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Exploring The Predictive Capabilities of AlphaFold

Using Adversarial Protein Sequences
Ismail R. Alkhouri, Member, IEEE, Sumit Jha, Senior Member, IEEE, Andre Beckus, Member, IEEE, George

Atia, Senior Member, IEEE, Susmit Jha, Senior Member, IEEE, Rickard Ewetz, Senior Member, IEEE, and

Alvaro Velasquez, Member, IEEE

AbstractÐProtein folding neural networks (PFNNs) such as
AlphaFold predict remarkably accurate structures of proteins
compared to other approaches. However, the robustness of
such networks has heretofore not been fully explored. This is
particularly relevant given the broad social implications of such
technologies and the fact that biologically small perturbations to
non-critical residues of a protein sequence do not typically lead
to drastic changes in the protein structure. Our study demon-
strates that, similar to adversarial methods in machine learning,
small changes to protein sequences can result in significant
differences in the predicted protein structures using AlphaFold
as determined by large distance measures. Despite this, our
findings using multiple protein sequences suggest that AlphaFold
is able to accurately predict the domain structure and folding
regions of a protein. To gauge structural differences, we em-
ploy two alignment-based measures (root-mean-square deviation
(RMSD) and the Global Distance Test (GDT) similarity), and one
alignment-free measure, which is an effective Graph-based Struc-
ture Representation (GraSR) method. We prove that the problem
of minimally perturbing protein sequences is NP-complete. Based
on the well-established BLOSUM62 sequence alignment scoring
matrix, we generate adversarial sequences. In our experimental
evaluation, we consider 111 proteins (including 29 COVID-19
sequences) in the Universal Protein resource (UniProt), a central
resource for protein data. Our findings suggest that, despite
the high RMSD values returned by AlphaFold, it is capable of
handling the BLOSUM adversarial sequences considered in our
analysis, as evidenced by the preservation of the folded regions
and the GraSR results.

Impact StatementÐThe ability to obtain 3D structures of
proteins is crucial for advancing our understanding of their func-
tionalities, and Alphafold, a machine learning-based system, has
demonstrated remarkable success in predicting these structures.
However, the adoption of advanced machine learning models
and artificial intelligence systems like protein folding neural
networks (PFNNs) poses potential security and safety threats.
Our investigation of the impact of adversarial protein sequences
on the predictions made by PFNNs, including Alphafold, will
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Fig. 1: The structure of the original (blue) and adversarial (red)

sequences predicted using AlphaFold for the Small glutamine-

rich tetratricopeptide repeat-containing protein alpha sequence.

The length of the protein sequence is denoted by n. For

structures, the Root Mean Square Deviation (RMSD) is given

in Angstroms (equal to 10−10 meters and denoted by Å)

after their alignment using PyMol [1], and GraSR2 is the

l2 distance of the Graph Structure Representation (GraSR)

structural vector descriptors.

inform the development of safer and more secure protein folding
technologies, advancing our understanding of protein functional-
ities and contributing to the ongoing exploration of the potential
of machine learning-based systems.

Index TermsÐProtein Folding Neural Networks, AlphaFold,
BLOSSUM62 Distance, Adversarial Protein Sequences, Neural
Networks Robustness

I. INTRODUCTION

Proteins form the building blocks of life as they enable

a variety of vital functions essential to life and reproduc-

tion. Naturally occurring proteins are bio-polymers typically

composed of 20 amino acids and this primary sequence of

amino acids is well known for many proteins, thanks to high-

throughput sequencing techniques. However, in order to un-

derstand the functions of different protein molecules and com-

plexes, it is essential to comprehend their three-dimensional

(3D) structures. Until recently, one of the grand challenges

in structural biology has been the accurate determination of

the 3D structure of the protein from its primary sequence.

Such accurate predictive protein folding promises to have a

profound impact on the design of therapeutics for diseases

and drug discovery [2].
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AlphaFold [3] achieved unparalleled success in predicting

protein structures using neural networks and remains first

at the Critical Assessment of protein Structure Prediction

(CASP14), which corresponds to year 2020, competition.

While AlphaFold has been celebrated as a major advancement

in structural biology [4], its ability to predict the structure of

adversarially perturbed sequences has yet to be fully examined.

The main contribution of this paper is to investigate the

impact of adversarial protein sequences on AlphaFold’s per-

formance. First, we present the problem of adversarial attacks

on Protein Folding Neural Network (PFNN) and prove it

is NP-complete. To identify a space of similar protein se-

quences used in constructing adversarial perturbations, we use

sequence alignment scores [5], such as those derived from

Block Substitution Matrices (BLOSUM62). For the output

structures, we leverage standard metrics commonly used in

CASP, including the root-mean-square deviation (RMSD) and

the Global Distance Test (GDT) similarity measure between

the predicted structure and the structure of its adversarially

perturbed sequence. Second, we generate examples where

slight variations in protein sequences result in significantly

different 3D protein structures, as measured by large distance

metrics. To supplement our analysis, we utilize an alignment-

free method, Graph-based protein Structure Representation

learning (GraSR) [6], which indicates that AlphaFold pre-

serves the underlying domain and folding structures of the

protein despite the observed differences in structure when

using distance metrics. However, we do not make any claims

about AlphaFold’s susceptibility to adversarial sequences, as

further research is needed to draw definitive conclusions. Our

study provides insights into the marked differences in 3D

protein structures resulting from small sequence variations

while preserving domain and folding structures. These insights

can help guide further investigations in this area. See Figure 1

and its caption for an example.

Moreover, we conduct two experiments investigating the

choice of the BLOSUM threshold and the use of the pre-

diction, per-residue, confidence information obtained from

AlphaFold. Our experiments show that different input pro-

tein sequences have very different adversarial robustness as

determined by the RMSD (GDT-TS) in the protein structure

predicted by AlphaFold. These values range from 1.011Å

(0.43%) to 49.531Å (98.8%) when the BLOSUM62 distance

between the original and adversarial sequences is bounded by

a threshold of 20 units with a hamming distance of 5 residues

only.

II. SUMMARY AND RELATED WORK

Nearly four decades ago, it was observed that two pro-

tein structures with 50% sequence identity align with an

RMSD of around 1 Å from each other [7]. Additionally,

even proteins with 40% sequence identity and at least 35

aligned residues align within an RMSD of approximately

2.5 Å [8]. This raises the question: Should highly accurate

PFNNs [9], [10] be able to predict similar structures when

only a few residues in the input sequence are changed? The

phenomenon of sequence-similar proteins producing similar

structures have been observed in larger studies [11]. As with

almost any rule in biology, a small number of counterexamples

to the conventional wisdom of similar sequences leading to

similar structures do exist, wherein even small perturbations

can potentially alter the entire fold of a protein. However,

such exceptions are not frequent and often lead to exciting

investigations [12], [13].

Manipulating the multiple sequence alignment step of Al-

phaFold has been studied in [14] using in silico mutagenesis.

However, there, the goal is not to study the robustness of

the protein folding neural networks, but rather to enhance the

prediction capability of AlphaFold in terms of the intrinsic

conformational heterogeneity of proteins. The authors in [15],

present a method that manipulates inputs to obtain diverse

distinct structures that are absent from the AlphaFold training

data. Using membrane proteins, the authors show that their

method enhances the multiple sequence alignment step while

generating more accurate structures.

In general, it has been demonstrated that AlphaFold predic-

tions are not stable and should not be trusted with mutated

sequences (not wild-type sequences) [16], [17]. However,

evaluating AlphaFold capabilities in handling BLOSUM-based

adversarial sequences, such as the ones in this paper, are yet

to be explored.

The work in [18] is aimed at generating adversarial se-

quences in order to cause significant damage to the output

predicted structure of RosettaFold [10], which, according to

CASP, is the second best protein folding neural network.

However, the authors only show results for a few proteins

and do not consider all the standard metrics for measuring the

output structures. In contrast, in this paper, we present results

for more than 100 sequences, derive a complexity proof for the

problem of finding adversarial protein sequences, and, based

on the CASP competition, utilize all the standard metrics for

measuring the output structures.

A. Robustness Metric using Adversarial Attacks

Given a protein sequence of n residues, denoted as S =
s1s2 . . . sn, with an associated three-dimensional structure

A(S) = (x1, y1, z1), . . . , (xn, yn, zn), we define a set of

biologically similar sequences, denoted as V , using the Block

Substitution Matrices (BLOSUM) [5]. Then, we utilize ad-

versarial attack techniques [19] on PFNNs within this space

of similar sequences to identify a sequence Sadv ∈ V that

produces a maximally different three-dimensional structure

A(Sadv). We then compute the RMSD, GDT, and GraSR

between the structures for the original and adversarial inputs

(A(S) and A(Sadv)).

B. BLOSUM Similarity Measures

Given two sequences of n residues S =
s1s2 . . . sn and S′ = s′1s

′
2 . . . s

′
n, in which

every residue si (or s′i) is from the set X =
{A,R,N,D,C,Q,E,G,H, I, L,K,M,F, P, S, T,W, Y, V }
of amino acids, a natural question is how to compute the

sequence similarity Dseq between these proteins. A naive

approach would be to count the number of residues that are
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different, i.e., the Hamming distance. However, an analysis

of naturally occurring proteins shows that not all changes in

residues have the same impact on protein structures. Changes

to one type of residue are more likely to cause structural

variations than changes to another type.

Early work in bioinformatics focused on properties of

amino acids and reliance on genetic codes. However, more

modern methods have relied on the creation of amino acid

scoring matrices that are derived from empirical observations

of frequencies of amino acid replacements in homologous

sequences [20], [21]. The original scoring matrix, called the

PAM250 matrix, was based on empirical analysis of 1572
mutations observed in 71 families of closely-related proteins

that are 85% or more identical after they have been aligned.

The PAM1 model-based scoring matrix was obtained by

normalizing the frequency of mutations to achieve a 99%

identity between homologous proteins. These results were

then extrapolated to create the PAM10, PAM30, PAM70 and

PAM120 matrices with 90%, 75%, 55%, and 37% identity

between homologous proteins.

Another interesting approach [5] to understanding protein

similarity is the direct counting of replacement frequencies

using the so-called Block Substitution Matrices (BLOSUM).

Instead of relying solely on sequences of homologous proteins

that are relatively harder to find, the BLOSUM approach

focuses on identifying conserved blocks or conserved sub-

sequences in a larger variety of proteins potentially unrelated

by evolutionary pathways and counts the frequency of replace-

ments within these conserved sub-sequences. BLOSUM62

(Figure 2), BLOSUM80 and BLOSUM90 denote block substi-

tution matrices that are obtained from blocks or subsequences

with at least 62%, 80%, and 90% similarity, respectively. The

BLOSUM matrix [Bij ] is a matrix of integers where each

entry denotes the similarity between residue of type bi ∈ X
and type bj ∈ X . See Figure 2.

We identify the space of biologically similar sequences V
for a given protein sequence S with respect to the BLO-

SUM distance. Based on the BLOSUM distance, we examine

the predicted structures for similar sequences. In particular,

we verify if the structural measures between the predicted

structure A(S) and the structure of the adversarial sequence

A(Sadv) are large or small. We adopt a sequence similarity

measure that counts replacement frequencies in conserved

blocks across different proteins.

III. APPROACH

Our approach to evaluating the robustness of PFNNs as a

machine learning model to minimally perturbed inputs is based

on two main ideas: (i) the existence of adversarial examples in

PFNNs that produce adversarial structures that are possibly at

a large distance from the original structure, and (ii) the use of

BLOSUM for identifying a neighborhood of a given sequence

comprising biologically similar sequences, and hence expected

to yield similar 3D structures. We utilize the RMSD, GDT, and

GraSR between the structure of an original protein sequence

and the structure of the adversarial sequence as a measure of

robustness of a protein folding network on the given input. In

A R N D C Q E G H I L K M F P S T W Y V

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0

R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3

N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3

D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3

C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1

Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2

E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2

G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3

H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3

I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3

L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1

K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2

M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1

F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1

P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2

S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2

T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0

W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3

Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1

V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

Fig. 2: The BLOSUM62 matrix.

this work, we focus on the state-of-the-art AlphaFold model,

the winner of the 1st place in CASP2020.

A. Sequence Similarity Measures

Given two sequences S = s1s2 . . . sn and S′ = s′1s
′
2 . . . s

′
n,

the BLOSUM distance between the two sequences is given by

Equation (1) below.

Dseq(S, S
′) =

∑

i∈[n]

(

Bsisi −Bsis
′

i

)

. (1)

For an illustrative example of Dseq, see Figure 3.

B. Output Structural Measure

Given a sequence of n residues S = s1s2 . . . sn, its

three dimensional structure A(S) is an ordered n-tuple

of three-dimensional co-ordinates (x1, y1, z1), . . . (xn, yn, zn).
Our goal is to utilize a structural distance measure that captures

the variations in the two structures A(S) and A(S′) and is

invariant to rigid-body motion. Therefore, in this work, we use

standard structural distances, namely the RMSD, measured in

Å, and the GDT with its two variants: (i) the Total Score (TS)

and (ii) the High Accuracy (HA) [22].

Given the output structure of the adversarial sequence

A(S′), an alignment algorithm is employed before computing

the RMSD and GDT measures between the two structures

of interest. We use the alignment procedure implemented in

PyMOL [1] to align A(S′) with regard to the target structure

A(S). Let the aligned structure be denoted by Â(S′) =
(x̂′

1, ŷ
′
1, ẑ

′
1), . . . , (x̂

′
n, ŷ

′
n, ẑ

′
n). Then, the RMSD, measured in

Å, is obtained as

RMSD(A(S), Â(S′)) =

√

√

√

√

1

n

∑

i∈[n]

d(A(S)i, Â(S′)i) , (2)

where d(A(S)i, Â(S′)i) = (xi− x̂′
i)

2+(yi− ŷ′i)
2+(zi− ẑ′i)

2

and A(S)i represents the 3D carbon-alpha coordinates of the

ith residue. Using the carbon-alpha coordinates is the standard

approach in CASP [22].

Another standard metric for gauging the similarity of protein

structures is the GDT similarity measure, introduced by [22]
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MDLFMRFFTLGSITAQPVKIDNASPASTVHATATIPLQASLPFGWLVIGVAFLAVFQSATKIIALNKRWQLALYKGFQFICNLLLLFVTIYSHLLLVAAG𝑆𝑆1′𝑆2′𝑆3′𝑆4′𝑆5′𝑆6′𝑆7′𝑆8′𝑆9′𝑆10′

DVPSMRFFTLGSITAQPVKIDNASPASTVHATATIPLQASLPFGWLVIGVAFLAVFQSATKIIALNKRWQLALYKGFQFICNLLLLFVTIYSHLLLVAAG

FGCYMRFFTLGSITAQPVKIDNASPASTVHATATIPLQASLPFGWLVIGVAFLAVFQSATKIIALNKRWQLALYKGFQFICNLLLLFVTIYSHLLLVAAG

MDLFMRFFTLGSITAQPIRVPNASPASTVHATATIPLQASLPFGWLVIGVAFLAVFQSATKIIALNKRWQLALYKGFQFICNLLLLFVTIYSHLLLVAAG

MDLFMRFFTLGSITAQPVKIDNASPASTVHATATIPLQASLWAYKLVIGVAFLAVFQSATKIIALNKRWQLALYKGFQFICNLLLLFVTIYSHLLLVAAG

MDLFMRFFVIAAVTAQPVKIDNASPASTVHATATIPLQASLPFGWLVIGVAFLAVFQSATKIIALNKRWQLALYKGFQFICNLLLLFVTIYSHLLLVAAG

MDLFMRFFTLGSITAQPVKIDNASPASTVHATATIPLQASDIERRLVIGVAFLAVFQSATKIIALNKRWQLALYKGFQFICNLLLLFVTIYSHLLLVAAG

MDLFMRFFTLGSITAQPVKIDNASPASTVHATATIPLQASLPFGWLVIGVAFLAVFQSATRVLTMKKRWQLALYKGFQFICNLLLLFVTIYSHLLLVAAG

MDLFMRFFTLGSITAQPVKIDNASPASTVHATATIPLQAVEFQLVLVIGVAFLAVFQSATKIIALNKRWQLALYKGFQFICNLLLLFVTIYSHLLLVAAG

MDLFMRFFTLGSITAQPVKIDNASPASTVHATATIPLQASLPFGWLVIGVAFLAVFQSATKIIALNKRWQLALYKGFQFICNLACMYISMYSHLLLVAAG

MDLFMRFFTLGSITAQPVKIDNASPASTVHATATIPLQASDIGIINGIGVAFLAVFQSATKIIALNKRWQLALYKGFQFICNLLLLFVTIYSHLLLVAAG

𝐷seq32201242174918572365

𝐷ham4444556677

Original and Adversarial Sequences 

Fig. 3: The original sequence S is followed by 10 sequences generated by changing 4, 5, 6, and 7 residues. While the BLOSUM

distance may not specifically focus on protein functionality, when comparing two protein sequences, the BLOSUM distance

offers a metric to compute a biologically relevant distance in contrast to the Hamming distance.

and commonly used in the CASP competition along with the

RMSD. In some cases, the latter is known to be sensitive to

outliers [22]. The GDT score returns a value in [0, 1] where 1
indicates identical structures, and is computed with respect to

four thresholds, δj , as

GDT(A(S), Â(S′)) =

1

4n

∑

j∈[4]

∑

i∈[n]

1
(

d(A(S)i, Â(S′)i) < δj
)

, (3)

where the thresholds δ1, δ2, δ3, and δ4 for TS (HA) are given

by 1(0.5), 2(1), 4(2), and 8(4) for j equals to 1, 2, 3, and

4, respectively, and 1(·) is the indicator function. In (3), each

j ∈ [4] reflects the number of residues in the structures for

which the distance is less than δj .

In addition to distance metrics, we use an alignment-free

method called Graph-based protein Structure Representation

learning (GraSR) [6]. GraSR is a learning-based approach that

aims at circumventing the challenges associated with sequence

segmentation and feature engineering, which is achieved by

leveraging deep neural networks to automatically learn struc-

tural representations. GraSR combines graph NNs (GNNs)

and long short-term memory (LSTM) units, where protein

structures are initially represented as graphs using intra-residue

distances. Subsequently, an encoder is optimized through a

contrastive learning framework. The concept behind this is

that GNNs have a greater capacity to learn both global and

local geometric features of residues. See Figure 1 in [6] for

an example. In short, GraSR is a trained NN that produces a

400-dimensional vector representation (descriptor) of a protein

structure g(A(S)) ∈ R
400, incorporating domain rotations.

This means that the features from GraSR are obtained from a

forward pass of a pre-trained GNN.

To measure the distance between the original and adver-

sarial structural representations, we use the lp-norm with

p ∈ {2,∞}, defining GraSRp as:

GraSRp(A(S),A(S′)) = ∥g(A(S))− g(A(S′))∥p , (4)

where g(A(S)) is the GraSR descriptor vector for structure

A(S), and ∥ · ∥p is the lp-norm.

C. Adversarial Attacks on PFNNs

Small carefully crafted changes in a few pixels of input

images cause well-trained neural networks with otherwise

high accuracy to consistently produce incorrect responses in

domains such as computer vision [23], [24], [25], [26]. Given a

neural network A mapping a sequence S of residues to a three-

dimensional geometry A(S) describing the structure of the

protein, we seek to obtain a sequence S′ such that the sequence

similarity measure Dseq(S, S
′) between S and S′ is small

and some structural distance measure Dstr(A(S),A(S′)) is

maximized. This can be achieved by solving the following

optimization problem

max
S′

Dstr (A(S),A(S′)) s.t. Dseq(S, S
′) ≤ L . (5)

In our experiments, we set L = 20 and Dstr as the RMSD

measure. Given the discrete nature of the input sequences,

well-known methods for generating adversarial examples (e.g.

gradient-based methods) fail to produce valid and accurate

results. As such, we propose a solution based on a brute-force

exploration in the space of biologically similar sequences that,

given a sequence of interest S with n residues, can be defined

as
VL,H(S) = {S′ ∈ Xn | Dseq(S, S

′) ≤ L and

Dham(S, S
′) ≤ H} ,

(6)

where Xn is the set of all possible sequences over X of

length n, Dham is the hamming distance, and H is a pre-

defined threshold. For long sequences, the search space can

be extensively large. Therefore, we select random samples

from VL,H(S) and choose the sequence that returns the

maximum value based on the RMSD measure. Our approach

to generating adversarial sequences falls under the class of

black-box attacks. This means that we only have access to the

output of the network [27].

It is worth noting that the inference time of complex

protein folding systems, which apply multiple processing and

alignment steps prior to the use of any neural network, such

as AlphaFold is extremely high compared to NN-based image

classifiers. The forward pass of such systems involves a large

number of computations. This fact, along with the discrete

nature of the input space, are the bottleneck of developing

more complex black-box attacks [28], which in general require
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a high number of queries. Given the high computational cost

of generating the structure of a single sequence in AlphaFold

and the discrete nature of the input sequence, we believe that

these factors contribute to the absence of other baseline attack

methods for comparison in our experimental results.

IV. COMPLEXITY

In this section, we formalize the problem of generating an

adversarial attack for PFNNs and establish its complexity.

Definition 1 (PFNN Adversarial Attack (PAA) Problem).

Given a learning model A(.; θ) : Xn → (R×R×R)n mapping

residues to 3-dimensional coordinates and parameterized by θ,

a sequence S ∈ Xn, and a sequence alignment scoring matrix

B, find an input sequence S′ ∈ Xn such that Dseq(S, S
′) ≤ L

and Dstr(A(S),A(S′)) ≥ U , where the bounds L and U and

distance functions d and D are given.

We prove that the PAA problem is NP-complete. This es-

tablishes that, in general, there is no polynomial-time solution

to the PAA problem unless P = NP. Due to this complexity and

for ease of presentation, we adopt simple perturbation attacks

for our experiments in the next section. We begin by defining

the NP-complete problem to be reduced to an instance of the

PAA problem.

Definition 2 (CLIQUE Problem). Given an undirected graph

G = (V,E) and an integer k, find a fully connected sub-graph

induced by V ′ ⊆ V such that |V ′| = k.

Theorem 1. The PFNN Adversarial Attack (PAA) problem in

Definition 1 is NP-complete.

Proof: It is easy to verify that the PAA problem is in NP

since, given a solution sequence S′, one can check whether

the constraints Dseq(S, S
′) ≤ L and Dstr(A(S),A(S′)) ≥ U

are satisfied in polynomial time. It remains to be shown

whether the PAA problem is NP-hard. We establish this result

via a reduction from the CLIQUE problem in Definition 2.

Given a CLIQUE instance ⟨G = (V,E), k⟩ with |V | = n
and |E| = m, we construct its corresponding PAA instance

⟨A(. ; θ), S,B, L, U⟩ as follows. Without loss of generality,

let us consider a restricted version of the PAA problem where

there are only two residue types {N,K} with the correspond-

ing BLOSUM62 sub-matrix B′ = 6 · I , where I denotes

the identity matrix. Following the one-hot representation of

residues adopted in [9], any input tensor over {N,K} is

represented as a one-hot encoding Sin ∈ (B× B)n to be used

as an input tensor to A, where sin
i0 = 1 (sin

i1 = 1) denotes that

residue sin
i is of type N (K). Let S = (N,N, . . . , N) denote

the all-N sequence. We set L = 6k and U = k(k−1)
2

√

3
n

.

The connectivity structure of A is derived from the edges E
in the CLIQUE instance as follows. The first column of the

input tensor corresponding to sin
i0 for all i ≤ n is disconnected

from the network and the second column corresponding to

sin
i1 is connected to A such that, for each edge (vi, vj) ∈ E,

we have a connection from sin
i1 and sin

j1 to each of the three

outputs in the first three-dimensional coordinate of A(Sin)1.

All connections have a weight of unity and this defines

the parameters θ of the model A. Therefore, without loss

of generality, we are only considering the first of the n
output three-dimensional coordinates A(Sin)1. In particular,

these values keep track of the number of edges induced by

the vertices in G corresponding to the non-zero entries in

sin
11, . . . , s

in
1n. We now prove that there is a clique of size k

in G if and only if there is a feasible solution Sin = S′ to the

reduced PAA instance.

( =⇒ ) Assume there is a clique of size k in G. We can

derive a feasible solution S′ to the reduced PAA instance as

follows. For every vertex vi ∈ V (not) in the clique, let (s′i0 =
1) s′i1 = 1. Since S is the all-N sequence, its corresponding

one-hot encoding consists of si0 = 1 for all 1 ≤ i ≤ n. Thus,

the corresponding BLOSUM62 distance is

Dseq(S, S
′) =

∑

1≤i≤n

(6− 6 · 1(si ̸= s′i)) = 6k . (7)

This satisfies the sequence alignment constraint defined by

Dseq(S, S
′) ≤ L = 6k. Furthermore, the solution S′ induces

outputs of x′
1 = y′1 = z′1 = k(k − 1)/2, leading to

an RMSD of U . Without loss of generality, we omit the

alignment step in computing the RMSD and therefore assume

that A(S′) = Â(S′). The corresponding RMSD distance

Dstr(A(S), Â(S′)) in output predictions is presented below.

Recall that x1 = y1 = z1 = 0 for the the all-N sequence S
because its corresponding column in the one-hot encoding is

disconnected from the network.

Dstr(A(S),A(S′)) =

√

√

√

√

1

n

∑

i∈[n]

d(A(S)i, Â(S′)i)

=

√

√

√

√

1

n

[

3

(

0−
k(k − 1)

2

)2
]

=
k(k − 1)

2

√

3

n
.

(8)

Thus, the constraint Dstr(S, S
′) ≥ U = k(k−1)

2

√

3
n

is

satisfied.

( ⇐= ) We prove the contrapositive. That is, if there is

no clique of size k in G, then the reduced PAA instance

is infeasible. We proceed by showing that there must be

exactly k non-zero entries in the column vector {s′i1|i ≤ n}
in order to satisfy constraints Dseq(S, S

′) ≤ L = 6k and

Dstr(A(S),A(S′)) ≥ U and that, if there is no clique

of size k, then there is no choice of k non-zero entries

in {s′i1|i ≤ n} that will satisfy these constraints. Let k′

denote the number of non-zero entries in {s′i1|i ≤ n}. To

satisfy Dseq(S, S
′) ≤ L = 6k, it follows that k′ ≤ k. If

k′ < k, then the maximum value of Dstr(A(S),A(S′)) is
k′(k′−1)

2

√

3
n
< k(k−1)

2

√

3
n

and denotes to the case where the

k′ non-zero entries correspond to a clique of size k′ in G. The

strict inequality is due to the monotonically increasing nature

of this equation. Therefore, it must be that k = k′ and we

have outputs x′
1 = y′1 = z′1 = k(k − 1)/2 as before. Suppose

that the k′ non-zero entries in {s′i1|i ≤ n} do not correspond

to a clique in G. Then the values x′
1, y′1, and z′1 output by

A and corresponding to the number of edges induced by the

chosen non-zero entries would be strictly less than k(k−1)/2.

Therefore, we would have Dstr(A(S),A(S′)) < U . This

proves that the reduced PAA is infeasible.
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TABLE I: RMSD results for the three considered categories

in the experiment conducted in Section V.A.

Seq. ID n Category RMSD µall µdiff µ′

all µ′

diff

Q01629 132 MIN. 6.02 64.63 32.44 60.99 36.99

Q01629 132 AVG. 19.92 64.63 64.75 63.77 69.57

Q01629 132 MAX. 19.906 64.63 66.99 90.21 90.19

Q5BJD5 291 MIN. 14.023 82.23 38.86 81.22 37.79

Q5BJD5 291 AVG. 14.232 82.23 82.24 81.17 77.23

Q5BJD5 291 MAX. 13.567 82.23 98.17 82.42 98.1

P59595 422 MIN. 24.74 68.25 29.13 67.57 31.5

P59595 422 AVG. 28.164 68.25 69.44 68.69 69.04

P59595 422 MAX. 24.62 68.25 96.14 67.51 96.44

P59633 154 MIN. 21.67 44.82 27.14 44.15 38.75

P59633 154 AVG. 21.52 44.82 45.1 43.8 42.26

P59633 154 MAX. 23.13 44.82 61.26 46.13 54.84

P0DTC9 419 MIN. 25.593 68.39 28.46 67.9 28.83

P0DTC9 419 AVG. 21.767 68.39 68.37 68.5 70.83

P0DTC9 419 MAX. 23.685 68.39 97.1 68.64 96.94

TABLE II: RMSD results when L ∈ {20, 30, 40} for the

experiment in Section V.B.

Seq. ID n L RMSD µall µdiff µ′

all µ′

diff

Q14653 427 20 18.87 79.76 92.92 79.46 86.29

Q14653 427 30 22.42 79.76 93.15 77.45 64.12

Q14653 427 40 28.28 79.76 90.49 79.42 69.026

Q5BJD5 291 20 14.311 82.23 89.77 80.6 80.64

Q5BJD5 291 30 15.708 82.23 59.26 83.13 43.53

Q5BJD5 291 40 17.132 82.23 62.02 83.21 62.83

P59595 422 20 24.321 68.25 91.44 67.05 89.51

P59595 422 30 30.139 68.25 93.142 67.44 89.29

P59595 422 40 30.675 68.25 46.87 66.4 29.33

P0DTC9 419 20 26.51 68.39 80.32 68.09 80.316

P0DTC9 419 30 26.27 68.39 68.05 68.61 65.18

P0DTC9 419 40 31.33 68.39 40.52 67.76 35.56

P07711 333 20 7.09 93.68 92.4 93.2 81.12

P07711 333 30 8.52 93.68 95.91 92.95 92.69

P07711 333 40 9.246 93.68 95.91 92.85 95.76

Q9Y397 364 20 11.184 84.24 97.35 83.85 95.81

Q9Y397 364 30 11.828 84.24 95.91 83.51 85.416

Q9Y397 364 40 14.222 84.24 95.91 83.71 89.79

V. EXPERIMENTAL RESULTS

For our experimental setup, we use the default settings of the

latest version of AlphaFold1. This includes the initial multi-

sequence alignment (MSA) step, the five-model ensembles

predictions, recycling, output confidence ranking, and amber

relaxation. For further details about each step, we refer the

reader to [3] and its supplementary information. We include re-

sults from using the high-accuracy full database configuration

of the initial AlphaFold MSA step along with the less accurate

(and faster) reduced database option. In order to compute the

RMSD and GDT, we need to employ an alignment algorithm.

In this paper, we use the built-in alignment PyMOL procedure

[1]. The parameters of PyMOL alignment are selected using

the default settings, which include an outlier rejection cutoff

of 2, a maximum number of outlier rejection cycles of 5, and

the use of the structural superposition step. We note that these

outliers only impact the calculations of the RMSD.

Our adversarial sequences are generated by randomly sam-

pling 20 sequences from the set VL,H in (6) with H = 5
and L = 20. Then, we pick the sequence that returns the

maximum value in RMSD structural distance. We use an

AMD EPYC 7702 64-Core Processor with 1 TiB of RAM

1https://github.com/deepmind/alphafold

and NVIDIA A100 GPU. We generate adversarial sequences

against the considered protein sequences from the UniProt

database considered by AlphaFold in [29]. The original fasta

(file extension for protein sequences) sequence files are avail-

able online2. Additionally, we generate adversarial sequences

against most of the the UniProt (Universal Protein resource,

a central repository of protein data created by combining the

Swiss-Prot, TrEMBL and PIR-PSD databases [30]). We have

made our code available online3.

A. Confidence Experiment

Given a sequence S, per residue, AlphaFold generates an

estimate of its prediction confidence in the form of a value in

[0, 100]. This value is called the predicted Local Distance Test

(pLDDT) and represents the predicted value on the lDDT-Cα
metric [31].

In this subsection, we answer the following question. Do the

substituted residues based on their low (or high) confidence

scores impact the resulting RMSD between the original and

adversarial structure prediction? Phrased differently, in terms

of the RMSD, we illustrate the impact of using the prediction

confidence scores of every residue of the predicted structure

of the original sequence in determining the location of the

residues to be altered in the adversarial sequence generation

method presented in the previous section. As such, five, not

cherry picked, randomly selected sequences are used. Then,

the locations of the 5 residues to be altered are taken based

on three categories as follows. Residues are selected with

confidence values near the (i) minimum confidence score

(MIN. category), (ii) the average score (AVG. category), and

(iii) the maximum confidence score (MAX. category). Results

are presented in Table I. Our analysis shows that, in general,

the RMSD of the output structure is not affected by the choice

of substituting residues with low or high confidence scores.

Therefore, in our method, the positions of the substituted

residues are chosen without considering the confidence scores.

B. BLOSUM Threshold Experiment

In this subsection, we want to investigate how a change

in the bound on biological similarity, w.r.t. the BLOSUM

distance, changes the adversarial sequence. In other words,

we show the impact of using different BLOSUM thresholds

in set VL,H . As such, we randomly select 6 sequences and

generate adversarial sequences by configuring the BLOSUM

threshold, L, to be 20, 30, and 40 (we use strict equalities

to ensure the exact BLOSUM distance) and set H = 5. For

each case, we obtain the RMSD after alignment as reported

in the fourth column of Table II. Furthermore, we present

the average confidence percentage level of the prediction of

the original (adversarial) sequence as reported by AlphaFold

and denoted by µall (µ′
all). Additionally, in the 6th and 8th

columns, we report the average confidence values for the

residues that are different between the original and adversarial

sequences. These are denoted by µdiff and µ′
diff, respectively.

2https://ftp.uniprot.org/pub/databases/uniprot/pre release/covid-19.fasta
3https://github.com/ialkhouri/PFNN Attacks
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ID: P0DTC6𝑛 =61
Sim = 91.8%
RMSD = 5.4Å
GDT = 54.1%

ID: P0DTC8𝑛 =121
Sim = 95.9%
RMSD = 17.7Å
GDT = 11.1%

ID: P13164𝑛 =125
Sim = 96%
RMSD = 30.6Å
GDT = 4.4%

ID: Q99836 𝑛 = 296
RMSD = 8.761Å

ID: P04439 𝑛 = 365
RMSD = 6.162Å

ID: P56962 𝑛 = 302
RMSD = 22.301Å

ID: P59632 𝑛 = 274
RMSD = 13.018ÅGraSR2 = 0.1372 GraSR2 = 0.0731 GraSR2 = 0.1425 GraSR2 = 0.1313

Fig. 4: The structures of the original (blue) and adversarial (red) sequences from AlphaFold. The 3D plots, aligned using

PyMol [1], are for proteins O43765 (first), P04439 (second), P56962 (third), and P59632 (fourth). For structure differences,

the RMSD values are reported. The structures of the complete list of sequences are attached in the provided anonymous link.

TABLE III: RMSD, GDT-TS, and GDT-HA results using the full database AlphaFold configuration with L = 20 and H = 5. The

average columns correspond to 20 adversarial samples for each protein ID. The complete table is placed in the supplementary

material.

Seq. ID n Similarity (%) RMSD Avg. RMSD GDT-TS (%) Avg. GDT-TS (%) GDT-HA (%) Avg. GDT-HA (%) run-time (days)

O43765 313 98.4026 14.438 9.1741± 3.7576 13.9776 35.4832± 18.3219 2.8754 17.6358 ± 14.6829 1.6068

P56962 302 98.3444 22.301 15.8695 ± 3.6513 12.3344 18.6921 ± 4.0056 3.4768 5.803 ± 1.9135 0.5959

P04439 365 98.6301 6.162 3.7942 ± 1.1511 47.7397 68.2705 ± 11.0327 25.0 45.774 ± 11.4072 0.6429

Q99836 296 98.3108 8.761 5.2907 ± 2.3055 24.1554 46.6723 ± 22.0819 7.6858 26.2584 ± 20.8061 0.6246

P59632 274 98.1752 13.018 8.4704 ± 2.4464 24.8175 41.0401 ± 14.257 9.0328 21.6834 ± 12.183 0.5214

TABLE IV: GraSR results using the full database AlphaFold

configuration with L = 20 and H = 5. RMSD results

are added for comparison. The complete list is given in the

supplementary material.

Seq. ID n RMSD GraSR2 GraSR∞

O43765 313 14.438 0.1588 0.0229

P56962 302 22.301 0.1425 0.0251

P04439 365 6.162 0.0731 0.0111

Q99836 296 8.761 0.1372 0.0204

P59632 274 13.018 0.1313 0.0184

We observe that, in general, when the BLOSUM threshold

distance increases, the RMSD also increases. This means that

biologically increased distance in the input space, in general,

causes higher changes in the output predictions of AlphaFold.

In terms of the confidence scores, we observe that the change

in the overall average confidence between the original and

perturbed sequence is not significant. However, in almost all

the considered cases, we notice that the prediction confidence

of the altered residues has reduced for the adversarial sequence

when compared to the ones reported for the original sequence.

C. UniProt Case Studies

We apply our adversarial approach to 111 publicly available

protein sequences as of the time of this writing per the UniProt

database (including 29 COVID-19 sequences) using AlphaFold

full database configuration. Additionally, in the supplemen-

tary material, we provide complete results using the reduced

AlphaFold configuration. The BLOSUM62 distance between

the original and adversarial sequences is at most 20, thus

they are biologically close to each other w.r.t the employed

distance measure [7], [8]. Given the long list of the considered

sequences, we describe only the following. SGTA HUMAN

Small glutamine-rich tetratricopeptide repeat-containing pro-

tein alpha (O43765), HLAA HUMAN HLA class I histocom-

patibility antigen, A alpha chain (P04439), STX17 HUMAN

Syntaxin-17 (P56962), AP3A SARS ORF3a (P59632), and

MYD88 HUMAN Myeloid differentiation primary response

protein MyD88 (Q99836). The cases covered include homo

sapiens and severe acute respiratory syndrome coronavirus 2

(2019-nCoV) (SARS-CoV-2) organisms which provide a wide

variety of proteins. The considered sequences vary in length

as they range from n = 22 to n = 2511.

Figures 1 and 4 show the aligned predicted structures of the

proteins described earlier where the original sequence is given

in blue and the adversarial sequence is given in red. Our results

indicate that even small changes to the input sequence can lead

to significant differences in the predicted output structures,

regardless of the structure of the original sequence. These

perturbed inputs can be considered as adversarial examples for

a machine learning model, in the sense that they are similar

to the original input but result in significant changes in the

output. However, from a biological perspective, we note that

AlphaFold is able to effectively preserve the domain structure

of the protein as evidenced by the visual similarity of the

folded regions in the structures of the original and perturbed

sequences, and reported by the GraSR metric that, unlike

RMSD and GDT, accounts for domain rotations. It is important

to note that the information obtained from these structures and

their robustness can also depend on the specific application

they are used for. In some cases, scientists only focus on the

folding shape of the 3D structure of the complete or a portion

of the sequence of interest [16].

The resulting structural distances (similarities) measured

in Å (percentage) are given in terms of the RMSD (GDT-

TS) in the fourth (sixth) column of Table III for the full

database configuration. Furthermore, we report the results
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TABLE V: Prediction confidence results using the full database AlphaFold configuration with L = 20.

Seq. ID n RMSD µall σall µdiff σdiff µ′

all σ′

all µ′

diff σ′

diff

O43765 313 14.438 80.221 19.634 94.786 1.027 80.554 19.423 93.71 1.392

P56962 302 22.301 69.172 23.753 96.516 0.409 69.342 23.759 96.54 0.463

P04439 365 6.162 86.845 18.995 44.23 2.704 86.921 19.068 44.678 3.968

Q99836 296 8.761 81.213 13.817 78.914 7.454 80.918 13.971 72.198 6.253

P59632 274 13.018 58.367 18.783 66.136 2.029 57.364 18.794 60.926 4.362

TABLE VI: Overall Prediction and attack results for the reduced and full database configurations of AlphaFold.

Configuration. Avg. n Std. n Avg. µall Std. µall Avg. RMSD Std. RMSD Avg. GDT Std. GDT Avg. run-time Std. run-time

reduced database 480.53 416.66 78.22 10.96 15.31 11.24 34.08 28.39 0.68 0.59

full database 410.73 336.63 78.25 10.23 14.78 11.18 34.95 28.16 0.86 0.63

using GDT-HA in the eighth column. The high similarity

between the original and adversarial sequences is observed

from the third column. The similarity percentage is calculated

as 100(n − Dham(S, S
′))/n, where Dham(S, S

′) ≤ H = 5.

The complete results of all the considered proteins, including

reduced AlphaFold configuration, are provided in the sup-

plementary material. In addition, the results of GraSR2 and

GraSR∞ are reported in Table IV.

As observed from the RMSD and GDT results in Table III,

a small change in the input sequence corresponding to the

substitution of only five residues cause AlphaFold to predict

structures that are highly divergent from the predicted structure

of the original sequence. We remark that further analysis

becomes protein-specific and contingent upon the specific ap-

plication at hand. Some researchers may prioritize examining

the folding characteristics of the 3D structure for the entire

protein or a specific region of interest. The implications and

significance of such alterations can vary based on the context

and objectives of the study. The last column in Table III reports

the total execution time (in days) of running the 20 adversarial

sequences that were randomly selected from the set VL,H ,

which is shown to scale with the sequence length. We only

select 20 samples given the long time incurred by AlphaFold

to predict the output structure.

Additionally, in Table V, we report the average (deviation)

prediction confidence results as for all the residues (designated

with subscript ‘all’) and for the 5 altered residues (subscript

‘diff’). The standard deviation is denoted σ. We observe that,

independent of the average prediction confidence, the RMSD

between the original and adversarial predicted structures is

always high. This is noted for both the full and reduced

database configurations of AlphaFold. Moreover, we observe

that AlphaFold predicts the adversarial structure with similar

confidence values to the original sequence (e.g., see the 4th

and 8th columns in both tables). The same observation holds

for the entire sequence and for the altered residues (columns

6 and 10). Although we observed significant changes in the

RMSD and GDT values, the similarity in the confidence values

and the preservation of most of the folding regions with high

confidence suggest that AlphaFold is performing as expected

in general. This is also observed from the results of Table IV.

In the last two tables of the supplementary material, we

present a breakdown of the GDT scores between the structures

of the original and perturbed sequences based on the prediction

confidence scores of the original sequence, using the regions

(1 to 4) defined by AlphaFold. As can be seen, the GDT scores

are generally low across all regions.

For the considered dataset, the values presented in Table VI

gauge the overall robustness of AlphaFold as an ML model to

adversarial sequences. As indicated in the documentation of

AlphaFold, for better accuracy, the full database configuration

incurs a longer execution time compared to the reduced

database configuration. The reported average values of the

RMSD and GDT-TS measures are 14.78Å and 37.95%, respec-

tively. In CASP14 (year 2020), AlphaFold achieved a median

GDT-TS score of 92.4%, and 88% of their predictions fall

under RMSD = 4Å 4. These results are obtained by comparing

the predicted structures and the groundtruth. The CASP14

AlphaFold results underscore the significance of the values

reported in Tables III and VI, as they show how small changes

in the input sequences could damage the predictions (See

columns 6 to 9 in Table VI). The main conclusion from our

study is that even though AlphaFold may return high RMSD

values when viewed from a machine learning perspective, the

preservation of the folded regions and the GraSR results of the

biological structure with similar confidence scores, indicate

that AlphaFold is generally able to handle the BLOSUM

adversarial sequences that were considered in our analysis.

VI. CONCLUSION

Recent advancements in the prediction of protein folding

structures hold great potential for understanding diseases,

mapping the human proteome, and designing drugs and thera-

peutics. However, this paper argues that further examination of

AlphaFold’s performance against BLOSUM-based adversarial

sequences is necessary. We present the first work in this area

by showing that Protein Folding Neural Networks (PFNNs) are

vulnerable to adversarial attacks through minor perturbations

of the input protein sequence. Despite these perturbations

causing significant changes in predicted protein structure as

determined by large distance measures, AlphaFold predictions

have, in general, preserved the biological structures. This is

surprising, given that previous studies have suggested that

Alphafold may not be well-suited for studying mutations. We

employed standard protein structural distance and similarity

measures to evaluate AlphaFold’s outputs, and suggest that

the results can be used as a baseline for future research on the

robustness of PFNNs against adversarial attacks.

For future work, it is worth exploring novel and faster ad-

versarial attacks for this discrete domain of protein sequences.

4https://predictioncenter.org/casp14/index.cgi
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Recent work on adversarial attacks on large language models

(LLMs) may hold some insights into how this can be achieved.

Indeed, the attack surface of LLMs is also governed by discrete

tokens that have been successfully attacked to bypass the

safety guardrails of tools such as Chat-GPT [32].
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