π;Γ, x : τ1; pc $ e1 : τ. Invoking
variable substitution lemma, we thus have Π;Γ; pc; c $ e1rx ÞÑ vs : τ.

Case E-RETSTEP

ret e1@c1 ÝÑ ret e1
1@c1 (93)

Given, e “ ret e1@c1 and e1 “ ret e1
1@c1 and also

Π;Γ; pc; c $ ret e1@c1 : τ (94)

From the premises of (94) we get

Π;Γ; pc; c $ e1 : τ1 (95)

where τ “ pcia says τ1

Π , c ě pc (96)

Π , c1 ě C(τ1) (97)

and applying induction hypothesis on the premise of (93) we get

Π;Γ; pc; c $ e1
1 : τ

1 (98)

From (98), (96) and (97) we have Π;Γ; pc; c $ ret e1
1@c1 : τ

E-COMPARE Given, e “ pcompareℓ1‘ℓ2 says τ pηℓ1 vq and pηℓ2 vqq and e1 “ pηℓ1‘ℓ2
vq and also,

Π;Γ; pc; c $ comparepℓ1‘ℓ2q says τ pηℓ1 vq and pηℓ2 vq : pℓ1 ‘ ℓ2q says τ (99)

Inverting (99)

Π;Γ; pc; c $ pηℓ1 vq : ℓ1 says τ (100)

Π;Γ; pc; c $ pηℓ2 vq : ℓ2 says τ (101)

cc ▷ ℓ1 says τ (102)

cc ▷ ℓ2 says τ (103)

Π , c ě pc (104)

(105)
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Inverting (100) or (101) further, we get

Π;Γ; pc; c $ v : τ (106)

From rule SEALED, (106) and (104) we can say Π;Γ; pc; c $ pηℓ1‘ℓ2
vq : pℓ1 ‘ ℓ2q says τ

Case E-COMPAREFAIL*. Trivial, as failτ typechecks with any protected type, and based on our type-
system τ is always a protected type.

Case E-SELECT. Given, e “ selectℓ says τ pηℓ1 v1q or pηℓ2 v2q and e1 “ pηℓ v1q where ℓ “ ℓ1 a ℓ2.
The following is also given.

Π;Γ; pc; c $ selectℓ says τ pηℓ1 v1q or pηℓ2 v2q : ℓ says τ (107)

Inverting (107) we get the following,

Π;Γ; pc; c $ pηℓ1 v1q : ℓ1 says τ (108)

Π;Γ; pc; c $ pηℓ2 v2q : ℓ2 says τ (109)

Π , c ě pc (110)

(111)

Further inverting (108) we get,

Π;Γ; pc; c $ v1 : τ (112)

Thus from rule SEALED, (112) and (115) we can argue, Π;Γ; pc; c $ pηℓ v1q : ℓ says τ

Case E-SELECTL,E-SELECTR . Similar to above. The only diffrence is we need to invert both (108)
and (109) and argue both Π;Γ; pc; c $ pηℓ v1q : τ and Π;Γ; pc; c $ pηℓ v2q : τ holds.

Case E-SELECTFAIL. Trivial, as failτ typechecks for any protected type, and based on our type-
system τ is always a protected type.

Case B-SELECTCOMMON. This case has a number of sub-cases based on whether fi j is a value or a
fail term. We will show few cases. Proof of the rest of the combinations will be similar.
Given, e “ select ppηℓ1 v1q | pηℓ1 v1qq or ppηℓ2 v1

1q | pηℓ2 v1
2qq

and e1 “ ppηpℓ1aℓ2q v1q | pηpℓ1aℓ2q v2qq

Π;Γ; pc; c $ e : pℓ1 a ℓ2q says τ
Inverting the above we get,

Π;Γ; pc; c $ ppηℓ1 v1q | pηℓ1 v2qq : ℓ1 says τ (113)
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Π;Γ; pc; c $ ppηℓ2 v1
1q | pηℓ2 v1

2qq : ℓ2 says τ (114)

Π , c ě pc (115)

inverting 113 and 114 we get

Π $ Hπ Ď C (ℓ1 says τ) (116)

Π $ Hπ Ď C (ℓ2 says τ) (117)

Π , pHπ \ pcq Ď pc1 (118)

Π;Γ; pc1; c $ pηℓ1 v1q : ℓ1 says τ (119)

Π;Γ; pc1; c $ pηℓ1 v2q : ℓ1 says τ (120)

Π;Γ; pc1; c $ pηℓ2 v1
1q : ℓ2 says τ (121)

Π;Γ; pc1; c $ pηℓ2 v1
2q : ℓ2 says τ (122)

From 116 and 117 and lemma 22 we get

Π $ Hπ Ď C (pℓ1 a ℓ2q says τ) (123)

applying UNITM in 120 120, 121 , 122 we get:

Π;Γ; pc1; c $ v1 : τ (124)

Π;Γ; pc1; c $ v2 : τ (125)

applying pc-reduction lemma , SEALED in 124 and 125 we get

Π;Γ; pc1; c $ pηpℓ1aℓ2q v1q : pℓ1 a ℓ2q says τ (126)

Π;Γ; pc1; c $ pηpℓ1aℓ2q v2q : pℓ1 a ℓ2q says τ (127)

from 126, 127 , 123 and BRACKET-VALUES we get Π;Γ; pc; c $ ppηℓ1aℓ2
v1q | pηpℓ1aℓ2q v2qq :

pℓ1 a ℓ2q says τ Let us do another case, where
e “ select pfailℓ1 says τ | pηℓ1 v1qq or ppηℓ2 vq | failℓ2 says τq
and
e1 “ ppηℓ1aℓ2

vq | pηℓ1aℓ2
v1qq

Similar proof as above by inverting using BRACKET rule on
pfailℓ1 says τ | pηℓ1 v1qq and ppηℓ2 vq | failℓ2 says τq

Case B-SELECTCOMMONLEFT.
e “ select pfailℓ1 says τ | pηℓ1 vqq or failℓ2 says τ

and
e1 “ pfailℓ1aℓ2 says τ | pηℓ1aℓ2

vqq

Proof is straightforward using BRACKET to invert pfailℓ1 says τ | pηℓ1 vqq and then using BRACKET-
FAIL-L rule to prove the conclusion.
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Let us prove another case where
e “ select ppηℓ1 v1q | pηℓ1 v2qq or pηℓ2 v3q

and
e1 “ ppηℓ1aℓ2

v1q | pηℓ1aℓ2
v2qq

and π “ a
Proof is straightforward using BRACKET-VALUES to invert
ppηℓ1 v1q | pηℓ1 v2qq and then using BRACKET-FAIL-A rule to prove the conclusion.

Case B-COMPARECOMMON:
Similar to B-SELECTCOMMON.

Case B-COMPARECOMMONLEFT
Similar to B-SELECTCOMMONLEFT.

Case B-FAIL1 and B-FAIL2
Straightforward using BRACKET-FAIL-L BRACKET-FAIL-R rules.

Case B-STEP Straightforward using Induction Hypothesis.

Case B-APP: Given e “ pv1 | v2q v1 and e1 “ pv1 tv1u1 | v2 tvu2q. Also given that Γ; pc $ pv1 | v2q v1 :
τ2 is well-typed, from APP, we have the following:

Γ; pc $ pv1 | v2q : τ1
pc2

ÝÝÑ τ2 (128)

Γ; pc $ v1 : τ1 (129)

Π , pc Ď pc2 (130)

Thus from BRACKET-VALUES, we have Π , Hπ Ď C (pτ1
pc2

ÝÝÑ τ2qπ). That is, from the definition of

type protection (Figure 38), we have Π , Hπ Ď C (τ1
pc2π

ÝÝÑ τπ2). From P-FUN, we thus have

Π , Hπ Ď τπ2 (131)

Π , Hπ Ď pc2π (132)

We need to prove

Γ; pc $ pv1 tv1u1 | v2 tv1u2q : τ2

That is we need the following premises of BRACKET.

Π;Γ; pc1 $ v1 tv1u1 : τ2 (133)

Π;Γ; pc1 $ v2 tv1u2 : τ2 (134)

Π , Hπ \ pcπ Ď pc1π (135)

Π , Hπ Ď C (τπ2) (136)
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Let pc1 “ pc2. We have (135) from (130) and (132). We already have (136) from (131). To prove
(133), we need the following premises:

Π;Γ; pc1 $ v1 : τ1
pc2

ÝÝÑ τ2 (137)

Π;Γ; pc1 $ tv1u1 : τ2 (138)

Π , pc1 Ď pc2 (139)

The last premise (139) holds trivially (from reflexivity). Applying Lemma 11 (values can be typed under
any pc) to (128) we have (137). Applying Lemma 11 (values can be typed under any pc) and Lemma (23)
(projection preserves typing) to (129) we have (138). Thus from APP, we have (133). Similarly, (134)
holds. Hence proved.

Case B-TAPP Similar to B-APP.
Case B-BINDM Given e “ bind x “ pηℓ v1 | ηℓ v2q in e. We have that:

e1 “ pbind x “ ηℓ v1 in teu1 | bind x “ ηℓ v2 in teu2q

Also Γ; pc $ bind x “ pηℓ v1 | ηℓ v2q in e : τ. From BINDM, we have

Γ; pc $ pηℓ v1 | ηℓ v2q : ℓ says τ1 (140)

Π;Γ, x : τ1; pc \ ℓ $ e : τ (141)

Π $ pc \ ℓ Ď τ (142)

From (140) and BRACKET-VALUES, we have

Γ; pc $ ηℓ v1 : ℓ says τ1 (143)

Γ; pc $ ηℓ v2 : ℓ says τ1 (144)

Π , Hπ Ď C (ℓ says τ1) (145)

Inverting 142 we get

Π , c ě pc \ ℓ (146)

We have to prove that

Γ; pc $ pbind x “ ηℓ v1 in teu1 | bind x “ ηℓ v2 in teu2q : τ

For some pcp we need the following premises to satisfy BRACKET:

Π;Γ; pcp $ bind x “ ηℓ v1 in teu1 : τ (147)

Π;Γ; pcp $ bind x “ ηℓ v2 in teu2 : τ (148)

Π , pHπ \ pcπq Ď pcp π (149)

Π $ Hπ Ď C (τπ) (150)
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A natual choice for pcx is pc \ ℓ. From Lemma 11 (values can be typed under any pc) and 146, we have

Π;Γ; pcp $ ηℓ vi : τ
1

Applying Lemma 23 (bracket projection preserves typing) to (141), we have

Π;Γ, x : τ1; pcp $ teui : τ

From BINDM, we therefore have (147) and (148). Applying TRANS to (145) and (142), we have (150).
Thus we have all required premises.
Case B-SPLIT
Given e “ splitℓ pv1 | v2q and e1 “ xpηk.Lc^ℓ pv1 | v2qq, pηk.Rc^ℓ pv1 | v2qqy

From applying the SPLIT typying rule on splitℓ pv1 | v2q we get

Γ; pc $ pv1 | v2q : τ (151)

Π , c ě pc (152)

Π , pc Ď ℓ \ △(pci) (153)

Inverting 151 with BRACKET-VALUES we get

Π;Γ; pc; c $ v1 : τ (154)

Π;Γ; pc; c $ v2 : τ (155)

Π , Hπ Ď C (τ) (156)

Π , c ě pc (157)

From 157,151, SEALEDK , and for any k, we get the following:

Π;Γ; pc; c $ pηk.Lc^ℓ pv1 | v2qq : Lc ^ ℓ says τ (158)

Π;Γ; pc; c $ pηk.Rc^ℓ pv1 | v2qq : Rc ^ ℓ says τ (159)

From 158, 159, and 157 and PAIR we get

Π;Γ; pc; c $ xpηk.Lc^ℓ pv1 | v2qq, pηk.Rc^ℓ pv1 | v2qqy : pLc ^ ℓ says τˆ Rc ^ ℓ says τq (160)

Case B-COMBINE
Given, e “ combine x “ xppηk.Lc^ℓ v1q | pηk.Lc^ℓ v2qq, ppηk.Rc^ℓ v1q | pηk.Rc^ℓ v2qqy@pc in e and e1 “

pcombine x “ xpηk.L^ℓ v1q, pηk.Rc^ℓ v1qy@pc in e | combine x “ xpηk.L^ℓ v1q, pηk.Rc^ℓ v1qy@pc in eq// From
applying the COMBINE typying rule we get

Π;Γ; pc; c $ xppηk.Lc^ℓ v1q | pηk.Lc^ℓ v2qq, ppηk.Rc^ℓ v1q | pηk.Rc^ℓ v2qqy : pLc ^ ℓ says τˆ Rc ^ ℓ says τq
(161)
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Π , c ě pc (162)

Π , ℓ \ pc Ď ℓ1 says τ (163)

Π;Γ; pc \ ℓ; c $ e : ℓ1 says τ (164)

Inverting 161 with PAIR we get

Π;Γ; pc; c $ ppηk.Lc^ℓ v1q | pηk.Lc^ℓ v2qq : Lc ^ ℓ says τ (165)

Π;Γ; pc; c $ ppηk.Rc^ℓ v1q | pηk.Rc^ℓ v2qq : Rc ^ ℓ says τ (166)

Inverting 165 and 166 with BRACKETVALUES and then with SEALEDK we get

Π;Γ; pc; c $ v1 : τ (167)

Π;Γ; pc; c $ v2 : τ (168)

Π , Hπ Ď C (Lc ^ ℓ says τ) (169)

Π , Hπ Ď C (Rc ^ ℓ says τ) (170)

From which we can write for π P ti, au

Π , Hπ Ď C (ℓ says τ) (171)

or, we can just write

Π , Hπ Ď ℓ (172)

and when π P ti, au we can write

Π , Hπ Ď ℓ \ pc (173)

because of 163 we get

Π , Hπ Ď ℓ1 (174)

which implies

Π , Hπ Ď C (ℓ1 says τ) (175)

Inverting 164 we get

Π , c ě pc \ ℓ (176)

Hence a natural choice of the pc1 is pc \ ℓ. From 172 we get

Π , Hπ \ pc Ď ℓ \ pc (177)
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We already have from 163

Γ;Π; Γ; pc1 \ ℓ; c $ e : ℓ1 says pc (178)

From 167, 168, 175, 177, 178,

Π;Γ; pc; c $ e1 : ℓ says τ

where, e1 “ pcombine x “ xpηk.L^ℓ v1q, pηk.Rc^ℓ v1qy@pc in e | combine x “ xpηk.L^ℓ v1q, pηk.Rc^ℓ v1qy@pc in eq

l

Lemma 25 (Subject Reduction(inter-host)). If Π;Γ; pc $ xe, cy & t : τ and xe, cy & t ùñ xe1, c1y & t1

hold, then Π;Γ; pc $ xe1, c1y & t1 : τ.

Proof. Induction over typing derivation of xe, cy & t.
Case E-RUN. Given, xErrunτ̂ e@c1s, cy & t ùñ

xret e@c, c1y & xErexpectτ̂s, cy :: t

Π;Γ; pc $ xErrunτ̂ e@c1s, cy & t : τ (179)

need to prove

Π;Γ; pc $ xret e@c, c1y & xErexpectτ̂s, cy :: t : τ (180)

Inverting 179 we get

Π;Γ; pc1; c $ Errunτ̂ e@c1s : τ1 (181)

Π;Γ; pc $ t : rτ1sτ (182)

Π , c ě pc (183)

pc Ď pc1 (184)

applying lemma CTX to 181 we get

Π;Γ; pc1; c $ runτ̂ e@c1 : τ̂ (185)

inverting 185 we get

Π;Γ, pĉ; c1 $ e : τ1̂ (186)

where

τ1̂ “ pĉia says τ̂ (187)

Π , c ě pc1 (188)

pc1 Ď pĉ (189)

Π , c ě C(τ̂) (190)
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applying pc-reduction on 186 with pc we get

Π;Γ, pc; c1 $ e : τ1̂ (191)

applying clearance (Lemma 13) in 191

Π , c1 ě pc (192)

applying clearance lemma in 186

Π , c1 ě pĉ (193)

from 184 and 189 we get

pc Ď pĉ (194)

from 193 and 186 190 and 193 and RET we get

Π;Γ, pĉ; c1 $ ret e@c : τ̂ (195)

from 181 and 185 and Expect 9 lemma we get

Π;Γ; pc1; c $ Erexpectτ̂s : τ1 (196)

from 182, 183, 184,196 and TAIL rule we get

Π;Γ; pc $ xErexpectτ̂s, cy :: t : rτ̂sτ (197)

from 194,195,197 183 and HEAD rule we get

Π;Γ; pc $ xret e@c, c1y & xErexpectτ̂s, cy :: t : τ (198)

Case E-RETV. Given,
xret v@c, c1y & xErexpectτ

1

s, cy :: t ùñ

xErpηpc1ia wqs, cy & t

(where τ1 “ pc1ia says τ2)

Π;Γ; pc $ xret v@c, c1y & xErexpectτ
1

s, cy :: t : τ (199)

Π , c ě pc (200)

need to prove

Π;Γ; pc $ xErpηpc1ia wqs, cy & t : τ (201)
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inverting 199 we get

Π;Γ; pc1; c1 $ ret v@c : τ1 (202)

Π;Γ; pc $ xErexpectτ
1

s, cy :: t : rτ1sτ (203)

pc Ď pc1 (204)

Π , c1 ě pc (205)

inverting 202 we get

Π;Γ; pc1; c1 $ v : τ2 (206)

Π , c ě C(τ2) (207)

Π , c1 ě pc1 (208)

inverting 203

Π;Γ; pĉ; c $ Erexpectτ
1

s : τ̂ (209)

pc Ď pĉ (210)

Π , c ě pc (211)

Π;Γ; pc $ t : rτ̂sτ (212)

applying clearance lemma on 209

Π , c ě pĉ (213)

from 213, 206, 207 and ValuesHost lemma

Π;Γ; pĉ; c $ v : τ2 (214)

pc reduction Lemma 12 in 214

Π;Γ; pc; c $ v : τ2 (215)

applying UNITM rule in 215

Π;Γ; pc; c $ pηpc1ia vq : τ1 (216)

clearance lemma on 216

Π , c ě pc (217)

from 216, 209 and RExpect 10 lemma

Π;Γ; pĉ; c $ Erpηpc1ia vqs : τ̂ (218)
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from 218, 210, 212, 217 and HEAD rule we get

Π;Γ; pc $ xErpηpc1ia vqs, cy & t : τ (219)

Case E-DSTEP. Straightforward using Induction hypothesis
Case B-RUNLEFT. Given, xpErrunτ̂ e@c1s | e2q, cy & t
ùñ xpret e@c | ‚q, c1y & xpErexpectτ̂s | e2q, cy :: t
and

Π;Γ; pc $ xpErrunτ̂ e@c1s | e2q, cy & t : τ (220)

need to prove
Π;Γ; pc $ xpret e@c | ‚q, c1y & xpErexpectτ̂s | e2q, cy :: t : τ

Inverting 220 we get

Π;Γ; pc1; c $ pErrunτ̂ e@c1s | e2q : τ1 (221)

Π;Γ; pc $ t : rτ1sτ (222)

Π , c ě pc (223)

pc Ď pc1 (224)

inverting 221 we get

Π;Γ; pc2, c $ Errunτ̂ e@c1s : τ1 (225)

Π;Γ; pc2, c $ e2 : τ1 (226)

Π , Hπ Ď C (τ1) (227)

Π , Hπ \ pc1 Ď pc2 (228)

applying lemma CTX to 225 we get

Π;Γ; pc2; c $ runτ̂ e@c1 : τ̂ (229)

inverting 229 we get

Π;Γ, pĉ; c1 $ e : τ1̂ (230)

where

τ1̂ “ pĉia says τ̂ (231)

Π , c ě pc2 (232)

pc2 Ď pĉ (233)

Π , c ě C(τ̂) (234)
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applying pc-reduction on 230 with pc we get

Π;Γ, pc1; c1 $ e : τ1̂ (235)

applying clearance in 235

Π , c1 ě pc1 (236)

applying clearance lemma in 230

Π , c1 ě pĉ (237)

from 224, 225 and 233 we get

pc Ď pĉ (238)

from 237 and 230 234 and 237 and RET we get

Π;Γ, pĉ; c1 $ ret e@c : τ̂ (239)

from 225 and 229 and Expect 9 lemma we get

Π;Γ; pc2; c $ Erexpectτ̂s : τ1 (240)

from 226, 227, 228, 241 we get

Π;Γ; pc2; c $ pErexpectτ̂s | e2q : τ1 (241)

from 242 and BULLL rule

Π;Γ, pĉ; c1 $ pret e@c | ‚q : τ̂ (242)

from 222, 223, 224,241 and TAIL rule we get

Π;Γ; pc $ xpErexpectτ̂s | e2q, cy :: t : rτ̂sτ (243)

from 238,242,243 223 and HEAD rule we get
Π;Γ; pc $ xpret e@c | ‚q, c1y & xpErexpectτ̂s | e2q, cy :: t : τ

Case B-RUNRIGHT. Same as above.
Case B-RETLEFT Same as above.
Case B-RETRIGHT Same as above.
Case B-RETV Same as above.

l

Theorem 3 (c-i Noninterference). If Π;Γ, x : ℓ1 says τ1 $ xe, cy & empty : ℓ says τ where
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Opfailτ,Π, p, πq “ ˝

Opx,Π, p, πq “ x
Oppq,Π, p, πq “ ˝

Opηℓ e,Π, p, πq “ ηℓ Ope,Π, p, πq

Opηℓ v,Π, p, πq “

#

ηℓ Opv,Π, p, πq Π , ℓπ Ď pπ

˝ otherwise

Opλpx :τqrpcs. e,Π, p, πq “

#

λpx :τqrpcs.Ope,Π, p, πq Π , pcπ Ď pπ

˝ otherwise

OpΛXrpcs. e,Π, p, πq “

#

ΛXrpcs.Ope,Π, p, πq Π , pcπ Ď pπ

˝ otherwise

Ope e1,Π, p, πq “ Ope,Π, p, πq Ope1,Π, p, πq

Opxe1, e2y,Π, p, πq “

#

˝ Opei,Π, p, πq “ ˝

xOpe1,Π, p, πq,Ope2,Π, p, πqy otherwise
Opproji e,Π, p, πq “ proji Ope,Π, p, πq

Opinji e,Π, p, πq “

#

˝ Ope,Π, p, πq “ ˝

inji Ope,Π, p, πq otherwise
Opcase e of inj1pxq.e1 | inj2pxq.e2,Π, p, πq “ case Ope,Π, p, πq of

inj1 . Ope1,Π, p, πq
| inj2 . Ope2,Π, p, πq

Opbind x “ e in e1,Π, p, πq “ bind x “ Ope,Π, p, πq in Ope1,Π, p, πq
Opselect e1 or e2,Π, p, πq “ select Ope1,Π, p, πq or Ope2,Π, p, πq
Opcompare e1 and e2,Π, p, πq “ compare Ope1,Π, p, πq and Ope2,Π, p, πq

Opxe, cy & s,Π, ℓ, πq “

#

Ope,Π, ℓ, πq s “ empty

Ope,Π, ℓ, πq&Ops,Π, ℓ, πq

Opxe, cy :: s,Π, ℓ, πq “

#

Ope,Π, ℓ, πq s “ empty

Ope,Π, ℓ, πq :: Ops,Π, ℓ, πq

OpErrunτ e@cs,Π, ℓ, πq “ OpEres,Π, ℓ, πq
Opret e@c,Π, ℓ, πq “ Ope,Π, ℓ, πq
Opsplitl e,Π, ℓ, πq “ splitl Ope,Π, ℓ, πq
Opcombine x “ xe1, e2y@pc in e,Π, ℓ, πq “ combine x “ xOpe1,Π, ℓ, πq,Ope2,Π, ℓ, πqy@pc in Ope,Π, ℓ, πq

Fig. 44. Observation function for intermediate FLAQR terms.

(1) Π;Γ; pc; c $ vi : ℓ
1 says τ1, i P t1, 2u

(2) xerx ÞÑ pv1 | v2qs, cy & empty ÝÑ˚ xv, cy & empty

(3) Π , Hπ Ď ℓ1 and Π . Hπ Ď ℓ, π P tc, iu.

then, Optvu1,Π, ℓ, πq “ Optvu2,Π, ℓ, πq

Proof. From Subject reduction of bracketed FLAQR constructs we can write

Π;Γ; pc $ xv, cy & empty : ℓ says τ
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We will write tvui as vi. We need to show Opv1,Π, ℓ, πq “ Opv2,Π, ℓ, πq. Since vi has protected type, we
know that it is of form pηℓ v1

iq Since Π , ℓπ Ď ℓπ for π P tc, iu, we just have to show
pηℓ Opv1

1,Π, ℓ, πqq “ pηℓ Opv1
2,Π, ℓ, πqq

Which is true if we can show
Opv1

1,Π, ℓ, πq “ Opv1
2,Π, ℓ, πq.

Which can be easily shown by induction over structure of vis. l

Theorem 4 (Availability Noninterference). If
Π;Γ, x : ℓ says τ1 $ xe, cy & empty : ℓQ says τ where

(1) Π;Γ; pc; c $ fi : ℓ says τ1, i P t1, 2u

(2) xerx ÞÑ p f1 | f2qs, cy & empty ÝÑ˚ x f , cy & empty
(3) Π , H Í ℓ says τ1 and Hia P AJQK and

Π , Q guards pℓQ says τq

then t f u1 ‰ failℓQ says τ ðñ t f u2 ‰ failℓQ says τ

Proof. From subject reduction ( 24 and 25 ) we know, Π;Γ; pc; c $ t f ui : ℓQ says τ. Because
Π , Q guards pℓQ says τq and Hia P AJQK we can write Π . Hia Í ℓQ says τ from rule Q-GUARD .
This ensures if t f u1 ‰ failℓQ says τ, then t f u2 ‰ failℓQ says τ, and vice-versa. l

Appendix B. Correctness of Blame Semantics.

In the following proofs, a possible faulty set F is referred as a faulty set that satisfies the blame
constraint, or F implied by C. And Π , b Í τ is equivalent to saying Π , bia Í τ.

Lemma 26 (Reach ConjL). If Π , bia ě t then Π , b ^ pia ě t

Proof. Given, Π , bia ě t, which means tc “ K. So from CONJL we can write: Π , bia ^ pia ě t,
which is same as writing Π , b ^ pia ě t. l

Lemma 27 (Reach ConjR Type). If Π , b Í ℓ1 says τ and Π , b Í ℓ2 says τ then Π , b Í

pℓ1 a ℓ2q says τ

Proof. If Π , b Í τ then Π , b Í pℓ1 a ℓ2q says τ is true as well from A-TYPE. If Π . b Í τ then it
is obvious that Π , ba ě ℓa1 and Π , ba ě ℓa2. Which along with R-CONJR implies, Π , ba ě ℓa1 ^ ℓa2.
Thus from A-AVAIL we can write Π , b Í pℓ1 a ℓ2q says τ l

Lemma 28 (FAIL RESULT ONESTEP TO FAIL). If xxe, cy & syC ÝÑ xxfailτ, c1y & s1yC
1

and e is a
source level term, then e must be of the form compareτ v1 and v2 and the evaluation step that has been
taken to transition from e to failτ is either C-COMPAREFAIL or C-COMBINEFAIL.

Proof. Trivial(by inspection on evaluation rules). l

Lemma 29 (FAIL SUBEXP ONESTEP). If xxe, cy & syC ÝÑ xxe1, c1y & s1yC
1

and e is a source level
term but e1 has a fail term in it then the evaluation step that has been taken is either C-COMPAREFAIL
or C-COMBINEFAIL.
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Lpx, y,C, ℓ1, ℓ2q “ match px, yq with

| ppηℓ v1q, pηℓ v2qq “

if C ( ℓ1 P F then C

else if C ( ℓ2 P F then C

else if C ( ℓ P F then C

else Lpv1, v2, C, ℓ, ℓq

| pηℓ e1, ηℓ e2q “ Lpe1, e2, C, ℓ1, ℓ2q

| pinjτi e1, injτi e2q “ Lpe1, e2, C, ℓ1, ℓ2q

| pxe11, e12y
τ
, xe21, e22y

τ
q “

Lpe11, e21, pLpe12, e22, C, ℓ1, ℓ2qq, ℓ1, ℓ2q

| prunτ e1@p, runτ e2@pq “ Lpe1, e2, C, ℓ1, ℓ2q

| pselectτ e1 or e2, selectτ e1
1 or e1

2q “

Lpe1, e1
1, pLpe2, e1

2, C, ℓ1, ℓ2qq, ℓ1, ℓ2q

| pcompareτ e1 and e2, compareτ e1
1 and e1

2q “

Lpe1, e1
1, pLpe2, e1

2, C, ℓ1, ℓ2qq, ℓ1, ℓ2q

| pλpx :τqrpcs. e1, λpx :τqrpcs. e2q “ Lpe1, e2, C, ℓ1, ℓ2q

| pΛXrpcs. e1,ΛXrpcs. e2q “ Lpe1, e2, C, ℓ1, ℓ2q

| pproji e1, proji e2q “ Lpe1, e2, C, ℓ1, ℓ2q

| pbind x1 “ e1 in e1
1, bind x2 “ e2 in e1

2q “

Lpe1, e2,Lpe1
1, e

1
2, C, ℓ1, ℓ2q, C, ℓ1, ℓ2q

| pcaseτ e1 of injτ1pzq.e2 | injτ2pzq.e3,

caseτ e1
1 of inj

τ
1pzq.e1

2 | injτ2pzq.e1
3q “

Lpe1, e1
1,Lpe2, e1

2,Lpe3, e1
3, C, ℓ1, ℓ2q, ℓ1, ℓ2q, ℓ1, ℓ2q

| p f1, f2q “

if f1 “ f2 then C

else if C ( ℓ1 P F then C

else if C ( ℓ2 P F then C

else NORMpℓ1, Cq OR NORMpℓ2, Cq

Fig. 45. Function L to construct blame constraint C.
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NORMpℓ, Cq “ą match ℓ with

| ℓ1 ^ ℓ2 “ą NORMpℓ1, Cq AND NORMpℓ2, Cq

| ℓ1 _ ℓ2 “ą NORMpℓ1, Cq OR NORMpℓ2, Cq

| ℓ1 ‘ ℓ2 “ą NORMpℓ1, Cq OR NORMpℓ2, Cq

| ℓ1 a ℓ2 “ą NORMpℓ1, Cq AND NORMpℓ2, Cq

| p “ą DNFppia P F AND Cq

DNFpℓ P F AND Cq “ą match C with

| F “ H “ą ℓ P F

| ℓ1 P F “ą ℓ P F AND ℓ1 P F

| C1 OR C2 “ą DNFpℓ P F AND C1q OR DNFpℓ P F AND C2q

| C1 AND C2 “ą C1 AND C2 AND ℓ P F

Fig. 46. Helper functions (NORM and DNF) to construct blame constraint C: NORM and DNF.

Proof. Trivial(by inspection on evaluation rules). l

Lemma 30 (INTRO GTR). If Π , ℓ1 Í τ then for any ℓ2 Π , ℓ1 ^ ℓ2 Í τ

Proof. Proof is straightforward from f ail judgements Í (Figure 14) rules and CONJL rule. l

Lemma 31 (FAIL ONESTEP NON-EMPTY BLAME SET). If xxe, cy & syC ÝÑ xxe1, c1y & s1yC
1

, e is
a source level term, and e1 contains failτ, then for any F that satisfies C1 the following condition holds:

Π , b1 Í τ, where b1 “
Ź

@ f PF f

Proof. Since transition from e to e1 introduces a failτ term, from lemma 29, we know that the eval-
uation step that was taken is either C-COMPAREFAIL or C-COMBINEFAIL. Without loss of gener-
ality we can state that e “ Ercompareℓ1‘ℓ2 says τ1 pηℓ1 v1q and pηℓ2 v2qs or e “ Ercombine x “

xpηk1.L^ℓ v1q, pηk2.R^ℓ v2qy@ℓ in e1s and C1 “ Lpv1, v2, C, ℓ1, ℓ2q, or C1 “ NORM(ℓ, C). In the following
proof for F and F 1 that satisfies C and C1 respectively, b and b1 will mean

Ź

@ f PF f and
Ź

@ f PF 1 f
respectively. There are three possibilities for C1.

(1) C1 “ ppℓ1 P Fq AND Cq OR ppℓ2 P Fq AND Cq : This case happens only when C-COMPAREFAIL
step is taken. It is straightforward to say that, for any F that satisfies C, F 1 “ F Y tℓiu satisfies C1,
for i P t1, 2u. If b is conjunction of labels in F then b ^ ℓi, i P t1, 2u are conjunction of labels in
F 1. We know, Π , ℓi Í pℓ1 ‘ ℓ2q says τ1. From lemma 30 (ITRO GTR) we can write for label b,
Π , pℓi ^ bq Í pℓ1 ‘ ℓ2q says τ1. Beacuse conjunctions of labels in F 1 are of form b1 “ pℓi ^ bq,
we can say that for any F 1 that satisfies C1 the following condition holds

Π , b1 Í pℓ1 ‘ ℓ2q says τ1, where b1 “
Ź

@ f PF 1 f .
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(2) C1 “ pℓ P Fq AND C : Here either ℓ is some inner layer in τ, i.e. τ “ pℓ1 ‘ ℓ2q says τ1 “

pℓ1 ‘ ℓ2q says p...pℓ says τ2q...q when compare statement (i.e. C-COMPAREFAIL) got executed;
or ℓ is some program counter label when combine statement (i.e. C-COMBINEFAIL) got executed.
It is straightforward to say that, for any F that satisfies C, F 1 “ tℓu Y F satisfies C1. If b is con-
junction of labels in F then ℓ^b is conjunction of labels in F 1. We know Π , ℓ Í τ. From lemma
ITRO GTR 30 we can write for any label b, Π , pℓ ^ bq Í τ. Beacuse conjunctions of labels in
F 1 are of the form b1 “ pℓ ^ bq, we say that for any F 1 that satisfies C1 the following condition
holds

Π , b1 Í τ, where b1 “
Ź

@ f PF 1 f .

(3) C1 “ C : This case occurs when C-COMPAREFAIL or C-COMBINEFAIL rule does not update C
beacuse the label ℓ that is responsible for generating fail is already included in all possible F in
C. That means C ( ℓ P F and Π , ℓ Í τ (since the end result is fail and ℓ is the responsible label).
Thus it is straightforward from lemma 30 that for label b, where b “ b1 ^ ...ℓ...^ bk Π , b Í τ.
Thus we have, Π , b Í τ, where b “

Ź

@ f PF f .

l

Lemma 32 (GTRDOT OR). If Π , ℓ Í ℓ1 says τ then Π , ℓ Í pℓ1 _ ℓ2q says τ.

Proof. Proof is straightforward inspecting Í rule (Figure 14) and using DISJR. l

Lemma 33 (FAIL RESULT ONESTEP). Given,

(1) Π;Γ; pc; c $ xxe, cy & syC : τ1

(2) xxe, cy & syC ÝÑ xxfailτ
1

, cy & syC
1

then for every F that satisfies C1 it must be the case that Π , b1 Í τ1 , where b1 “
Ź

f PF f

Proof. Let us proof this by induction over typing derivation Π;Γ; pc; c $ e : τ. In the proof b is always
Ź

f PF f .

‚ Case E-APPFAILL: e “ pλpx :τ1qrpcs. failτ1
pc

ÝÑτqe1 and e1 “ failτ. From IH we get, Π , b Í

τ, which is what we wanted.
‚ Case E-SEALEDFAIL: e “ ηℓ fail

τ and e1 “ failℓ says τ

xxηℓ fail
τ, cy & syC ÝÑ xxfailℓ says τ, cy & syC

Given, Π;Γ; pc; c $ ηℓ fail
τ : ℓ says τ.

Therefore from induction hypothesis we have, Π , b Í τ, C does not get updated during the
evaluation step. Thus from the rule A-TYPE we have, Π , b Í ℓ says τ,

‚ Case E-INJFAIL: e “ inj
pτ1`τ2q

i failτi and e1 “ failpτ1`τ2q

inj
pτ1`τ2q

i failτi ÝÑ failpτ1`τ2q

Given, Π;Γ; pc; c $ inj
pτ1`τ2q

i failτi : pτ1 ` τ2q

From IH we can say for every F that satisfies C, Π , b Í τi
C does not get updated because of the evaluation step. Using rule A-SUM, we can write the fol-
lowing, Π , b Í pτ1 ` τ2q
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‚ Case E-CASEFAIL: From CASE typing rule we know Π , τi
a ě τa for i P t1, 2u. IH gives us

Π , b Í τi. Thus we can write Π , b Í τ.
‚ Case E-PROJFAIL: Same as case E-APPFAIL as the type annotation of fail does not change.
‚ Case E-SELECTFAIL:

e “ selectpℓ3‘ℓ4q says τ failℓ3 says τ or failℓ4 says τ

e1 “ failpℓ3aℓ4q says τ

xxe, cy & syC ÝÑ xxfailpℓ3aℓ4q says τ, cy & syC

Given,

Π;Γ; pc; c $ selectpℓ3aℓ4q says τ f1 or f2 : pℓ3 a ℓ4q says τ (244)

From IH,

Π , b Í ℓ3 says τ (245)

Π , b Í ℓ4 says τ (246)

Applying Lemma 27 with 245 and 246

Π , b Í pℓ3 a ℓ4q says τ (247)

(248)

‚ Case E-COMPAREFAILL:
e “ compareℓ3‘ℓ4 says τ pfailℓ3 says τq and pηℓ4 v2q

xxe, cy & syC ÝÑ xxfailℓ3‘ℓ4 says τ, cy & syC

From IH we get,

Π , b Í ℓ3 says τ (249)

Π , b Í ℓ4 says τ (250)

using A-TYPE, or A-AVAIL or A-INTEGCOM we can write the following

Π , b Í pℓ3 ‘ ℓ4q says τ (251)

‚ Case E-COMPAREFAILR: same as E-COMPAREFAILL
‚ Case C-COMPAREFAIL: Trivially true based on definition of L. and lemma 31.
‚ Case E-COMBINEFAIL:

e “ combine x “ xv1, v2y@pc in e1. Let us assume Π;Γ; pc; c $ e1 : ℓ says τ, which means the
whole term has type ℓ says τ. From IH Π , b Í ℓ says τ, which trivially proves this case.

‚ Case E-TAPPFAIL:
e “ fail@Xrpcs. τ and xxfail@Xrpcs. τ1 τ2, cy & syC ÝÑ xxfailτ1rX ÞÑτ2s, cy & syC Given, Π , b Í

@Xrpcs. τ, which is same as saying Π , b Í τrX ÞÑ τ1s where b “
Ź

f PF f
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‚ Case E-RETFAIL: IH gives us Π , b Í τ, Then from A-TYPE Π , b Í pcia says τ.
‚ Other cases: neither fail propagates nor any change in C.

l

Theorem 1 (Sound blame). Given,

(1) Π;Γ; pc; c $ xxe, cy & emptyyCinit : τ

(2) xxe, cy & emptyyCinit ÝÑ˚ xxfailτ, cy & emptyyC
1

where e is a source-level expression,11

then for each possible faulty set Fi implied by C1, there is a principal bi “
Ź

pPFi
p such that Π ,

bi
ia Í τ.

Proof. e does not have any fail terms in it and it steps to a fail term. From lemma 29 we know that
there has to be at least one C-COMPAREFAIL or C-COMBINEFAIL step taken during the evaluation.
Either e takes single step or multiple steps to produce the failτ term as the end result.

(1) failτ is produced via single step: If e takes a single step ,

‚ From lemma 29 we know e is either of the form comparepℓ3‘ℓ4q v1 and v2, or combine x “

v@pc in e2 and from lemma 31 we know that Π , bi Í τ

‚ Another possibility is that, the last evaluation step produces the failτ result.
xxe, cy & emptyyH ÝÑ˚ xxen´1, cn´1y & sn´1yCn´1 ÝÑ xxfailτ, cy & emptyyC From lemma
28 we know en´1 is either compareτ v1 and v2 or combine x “ v@pc in e2 and then from
lemma 31 we know Π , bi Í τ

(2) failτ is produced by propagation of a fail term: This means the evaluation takes more than
one step. Let us prove it by induction over structure of e.
xxe, cy & emptyyH ÝÑ˚ xxei, ciy & siy

Ci ÝÑ˚ xxfailτ, cny & snyCn

Without loss of generality we can say that the fail term that propagates till the end is intro-
duced first in expression ei. That means there exists an expression ei´1 such that it takes C-
COMPAREFAIL or C-COMBINEFAIL evaluation rule to step to ei.
xxe, cy & emptyyH ÝÑ˚ xxei´1, ci´1y & si´1yCi´1 ÝÑ xxei, ciy & siy

Ci

ÝÑ˚ xxfailτ, cy & emptyyC

(ei´1 can be e itself). From lemma 31, we know that because the step that is taken is C-
COMPAREFAIL or C-COMBINEFAIL we have
for faulty set F satisfying Ci Π , bi Í τi where bi “

Ź

f PF f
From ei onwards any step taken is either going to propagate fail or is going to not touch the fail
term at all. For every evaluation step the invariant Π , bi Í τi holds following lemma 33.

l

11In other words, e does not contain any fail terms.
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