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Imperceptible Attacks on Fault Detection and
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Abstraci—Automated fault detection and diagnosis sys-
tems are critical to safe and efficient operation of smart
buildings. A significant amount of building data can be col-
lected and analyzed to detect building component failures.
Attacks against such data that are contaminated with small
additive disturbances (i.e., adversarial perturbation attacks)
could dreadfully impact the performance of such systems
while maintaining a high level of imperceptibility. The vul-
nerability studies of such data attacks is lacking. Specif-
ically, most existing detection and classification models
have flat structures, regarded as single-stage classifiers
(SSCs), are prone to adversarial data perturbation attacks.
In this article, we present a coarse-to-fine hierarchical fault
detection and multilevel diagnosis (HFDD) model, and for-
mulate a mathematical program to derive targeted attacks
on the model with respect to a prespecified target diagno-
sis level. Two algorithms are developed based on convex
relaxations of the formulated program for nontargeted at-
tacks. An alternating direction method of multipliers-based
solver is developed for the convex programs. Extensive ex-
periments are conducted using two real-world datasets of
measurements from air handling units and chillers, demon-
strating the feasibility of the proposed attacks with regard
to misclassification rate and imperceptibility of the attack.
We also show that the HFDD is more robust to disturbances
than SSC-based fault detection and multilevel diagnosis
systems.

Index Terms—Alternating direction method of multipli-
ers (ADMM), adversarial additive disturbances, hierarchical
fault detection and diagnosis (HFDD).

|. INTRODUCTION

CCORDING to the U.S. Department of Energy Buildings
A Energy Data Book, the buildings sector was responsible
for about 41% of primary energy consumption in 2010, which
exceeds the consumption of the transportation and industrial
sectors by 44% and 36%, respectively [1]. Modern buildings
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make use of chillers, air handling units (AHUs), and advanced
sensing and control platforms. With the increased number of
interconnected components, faults tend to occur frequently in
buildings. It is well known that a portion of the energy is wasted
in the years after building commission due to the existence of
various types of faults [2]. It is reported that 70% of commercial
buildings need repairs [3]. As a result, automated fault detection
and diagnosis (AFDD) studies have emerged over the last few
decades. A study conducted by Lawrence Berkeley National
Laboratory investigated 225 buildings with AFDD tools and
found that 8% energy savings could be brought about by AFDD
implementation [4]. The value of building AFDDs have been
gradually recognized by building operators and the adoption of
such platforms have become commonplace.

AFDD software continuously monitors building conditions
and communicates with building automation systems. However,
malicious actors could exploit existing vulnerabilities to attack
critical building systems. In particular, many existing AFDD
tools rely on black-box models that use data-driven approaches,
such as neural networks, decision trees, Bayesian networks, and
support vector machines (SVM) [5]. This is partly because these
approaches require less modeling effort compared to physics-
based methods, especially given the increased building sensing
capability.

Although data-driven approaches are easy to implement, the
accuracy of the model inputs is critical to avoid the “garbage
in, garbage out” situation. To address some of the data chal-
lenges, recent studies have focused on selecting optimal data
features [6], handling incomplete sensor measurements [7], and
incorporating expert knowledge to detect unseen faults [8].
Semantic models with expert knowledge have also been used
in AFDD [9], but they require large amounts of data and could
be vulnerable to data breaches, creating a potential gateway
for hackers to disrupt building operations. However, there is
a scarcity of studies on data attacks against building AFDD
algorithms.

Smart buildings have become a prime target for attackers
seeking to weaken the security and operations of many organi-
zations and companies, and the number of attacks has increased
significantly in recent years. For instance, in 2013, a Google
building was breached, resulting in access to sensitive informa-
tion [10]. Therefore, protecting these buildings has become a top
priority for companies. By studying malicious attacks, we can
evaluate the robustness of the systems used in smart buildings.
One possible approach is imperceptible attacks on data, which
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can manipulate sensor readings and trigger mistaken control
actions, potentially leading to dire consequences.

One type of data attack is known as adversarial additive dis-
turbance attacks. These attacks on observation and measurement
vectors have been shown to successfully induce imperceptible
misclassifications in many safety-critical systems, including im-
age classifiers based on neural network systems [11]. Adversar-
ial attacks are classified as nontargeted or targeted, depending on
the attacker’s goal. In a fault detection and diagnosis (FDD) sys-
tem, if the predicted fault based on measurements x is denoted
by w(x), nontargeted attacks aim to add disturbances 7 that
cause any misclassification, i.e., w(x + 1) # w(x). In contrast,
targeted attacks aim to design 1 such that w(x + 1) = t, where
t is a prespecified target label [11].

Existing research on adversarial attacks has primarily focused
on single-stage classifiers (SSCs) [11], which are commonly
used in many AFDD algorithms. However, in this work, we
investigate targeted and nontargeted attacks on hierarchical
coarse-to-fine fault detection and multilevel diagnosis (HFDD)
models that use a multistage approach to classify sensor mea-
surements as either “faulty” or “nonfaulty.” If a fault is detected,
the system performs multilevel diagnosis to determine the root
cause of the fault. We investigate these attacks in the white-box
setting, where the attacker has access to the classification model.
To the best of our knowledge, our study is the first to explore
adversarial attacks on building AFDD systems using this type
of multistage approach.

Contributions: The contributions of this work are summarized
as follows. First, we propose an HFDD model that incorporates
more than two fault intensity diagnosis levels, using SVMs.
Second, we develop a convex program for generating targeted
attacks, which induce disturbances in the diagnosis level to
change the prediction to a specified target label. Third, we
introduce two algorithms for nontargeted attacks: the first builds
upon our targeted attack formulation, while the second is based
on a convex formulation for SSCs. We develop an efficient
iterative algorithm based on the alternating direction method
of multipliers (ADMM), which outperforms the standard CVX
solver for disciplined convex programming [12]. Finally, we
present extensive experimental results using two real-world
building dataset benchmarks, demonstrating the effectiveness
of our proposed attacks in terms of attack success rate and
imperceptibility.

Notation: We use bold uppercase letters to represent matrices
and bold lowercase letters for vectors, unless otherwise speci-
fied. For any positive integer L, [L] := {1,2,..., L}. For sets A
and B, the set difference A \ B denotes the elements in A that
are not in B. The cardinality of set A is denoted by |A|.

A. Related Work

There exist numerous learning and statistical based imple-
mentations of FDD systems, including ones that make use of
convolutional neural networks, autoencoders, SVMs, sparse fil-
tering, and deep belief networks (DBN) [5], [13]. Our proposed
system considers a hierarchical version of conventional FDD
systems [14]. Our HFDD is shown to be more robust against
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additive measurement disturbances in comparison to FDDs that
do not use a hierarchical structure as demonstrated in the exper-
imental results.

In order to ensure the security of smart buildings, it is im-
portant to develop attacks that can evaluate their vulnerabilities.
These attacks can be categorized based on layers: i) field layer
attacks, which aim to disrupt the operation of sensors, actuators,
and controllers, and ii) management layer attacks, such as denial
of service attacks [10]. Our proposed method falls under the
field layer attacks category, as it targets the measurements of
sensors. However, most attack approaches under this category
focus on wireless protocols in order to establish remote control,
as demonstrated in previous work such as [15]. In this article,
we consider the actual sensor readings as the target of our attack,
as the goal is to generate imperceptible perturbations that can
deceive FDD systems.

The use of hierarchical structures for fault detection and
recognition are studied in [16] and [17]. The authors in [16] con-
sidered a hierarchical feature enhancement DBN-based model,
and train the hierarchical structure as one entity. In our HFDD
formulation, the local classifiers are trained disjointly, which
makes attacking the system more challenging since the attacker
needs to fool many local classifiers and classification levels. The
work in [17] proposed a two-stage hierarchical fault recognition
network based on DBNs and wavelet packet transform. The
authors show the effectiveness of their model against noise and
other disturbances. Our HFDD formulation, however, considers
amultistage fault diagnosis system. More importantly, we inves-
tigate robustness against malicious, carefully designed, additive
perturbations.

It is important to distinguish our work from poisoning at-
tacks [18], where the adversary targets the benign data during
the training stage. Here, we consider additive perturbations for
a deployed system at inference time and not in the training
phase of the local classifiers. Our attacks also differ from false
data injection attacks, such as the work in [19], as we neither
require to determine the optimal attack region nor the timing
of the attack. Our approach considers generating imperceptible
disturbances to actual sensor reading measurements in HFDDs.

The authors in [20] proposed nontargeted attacks on two-
stage coarse-to-fine classifiers, whereas our work extends the
formulation to hierarchical models with an arbitrary number
of stages and considers both targeted and nontargeted attacks.
Moreover, our model employs SVMs instead of neural networks.
In a separate work [21], nontargeted attacks on HFDDs with
two diagnosis levels were presented. In contrast, we expand the
formulation to accommodate an arbitrary number of diagnosis
levels, introduce targeted and nontargeted attacks with respect to
the target attack level, and evaluate our approach on additional
building benchmarks.

[I. HFDD MODEL FORMULATION

We consider a trained coarse-to-fine HFDD system. The first
coarse detection stage determines whether the measurement
vector is “faulty” or “nonfaulty.” If the signal is detected as
faulty, multilevel fine classifiers are used to predict the root cause
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Fig. 1. Example of an HFDD structure with L =4 levels and Q =6
classifiers. The first level uses the binary classifier ¢; to determine
whether a measurement vector is labeled “faulty” (label ¢; ;) or “non-
faulty” (label ¢; ). The subsequent levels (levels 2, 3, and 4) use local
predictors ¢; to ¢ for the multilevel fault diagnosis task. The considered
labels for each local classifier ¢, are shown on the sides of the respec-
tive classifiers. The dotted circles represent end nodes.

and/or intensity of the fault. The classification level is indexed
by I € [L], where [ = 1 indicates the first binary classification
fault detection level.

We assume that the HFDD comprises () local classifiers,
including the first binary detector. We use the notation c,, :
RY — M, to denote the predictor p € [Q], which assigns a
label from the set of possible labels M), to a measurement
vector x € R¥. Given a data point x, the predicted label by the
classifier ¢, is obtained by maximizing over | M| discriminant
functionals f;(x), as follows:

cp(x) = argmax f;(x). (1)
jEM,
The labels in the HFDD structure are denoted as ¢, 4, where p
represents the local classifier used, and d denotes the classifica-
tion decision of that particular classifier.

We define the set S({) consisting of the entries ¢, 4 of all clas-
sifiers indexed by p in level [ along with their decisions d € M,,.
As an example, in Fig. 1, the set S(3) = {c¢3,1,¢32,¢a,1,¢a2}.
Furthermore, we define the route set R(cpyd), which consists
of all labels from the root to label ¢, 4 given the structure of
the HFDD. For example, for the HFDD in Fig. 1, R(cs2) =
{c1,1,¢2,4, a2 }. We also define T'(c, 4) as the set of indices of
the local classifiers used to reach label ¢, 4. Hence, in Fig. 1,
T(C6,2) - {17 27 43 6}

The classification at level [ is expressed by w(x,!) and is
obtained as w(x,[) = argmax,, gy ¢m(X) , Where g, (x) €
{0, 1} is the discriminant functional obtained as

Gm (X)
=1 {fcpwd(x) > fr(x),Vp € T(m),Vk € My \ {cp,d}} 2)

where, 1{.} is the indicator function that returns 1 if the condi-
tion inits argument is true, and O otherwise. Equation (2) outlines
the conditions that must be met by the local classifiers indexed
by T'(m) to determine the classification as m.

We note that, if the measurement vector x is classified as
end node ¢, 4 € S(I) for [ < L, i.e., there is no subsequent
classification stage, then we fix the same classification for all
subsequent levels from [ up to L. For example, in Fig. 1, if the
predicted label of the observation x is w(x,2) = ¢ 3, then we
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also have w(x, 3) = w(x,4) = ¢, 3. This is used to simplify the
description of the upcoming proposed algorithms.

We note that the HFDD model is trained to detect and clas-
sify faulty measurements by learning from similar instances in
the training dataset. These instances include measurements of
subsystem malfunctions that belong to the same labels as the
test measurements. However, the HFDD model is not designed
to detect cyber-attacks. In this article, we investigate the impact
of adversarial measurements on HFDD systems as a first step
toward enhancing their robustness against this specific type of
attack.

The HFDD system in this article is composed of local clas-
sifiers based on SVMs, including both binary and nonbinary
classifiers. For the binary case, we assume that we have a
training dataset X, = {x;,y;}7,, where x; € R" is an ob-
servation vector and y; € {+1, —1} is its corresponding label.
Let® : RY — R denote a mapping to a high-dimensional fea-
ture space of dimension F. For any measurement x € RV, the
SVM discriminant functional is given by J(x) = wl ®(x) +
b, where w € RF and b € R are the normal vector and the
bias of the separating hyperplane, respectively. The normal
vector is obtained as W =}, o;y;®(x;), which results
in J(x) =3 e @jyik(x,%x;) + b, where o; >0 is a La-
grangian multiplier representing observation vector x;, and
k(x,x;) = ®(x)T®(x;) is the kernel function obtained as the
dot product of the feature maps. Without loss of generality,
we utilize the polynomial kernel to represent the discriminant
functional. Hence, J(x) is obtained as

J(x) = Z a5y, ['yxij + ﬁ]d +b 3)

J€lm]

where, v and § are hyperparameters used to adjust the kernel
function, and d is the degree of the polynomial kernel.

To handle the case where the local HFDD predictor p performs
nonbinary classification, i.e., with |Mp| > 2 labels, we employ
the traditional one versus all (OVA) method. Specifically, we
train |M),| binary SVM classifiers, with each classifier assigned
to distinguish between one label and the rest of the labels. Thus,
for each binary classifier, we obtain a discriminant functional,
which corresponds to the SVM model’s output. The final predic-
tion for a given data point is obtained by selecting the index of
the largest discriminant functional. It is worth noting that each
binary classifier in the OVA method has its own set of a;;’s and
b’s.

[ll. ATTACKS ON HFDDs

In this section, we propose methods for generating additive
and imperceptible perturbations, 7 € R™, aimed at inducing
misclassifications in the HFDD model presented in Section II.
Given the multilevel structure of the HFDD, attacks are devel-
oped w.r.t. a certain level | € [L]. We consider both targeted and
nontargeted attack scenarios.

Targeted attacks: Here, the goal of the attack is to alter the
classification of level [ to target label ¢ £ w*, where w* :=
w(x,1). In other words, the perturbation 7 is crafted such that
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Algorithm 1: nTAH-Algorithm for Nontargeted Attacks.

Algorithm 2: nPath Algorithm for Nontargeted Attacks.

Input: x, w, [.
Output: n*
for m € S())\{w}
obtain n,,, from (5) with ¢t = m.
ifwx+mn,,,1) #wx,l)
obtain D(n,,)

argmin  D(n,,)
meS(1)\{w}

*

’r,:

Al S

Input: x, w, [.
Output: n*
for p € T'(w)
obtain 1, w.r.t. ¢, from (7).
if w(x +mn,,1) # w(x,l)
obtain D(n,,)

n* = argmin D(n,)
peT (w)

ARl S

w(x +n,l) =t . Hence, it is required that

Jepa(x+m) > fr(x+m),Vp e T(t),Vk € My \ {cp.a}

“
which ensures that each local predictor along the path of the
target makes a decision in favor of ultimately classifying x + n
as label t. To ensure the efficiency of the attack, it should also
remain undetectable. To this end, we propose a mathematical
program to minimize the distance function D(n) := ||n||3 sub-
ject to the constraints in (4). In order to maintain convexity,
we use the first order Taylor series expansion to decompose
the functionals in (4) and yield linear constraints in 7). Further,
we introduce a small constant ¢, > 0 to transform the strict
inequalities to bounded ones. Thus, we formulate the convex
program

min D(n) subject to
n

T’T (vxfcp,d(x) - vxfk(x)) > fk(X) - fcp,d(x) +ér
Vp e T(t),Vk € Mp\{cp.a} &)

to generate additive disturbances. We term this method targeted
attack on HFDD (TAH). Hence, the attacker increases the im-
perceptibility of the attack by minimizing the objective function
D, and anumber |T'(¢)||M,, — 1] of constraints is used to induce
false prediction to target label ¢.

Nontargeted attacks: The goal of nontargeted attacks is to
generate small additive perturbations to fool the classification
at level [ in the HFDD, that is, enforcing that w(x + n,[) #
w(x, 1), while being imperceptible. To this end, we propose the
following two algorithms.

1) nTAH-Algorithm: In this method, which we call
nontaregeted attacks using the TAH formulation, we leverage
the program in (5) to generate perturbations where in every
iteration, the target class is selected as m € S(I) \ {w}. If
the generated perturbation satisfies the goal of the attack,
the corresponding index is stored. Then, in the last step, the
smallest disturbance (w.r.t. distance function D) is chosen. This
procedure is described in Algorithm 1.

2) Nontargeted Path-Based (nPath)-Algorithm: In  this
method, which we dub as the nPath method, we enforce
misclassification independently for the predictions of the
classifiers along the path of the predicted label w. In other
words, the attacker seeks to fool ¢, Vp € T (w) separately.

To fool the classifier ¢, independently of all possible up-
per coarser levels, the disturbances vector must satisfy that

cp(x+ M) # cp(x). From (1), this amounts to the requirement
that

ke Mp\{ep(X)} = fra(x+m) > fe,c0(x+m) . (6)

To encode the existence condition in (6), we choose the second
maximizing label before adding the perturbation, i.e., k* =
argmax e ns \fc, (x)} /k(X). Similar to (5), we make use of the
first order Taylor series expansion to formulate the convex
program

min D(n) subject to
n

T’T(vxfk* (X) - vxfcp(x) (X)) > f(:p(x) (X) - fk* (X) +én
(N

to generate a disturbance to fool ¢, independently. The constant
€n, > 0 is used for the same purpose as €, in (5). We call this
method fooling classifiers independently (FIN) attack.

The nPath procedure, presented in Algorithm 2, generates
perturbations for every classifier along the path of the predicted
label and tests whether it satisfies the requirement. If successful,
it selects the minimum w.r.t. distance function D.

We remark that the FIN convex formulation in (7) may not
be suitable for generating fargeted attacks on some level [ > 1
(diagnosis level) for two reasons. First, the constraint does not
enforce a prespecified target label from a set 7'(¢). Second, the
generated disturbances that alter the classification to a certain
class w.r.t. one local classifier in the set 7'(¢) may not necessarily
lead to the next class in the route set R(t).

In addition to using FIN in Algorithm 2, the state-of-the-art
approach proposed for SSCs in [22], which utilizes Taylor series
approximation to result in linear constraints, will be utilized as
a benchmark attack on nonhierarchical FDD systems.

ADMM-based solver: Here, we develop an ADMM-based
solver for the convex programs (5) and (7). First, we introduce
the matrix G € RY*" whose columns are obtained as

[vxfcp‘d (x) — Vxlfy (x)]
Vp € T(t),Vk € My\{cp.a}, for (5) (8)
[vxfk*’ (x) — vxfcp(x) (X)]7 for (7)

and vector b € RY with entries

[Fe(x) = fe,a(x) + &
Vp € T(t),Yk € M,\{cpa}, for (5) 9)

[fer 0 (%) = fi(x) + €] ", for (7).

G =

]T

b =
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The value of V' is |T'(t)||M, — 1| for program (5) and 1 for
program (7). We introduce a slack variable z € RV, and write
the minimization in the standard form of ADMM as [23]

min D(n) + E(z) subjectto G'n—b—-z=0 (10)
n,z

where, E'(z) is the penalty function thatis equal to O if z > 0 and
+o00 otherwise, and is used to write the inequality constraints as
equalities, which is necessary for the standard ADMM form.

The augmented Lagrangian can be written as £; (1,2, u) =
Il + E(z) + 4(1G™n — b — 2 — |3 — | ]3), where A s
a penalty factor, and ;1 € RY is the Lagrangian multiplier. We
can readily formulate the steps of the ADMM for each iteration
7 [23] as follows.

1) Given that V,,D(n) = 21, we obtain n*) by minimiz-
ing the Lagrangian function w.r.t 7 while variables z
and p are held constant. The closed-form solution is
found as n(7t) = —A(2Iy + AGGT)'G(b + z(7) +
(7)), where Iy is the identity matrix of size N x N.

2) Similarly, update the slack variable z as z("t) =
max(0,GTn(™ —b + u).

3) Update the Lagrangianas pu(™*) = p(7) 4 GTn(7+1) —
b -zt

The steps are repeated for a prespecified number of iterations
T.

Given the SVM classification described in the previous
section, we obtain Vi fi(x) = VxJi(x) = dv 3 e () @5Y5%;
[vxTx; + B]4°! | where i is some index from the pool of labels
of the classifier of interest.

Computational complexity: The computational complexity of
the presented methods corresponds to solving a convex program
with N variables and only V' linear constraints. The complexity
of an iterative convex program solver is decided based on the
initialization procedure, the worst case complexity of an iteration
for a given target precision, and its rate of convergence [23].
Given our ADMM, the initialization process consists of calcu-
lating matrix G and vector b. The computational complexity
per iteration is O(NV'), i.e., linear in the length of the primal N
and the length of the slack variable V. The algorithm can obtain
an €;-approximate solution in O(1/¢,) iterations [24].

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our proposed attacks on two
HFDD examples using two building benchmark datasets that
are provided by the American Society of Heating, Refrigerating
and Air-Conditioning Engineers (ASHRAE) [25].

Datasets description: The first dataset is ASHRAE project
1312-RP. In this dataset, a diverse number of fault types have
been modeled and generated for three different seasons (summer,
winter, and spring). Sensor data (including fan speed, humidity,
temperature, etc.) are generated using two identical AHUs (A
and B) serving two similar zones. All fault experiments are
conducted using AHU-A, while AHU-B is always running under
normal conditions. The fault experiments are implemented for
two to three weeks, with each fault test lasting for one day,
and the data are sampled every one minute. Each fault day
(from AHU-A) is compared with its counterpart normal days
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(from AHU-B) to identify each fault type. For our experimen-
tal analysis, we select 32 days with seven normal days and
25 faulty days (from the spring and summer seasons) during
the occupancy mode (6:00 am—6:00 pm). The second dataset
is ASHRAE project 1312-RP. Here, the experimental data is
generated from a 90-ton centrifugal water-cooled chiller [26].
The chiller system consists of a shell-and-tube evaporator, a
shell-and-tube condenser, a pilot-driven expansion valve, and a
centrifugal compressor. Seven types of faults are investigated,
according to the survey [27], each with four intensities. The data
were collected with one second resolution.

Performance metrics: We evaluate the performance of the
proposed attacks based on two metrics. First, the attack success
ratio, denoted (, which is defined for targeted attacks as the
ratio of the number of observations Z classified according to
the prespecified target labels to the total number of observations
| X |, and for nontargeted attacks as the fraction of misclassified
instances. Second, the perceptibility factor p,, which is the ratio
of the ¢,-norms of the perturbation 77 and the measurement
vector x [11]. Formally, the two metrics are given as ( =
Z/|X| and p, = |||,/ ||x]|,- We use o, to denote the average
perceptibility factor over the set of interest X. Furthermore,
we examine the performance of the HFDD under nontargeted
attacks using the multiclass confusion matrix or contingency
table.

Experimental setup: For the ASHRAE 1312-RP dataset, we
train our proposed HFDD local classifiers with 70% of the
standardized AHU-A normal and faulty data, and the remaining
30% are used for testing. Table I presents the six main fault
types considered with each fault category having two or three
intensities/severities as further refinements. This HFDD model
consists of four levels, one level for fault detection and three
levels for fault diagnosis and refinement, as shown in Fig. 1.
We make use of the SVM polynomial kernel function of de-
gree 3 with five-fold cross validation to train our HFDD local
classifiers. For the ASHRAE 1043-RP dataset, we utilize the
method in [28] to select the steady-state data for each fault type.
For each fault intensity, we randomly select 600 steady-state
data samples, which yields a total of 16 800 faulty samples.
Similar ASHRAE 1312-RP, we use 70% (30%) of the normal
and faulty standardized data for training (testing). Here, the
HFDD is a three-level system that uses SVM polynomial kernel
function of degree 2 for training the fault detection classifier,
and of degree 3 for the other local classifiers. Seven main fault
categories are considered, each refined into four intensities, as
shown in Table II. The HFDD model is illustrated in Fig. 3. All
experiments are implemented using MATLAB2021 with AMD
Ryzen 7-4800H CPU @2.9 GHz machine.

Parameters selection: Here, we show examples of the select-
ing parameters €., €,, 7, and A. We consider the nontargeted
nTAH attack on level 2 of the ASHRAE 1312-RP.

We use €,(1) to denote the value of €, of the constraints of
level l in the convex program (5), while 0, (1) and (1) are used to
represent the average perceptibility factor and success ratio for
level [, respectively. From Fig. 4, we see that when €,-(1) (,-(2))
increases, the success ratio ¢(1) (¢(2)) and the average percep-
tibility factor o2(1) (02(2)) increase proportionally. Moreover,
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TABLE |

FAULT CATEGORIES AND THEIR CORRESPONDING

INTENSITIES FOR THE ASHRAE PROJECT 1312-RP

Fault category ‘

Intensity level

\ I [ 2 [ 3
Cooling coil valve stuck (CCVS) fully closed fully open partially open (15%, 50%, 65% open)
Exhausted air damper stuck (EADS) fully open fully closed 40% open
Outdoor air damper stuck (OADS) fully closed 40% open —

Return fan (RF)

fixed speed (20%, 30%, 80% speed)

complete failure

Heating coil valve leaking (HCVL) stagel (0.4 GPM)

stage2 (1.0 GPM)

AHU duct leaking (AHUDL) after supply fan

stage3 (2.0GPM)
before supply fan —

] €11 €12 =1
Fault Detection | il ! “Non-Fauly”] l=1
99.84 % 5
! 2 21 C2,2 C23 =] Coa C25 C26
=3 Jrcevsy “EADS” “OADS” A “RE” “HCVL” “AHUDL”
99.91%

C31  C32 C33 Ca1  Cap2 s C43 Cs1 Cs2  Cea C62C71 €72 €73 Cg1 =682
“Fully- “Fully- €3 “Partially- “Fully- “Fully- Ca “Partially-| “F“H)"I_C_S—‘"Pﬂﬂia“}’ “Complete-] 6 “Partially] |“Stage-1" ["Stage-2” ‘7 “Stage-3"]  [“BSF” Cs “ASF”?
g)Closed” @ Open” |986%| Open” € Closed” @ Open” |9991% Open” @Closed] 100% | Open”gy @y Failure” [9959%| Open” @ 100% © 100% &

Co1 Co2 Co3 €101 7 €02 C103
« 00 L0 %00 T 209" —
*30% - soaé zOA,é l=4
Multi-level Fault Diag) ©
Fig. 2. HFDD model of the ASHRAE 1312-RP. The accuracy of each local classifier is shown in green squares.
. €11 I C1,2 1
Fault Detection Fauly” | €1 “Non-Faulty”] L= 1
99,475 )
c [ c c c
=2 2,1 2,2 2,3 2,4 e, s Ce @5
99.52% “EOQ “CF” “NC”
C63 C64 C74 C73 C74 C83 Cga 1=3
é
@ a0 Wy, 50% 68% 12% ¢, 30% 45%
. +30% 7
-30% 32% 20%
Multi-level Fault Diagnosis
Fig. 3. HFDD model of the ASHRAE 1043-RP. The accuracy of each local classifier is shown in green squares.
TABLE Il 100 - -8 - @- @ O0- -0~ -G - B - § 10 - - p---\A---8-~--B - -
FAULT CATEGORIES AND THEIR CORRESPONDING INTENSITIES FOR THE & oo (1)(%) = -02(2)(%)
- - -02 0 - -
ASHRAE PROJECT 1043-RP 50 |- m -C(1)(%) 50 - = -¢(2)(%)
o -o -8 -8 -  _g---@---&F--"
\ Intensity level I g -g-8-@- 8- -
Fault category i 5 3 7 0 0
\ [ [ [ I 5 10 15 3
Reduced condenser water flow (RCF) —10% | =20% | =30% | —40% (1) €(2)
Reduced evaporator water flow (REF) —10% | =20% | =30% | —40%
Refrigerant leak (RL) —10% | —20% | —30% | —40% . . .
Remaerfm overcharge (RO) ST0% 0% T 530% T 40% Fig. 4. Constant ¢, (I) for level 1 (left) and level 2 (right) as a function
“Fxcoss oil E0) 3% 1T 32% T 350% | 63% of the average perceptibility factor o (1) and success ratio (1) averaged
Condenser fouling (CF) 2% | 20% | 30% | 45% over 200 trials.
Noncondensable gas in refrigerant (NC) 1% 1.7% 2.4% 5.7%

as €,(1) (e,(2)) exceeds 5 (1.5), {(1) ({(2)) saturates but 0 (1)
(02(2)) continues to increase. Hence, we choose €,.(1) = 5 and
€-(2) = 1.5. This selection is based on achieving a high success
ratio and low perceptibility factor. For both datasets, a similar
procedure is used to select the values for €, and ¢,,. Results are
presented in Table III. Note that the values of €, and ¢,, are the
same for the level 1 attack of the same dataset, due to the use of
a binary classifier at the initial detection level.

The results presented in Table IV illustrate an example of
selecting the hyperparameters A and 7 of the proposed ADMM
solver. The results are given in terms of the average perceptibility
factor o, and the success ratio ¢ for different values of A at

TABLE IlI
THE SELECTED VALUES OF ¢,- AND ¢,, FOR EACH ATTACK LEVEL FOR THE
ASHRAE 1312-RP AND 1043 DATASETS

H HFDD Level 1 | [312-RP [ 1043RP I
\ er [ en | er [ en ||

T 5} 5 4 q

2 (5. 1.5 2 4,15} 5

3 (5. 1.5, 0.1} 2 | (4,1505] | 15

I (5. 15, 0.1, 001} | 2 = -

T = 10, 30, and 50. As A and 7 increase, both ( and o,
increase proportionally. It is observed that for a constant value
of T, such as T = 50, { stops increasing as A reaches a certain
threshold (A = 0.2 for 7 = 50), while o, continues to increase.
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TABLE IV
ADMM PARAMETERS, A AND 7, AS A FUNCTION OF THE PAIR
{¢(%),02(%)} AVERAGED OVER 200 TRIALS

ADMM parameter T=10 T =30 T =50

A {C(%),02(%)}  {C(%),02(%)}  {C(%),02(%)}
0.01 {25.00,2.16] _ {46.50,6.75} __ {73.0012.17}
0.05 {52.50,8.78} 88.00, 18.45 94.50, 21.69}
0.10 76.00,15.11 92.50, 22.20 96.50, 24.56}
0.15 82.50, 18.37 93.50, 23.47 96.50, 24.56}
0.20 87.00,20.75 93.50,24.11 {97.00 25.19}
0.25 89.00, 22.54 93.50, 24.57 {97.00, 25.43}

TABLE V

PENALTY FACTOR (1) FOR EACH LEVEL ATTACK FOR ASHRAE 1312-RP
AND 1043-RP DATASETS

[ 1312-RP 1043-RP I
H HEFDD level 1 | nPath [ nTAH | Targeted | nPath | nTAH [ Targeted ||
1 0.015 | 0.015 0.015 0.015 | 0.015 0.015
2 0.025 0.2 0.07 0.09 0.04 0.09
3 0.09 0.09 0.1 0.015 0.02 0.09
4 0.07 0.35 0.35 — — —

Therefore, to satisfy the twin objective of high success ratio
and low perceptibility factor, we select 7 = 50, and A = 0.2.
The same approach is followed to select the optimal ADMM
hyperparameters in other experiments. Table V shows the best
penalty factor A for each dataset for every attack level. The
number of iterations 7 is selected as 15, 50, and 50 for nPath,
nTAH, and the average case targeted attacks, respectively.

Targeted attacks results: Here, we present results to show the
efficiency of our proposed method for targeted attacks w.r.t. the
intensity levels of the proposed HFDD models. Perturbations
are generated by solving (5) where we use two criteria to select
the target labels [11]. First, the “average” case where the target
label £ is chosen uniformly at random. Second, the “worst” case
where the target label is the one yielding the maximum distance
function D(n) among all labels.

The results are shown in Table VI for ASHARE 1312-RP
and 1043-RP. We compare our ADMM solver with the com-
mercial CVX solver. In terms of the average imperceptibility,
our proposed ADMM outperforms the CVX solver for all the
scenarios except level 2 of ASHRAE 1043-RP experiments. For
example, the level 3 ASHRAE 1312-RP average case requires
an average imperceptibility of 46.41% for CVX in comparison
to 34.07% with the ADMM solver. Furthermore, the required
average run-time (Z,yg) our attacks are significantly smaller than
those needed for the CVX solver. For example, the average
execution time for targeted attacks (average case) is 0.065 s
for the ADMM solver versus 0.235 s for the CVX solver for
ASHRAE 1312-RP dataset.

Figs. 6 and 7 show original and perturbed samples using the
proposed targeted attacks of level 3 for ASHARE 1312-RP and
1043-RP, respectively, when the target label is selected based
on the two aforementioned scenarios. For “average” case, we
observe that the perturbed sample (red sold line) is very similar to
the original sample (black) with p, (%) = 33.79% (for 1312-RP)
and 33.18% (for 1043-RP). For the worst case attack sample, we
observe that the perturbed sample (red dashed line) is different
from the original (as also reflected by the high p, values). The
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Fig. 5. Confusion matrices before (right) and after (left) applying the

nTAH attack at [ =2 for AHSRAE: 1312-RP (top), and 1043-RP (bot-
tom).

15

1

0.5

0

AL “..
¥ | == Original, 'EADS (FC)’
—nPath, 'NF’, p; = 0.15
- - -nTAH, 'EADS (PO)’, p, = 0.19 i
—Tar. Average, AHUDEL (BSF)’, p, = 0.33 ::'
- - -Tar. Worst, "HCVL (Stage 2)’, py = 1.147 |11
80 100 120 140

-0.5

Feature

Fig. 6. Sample from the ASHRAE 1312 dataset classified as “EADS
(FC)” (black), and its perturbed versions using the nPath (black), nTAH
(dotted black), average case targeted (red), and worst case targeted
(dotted red) attacks. The predicted labels for the perturbed vectors are
different from the original prediction.

1.5 == Original, RL(—40%)’

—nPath, 'NF’, py = 0.129

. |---nTAH, RL(-10%)’, p» = 0.13
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Fig. 7. Sample from the ASHRAE 1043 dataset classified as “RL(—

40%)” (black), and its perturbed versions using the nPath (black), nTAH
(dotted black), average case targeted (red), and worst case targeted
(dotted red) attacks. The predicted labels for the perturbed vectors are
different from the original prediction.

high values of imperceptibility is due to selecting the label with
the largest distance function (D(n)).

Nontargeted attacks results: For the nontargeted attacks, we
present results for the nTAH and nPath methods and compre
them in terms of ((%) and o (%). Table VII shows results for
every HFDD level [ using our proposed ADMM and the CVX
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TABLE VI

RESULTS OF THE TARGETED ATTACKS WITH WORST AND AVERAGE CASE SCENARIOS IN TERMS OF FOOLING RATIO, IMPECEPTIBILITY, AND RUN-TIME USING
THE COMMERCIAL CVX SOLVER AND OUR PROPOSED ADMM-BASED SOLVER

Targeted (average)

Targeted (worst)

Case

CVX
{¢(%), 02(%), tavg(sec) }

ADMM
{((%)~ 0'2(%)7 ta\,g(SEC)}

CVX
{C(%) 0'2(%): ta\'g(sec)}

ADMM
{C(%)v a2(%), tavg(sec)}

ASHRAE 1312-RP HFDD Level 1

{97.96, 18.24, 0.23}

{97.96, 18.19, 0.090}

{97.96, 18.24, 0.23}

{97.96, 18.19, 0.09}

ASHRAE 1312-RP HFDD Level 2

{93.53, 35.60, 0.26}

{88.44, 32.61, 0.130}

{95.10, 53.64, 1.72}

{86.98, 44.99, 0.08}

ASHRAE 1312-RP HFDD Level 3

{86.99, 46.41, 0.19}

{81.45, 34.07, 0.007}

{80.63, 98.76, 6.01}

{87.04, 50.84, 4.05}

ASHRAE 1312-RP HFEDD Level 4

{84.98, 56.97, 0.1297}

{83.09, 45.57, 0.015}

{78.70, 91.86, 2.71}

{79.38, 57.88, 1.98}

ASHRAE 1043-RP HFDD Level 1

{98.53, 11.40, 0.190}

{98.53, 11.40, 0.012}

{98.53, 11.40, 0.19}

{98.53, 11.40, 0.012}

ASHRAE 1043-RP HFDD Level 2

{91.05, 26.22, 0.19}

{84.45,31.91, 0.08}

{89.29, 43.50 1.73}

{94.09, 46.52, 0.830}

ASHRAE 1043-RP HFDD Level 3

{91.93, 43.81, 0.107}

{89.68, 41.08, 0.0085 }

{95.97, 227.00, 7.21}

{94.49, 81.95, 4.43}

The results are presented w.r.t. the level of the considered HFDD structure.

TABLE VII

RESULTS OF THE NONTARGETED ATTACKS IN TERMS OF FOOLING RATIO, IMPECEPTIBILITY, AND RUN-TIME USING THE COMMERCIAL CVX SOLVER AND OUR
PROPOSED ADMM-BASED SOLVER FOR THE TWO PROPOSED ALGORITHMS

nPath

nTAH

Case

CVX
{¢(%), 02(%), tave(sec) }

ADMM
{¢(%), 02(%), tavg(sec)}

CVX
{¢(%), 02(%), tave(sec) }

ADMM
{<<%)7 o2 (%): tavg(sec)}

ASHRAE 1312-RP HFDD Level 2

{99.90, 12.35, 0.32071}

{95.47, 10.62, 0.1256}

{99.00, 23.64, 1.72}

{98.08, 25.49, 0.09}

ASHRAE 1312-RP HFDD Level 3

{98.84,12.17, 0.73}

{97.60,11.56, 0.33}

{99.28, 21.85, 6.6}

{98.73, 21.86, 4.20}

ASHRAE 1312-RP HFDD Level 4

{95.01, 12.17, 0.76}

{93.56, 11.44, 0.35}

{99.88, 36.81, 3.21}

{96.61, 34.61, 2.01}

ASHRAE 1043-RP HFDD Level 2 |

{97.53, 8.53, 0.53]

{96.37, 8.12, 0.23]

[ {98.51, 11.77, 1.31}

{98.61,19.04, 0.52}

{97.88, 6.88, 0.60}

{97.87, 6.65, 0.24}

ASHRAE 1043-RP HFDD Level 3 |

\
\ {98.8, 7.13, 5.53} {99.06,16.60, 2.14} \

The results are presented w.r.t. the level of the considered HFDD structure.

solvers for the ASHRAE 1312-RP and 1043-RP datasets. We
make the following observations.

First, for all the considered scenarios, the nPath method
outperforms the n'TAH approach in terms of impeceptibility as
observed in the smaller (%) values. For instance, the nPath
level 2 attack for 1312-RP requires o2(%) of 12.35% versus
23.6% for n"TAH. Second, the ADMM and CVX solvers achieve
similar values of ((%) and 02(%) for each level, e.g., the pair
{¢(%), 02(%)} of the nTAH level 2 attack is {99.00, 23.64} for
CVX, and {98.08, 25.49} for the ADMM solver (for ASHRAE
1312-RP). When compared to CVX, our ADMM solver requires
less average run-time (%,y¢) to generate perturbations.

Fig. 5 shows the confusion matrices of the true labels (rows)
and the predicted ones (columns) before (left) and after (right)
the nTAH attack on the second HFDD level of the 1312-RP
(top) and 1043-RP (bottom) datasets. We observe that our nTAH
attack is successful at altering the prediction of 6843 (6100) out
of 6912 (6192) feature vectors for 1312-RP (1043-RP) dataset.

Figs. 6 and 7 show samples of the original and perturbed
examples generated from the nTAH and nPath attacks. Both
attacks are successful at altering the prediction. We observe that
the nTAH attack is successful at changing the prediction from
“EADS (FC)” and “RL (—40%)” to “EADS (FO)” and “RL (-
10%),” while reporting p, (%) of 19.5% and 13.3% for the 1312-
RP and 1043-RP, respectively.

Comparison to SSC and overall performance: Here, we em-
pirically show that the proposed HFDD model is more robust
than the SSC. For the SSC, we train a 16-class (one nonfaulty
class and 15 fault intensity classes) and 29-class (one nonfaulty
class and 28 fault intensity classes) classifiers with classification
accuracy of 99.83% and 98.13% for the ASHRAE 1312-RP and
1043-RP datasets, respectively. The parameter €, is selected to
be 1.2 and 0.5 (0.65 and 0.5) for the targeted and nontargeted
attacks, respectively, for ASHARE 1312-RP (1043-RP). To this

TABLE VIII
COMPARISON RESULTS BETWEEN THE PROPOSED HFDD MODEL AND THE
SSC IN TERMS OF THE FOOLING RATIO AND IMPERCEPTIBILIY

Nontargeted Targeted
Dataset Model TC(%), 05 (%) TCT%), 02 ()]
1312-RP SSC (attack formulation [29]) {99.91,11.2} {84.19,34.78)
) HFDD {99.28,21.85) {86.99.46.41})
1043-RP SSC (attack formulation [29]) {98.97.4.78) {88.00,40.37)
) HFDD {98.8, 7.13} {91.93,43.81})

end, (11) is used to generate targeted and nontargeted distur-
bances against the SSC. For the targeted case, the target label
t is chosen randomly. For the nontargeted case, we replace the
target label ¢ with the label ¢ € [M]\ {Cp(x)} that achieves
minimum perceptibility

min D(n) subject to
n

77T (vxft(x) - v)cfcp(x) (X))
fep0(%) = fu(x) + €5, Vp € [M]\ {t}.

>
(1)

Table VIII presents the results for the SSC and the HFDD
model attacks at level [ = 3. We observe that at similar success
ratio, (%), a larger perturbation is required to fool the HFDD
model than the SSC (higher o0,), indicating that it is easier
to fool the SSC system when compared to the HFDD model.
The reason is that for the HFDD model, in order induce any
misclassification; the attacker must change the prediction of
multiple local classifiers along the corresponding route of the
hierarchical structure. For example, let the target label to be
“RL (-10%)” t = cs,1 (from Fig. 3). In this case, the perturbed
features must be classified as “faulty” (cy,1), then “RL” (¢, 3),
and finally “~10%” (cs,;). For the SSC, it is only required that
the perturbed sample be classified as cs ;.
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V. CONCLUSION AND FUTURE WORK

Existing FDD models have largely focused on SSCs. By
contrast, in this article we studied attacks exposing the vulner-
ability of coarse-to-fine fault detection and multilevel diagnosis
systems. To our knowledge, this work is the first to explore adver-
sarial attacks on buildings AFDD models. We formulated convex
optimization problems and developed two algorithms to obtain
nontargeted and targeted attacks on the HFDD model. Based
on experimental results using two real-world datasets of mea-
surements from AHUs and chillers, we illustrated the efficiency
of the proposed methods in terms of both the misclassification
rate and the imperceptibility of the attack. Our ADMM-based
solver was shown to outperform the state-of-the-art commercial
convex solver. Our results have shown that the HFDD is more
robust to additive disturbances than SSC-based FDD models
since inducing misclassifications requires fooling multiple levels
in the hierarchy.

As future directions, we plan to investigate attacks on HFDD
in black-box settings where access to the classification model
parameters is unavailable. In addition, we plan to extend the
proposed attack formulations to complex dynamical networks
settings with missing measurements and different environments,
as done in the work presented in [30]. Furthermore, we aim
to investigate the integration of the proposed methods with
various defense approaches, such as the minimax formulation
of adversarial training.
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