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Abstract—Protein folding neural networks (PFNNs) such as
AlphaFold predict remarkably accurate structures of proteins
compared to other approaches. However, the robustness of
such networks has heretofore not been fully explored. This is
particularly relevant given the broad social implications of such
technologies and the fact that biologically small perturbations to
non-critical residues of a protein sequence do not typically lead
to drastic changes in the protein structure. Our study demon-
strates that, similar to adversarial methods in machine learning,
small changes to protein sequences can result in significant
differences in the predicted protein structures using AlphaFold
as determined by large distance measures. Despite this, our
findings using multiple protein sequences suggest that AlphaFold
is able to accurately predict the domain structure and folding
regions of a protein. To gauge structural differences, we em-
ploy two alignment-based measures (root-mean-square deviation
(RMSD) and the Global Distance Test (GDT) similarity), and one
alignment-free measure, which is an effective Graph-based Struc-
ture Representation (GraSR) method. We prove that the problem
of minimally perturbing protein sequences is NP-complete. Based
on the well-established BLOSUMG62 sequence alignment scoring
matrix, we generate adversarial sequences. In our experimental
evaluation, we consider 111 proteins (including 29 COVID-19
sequences) in the Universal Protein resource (UniProt), a central
resource for protein data. Our findings suggest that, despite
the high RMSD values returned by AlphaFold, it is capable of
handling the BLOSUM adversarial sequences considered in our
analysis, as evidenced by the preservation of the folded regions
and the GraSR results.

Impact Statement—The ability to obtain 3D structures of
proteins is crucial for advancing our understanding of their func-
tionalities, and Alphafold, a machine learning-based system, has
demonstrated remarkable success in predicting these structures.
However, the adoption of advanced machine learning models
and artificial intelligence systems like protein folding neural
networks (PFNNs) poses potential security and safety threats.
Our investigation of the impact of adversarial protein sequences
on the predictions made by PFNNs, including Alphafold, will
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Fig. 1: The structure of the original (blue) and adversarial (red)
sequences predicted using AlphaFold for the Small glutamine-
rich tetratricopeptide repeat-containing protein alpha sequence.
The length of the protein sequence is denoted by n. For
structures, the Root Mean Square Deviation (RMSD) is given
in Angstroms (equal to 107'° meters and denoted by A)
after their alignment using PyMol [1], and GraSR; is the
lo distance of the Graph Structure Representation (GraSR)
structural vector descriptors.

inform the development of safer and more secure protein folding
technologies, advancing our understanding of protein functional-
ities and contributing to the ongoing exploration of the potential
of machine learning-based systems.

Index Terms—Protein Folding Neural Networks, AlphaFold,
BLOSSUMG62 Distance, Adversarial Protein Sequences, Neural
Networks Robustness

I. INTRODUCTION

Proteins form the building blocks of life as they enable
a variety of vital functions essential to life and reproduc-
tion. Naturally occurring proteins are bio-polymers typically
composed of 20 amino acids and this primary sequence of
amino acids is well known for many proteins, thanks to high-
throughput sequencing techniques. However, in order to un-
derstand the functions of different protein molecules and com-
plexes, it is essential to comprehend their three-dimensional
(3D) structures. Until recently, one of the grand challenges
in structural biology has been the accurate determination of
the 3D structure of the protein from its primary sequence.
Such accurate predictive protein folding promises to have a
profound impact on the design of therapeutics for diseases
and drug discovery [2].
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AlphaFold [3] achieved unparalleled success in predicting
protein structures using neural networks and remains first
at the Critical Assessment of protein Structure Prediction
(CASP14), which corresponds to year 2020, competition.
While AlphaFold has been celebrated as a major advancement
in structural biology [4], its ability to predict the structure of
adversarially perturbed sequences has yet to be fully examined.

The main contribution of this paper is to investigate the
impact of adversarial protein sequences on AlphaFold’s per-
formance. First, we present the problem of adversarial attacks
on Protein Folding Neural Network (PFNN) and prove it
is NP-complete. To identify a space of similar protein se-
quences used in constructing adversarial perturbations, we use
sequence alignment scores [5], such as those derived from
Block Substitution Matrices (BLOSUMG62). For the output
structures, we leverage standard metrics commonly used in
CASP, including the root-mean-square deviation (RMSD) and
the Global Distance Test (GDT) similarity measure between
the predicted structure and the structure of its adversarially
perturbed sequence. Second, we generate examples where
slight variations in protein sequences result in significantly
different 3D protein structures, as measured by large distance
metrics. To supplement our analysis, we utilize an alignment-
free method, Graph-based protein Structure Representation
learning (GraSR) [6], which indicates that AlphaFold pre-
serves the underlying domain and folding structures of the
protein despite the observed differences in structure when
using distance metrics. However, we do not make any claims
about AlphaFold’s susceptibility to adversarial sequences, as
further research is needed to draw definitive conclusions. Our
study provides insights into the marked differences in 3D
protein structures resulting from small sequence variations
while preserving domain and folding structures. These insights
can help guide further investigations in this area. See Figure 1
and its caption for an example.

Moreover, we conduct two experiments investigating the
choice of the BLOSUM threshold and the use of the pre-
diction, per-residue, confidence information obtained from
AlphaFold. Our experiments show that different input pro-
tein sequences have very different adversarial robustness as
determined by the RMSD (GDT-TS) in the protein structure
predicted by AlphaFold. These values range from 1.011A
(0.43%) to 49.531A (98.8%) when the BLOSUMS62 distance
between the original and adversarial sequences is bounded by
a threshold of 20 units with a hamming distance of 5 residues
only.

II. SUMMARY AND RELATED WORK

Nearly four decades ago, it was observed that two pro-
tein structures with 50% sequence identity align with an
RMSD of around 1 A from each other [7]. Additionally,
even proteins with 40% sequence identity and at least 35
aligned residues align within an RMSD of approximately
2.5 A [8]. This raises the question: Should highly accurate
PFNNs [9], [10] be able to predict similar structures when
only a few residues in the input sequence are changed? The
phenomenon of sequence-similar proteins producing similar

structures have been observed in larger studies [11]. As with
almost any rule in biology, a small number of counterexamples
to the conventional wisdom of similar sequences leading to
similar structures do exist, wherein even small perturbations
can potentially alter the entire fold of a protein. However,
such exceptions are not frequent and often lead to exciting
investigations [12], [13].

Manipulating the multiple sequence alignment step of Al-
phaFold has been studied in [14] using in silico mutagenesis.
However, there, the goal is not to study the robustness of
the protein folding neural networks, but rather to enhance the
prediction capability of AlphaFold in terms of the intrinsic
conformational heterogeneity of proteins. The authors in [15],
present a method that manipulates inputs to obtain diverse
distinct structures that are absent from the AlphaFold training
data. Using membrane proteins, the authors show that their
method enhances the multiple sequence alignment step while
generating more accurate structures.

In general, it has been demonstrated that AlphaFold predic-
tions are not stable and should not be trusted with mutated
sequences (not wild-type sequences) [16], [17]. However,
evaluating AlphaFold capabilities in handling BLOSUM-based
adversarial sequences, such as the ones in this paper, are yet
to be explored.

The work in [18] is aimed at generating adversarial se-
quences in order to cause significant damage to the output
predicted structure of RosettaFold [10], which, according to
CASP, is the second best protein folding neural network.
However, the authors only show results for a few proteins
and do not consider all the standard metrics for measuring the
output structures. In contrast, in this paper, we present results
for more than 100 sequences, derive a complexity proof for the
problem of finding adversarial protein sequences, and, based
on the CASP competition, utilize all the standard metrics for
measuring the output structures.

A. Robustness Metric using Adversarial Attacks

Given a protein sequence of n residues, denoted as S =
S$182...8,, with an associated three-dimensional structure
A(S) = (z1,¥1,21), -+, (Tn, Yn, 2n), We define a set of
biologically similar sequences, denoted as V), using the Block
Substitution Matrices (BLOSUM) [5]. Then, we utilize ad-
versarial attack techniques [19] on PFNNs within this space
of similar sequences to identify a sequence S,, € )V that
produces a maximally different three-dimensional structure
A(Saav). We then compute the RMSD, GDT, and GraSR
between the structures for the original and adversarial inputs

(A(S) and A(Suy))-

B. BLOSUM Similarity Measures

Given two sequences of n residues S =
$182...8, and S’ = sysh...sh, in  which
every residue s; (or s}) is from the set X =

{A7 R) N7D7 C’ Q7E7 G’ H’ I’ L7K’ M’ F7 P7 S7T7M/7}/’V}

of amino acids, a natural question is how to compute the
sequence similarity Dy, between these proteins. A naive
approach would be to count the number of residues that are
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different, i.e., the Hamming distance. However, an analysis
of naturally occurring proteins shows that not all changes in
residues have the same impact on protein structures. Changes
to one type of residue are more likely to cause structural
variations than changes to another type.

Early work in bioinformatics focused on properties of
amino acids and reliance on genetic codes. However, more
modern methods have relied on the creation of amino acid
scoring matrices that are derived from empirical observations
of frequencies of amino acid replacements in homologous
sequences [20], [21]. The original scoring matrix, called the
PAM250 matrix, was based on empirical analysis of 1572
mutations observed in 71 families of closely-related proteins
that are 85% or more identical after they have been aligned.
The PAMI1 model-based scoring matrix was obtained by
normalizing the frequency of mutations to achieve a 99%
identity between homologous proteins. These results were
then extrapolated to create the PAM10, PAM30, PAM70 and
PAM120 matrices with 90%, 75%, 55%, and 37% identity
between homologous proteins.

Another interesting approach [5] to understanding protein
similarity is the direct counting of replacement frequencies
using the so-called Block Substitution Matrices (BLOSUM).
Instead of relying solely on sequences of homologous proteins
that are relatively harder to find, the BLOSUM approach
focuses on identifying conserved blocks or conserved sub-
sequences in a larger variety of proteins potentially unrelated
by evolutionary pathways and counts the frequency of replace-
ments within these conserved sub-sequences. BLOSUMG62
(Figure 2), BLOSUMS80 and BLOSUM90 denote block substi-
tution matrices that are obtained from blocks or subsequences
with at least 62%, 80%, and 90% similarity, respectively. The
BLOSUM matrix [B;;] is a matrix of integers where each
entry denotes the similarity between residue of type b; € X
and type b; € X. See Figure 2.

We identify the space of biologically similar sequences V
for a given protein sequence S with respect to the BLO-
SUM distance. Based on the BLOSUM distance, we examine
the predicted structures for similar sequences. In particular,
we verify if the structural measures between the predicted
structure A(S) and the structure of the adversarial sequence
A(Saay) are large or small. We adopt a sequence similarity
measure that counts replacement frequencies in conserved
blocks across different proteins.

III. APPROACH

Our approach to evaluating the robustness of PFNNs as a
machine learning model to minimally perturbed inputs is based
on two main ideas: (z) the existence of adversarial examples in
PFNNs that produce adversarial structures that are possibly at
a large distance from the original structure, and (i7) the use of
BLOSUM for identifying a neighborhood of a given sequence
comprising biologically similar sequences, and hence expected
to yield similar 3D structures. We utilize the RMSD, GDT, and
GraSR between the structure of an original protein sequence
and the structure of the adversarial sequence as a measure of
robustness of a protein folding network on the given input. In
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this work, we focus on the state-of-the-art AlphaFold model,
the winner of the Ist place in CASP2020.

A. Sequence Similarity Measures

Given two sequences S = $153...5, and S’ = sish ... ),

the BLOSUM distance between the two sequences is given by
Equation (1) below.

Dseq(S7 S/) = Z (39797 - B%S"l) . (D
i€[n]
For an illustrative example of Dy, see Figure 3.
B. Output Structural Measure
Given a sequence of m residues S = s189...58,, its
three dimensional structure .A(S) is an ordered n-tuple
of three-dimensional co-ordinates (1, ¥y1,21), - - - (Zn, Yn, 2n)-

Our goal is to utilize a structural distance measure that captures
the variations in the two structures A(S) and A(S’) and is
invariant to rigid-body motion. Therefore, in this work, we use
standard structural distances, namely the RMSD, measured in
A, and the GDT with its two variants: (i) the Total Score (TS)
and (i¢) the High Accuracy (HA) [22].

Given the output structure of the adversarial sequence
A(S’), an alignment algorithm is employed before computing
the RMSD and GDT measures between the two structures
of interest. We use the alignment procedure implemented in
PyMOL [1] to align A(S’) with regard to the target structure
A(S). Let the aligned structure be denoted by A(S') =
(24,91, 20), ..., (@, 9., 2.). Then, the RMSD, measured in
A, is obtained as

RMSD(A(S), A(S")) = %Zd(A(S)i,A(S’)i), )
i€[n]

where d(A(S):, A(S"),) = (2= )2+ (gs — 5})% + (24— 2))?
and A(S); represents the 3D carbon-alpha coordinates of the
i" residue. Using the carbon-alpha coordinates is the standard
approach in CASP [22].

Another standard metric for gauging the similarity of protein

structures is the GDT similarity measure, introduced by [22]
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S| MDLFMRFFTLGSITAQPVKIDNASPASTVHATATIPLQASLPFGWLVIGVAFLAVFQSATKIIALNKRWQLALYKGFQFICNLLLLFVTIYSHLLLVAAG

Dseq Dham

S{ DVPSMRFFTLGSITAQPVKIDNASPASTVHATATIPLQASLPFGWLVIGVAFLAVFQSATKIIALNKRWQLALYKGFQFICNLLLLFVTIYSHLLLVAAG 32

IS

Sé FGCYMRFFTLGSITAQPVKIDNASPASTVHATATIPLQASLPFGWLVIGVAFLAVFQSATKIIALNKRWQLALYKGFQFICNLLLLFVTIYSHLLLVAAG 20 4
Sé MDLFMRFFTLGSITAQPIRVPNASPASTVHATATIPLQASLPFGWLVIGVAFLAVFQSATKIIALNKRWQLALYKGFQFICNLLLLFVTIYSHLLLVAAG 12 4
5!} MDLFMRFFTLGSITAQPVKIDNASPASTVHATATIPLQASLWAYKLVIGVAFLAVFQSATKIIALNKRWQLALYKGFQFICNLLLLFVTIYSHLLLVAAG 42 4
Sé MDLFMRFFVIAAVTAQPVKIDNASPASTVHATATIPLQASLPFGWLVIGVAFLAVFQSATKIIALNKRWQLALYKGFQFICNLLLLFVTIYSHLLLVAAG 17 5
Sé MDLFMRFFTLGSITAQPVKIDNASPASTVHATATIPLQASDIERRLVIGVAFLAVFQSATKIIALNKRWQLALYKGFQFICNLLLLFVTIYSHLLLVAAG 49 5
S; MDLFMRFFTLGSITAQPVKIDNASPASTVHATATIPLQASLPFGWLVIGVAFLAVFQSATRVLTMKKRWQLALYKGFQFICNLLLLFVTIYSHLLLVAAG 18 6
Sé MDLFMRFFTLGSITAQPVKIDNASPASTVHATATIPLQAVEFQLVLVIGVAFLAVFQSATKIIALNKRWQLALYKGFQFICNLLLLFVTIYSHLLLVAAG 57 6
Sc; MDLFMRFFTLGSITAQPVKIDNASPASTVHATATIPLQASLPFGWLVIGVAFLAVFQSATKIIALNKRWQLALYKGFQFICNLACMYISMYSHLLLVAAG 23 7
S{o MDLFMRFFTLGSITAQPVKIDNASPASTVHATATIPLQASDIGIINGIGVAFLAVFQSATKIIALNKRWQLALYKGFQFICNLLLLFVTIYSHLLLVAAG 65 7

Fig. 3: The original sequence S is followed by 10 sequences generated by changing 4, 5, 6, and 7 residues. While the BLOSUM
distance may not specifically focus on protein functionality, when comparing two protein sequences, the BLOSUM distance
offers a metric to compute a biologically relevant distance in contrast to the Hamming distance.

and commonly used in the CASP competition along with the
RMSD. In some cases, the latter is known to be sensitive to
outliers [22]. The GDT score returns a value in [0, 1] where 1
indicates identical structures, and is computed with respect to
four thresholds, ¢;, as

GDT(A( )A( ) =
(9)i,

—ZZ Ay <), @

jE[4] i€[n]

where the thresholds 41, 62, d3, and d4 for TS (HA) are given
by 1(0.5), 2(1), 4(2), and 8(4) for j equals to 1, 2, 3, and
4, respectively, and 1(-) is the indicator function. In (3), each
j € [4] reflects the number of residues in the structures for
which the distance is less than d;.

In addition to distance metrics, we use an alignment-free
method called Graph-based protein Structure Representation
learning (GraSR) [6]. GraSR is a learning-based approach that
aims at circumventing the challenges associated with sequence
segmentation and feature engineering, which is achieved by
leveraging deep neural networks to automatically learn struc-
tural representations. GraSR combines graph NNs (GNNs)
and long short-term memory (LSTM) units, where protein
structures are initially represented as graphs using intra-residue
distances. Subsequently, an encoder is optimized through a
contrastive learning framework. The concept behind this is
that GNNs have a greater capacity to learn both global and
local geometric features of residues. See Figure 1 in [6] for
an example. In short, GraSR is a trained NN that produces a
400-dimensional vector representation (descriptor) of a protein
structure g(A(S)) € R*, incorporating domain rotations.
This means that the features from GraSR are obtained from a
forward pass of a pre-trained GNN.

To measure the distance between the original and adver-
sarial structural representations, we use the [,-norm with
p € {2,000}, defining GraSR,, as:

GraSR,, (A(S), A(S")) = l9(A(S)) = g(ASD N, @)
where g(A(S)) is the GraSR descriptor vector for structure

A(S), and || - ||, is the ,-norm.

C. Adversarial Attacks on PFNNs

Small carefully crafted changes in a few pixels of input
images cause well-trained neural networks with otherwise
high accuracy to consistently produce incorrect responses in
domains such as computer vision [23], [24], [25], [26]. Given a
neural network .4 mapping a sequence S of residues to a three-
dimensional geometry A(S) describing the structure of the
protein, we seek to obtain a sequence S’ such that the sequence
similarity measure Dgeq(.S,S”) between S and S’ is small
and some structural distance measure Dy, (A(S), A(S")) is
maximized. This can be achieved by solving the following
optimization problem

max Dgty (A(S), A(S")) s.t. Dgeq(S,S") < L. (5)

In our experiments, we set L = 20 and Dy, as the RMSD
measure. Given the discrete nature of the input sequences,
well-known methods for generating adversarial examples (e.g.
gradient-based methods) fail to produce valid and accurate
results. As such, we propose a solution based on a brute-force
exploration in the space of biologically similar sequences that,
given a sequence of interest S with n residues, can be defined

as
VL,H(S) = {S/ eax” | Dseq(S, S/) < L and

Dham(5.5') < HY, ©

where X" is the set of all possible sequences over X of
length n, Dy, is the hamming distance, and H is a pre-
defined threshold. For long sequences, the search space can
be extensively large. Therefore, we select random samples
from Vi g(S) and choose the sequence that returns the
maximum value based on the RMSD measure. Our approach
to generating adversarial sequences falls under the class of
black-box attacks. This means that we only have access to the
output of the network [27].

It is worth noting that the inference time of complex
protein folding systems, which apply multiple processing and
alignment steps prior to the use of any neural network, such
as AlphaFold is extremely high compared to NN-based image
classifiers. The forward pass of such systems involves a large
number of computations. This fact, along with the discrete
nature of the input space, are the bottleneck of developing
more complex black-box attacks [28], which in general require

Authorized licensed use limited to: University of Central Florida. Downloaded on January 31,2024 at 00:42:39 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3353708

FIRST A. AUTHOR et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

a high number of queries. Given the high computational cost
of generating the structure of a single sequence in AlphaFold
and the discrete nature of the input sequence, we believe that
these factors contribute to the absence of other baseline attack
methods for comparison in our experimental results.

IV. COMPLEXITY

In this section, we formalize the problem of generating an
adversarial attack for PFNNs and establish its complexity.

Definition 1 (PFNN Adversarial Attack (PAA) Problem).
Given a learning model A(.;0) : X™ — (RxRxR)™ mapping
residues to 3-dimensional coordinates and parameterized by 0,
a sequence S € X", and a sequence alignment scoring matrix
B, find an input sequence S’ € X™ such that Dgey(S,5") < L
and Dg:(A(S), A(S")) > U, where the bounds L and U and

distance functions d and D are given.

We prove that the PAA problem is NP-complete. This es-
tablishes that, in general, there is no polynomial-time solution
to the PAA problem unless P = NP. Due to this complexity and
for ease of presentation, we adopt simple perturbation attacks
for our experiments in the next section. We begin by defining
the NP-complete problem to be reduced to an instance of the
PAA problem.

Definition 2 (CLIQUE Problem). Given an undirected graph
G = (V, E) and an integer k, find a fully connected sub-graph
induced by V! CV such that |V'| = k.

Theorem 1. The PFNN Adversarial Attack (PAA) problem in
Definition 1 is NP-complete.

Proof: 1t is easy to verify that the PAA problem is in NP
since, given a solution sequence S’, one can check whether
the constraints Dgeq(S,S") < L and Dy, (A(S), A(S")) > U
are satisfied in polynomial time. It remains to be shown
whether the PAA problem is NP-hard. We establish this result
via a reduction from the CLIQUE problem in Definition 2.
Given a CLIQUE instance (G = (V,E),k) with |V| = n
and |E| = m, we construct its corresponding PAA instance
(A(.;0),S,B,L,U) as follows. Without loss of generality,
let us consider a restricted version of the PAA problem where
there are only two residue types {V, K'} with the correspond-
ing BLOSUM62 sub-matrix B’ = 6 - I, where I denotes
the identity matrix. Following the one-hot representation of
residues adopted in [9], any input tensor over {N,K} is
represented as a one-hot encoding S™ € (B x B)" to be used
as an input tensor to A, where sy = 1 (si? = 1) denotes that
residue si" is of type N (K). Let S = (N, N, ..., N) denote
the all-N sequence. We set L = 6k and U = @ %
The connectivity structure of A is derived from the edges E
in the CLIQUE instance as follows. The first column of the
input tensor corresponding to sif for all i < n is disconnected
from the network and the second column corresponding to
Slﬁ is connected to A such that, for each edge (v;,v;) € E,
we have a connection from s} and i} to each of the three
outputs in the first three-dimensional coordinate of A(S™);.
All connections have a weight of unity and this defines
the parameters 6 of the model .A. Therefore, without loss

of generality, we are only considering the first of the n
output three-dimensional coordinates A(S™);. In particular,
these values keep track of the number of edges induced by
the vertices in G corresponding to the non-zero entries in
sih ..., s . We now prove that there is a clique of size k
in G if and only if there is a feasible solution S™ = S’ to the
reduced PAA instance.

( = ) Assume there is a clique of size k£ in G. We can
derive a feasible solution S’ to the reduced PAA instance as
follows. For every vertex v; € V (not) in the clique, let (s}, =
1) si; = 1. Since S is the all-N sequence, its corresponding
one-hot encoding consists of s;o = 1 for all 1 <+¢ < n. Thus,
the corresponding BLOSUMS62 distance is

Dieq(S,8) = > (6—6-1(s; # s)) = Gk . )

1<i<n

This satisfies the sequence alignment constraint defined by
Dygeq(S,S") < L = 6k. Furthermore, the solution S’ induces
outputs of 2y = y} = 21 = k(k — 1)/2, leading to
an RMSD of U. Without loss of generality, we omit the
alignment step in computing the RMSD and therefore assume
that A(S’) = .A(S’). The corresponding RMSD distance
Dyix(A(S), A(S")) in output predictions is presented below.
Recall that 1 = y; = z; = 0 for the the all-N sequence S
because its corresponding column in the one-hot encoding is
disconnected from the network.

Dar(AS), AS) = |5 S dAS), AS"))

1€[n]

— 1[3(0—]@(]‘;2_1))2]:[“(1“2_1) 3

Thus, the constraint Dy, (S,5") > U = @\/g is
satisfied.

( <= ) We prove the contrapositive. That is, if there is
no clique of size k£ in G, then the reduced PAA instance
is infeasible. We proceed by showing that there must be
exactly k non-zero entries in the column vector {s};|i < n}
in order to satisfy constraints Dge(S,5’) < L = 6k and
Dyt (A(S), A(S")) > U and that, if there is no clique
of size k, then there is no choice of k£ non-zero entries
in {s};|i < n} that will satisfy these constraints. Let &’
denote the number of non-zero entries in {s};|i < n}. To
satisfy Dgeq(S,S5") < L = 6k, it follows that ¥’ < k. If
k' < k, then the maximum value of Dg, (A(S), A(S)) is
k'(k2’71) %< k(k;l)

®)

\/% and denotes to the case where the
k' non-zero entries correspond to a clique of size k' in G. The
strict inequality is due to the monotonically increasing nature
of this equation. Therefore, it must be that k¥ = k' and we
have outputs =} =y} = 21 = k(k — 1)/2 as before. Suppose
that the &’ non-zero entries in {s};]i < n} do not correspond
to a clique in G. Then the values z, ¥}, and z] output by
A and corresponding to the number of edges induced by the
chosen non-zero entries would be strictly less than k(k—1)/2.
Therefore, we would have Dg,(A(S), A(S’)) < U. This
proves that the reduced PAA is infeasible. [ ]
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TABLE I: RMSD results for the three considered categories
in the experiment conducted in Section V.A.

H Seq. ID n ‘ Category  RMSD Hall Hdiff IL:,“ )u‘é[iff H
Q01629 132 MIN. 6.02 64.63 3244  60.99  36.99
Q01629 132 AVG. 19.92 64.63 6475 63.77  69.57
Q01629 132 MAX. 19906  64.63 6699 90.21  90.19
Q5BJDS 291 MIN. 14.023 8223 3886 81.22 37.79
Q5BIDS 291 AVG. 14232 8223 8224 81.17 77.23
Q5BIDS 291 MAX. 13.567 8223 98.17 8242 98.1
P59595 422 MIN. 24.74 68.25 29.13  67.57 31.5
P59595 422 AVG. 28.164  68.25 69.44 68.69  69.04
P59595 422 MAX. 24.62 68.25 96.14  67.51 96.44
P59633 154 MIN. 21.67 4482  27.14 4415 3875
P59633 154 AVG. 21.52 44.82 45.1 43.8 42.26
P59633 154 MAX. 23.13 44.82 6126 46.13  54.84
PODTCY9 419 MIN. 25593 6839 2846 679 28.83
PODTCY9 419 AVG. 21.767 6839  68.37 68.5 70.83
PODTCY9 419 MAX. 23.685  68.39 97.1 68.64  96.94

TABLE II: RMSD results when L € {20,30,40} for the
experiment in Section V.B.

[[_Seq. ID n | L RMSD g Hdift o W 1]
Q14653 427 20 18.87 79.76 92.92 79.46 86.29
Q14653 427 30 2242 79.76 93.15 77.45 64.12
Q14653 427 | 40 28.28 79.76 90.49 7942 69.026
Q5BIDS 291 20 14.311 82.23 89.77 80.6 80.64
Q5SBIDS 291 30 15.708  82.23 59.26 83.13 43.53
Q5BIDS 291 | 40 17.132 82.23 62.02 83.21 62.83
P59595 422 | 20 24.321 68.25 91.44 67.05 89.51
P59595 422 30 30.139 68.25 93.142 67.44 89.29
P59595 422 40 30.675 68.25 46.87 66.4 29.33
PODTCY9 419 20 26.51 68.39 80.32 68.09 80.316
PODTCY9 419 | 30 26.27 68.39 68.05 68.61 65.18
PODTCY9 419 | 40 31.33 68.39 40.52 67.76 35.56
PO7711 333 | 20 7.09 93.68 92.4 932 81.12
PO7711 333 | 30 8.52 93.68 9591 92.95 92.69
PO7711 333 | 40 9.246 93.68 95.91 92.85 95.76
Q9Y397 364 | 20 11.184 84.24 97.35 83.85 95.81
Q9Y397 364 30 11.828 84.24 95.91 83.51 85.416
Q9Y397 364 40 14.222 84.24 95.91 83.71 89.79

V. EXPERIMENTAL RESULTS

For our experimental setup, we use the default settings of the
latest version of AlphaFold'. This includes the initial multi-
sequence alignment (MSA) step, the five-model ensembles
predictions, recycling, output confidence ranking, and amber
relaxation. For further details about each step, we refer the
reader to [3] and its supplementary information. We include re-
sults from using the high-accuracy full database configuration
of the initial AlphaFold MSA step along with the less accurate
(and faster) reduced database option. In order to compute the
RMSD and GDT, we need to employ an alignment algorithm.
In this paper, we use the built-in alignment PyMOL procedure
[1]. The parameters of PyMOL alignment are selected using
the default settings, which include an outlier rejection cutoff
of 2, a maximum number of outlier rejection cycles of 5, and
the use of the structural superposition step. We note that these
outliers only impact the calculations of the RMSD.

Our adversarial sequences are generated by randomly sam-
pling 20 sequences from the set Vi g in (6) with H = 5
and L = 20. Then, we pick the sequence that returns the
maximum value in RMSD structural distance. We use an
AMD EPYC 7702 64-Core Processor with 1 TiB of RAM

Uhttps://github.com/deepmind/alphafold

and NVIDIA A100 GPU. We generate adversarial sequences
against the considered protein sequences from the UniProt
database considered by AlphaFold in [29]. The original fasta
(file extension for protein sequences) sequence files are avail-
able online”. Additionally, we generate adversarial sequences
against most of the the UniProt (Universal Protein resource,
a central repository of protein data created by combining the
Swiss-Prot, TTEMBL and PIR-PSD databases [30]). We have
made our code available online®.

A. Confidence Experiment

Given a sequence S, per residue, AlphaFold generates an
estimate of its prediction confidence in the form of a value in
[0,100]. This value is called the predicted Local Distance Test
(pLDDT) and represents the predicted value on the IDDT-Ca
metric [31].

In this subsection, we answer the following question. Do the
substituted residues based on their low (or high) confidence
scores impact the resulting RMSD between the original and
adversarial structure prediction? Phrased differently, in terms
of the RMSD, we illustrate the impact of using the prediction
confidence scores of every residue of the predicted structure
of the original sequence in determining the location of the
residues to be altered in the adversarial sequence generation
method presented in the previous section. As such, five, not
cherry picked, randomly selected sequences are used. Then,
the locations of the 5 residues to be altered are taken based
on three categories as follows. Residues are selected with
confidence values near the (/) minimum confidence score
(MIN. category), (if) the average score (AVG. category), and
(iii) the maximum confidence score (MAX. category). Results
are presented in Table I. Our analysis shows that, in general,
the RMSD of the output structure is not affected by the choice
of substituting residues with low or high confidence scores.
Therefore, in our method, the positions of the substituted
residues are chosen without considering the confidence scores.

B. BLOSUM Threshold Experiment

In this subsection, we want to investigate how a change
in the bound on biological similarity, w.r.t. the BLOSUM
distance, changes the adversarial sequence. In other words,
we show the impact of using different BLOSUM thresholds
in set Vr, g. As such, we randomly select 6 sequences and
generate adversarial sequences by configuring the BLOSUM
threshold, L, to be 20, 30, and 40 (we use strict equalities
to ensure the exact BLOSUM distance) and set H = 5. For
each case, we obtain the RMSD after alignment as reported
in the fourth column of Table II. Furthermore, we present
the average confidence percentage level of the prediction of
the original (adversarial) sequence as reported by AlphaFold
and denoted by pan (). Additionally, in the 6th and 8th
columns, we report the average confidence values for the
residues that are different between the original and adversarial
sequences. These are denoted by g and p, respectively.

Zhttps://ftp.uniprot.org/pub/databases/uniprot/pre_release/covid- 19.fasta
3https://github.com/ialkhouri/PFNN_Attacks
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ID: Q99836 n =296
RMSD =8.761A
GraSR, =0.1372

ID: P04439 n =365
RMSD = 6.162A
GraSR, =0.0731

ID: P56962 n =302
RMSD =22.301A

ID: P59632 n =274
RMSD = 13.018A
GraSR, =0.1313

Fig. 4: The structures of the original (blue) and adversarial (red) sequences from AlphaFold. The 3D plots, aligned using
PyMol [1], are for proteins 043765 (first), P04439 (second), P56962 (third), and P59632 (fourth). For structure differences,
the RMSD values are reported. The structures of the complete list of sequences are attached in the provided anonymous link.

TABLE III: RMSD, GDT-TS, and GDT-HA results using the full database AlphaFold configuration with L = 20 and H = 5. The
average columns correspond to 20 adversarial samples for each protein ID. The complete table is placed in the supplementary

material.
[ Seq.ID n _ Similarity (%) | RMSD Avg. RMSD [ GDTTS (%) _ Avg. GDT-TS (%) | GDT-HA (%)  Avg. GDI-HA (%) | run-time (days) ||
[043765 313 984026 | 14438 9.1741% 3.1576 | _13.9776 35.4832% 183219 | 28754 17.6358 + 14.6829 | 1.6068 I
[ P56962 302 983444 | 22301 158695 + 3.6513 | 123344 18.6921 + 4.0056 |  3.4768 5803 £ 1.9135 | 0.5959 I
[ P04439 365 98.6301 | 6.162  3.7942 & L1511 | 477397 68.2705 £ 11.0327 | 25.0 45774 £ 11.4072 | 0.6429 I
[[ Q99836 296 983108 | 8.761 52907 F 2.3055 | 24.1554 46.6723 & 22.0819 | 7.6858 262584 £ 20.8061 | 0.6246 I
[ P59632 274 98.1752 | 13018 84704 & 24464 | 248175 41.0401 £ 14257 | 9.0328 21.6834 £ 12.183 | 05214 I

TABLE IV: GraSR results using the full database AlphaFold
configuration with L = 20 and H = 5. RMSD results
are added for comparison. The complete list is given in the
supplementary material.

[[ Seq. ID n [ RMSD | GraSRy  GraSRe ||
[ 043765 313 | 14438 | 0.1588 00229 ||
[ P56962 302 | 22301 | 0.1425 _ 00251 ||
[ P04439 365 [ 6.162 [ 00731 _ 00111 ]|
Q99836 296 | 8761 | 0.372__ 0.0204 ]|
[ P59632_ 274 [ 13018 [ 01313 00184 ]|

We observe that, in general, when the BLOSUM threshold
distance increases, the RMSD also increases. This means that
biologically increased distance in the input space, in general,
causes higher changes in the output predictions of AlphaFold.
In terms of the confidence scores, we observe that the change
in the overall average confidence between the original and
perturbed sequence is not significant. However, in almost all
the considered cases, we notice that the prediction confidence
of the altered residues has reduced for the adversarial sequence
when compared to the ones reported for the original sequence.

C. UniProt Case Studies

We apply our adversarial approach to 111 publicly available
protein sequences as of the time of this writing per the UniProt
database (including 29 COVID-19 sequences) using AlphaFold
full database configuration. Additionally, in the supplemen-
tary material, we provide complete results using the reduced
AlphaFold configuration. The BLOSUMS62 distance between
the original and adversarial sequences is at most 20, thus
they are biologically close to each other w.r.t the employed
distance measure [7], [8]. Given the long list of the considered
sequences, we describe only the following. SGTA_HUMAN

Small glutamine-rich tetratricopeptide repeat-containing pro-
tein alpha (043765), HLAA_HUMAN HLA class I histocom-
patibility antigen, A alpha chain (P04439), STX17_HUMAN
Syntaxin-17 (P56962), AP3A_SARS ORF3a (P59632), and
MYD88_HUMAN Myeloid differentiation primary response
protein MyD88 (Q99836). The cases covered include homo
sapiens and severe acute respiratory syndrome coronavirus 2
(2019-nCoV) (SARS-CoV-2) organisms which provide a wide
variety of proteins. The considered sequences vary in length
as they range from n = 22 to n = 2511.

Figures 1 and 4 show the aligned predicted structures of the
proteins described earlier where the original sequence is given
in blue and the adversarial sequence is given in red. Our results
indicate that even small changes to the input sequence can lead
to significant differences in the predicted output structures,
regardless of the structure of the original sequence. These
perturbed inputs can be considered as adversarial examples for
a machine learning model, in the sense that they are similar
to the original input but result in significant changes in the
output. However, from a biological perspective, we note that
AlphaFold is able to effectively preserve the domain structure
of the protein as evidenced by the visual similarity of the
folded regions in the structures of the original and perturbed
sequences, and reported by the GraSR metric that, unlike
RMSD and GDT, accounts for domain rotations. It is important
to note that the information obtained from these structures and
their robustness can also depend on the specific application
they are used for. In some cases, scientists only focus on the
folding shape of the 3D structure of the complete or a portion
of the sequence of interest [16].

The resulting structural distances (similarities) measured
in A (percentage) are given in terms of the RMSD (GDT-
TS) in the fourth (sixth) column of Table III for the full
database configuration. Furthermore, we report the results
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TABLE V: Prediction confidence results using the full database AlphaFold configuration with L = 20.

[Seq. 1D n [ RMSD | pan ol | fhdiff oan | My o | Mg ]
043765 313 | 14435 | 80221 10634 | 94786 1.027 | 80554 19423 | 9341 1392 ||
[ P56962 302 | 22501 | 60.172 23753 | 96516 0400 | 69342 23759 | 9654 0463 ||
[P0A39 365 | 6162 | 86845 18095 | 4425 2704 | 86921 19.068 | 44.673 3968 ||
[ Q99836 1296 | 8.761 | 81213 13817 | 78014 7454 | 80918 13971 | 72.198 6253 ||
[ P59632 274 | 13018 | 58367 18.783 | 66.136  2.020 | 57364 18794 | 60926 4362 ||

TABLE VI: Overall Prediction and attack results for the reduced and full database configurations of AlphaFold.

[ Configuration. [ Avg.n  Std. n [ Avg. pran Std. pran | Avg. RMSD  Std. RMSD | Avg. GDT  Std. GDT | Avg. run-time  Std. run-time |
[[ reduced database | 48053 41666 | 7822 1096 | 1531 1124 | 3408 2839 | 068 059 |
[ full daabase | 41073 336.63 | 78.25 1023 | 1478 .18 | 3495 2816 | 086 063 |

using GDT-HA in the eighth column. The high similarity
between the original and adversarial sequences is observed
from the third column. The similarity percentage is calculated
as 100(n — Dyam(S,S"))/n, where Dpam(S,S") < H = 5.
The complete results of all the considered proteins, including
reduced AlphaFold configuration, are provided in the sup-
plementary material. In addition, the results of GraSR, and
GraSR, are reported in Table IV.

As observed from the RMSD and GDT results in Table III,
a small change in the input sequence corresponding to the
substitution of only five residues cause AlphaFold to predict
structures that are highly divergent from the predicted structure
of the original sequence. We remark that further analysis
becomes protein-specific and contingent upon the specific ap-
plication at hand. Some researchers may prioritize examining
the folding characteristics of the 3D structure for the entire
protein or a specific region of interest. The implications and
significance of such alterations can vary based on the context
and objectives of the study. The last column in Table III reports
the total execution time (in days) of running the 20 adversarial
sequences that were randomly selected from the set Vi g,
which is shown to scale with the sequence length. We only
select 20 samples given the long time incurred by AlphaFold
to predict the output structure.

Additionally, in Table V, we report the average (deviation)
prediction confidence results as for all the residues (designated
with subscript ‘all’) and for the 5 altered residues (subscript
‘diff’). The standard deviation is denoted o. We observe that,
independent of the average prediction confidence, the RMSD
between the original and adversarial predicted structures is
always high. This is noted for both the full and reduced
database configurations of AlphaFold. Moreover, we observe
that AlphaFold predicts the adversarial structure with similar
confidence values to the original sequence (e.g., see the 4th
and 8th columns in both tables). The same observation holds
for the entire sequence and for the altered residues (columns
6 and 10). Although we observed significant changes in the
RMSD and GDT values, the similarity in the confidence values
and the preservation of most of the folding regions with high
confidence suggest that AlphaFold is performing as expected
in general. This is also observed from the results of Table IV.

In the last two tables of the supplementary material, we
present a breakdown of the GDT scores between the structures
of the original and perturbed sequences based on the prediction
confidence scores of the original sequence, using the regions
(1 to 4) defined by AlphaFold. As can be seen, the GDT scores

are generally low across all regions.

For the considered dataset, the values presented in Table VI
gauge the overall robustness of AlphaFold as an ML model to
adversarial sequences. As indicated in the documentation of
AlphaFold, for better accuracy, the full database configuration
incurs a longer execution time compared to the reduced
database configuration. The reported average values of the
RMSD and GDT-TS measures are 14.78A and 37.95%, respec-
tively. In CASP14 (year 2020), AlphaFold achieved a median
GDT-TS score of 92.4%, and 88% of their predictions fall
under RMSD = 4A “. These results are obtained by comparing
the predicted structures and the groundtruth. The CASP14
AlphaFold results underscore the significance of the values
reported in Tables III and VI, as they show how small changes
in the input sequences could damage the predictions (See
columns 6 to 9 in Table VI). The main conclusion from our
study is that even though AlphaFold may return high RMSD
values when viewed from a machine learning perspective, the
preservation of the folded regions and the GraSR results of the
biological structure with similar confidence scores, indicate
that AlphaFold is generally able to handle the BLOSUM
adversarial sequences that were considered in our analysis.

VI. CONCLUSION

Recent advancements in the prediction of protein folding
structures hold great potential for understanding diseases,
mapping the human proteome, and designing drugs and thera-
peutics. However, this paper argues that further examination of
AlphaFold’s performance against BLOSUM-based adversarial
sequences is necessary. We present the first work in this area
by showing that Protein Folding Neural Networks (PFNNs) are
vulnerable to adversarial attacks through minor perturbations
of the input protein sequence. Despite these perturbations
causing significant changes in predicted protein structure as
determined by large distance measures, AlphaFold predictions
have, in general, preserved the biological structures. This is
surprising, given that previous studies have suggested that
Alphafold may not be well-suited for studying mutations. We
employed standard protein structural distance and similarity
measures to evaluate AlphaFold’s outputs, and suggest that
the results can be used as a baseline for future research on the
robustness of PFNNs against adversarial attacks.

For future work, it is worth exploring novel and faster ad-
versarial attacks for this discrete domain of protein sequences.

“https://predictioncenter.org/casp14/index.cgi
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Recent work on adversarial attacks on large language models
(LLMs) may hold some insights into how this can be achieved.
Indeed, the attack surface of LLMs is also governed by discrete
tokens that have been successfully attacked to bypass the
safety guardrails of tools such as Chat-GPT [32].
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