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Abstract—Automated fault detection and diagnosis sys-
tems are critical to safe and efficient operation of smart
buildings. A significant amount of building data can be col-
lected and analyzed to detect building component failures.
Attacks against such data that are contaminated with small
additive disturbances (i.e., adversarial perturbation attacks)
could dreadfully impact the performance of such systems
while maintaining a high level of imperceptibility. The vul-
nerability studies of such data attacks is lacking. Specif-
ically, most existing detection and classification models
have flat structures, regarded as single-stage classifiers
(SSCs), are prone to adversarial data perturbation attacks.
In this article, we present a coarse-to-fine hierarchical fault
detection and multilevel diagnosis (HFDD) model, and for-
mulate a mathematical program to derive targeted attacks
on the model with respect to a prespecified target diagno-
sis level. Two algorithms are developed based on convex
relaxations of the formulated program for nontargeted at-
tacks. An alternating direction method of multipliers-based
solver is developed for the convex programs. Extensive ex-
periments are conducted using two real-world datasets of
measurements from air handling units and chillers, demon-
strating the feasibility of the proposed attacks with regard
to misclassification rate and imperceptibility of the attack.
We also show that the HFDD is more robust to disturbances
than SSC-based fault detection and multilevel diagnosis
systems.

Index Terms—Alternating direction method of multipli-
ers (ADMM), adversarial additive disturbances, hierarchical
fault detection and diagnosis (HFDD).

I. INTRODUCTION

A
CCORDING to the U.S. Department of Energy Buildings

Energy Data Book, the buildings sector was responsible

for about 41% of primary energy consumption in 2010, which

exceeds the consumption of the transportation and industrial

sectors by 44% and 36%, respectively [1]. Modern buildings
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make use of chillers, air handling units (AHUs), and advanced

sensing and control platforms. With the increased number of

interconnected components, faults tend to occur frequently in

buildings. It is well known that a portion of the energy is wasted

in the years after building commission due to the existence of

various types of faults [2]. It is reported that 70% of commercial

buildings need repairs [3]. As a result, automated fault detection

and diagnosis (AFDD) studies have emerged over the last few

decades. A study conducted by Lawrence Berkeley National

Laboratory investigated 225 buildings with AFDD tools and

found that 8% energy savings could be brought about by AFDD

implementation [4]. The value of building AFDDs have been

gradually recognized by building operators and the adoption of

such platforms have become commonplace.

AFDD software continuously monitors building conditions

and communicates with building automation systems. However,

malicious actors could exploit existing vulnerabilities to attack

critical building systems. In particular, many existing AFDD

tools rely on black-box models that use data-driven approaches,

such as neural networks, decision trees, Bayesian networks, and

support vector machines (SVM) [5]. This is partly because these

approaches require less modeling effort compared to physics-

based methods, especially given the increased building sensing

capability.

Although data-driven approaches are easy to implement, the

accuracy of the model inputs is critical to avoid the “garbage

in, garbage out” situation. To address some of the data chal-

lenges, recent studies have focused on selecting optimal data

features [6], handling incomplete sensor measurements [7], and

incorporating expert knowledge to detect unseen faults [8].

Semantic models with expert knowledge have also been used

in AFDD [9], but they require large amounts of data and could

be vulnerable to data breaches, creating a potential gateway

for hackers to disrupt building operations. However, there is

a scarcity of studies on data attacks against building AFDD

algorithms.

Smart buildings have become a prime target for attackers

seeking to weaken the security and operations of many organi-

zations and companies, and the number of attacks has increased

significantly in recent years. For instance, in 2013, a Google

building was breached, resulting in access to sensitive informa-

tion [10]. Therefore, protecting these buildings has become a top

priority for companies. By studying malicious attacks, we can

evaluate the robustness of the systems used in smart buildings.

One possible approach is imperceptible attacks on data, which
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can manipulate sensor readings and trigger mistaken control

actions, potentially leading to dire consequences.

One type of data attack is known as adversarial additive dis-

turbance attacks. These attacks on observation and measurement

vectors have been shown to successfully induce imperceptible

misclassifications in many safety-critical systems, including im-

age classifiers based on neural network systems [11]. Adversar-

ial attacks are classified as nontargeted or targeted, depending on

the attacker’s goal. In a fault detection and diagnosis (FDD) sys-

tem, if the predicted fault based on measurements x is denoted

by w(x), nontargeted attacks aim to add disturbances η that

cause any misclassification, i.e., w(x+ η) �= w(x). In contrast,

targeted attacks aim to design η such that w(x+ η) = t, where

t is a prespecified target label [11].

Existing research on adversarial attacks has primarily focused

on single-stage classifiers (SSCs) [11], which are commonly

used in many AFDD algorithms. However, in this work, we

investigate targeted and nontargeted attacks on hierarchical

coarse-to-fine fault detection and multilevel diagnosis (HFDD)

models that use a multistage approach to classify sensor mea-

surements as either “faulty” or “nonfaulty.” If a fault is detected,

the system performs multilevel diagnosis to determine the root

cause of the fault. We investigate these attacks in the white-box

setting, where the attacker has access to the classification model.

To the best of our knowledge, our study is the first to explore

adversarial attacks on building AFDD systems using this type

of multistage approach.

Contributions: The contributions of this work are summarized

as follows. First, we propose an HFDD model that incorporates

more than two fault intensity diagnosis levels, using SVMs.

Second, we develop a convex program for generating targeted

attacks, which induce disturbances in the diagnosis level to

change the prediction to a specified target label. Third, we

introduce two algorithms for nontargeted attacks: the first builds

upon our targeted attack formulation, while the second is based

on a convex formulation for SSCs. We develop an efficient

iterative algorithm based on the alternating direction method

of multipliers (ADMM), which outperforms the standard CVX

solver for disciplined convex programming [12]. Finally, we

present extensive experimental results using two real-world

building dataset benchmarks, demonstrating the effectiveness

of our proposed attacks in terms of attack success rate and

imperceptibility.

Notation: We use bold uppercase letters to represent matrices

and bold lowercase letters for vectors, unless otherwise speci-

fied. For any positive integer L, [L] := {1, 2, . . ., L}. For sets A
and B, the set difference A \B denotes the elements in A that

are not in B. The cardinality of set A is denoted by |A|.

A. Related Work

There exist numerous learning and statistical based imple-

mentations of FDD systems, including ones that make use of

convolutional neural networks, autoencoders, SVMs, sparse fil-

tering, and deep belief networks (DBN) [5], [13]. Our proposed

system considers a hierarchical version of conventional FDD

systems [14]. Our HFDD is shown to be more robust against

additive measurement disturbances in comparison to FDDs that

do not use a hierarchical structure as demonstrated in the exper-

imental results.

In order to ensure the security of smart buildings, it is im-

portant to develop attacks that can evaluate their vulnerabilities.

These attacks can be categorized based on layers: i) field layer

attacks, which aim to disrupt the operation of sensors, actuators,

and controllers, and ii) management layer attacks, such as denial

of service attacks [10]. Our proposed method falls under the

field layer attacks category, as it targets the measurements of

sensors. However, most attack approaches under this category

focus on wireless protocols in order to establish remote control,

as demonstrated in previous work such as [15]. In this article,

we consider the actual sensor readings as the target of our attack,

as the goal is to generate imperceptible perturbations that can

deceive FDD systems.

The use of hierarchical structures for fault detection and

recognition are studied in [16] and [17]. The authors in [16] con-

sidered a hierarchical feature enhancement DBN-based model,

and train the hierarchical structure as one entity. In our HFDD

formulation, the local classifiers are trained disjointly, which

makes attacking the system more challenging since the attacker

needs to fool many local classifiers and classification levels. The

work in [17] proposed a two-stage hierarchical fault recognition

network based on DBNs and wavelet packet transform. The

authors show the effectiveness of their model against noise and

other disturbances. Our HFDD formulation, however, considers

a multistage fault diagnosis system. More importantly, we inves-

tigate robustness against malicious, carefully designed, additive

perturbations.

It is important to distinguish our work from poisoning at-

tacks [18], where the adversary targets the benign data during

the training stage. Here, we consider additive perturbations for

a deployed system at inference time and not in the training

phase of the local classifiers. Our attacks also differ from false

data injection attacks, such as the work in [19], as we neither

require to determine the optimal attack region nor the timing

of the attack. Our approach considers generating imperceptible

disturbances to actual sensor reading measurements in HFDDs.

The authors in [20] proposed nontargeted attacks on two-

stage coarse-to-fine classifiers, whereas our work extends the

formulation to hierarchical models with an arbitrary number

of stages and considers both targeted and nontargeted attacks.

Moreover, our model employs SVMs instead of neural networks.

In a separate work [21], nontargeted attacks on HFDDs with

two diagnosis levels were presented. In contrast, we expand the

formulation to accommodate an arbitrary number of diagnosis

levels, introduce targeted and nontargeted attacks with respect to

the target attack level, and evaluate our approach on additional

building benchmarks.

II. HFDD MODEL FORMULATION

We consider a trained coarse-to-fine HFDD system. The first

coarse detection stage determines whether the measurement

vector is “faulty” or “nonfaulty.” If the signal is detected as

faulty, multilevel fine classifiers are used to predict the root cause
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Fig. 1. Example of an HFDD structure with L = 4 levels and Q = 6
classifiers. The first level uses the binary classifier c1 to determine
whether a measurement vector is labeled “faulty” (label c1,1) or “non-
faulty” (label c1,2). The subsequent levels (levels 2, 3, and 4) use local
predictors c2 to c6 for the multilevel fault diagnosis task. The considered
labels for each local classifier cp are shown on the sides of the respec-
tive classifiers. The dotted circles represent end nodes.

and/or intensity of the fault. The classification level is indexed

by l ∈ [L], where l = 1 indicates the first binary classification

fault detection level.

We assume that the HFDD comprises Q local classifiers,

including the first binary detector. We use the notation cp :
R

N → Mp to denote the predictor p ∈ [Q], which assigns a

label from the set of possible labels Mp to a measurement

vector x ∈ R
N . Given a data point x, the predicted label by the

classifier cp is obtained by maximizing over |Mp| discriminant

functionals fj(x), as follows:

cp(x) = argmax
j∈Mp

fj(x). (1)

The labels in the HFDD structure are denoted as cp,d, where p
represents the local classifier used, and d denotes the classifica-

tion decision of that particular classifier.

We define the set S(l) consisting of the entries cp,d of all clas-

sifiers indexed by p in level l along with their decisions d ∈ Mp.

As an example, in Fig. 1, the set S(3) = {c3,1, c3,2, c4,1, c4,2}.

Furthermore, we define the route set R(cp,d), which consists

of all labels from the root to label cp,d given the structure of

the HFDD. For example, for the HFDD in Fig. 1, R(c4,2) =
{c1,1, c2,4, c4,2}. We also define T (cp,d) as the set of indices of

the local classifiers used to reach label cp,d. Hence, in Fig. 1,

T (c6,2) = {1, 2, 4, 6}.

The classification at level l is expressed by w(x, l) and is

obtained as w(x, l) = argmaxm∈S(l) qm(x) , where qm(x) ∈
{0, 1} is the discriminant functional obtained as

qm(x)

= 1
{

fcp,d(x) > fk(x), ∀p ∈ T (m), ∀k ∈ Mp \ {cp,d}
}

(2)

where, 1{.} is the indicator function that returns 1 if the condi-

tion in its argument is true, and 0 otherwise. Equation (2) outlines

the conditions that must be met by the local classifiers indexed

by T (m) to determine the classification as m.

We note that, if the measurement vector x is classified as

end node cp,d ∈ S(l) for l < L, i.e., there is no subsequent

classification stage, then we fix the same classification for all

subsequent levels from l up to L. For example, in Fig. 1, if the

predicted label of the observation x is w(x, 2) = c2,3, then we

also have w(x, 3) = w(x, 4) = c2,3. This is used to simplify the

description of the upcoming proposed algorithms.

We note that the HFDD model is trained to detect and clas-

sify faulty measurements by learning from similar instances in

the training dataset. These instances include measurements of

subsystem malfunctions that belong to the same labels as the

test measurements. However, the HFDD model is not designed

to detect cyber-attacks. In this article, we investigate the impact

of adversarial measurements on HFDD systems as a first step

toward enhancing their robustness against this specific type of

attack.

The HFDD system in this article is composed of local clas-

sifiers based on SVMs, including both binary and nonbinary

classifiers. For the binary case, we assume that we have a

training dataset Xtr = {xj , yj}
m
j=1, where xj ∈ R

N is an ob-

servation vector and yj ∈ {+1,−1} is its corresponding label.

LetΦ : R
N → R

F denote a mapping to a high-dimensional fea-

ture space of dimension F . For any measurement x ∈ R
N , the

SVM discriminant functional is given by J(x) = w
TΦ(x) +

b, where w ∈ R
F and b ∈ R are the normal vector and the

bias of the separating hyperplane, respectively. The normal

vector is obtained as w =
∑

j∈[m] αjyjΦ(xj), which results

in J(x) =
∑

j∈[m] αjyjk(x,xj) + b, where αj ≥ 0 is a La-

grangian multiplier representing observation vector xj , and

k(x,xj) = Φ(x)TΦ(xj) is the kernel function obtained as the

dot product of the feature maps. Without loss of generality,

we utilize the polynomial kernel to represent the discriminant

functional. Hence, J(x) is obtained as

J(x) =
∑

j∈[m]

αjyj
[

γxT
xj + β

]d
+ b (3)

where, γ and β are hyperparameters used to adjust the kernel

function, and d is the degree of the polynomial kernel.

To handle the case where the local HFDD predictorp performs

nonbinary classification, i.e., with |Mp| > 2 labels, we employ

the traditional one versus all (OVA) method. Specifically, we

train |Mp| binary SVM classifiers, with each classifier assigned

to distinguish between one label and the rest of the labels. Thus,

for each binary classifier, we obtain a discriminant functional,

which corresponds to the SVM model’s output. The final predic-

tion for a given data point is obtained by selecting the index of

the largest discriminant functional. It is worth noting that each

binary classifier in the OVA method has its own set of αj’s and

b’s.

III. ATTACKS ON HFDDS

In this section, we propose methods for generating additive

and imperceptible perturbations, η ∈ R
N , aimed at inducing

misclassifications in the HFDD model presented in Section II.

Given the multilevel structure of the HFDD, attacks are devel-

oped w.r.t. a certain level l ∈ [L]. We consider both targeted and

nontargeted attack scenarios.

Targeted attacks: Here, the goal of the attack is to alter the

classification of level l to target label t �= w∗, where w∗ :=
w(x, l). In other words, the perturbation η is crafted such that
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Algorithm 1: nTAH-Algorithm for Nontargeted Attacks.

Input: x, w, l.
Output: η∗

1: for m ∈ S(l)\{w}
2: obtain ηm from (5) with t = m.

3: if w(x+ ηm, l) �= w(x, l)
4: obtain D(ηm)
5: η

∗ = argmin
m∈S(l)\{w}

D(ηm)

w(x+ η, l) = t . Hence, it is required that

fcp,d(x+ η) > fk(x+ η), ∀p ∈ T (t), ∀k ∈ Mp \ {cp,d}
(4)

which ensures that each local predictor along the path of the

target makes a decision in favor of ultimately classifying x+ η

as label t. To ensure the efficiency of the attack, it should also

remain undetectable. To this end, we propose a mathematical

program to minimize the distance function D(η) := ‖η‖2
2 sub-

ject to the constraints in (4). In order to maintain convexity,

we use the first order Taylor series expansion to decompose

the functionals in (4) and yield linear constraints in η. Further,

we introduce a small constant εr > 0 to transform the strict

inequalities to bounded ones. Thus, we formulate the convex

program

min
η

D(η) subject to

η
T
(

∇xfcp,d(x)−∇xfk(x)
)

≥ fk(x)− fcp,d(x) + εr

∀p ∈ T (t), ∀k ∈ Mp\{cp,d} (5)

to generate additive disturbances. We term this method targeted

attack on HFDD (TAH). Hence, the attacker increases the im-

perceptibility of the attack by minimizing the objective function

D, and a number |T (t)||Mp − 1| of constraints is used to induce

false prediction to target label t.
Nontargeted attacks: The goal of nontargeted attacks is to

generate small additive perturbations to fool the classification

at level l in the HFDD, that is, enforcing that w(x+ η, l) �=
w(x, l), while being imperceptible. To this end, we propose the

following two algorithms.

1) nTAH-Algorithm: In this method, which we call

nontaregeted attacks using the TAH formulation, we leverage

the program in (5) to generate perturbations where in every

iteration, the target class is selected as m ∈ S(l) \ {w}. If

the generated perturbation satisfies the goal of the attack,

the corresponding index is stored. Then, in the last step, the

smallest disturbance (w.r.t. distance function D) is chosen. This

procedure is described in Algorithm 1.

2) Nontargeted Path-Based (nPath)-Algorithm: In this

method, which we dub as the nPath method, we enforce

misclassification independently for the predictions of the

classifiers along the path of the predicted label w. In other

words, the attacker seeks to fool cp, ∀p ∈ T (w) separately.

To fool the classifier cp independently of all possible up-

per coarser levels, the disturbances vector must satisfy that

Algorithm 2: nPath Algorithm for Nontargeted Attacks.

Input: x, w, l.
Output: η∗

1: for p ∈ T (w)
2: obtain ηp w.r.t. cp from (7).

3: if w(x+ ηp, l) �= w(x, l)
4: obtain D(ηp)
5: η

∗ = argmin
p∈T (w)

D(ηp)

cp(x+ η) �= cp(x). From (1), this amounts to the requirement

that

∃k ∈ Mp\{cp(x)} : fk(x+ η) > fcp(x)(x+ η) . (6)

To encode the existence condition in (6), we choose the second

maximizing label before adding the perturbation, i.e., k∗ =
argmaxk∈Mp\{cp(x)}

fk(x). Similar to (5), we make use of the

first order Taylor series expansion to formulate the convex

program

min
η

D(η) subject to

η
T (∇xfk∗(x)−∇xfcp(x)(x)) ≥ fcp(x)(x)− fk∗(x) + εn

(7)

to generate a disturbance to fool cp independently. The constant

εn > 0 is used for the same purpose as εn in (5). We call this

method fooling classifiers independently (FIN) attack.

The nPath procedure, presented in Algorithm 2, generates

perturbations for every classifier along the path of the predicted

label and tests whether it satisfies the requirement. If successful,

it selects the minimum w.r.t. distance function D.

We remark that the FIN convex formulation in (7) may not

be suitable for generating targeted attacks on some level l > 1

(diagnosis level) for two reasons. First, the constraint does not

enforce a prespecified target label from a set T (t). Second, the

generated disturbances that alter the classification to a certain

class w.r.t. one local classifier in the set T (t)may not necessarily

lead to the next class in the route set R(t).
In addition to using FIN in Algorithm 2, the state-of-the-art

approach proposed for SSCs in [22], which utilizes Taylor series

approximation to result in linear constraints, will be utilized as

a benchmark attack on nonhierarchical FDD systems.

ADMM-based solver: Here, we develop an ADMM-based

solver for the convex programs (5) and (7). First, we introduce

the matrix G ∈ R
N×V whose columns are obtained as

G =

⎧

⎪

⎨

⎪

⎩

[

∇xfcp,d(x)−∇xff (x)
]

∀p ∈ T (t), ∀k ∈ Mp\{cp,d}, for (5)
[

∇xfk∗(x)−∇xfcp(x)(x)
]

, for (7)

(8)

and vector b ∈ R
V with entries

b =

⎧

⎪

⎨

⎪

⎩

[

fk(x)− fcp,d(x) + εr
]T

∀p ∈ T (t), ∀k ∈ Mp\{cp,d}, for (5)
[

fcp(x)(x)− fk(x) + εn
]T

, for (7) .

(9)
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The value of V is |T (t)||Mp − 1| for program (5) and 1 for

program (7). We introduce a slack variable z ∈ R
V , and write

the minimization in the standard form of ADMM as [23]

min
η,z

D(η) + E(z) subject to G
T
η − b− z = 0 (10)

where,E(z) is the penalty function that is equal to 0 if z ≥ 0 and

+∞ otherwise, and is used to write the inequality constraints as

equalities, which is necessary for the standard ADMM form.

The augmented Lagrangian can be written as Lλ(η, z,µ) =
‖η‖2

2 + E(z) + λ

2
(‖GT

η − b− z− µ‖2
2 − ‖µ‖2

2), where λ is

a penalty factor, and µ ∈ R
V is the Lagrangian multiplier. We

can readily formulate the steps of the ADMM for each iteration

τ [23] as follows.

1) Given that ∇ηD(η) = 2η, we obtain η
(t) by minimiz-

ing the Lagrangian function w.r.t η while variables z

and µ are held constant. The closed-form solution is

found as η
(τ+1) = −λ(2IN + λGG

T )−1
G(b+ z

(τ) +
µ

(τ)) , where IN is the identity matrix of size N ×N .

2) Similarly, update the slack variable z as z
(τ+1) =

max(0,GT
η
(τ) − b+ µ

(τ)) .
3) Update the Lagrangian asµ(τ+1) = µ

(τ) +G
T
η
(τ+1) −

b− z
(τ+1) .

The steps are repeated for a prespecified number of iterations

T .

Given the SVM classification described in the previous

section, we obtain ∇xfi(x) = ∇xJi(x) = dγ
∑

j∈[m] αjyjxj

[γxT
xj + β]d−1 , where i is some index from the pool of labels

of the classifier of interest.

Computational complexity: The computational complexity of

the presented methods corresponds to solving a convex program

with N variables and only V linear constraints. The complexity

of an iterative convex program solver is decided based on the

initialization procedure, the worst case complexity of an iteration

for a given target precision, and its rate of convergence [23].

Given our ADMM, the initialization process consists of calcu-

lating matrix G and vector b. The computational complexity

per iteration is O(NV ), i.e., linear in the length of the primal N
and the length of the slack variable V . The algorithm can obtain

an ε1-approximate solution in O(1/ε1) iterations [24].

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our proposed attacks on two

HFDD examples using two building benchmark datasets that

are provided by the American Society of Heating, Refrigerating

and Air-Conditioning Engineers (ASHRAE) [25].

Datasets description: The first dataset is ASHRAE project

1312-RP. In this dataset, a diverse number of fault types have

been modeled and generated for three different seasons (summer,

winter, and spring). Sensor data (including fan speed, humidity,

temperature, etc.) are generated using two identical AHUs (A

and B) serving two similar zones. All fault experiments are

conducted using AHU-A, while AHU-B is always running under

normal conditions. The fault experiments are implemented for

two to three weeks, with each fault test lasting for one day,

and the data are sampled every one minute. Each fault day

(from AHU-A) is compared with its counterpart normal days

(from AHU-B) to identify each fault type. For our experimen-

tal analysis, we select 32 days with seven normal days and

25 faulty days (from the spring and summer seasons) during

the occupancy mode (6:00 am–6:00 pm). The second dataset

is ASHRAE project 1312-RP. Here, the experimental data is

generated from a 90-ton centrifugal water-cooled chiller [26].

The chiller system consists of a shell-and-tube evaporator, a

shell-and-tube condenser, a pilot-driven expansion valve, and a

centrifugal compressor. Seven types of faults are investigated,

according to the survey [27], each with four intensities. The data

were collected with one second resolution.

Performance metrics: We evaluate the performance of the

proposed attacks based on two metrics. First, the attack success

ratio, denoted ζ, which is defined for targeted attacks as the

ratio of the number of observations Z classified according to

the prespecified target labels to the total number of observations

|X|, and for nontargeted attacks as the fraction of misclassified

instances. Second, the perceptibility factor ρp which is the ratio

of the 	p-norms of the perturbation η and the measurement

vector x [11]. Formally, the two metrics are given as ζ =
Z/|X| and ρp = ‖η‖p/‖x‖p. We use σp to denote the average

perceptibility factor over the set of interest X. Furthermore,

we examine the performance of the HFDD under nontargeted

attacks using the multiclass confusion matrix or contingency

table.

Experimental setup: For the ASHRAE 1312-RP dataset, we

train our proposed HFDD local classifiers with 70% of the

standardized AHU-A normal and faulty data, and the remaining

30% are used for testing. Table I presents the six main fault

types considered with each fault category having two or three

intensities/severities as further refinements. This HFDD model

consists of four levels, one level for fault detection and three

levels for fault diagnosis and refinement, as shown in Fig. 1.

We make use of the SVM polynomial kernel function of de-

gree 3 with five-fold cross validation to train our HFDD local

classifiers. For the ASHRAE 1043-RP dataset, we utilize the

method in [28] to select the steady-state data for each fault type.

For each fault intensity, we randomly select 600 steady-state

data samples, which yields a total of 16 800 faulty samples.

Similar ASHRAE 1312-RP, we use 70% (30%) of the normal

and faulty standardized data for training (testing). Here, the

HFDD is a three-level system that uses SVM polynomial kernel

function of degree 2 for training the fault detection classifier,

and of degree 3 for the other local classifiers. Seven main fault

categories are considered, each refined into four intensities, as

shown in Table II. The HFDD model is illustrated in Fig. 3. All

experiments are implemented using MATLAB2021 with AMD

Ryzen 7-4800H CPU @2.9 GHz machine.

Parameters selection: Here, we show examples of the select-

ing parameters εr, εn, T , and λ. We consider the nontargeted

nTAH attack on level 2 of the ASHRAE 1312-RP.

We use εr(l) to denote the value of εr of the constraints of

level l in the convex program (5), whileσ2(l) and ζ(l) are used to

represent the average perceptibility factor and success ratio for

level l, respectively. From Fig. 4, we see that when εr(1) (εr(2))
increases, the success ratio ζ(1) (ζ(2)) and the average percep-

tibility factor σ2(1) (σ2(2)) increase proportionally. Moreover,
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TABLE I
FAULT CATEGORIES AND THEIR CORRESPONDING INTENSITIES FOR THE ASHRAE PROJECT 1312-RP

Fig. 2. HFDD model of the ASHRAE 1312-RP. The accuracy of each local classifier is shown in green squares.

Fig. 3. HFDD model of the ASHRAE 1043-RP. The accuracy of each local classifier is shown in green squares.

TABLE II
FAULT CATEGORIES AND THEIR CORRESPONDING INTENSITIES FOR THE

ASHRAE PROJECT 1043-RP

as εr(1) (εr(2)) exceeds 5 (1.5), ζ(1) (ζ(2)) saturates but σ2(1)
(σ2(2)) continues to increase. Hence, we choose εr(1) = 5 and

εr(2) = 1.5. This selection is based on achieving a high success

ratio and low perceptibility factor. For both datasets, a similar

procedure is used to select the values for εr and εn. Results are

presented in Table III. Note that the values of εr and εn are the

same for the level 1 attack of the same dataset, due to the use of

a binary classifier at the initial detection level.

The results presented in Table IV illustrate an example of

selecting the hyperparameters λ and T of the proposed ADMM

solver. The results are given in terms of the average perceptibility

factor σ2 and the success ratio ζ for different values of λ at

Fig. 4. Constant εr(l) for level 1 (left) and level 2 (right) as a function
of the average perceptibility factor σ2(l) and success ratio ζ(l) averaged
over 200 trials.

TABLE III
THE SELECTED VALUES OF εr AND εn FOR EACH ATTACK LEVEL FOR THE

ASHRAE 1312-RP AND 1043 DATASETS

T = 10, 30, and 50. As λ and T increase, both ζ and σ2

increase proportionally. It is observed that for a constant value

of T , such as T = 50, ζ stops increasing as λ reaches a certain

threshold (λ = 0.2 for T = 50), while σ2 continues to increase.
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TABLE IV
ADMM PARAMETERS, λ AND T , AS A FUNCTION OF THE PAIR

{ζ(%), σ2(%)} AVERAGED OVER 200 TRIALS

TABLE V
PENALTY FACTOR (λ) FOR EACH LEVEL ATTACK FOR ASHRAE 1312-RP

AND 1043-RP DATASETS

Therefore, to satisfy the twin objective of high success ratio

and low perceptibility factor, we select T = 50, and λ = 0.2.

The same approach is followed to select the optimal ADMM

hyperparameters in other experiments. Table V shows the best

penalty factor λ for each dataset for every attack level. The

number of iterations T is selected as 15, 50, and 50 for nPath,

nTAH, and the average case targeted attacks, respectively.

Targeted attacks results: Here, we present results to show the

efficiency of our proposed method for targeted attacks w.r.t. the

intensity levels of the proposed HFDD models. Perturbations

are generated by solving (5) where we use two criteria to select

the target labels [11]. First, the “average” case where the target

label t is chosen uniformly at random. Second, the “worst” case

where the target label is the one yielding the maximum distance

function D(η) among all labels.

The results are shown in Table VI for ASHARE 1312-RP

and 1043-RP. We compare our ADMM solver with the com-

mercial CVX solver. In terms of the average imperceptibility,

our proposed ADMM outperforms the CVX solver for all the

scenarios except level 2 of ASHRAE 1043-RP experiments. For

example, the level 3 ASHRAE 1312-RP average case requires

an average imperceptibility of 46.41% for CVX in comparison

to 34.07% with the ADMM solver. Furthermore, the required

average run-time (tavg) our attacks are significantly smaller than

those needed for the CVX solver. For example, the average

execution time for targeted attacks (average case) is 0.065 s

for the ADMM solver versus 0.235 s for the CVX solver for

ASHRAE 1312-RP dataset.

Figs. 6 and 7 show original and perturbed samples using the

proposed targeted attacks of level 3 for ASHARE 1312-RP and

1043-RP, respectively, when the target label is selected based

on the two aforementioned scenarios. For “average” case, we

observe that the perturbed sample (red sold line) is very similar to

the original sample (black) with ρ2(%)= 33.79% (for 1312-RP)

and 33.18% (for 1043-RP). For the worst case attack sample, we

observe that the perturbed sample (red dashed line) is different

from the original (as also reflected by the high ρ2 values). The

Fig. 5. Confusion matrices before (right) and after (left) applying the
nTAH attack at l = 2 for AHSRAE: 1312-RP (top), and 1043-RP (bot-
tom).

Fig. 6. Sample from the ASHRAE 1312 dataset classified as “EADS
(FC)” (black), and its perturbed versions using the nPath (black), nTAH
(dotted black), average case targeted (red), and worst case targeted
(dotted red) attacks. The predicted labels for the perturbed vectors are
different from the original prediction.

Fig. 7. Sample from the ASHRAE 1043 dataset classified as “RL(–
40%)” (black), and its perturbed versions using the nPath (black), nTAH
(dotted black), average case targeted (red), and worst case targeted
(dotted red) attacks. The predicted labels for the perturbed vectors are
different from the original prediction.

high values of imperceptibility is due to selecting the label with

the largest distance function (D(η)).
Nontargeted attacks results: For the nontargeted attacks, we

present results for the nTAH and nPath methods and compre

them in terms of ζ(%) and σ2(%). Table VII shows results for

every HFDD level l using our proposed ADMM and the CVX
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TABLE VI
RESULTS OF THE TARGETED ATTACKS WITH WORST AND AVERAGE CASE SCENARIOS IN TERMS OF FOOLING RATIO, IMPECEPTIBILITY, AND RUN-TIME USING

THE COMMERCIAL CVX SOLVER AND OUR PROPOSED ADMM-BASED SOLVER

TABLE VII
RESULTS OF THE NONTARGETED ATTACKS IN TERMS OF FOOLING RATIO, IMPECEPTIBILITY, AND RUN-TIME USING THE COMMERCIAL CVX SOLVER AND OUR

PROPOSED ADMM-BASED SOLVER FOR THE TWO PROPOSED ALGORITHMS

solvers for the ASHRAE 1312-RP and 1043-RP datasets. We

make the following observations.

First, for all the considered scenarios, the nPath method

outperforms the nTAH approach in terms of impeceptibility as

observed in the smaller σ2(%) values. For instance, the nPath

level 2 attack for 1312-RP requires σ2(%) of 12.35% versus

23.6% for nTAH. Second, the ADMM and CVX solvers achieve

similar values of ζ(%) and σ2(%) for each level, e.g., the pair

{ζ(%), σ2(%)} of the nTAH level 2 attack is {99.00, 23.64} for

CVX, and {98.08, 25.49} for the ADMM solver (for ASHRAE

1312-RP). When compared to CVX, our ADMM solver requires

less average run-time (tavg) to generate perturbations.

Fig. 5 shows the confusion matrices of the true labels (rows)

and the predicted ones (columns) before (left) and after (right)

the nTAH attack on the second HFDD level of the 1312-RP

(top) and 1043-RP (bottom) datasets. We observe that our nTAH

attack is successful at altering the prediction of 6843 (6100) out

of 6912 (6192) feature vectors for 1312-RP (1043-RP) dataset.

Figs. 6 and 7 show samples of the original and perturbed

examples generated from the nTAH and nPath attacks. Both

attacks are successful at altering the prediction. We observe that

the nTAH attack is successful at changing the prediction from

“EADS (FC)” and “RL (–40%)” to “EADS (FO)” and “RL (–

10%),” while reporting ρ2(%) of 19.5% and 13.3% for the 1312-

RP and 1043-RP, respectively.

Comparison to SSC and overall performance: Here, we em-

pirically show that the proposed HFDD model is more robust

than the SSC. For the SSC, we train a 16-class (one nonfaulty

class and 15 fault intensity classes) and 29-class (one nonfaulty

class and 28 fault intensity classes) classifiers with classification

accuracy of 99.83% and 98.13% for the ASHRAE 1312-RP and

1043-RP datasets, respectively. The parameter εs is selected to

be 1.2 and 0.5 (0.65 and 0.5) for the targeted and nontargeted

attacks, respectively, for ASHARE 1312-RP (1043-RP). To this

TABLE VIII
COMPARISON RESULTS BETWEEN THE PROPOSED HFDD MODEL AND THE

SSC IN TERMS OF THE FOOLING RATIO AND IMPERCEPTIBILIY

end, (11) is used to generate targeted and nontargeted distur-

bances against the SSC. For the targeted case, the target label

t is chosen randomly. For the nontargeted case, we replace the

target label t with the label c ∈ [M ] \ {Cp(x)} that achieves

minimum perceptibility

min
η

D(η) subject to

η
T
(

∇xft(x)−∇xfcp(x)(x)
)

≥

fcp(x)(x)− ft(x) + εs , ∀p ∈ [M ] \ {t}. (11)

Table VIII presents the results for the SSC and the HFDD

model attacks at level l = 3. We observe that at similar success

ratio, ζ(%), a larger perturbation is required to fool the HFDD

model than the SSC (higher σ2), indicating that it is easier

to fool the SSC system when compared to the HFDD model.

The reason is that for the HFDD model, in order induce any

misclassification; the attacker must change the prediction of

multiple local classifiers along the corresponding route of the

hierarchical structure. For example, let the target label to be

“RL (–10%)” t = c5,1 (from Fig. 3). In this case, the perturbed

features must be classified as “faulty” (c1,1), then “RL” (c2,3),

and finally “–10%” (c5,1). For the SSC, it is only required that

the perturbed sample be classified as c5,1.
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V. CONCLUSION AND FUTURE WORK

Existing FDD models have largely focused on SSCs. By

contrast, in this article we studied attacks exposing the vulner-

ability of coarse-to-fine fault detection and multilevel diagnosis

systems. To our knowledge, this work is the first to explore adver-

sarial attacks on buildings AFDD models. We formulated convex

optimization problems and developed two algorithms to obtain

nontargeted and targeted attacks on the HFDD model. Based

on experimental results using two real-world datasets of mea-

surements from AHUs and chillers, we illustrated the efficiency

of the proposed methods in terms of both the misclassification

rate and the imperceptibility of the attack. Our ADMM-based

solver was shown to outperform the state-of-the-art commercial

convex solver. Our results have shown that the HFDD is more

robust to additive disturbances than SSC-based FDD models

since inducing misclassifications requires fooling multiple levels

in the hierarchy.

As future directions, we plan to investigate attacks on HFDD

in black-box settings where access to the classification model

parameters is unavailable. In addition, we plan to extend the

proposed attack formulations to complex dynamical networks

settings with missing measurements and different environments,

as done in the work presented in [30]. Furthermore, we aim

to investigate the integration of the proposed methods with

various defense approaches, such as the minimax formulation

of adversarial training.
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