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Abstract
Robust Markov decision processes (MDPs) ad-
dress the challenge of model uncertainty by opti-
mizing the worst-case performance over an uncer-
tainty set of MDPs. In this paper, we focus on the
robust average-reward MDPs under the model-
free setting. We first theoretically characterize
the structure of solutions to the robust average-
reward Bellman equation, which is essential for
our later convergence analysis. We then design
two model-free algorithms, robust relative value
iteration (RVI) TD and robust RVI Q-learning,
and theoretically prove their convergence to the
optimal solution. We provide several widely used
uncertainty sets as examples, including those de-
fined by the contamination model, total variation,
Chi-squared divergence, Kullback-Leibler (KL)
divergence and Wasserstein distance.

1. Introduction
Reinforcement learning (RL) has demonstrated remarkable
success in applications like robotics, finance, and games.
However, RL often suffers from a severe performance degra-
dation when deployed in real-world environments, which is
often due to the model mismatch between the training and
testing environments. Such a model mismatch could be a
result of non-stationary conditions, modeling errors between
simulated and real systems, external perturbations and ad-
versarial attacks. To address this challenge, a framework
of robust MDPs and robust RL was developed in (Nilim &
El Ghaoui, 2004; Iyengar, 2005; Bagnell et al., 2001), where
an uncertainty set of MDPs is constructed, and a pessimistic
approach is adopted to optimize the worst-case performance
over the uncertainty set. Such a minimax approach guaran-
tees performance for all MDPs within the uncertainty set,
making it robust to model mismatch.
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Two performance criteria are commonly used for infinite-
horizon MDPs: 1) the discounted-reward setting, where
the reward is discounted exponentially with time; and 2)
the average-reward setting, where the long-term average-
reward over time is of interest. For systems that operate for
an extended period of time, e.g., queue control, inventory
management in supply chains, or communication networks,
it is more important to optimize the average-reward since
policies obtained from the discounted-reward setting may
be myopic and have poor long-term performance (Kazemi
et al., 2022). However, much of the work on robust MDPs
has focused on the discounted-reward setting, and robust
average-reward MDPs remain largely unexplored.

Robust MDPs under the two criteria are fundamentally dif-
ferent. Compared to the discounted-reward setting, the
average-reward setting places equal weight on immediate
and future rewards, thus depends on the limiting state-
action frequencies of the underlying MDPs. This makes it
more challenging to investigate than the discounted-reward
setting. For example, to establish a contraction in the
discounted-reward setting, it generally suffices to have a
discount factor strictly less than one, whereas in the average-
reward setting, convergence depends on the structure of the
MDP. Studies on robust average-reward MDPs are quite
limited in the literature, e.g., (Tewari & Bartlett, 2007; Lim
et al., 2013; Wang et al., 2023), and are model-based, where
the uncertainty set is fully known to the learner. However,
the more practical model-free setting, where only samples
from the nominal MDP (the centroid of the uncertainty set)
can be observed, has yet to be explored. Algorithms and
fundamental convergence guarantees in this setting have not
been established yet, which is the focus of this paper.

1.1. Challenges and Contributions

In this paper, we develop a fundamental characterization of
solutions to the robust average-reward Bellman equation,
design model-free algorithms with provable optimality guar-
antees, and construct an unbiased estimator of the robust
average-reward Bellman operator for various types of uncer-
tainty sets. Our results fill the gap in model-free algorithms
for robust average-reward RL, and are fundamentally differ-
ent from existing studies on robust discounted RL and robust
and non-robust average-reward MDPs. In the following, we
summarize the major challenges and our key contributions.
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We characterize the fundamental structure of solutions
to the robust average-reward Bellman equation. Value-
based approaches typically converge to a solution to the
(robust) Bellman equation. For example, TD and Q-learning
converge to the unique fixed-point that yields an optimal
solution to the Bellman equation in the discounted setting
(Sutton & Barto, 2018). However, in the (robust) average-
reward setting, solutions to the (robust) average-reward Bell-
man equation may not be unique (Puterman, 1994; Wang
et al., 2023), and the fundamental structure of the solution
space usually plays an important role in proving conver-
gence (e.g., (Wan et al., 2021; Abounadi et al., 2001; Tsit-
siklis & Van Roy, 1999)). In the non-robust average-reward
setting, the solution to the average-reward Bellman equa-
tion is unique up to an additive constant (Puterman, 1994).
This result is largely due to the nice linear structure of the
non-robust average-reward Bellman equation. However, in
the robust setting, where the worst-case performance is of
interest, the robust average-reward Bellman equation is non-
linear, which poses a significant challenge in characterizing
its solution. We demonstrate that the worst-case transition
kernel may not be unique and then show that any solution to
the robust average-reward Bellman equation is the relative
value function for some worst-case transition kernel (up to
an additive constant). We note that this structure is of key
importance later in our convergence analysis.

We develop model-free approaches for robust policy eval-
uation and optimal control. We then design model-free
algorithms for robust average-reward RL. To ensure stabil-
ity of the iterates, we adopt a similar idea as in the non-
robust average-reward setting (Puterman, 1994; Bertsekas,
2011), which is to subtract an offset function and design
robust RVI TD and Q-learning algorithms. Unlike the con-
vergence proof for model-free algorithms for non-robust
average-reward MDPs, e.g., (Wan et al., 2021; Abounadi
et al., 2001) and robust discounted MDPs, e.g., (Wang &
Zou, 2021; Liu et al., 2022), where the Bellman operator
is either linear or a contraction, our robust average-reward
Bellman operator is neither linear nor a contraction, which
makes the convergence analysis challenging. Nevertheless,
based on the solution structure of the robust average-reward
Bellman equation discussed above, we prove that our algo-
rithms converge to solutions to the robust average-reward
Bellman equations. Specifically, for robust RVI TD, its
output converges to the worst-case average-reward; and for
the robust RVI Q-learning, the greedy policy w.r.t. the Q-
function converges to an optimal robust policy.

We construct unbiased estimators with bounded vari-
ance for robust Bellman operators under various uncer-
tainty set models. One popular approach in RL is boot-
strapping, i.e., use HQ as an estimate of the true Q-function,
where H is the (robust) Bellman operator. In the non-robust
setting, an unbiased estimate of H can be easily derived

because H is linear in the transition kernel. This linearity,
however, does not hold in the robust setting since we mini-
mize over the transition kernel to account for the worst-case
and, therefore, directly plugging in the empirical transition
kernel results in a biased estimate. In this paper, we employ
the multi-level Monte-Carlo method (Blanchet & Glynn,
2015) and construct unbiased estimators for five popular un-
certainty models, including those defined by contamination
models, total variation, Chi-squared divergence, Kullback-
Leibler (KL) divergence, and Wasserstein distance. We then
prove that our estimator is unbiased and has a bounded vari-
ance. These properties play an important role in establishing
the convergence of our algorithms.

1.2. Related Work

Robust average-reward MDPs. Studies on robust average-
reward MDPs are quite limited in the literature. Model-
based robust average-reward MDPs were first studied in
(Tewari & Bartlett, 2007), where the authors showed the
existence of the Blackwell optimal policy for a specific
uncertainty set of bounded parameters. Results for general
uncertainty sets were developed in recent work (Wang et al.,
2023), following a fundamentally different approach from
(Tewari & Bartlett, 2007). However, these two methods are
model-based. The work of (Lim et al., 2013) designed a
model-free algorithm for the uncertainty set defined by total
variation and characterized its regret bound. However, their
method cannot be generalized to other uncertainty sets. In
this paper, we design the first model-free method for general
uncertainty sets and provide fundamental insights into the
model-free robust average-reward RL problem.

Robust discounted-reward MDPs. Model-based methods
for robust discounted MDPs were studied in (Iyengar, 2005;
Nilim & El Ghaoui, 2004; Bagnell et al., 2001; Satia &
Lave Jr, 1973; Wiesemann et al., 2013; Lim & Autef, 2019;
Xu & Mannor, 2010; Yu & Xu, 2015; Lim et al., 2013;
Tamar et al., 2014; Neufeld & Sester, 2022), where the un-
certainty set is assumed to be known, and the problem can be
solved using robust dynamic programming. Later, the stud-
ies were generalized to the model-free setting (Roy et al.,
2017; Badrinath & Kalathil, 2021; Wang & Zou, 2021; 2022;
Tessler et al., 2019; Liu et al., 2022; Zhou et al., 2021; Yang
et al., 2021; Panaganti & Kalathil, 2021; Goyal & Grand-
Clement, 2018; Kaufman & Schaefer, 2013; Ho et al., 2018;
2021). Our work focuses on the average-reward setting.
First, the robust average-reward Bellman operator does not
come with a simple contraction property like the one for
the discounted setting, and the average-reward depends on
the limiting behavior of the underlying MDP. Moreover, the
average-reward Bellman function is a function of two vari-
ables: the average-reward and the relative value function,
whereas its discounted-reward counterpart is a function of
only the value function. These challenges make the robust
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average-reward problem more intricate. Furthermore, exist-
ing studies mostly focus on a certain type of uncertainty set,
e.g., contamination (Wang & Zou, 2021) and total variation
(Panaganti et al., 2022); in this paper, our method can be
used to solve a wide range of uncertainty sets.

Non-robust average-reward MDPs. Early contributions
to non-robust average-reward MDPs include a fundamental
characterization of the problem and model-based methods
(Puterman, 1994; Bertsekas, 2011). Model-free methods in
the tabular setting, e.g., RVI Q-learning (Abounadi et al.,
2001) and differential Q-learning (Wan et al., 2021; Wan
& Sutton, 2022), were developed recently and are both
shown to converge to the optimal average-reward. There is
also work on average-reward RL with function approxima-
tion, e.g., (Zhang et al., 2021b; Tsitsiklis & Van Roy, 1999;
Zhang et al., 2021a; Yu & Bertsekas, 2009). In this paper,
we focus on the robust setting, where the key challenge lies
in the non-linearity of the robust average-reward Bellman
equation, whereas it is linear in the non-robust setting.

2. Preliminaries and Problem Formulation

Average-reward MDPs. An MDP (S,A,P, r) is specified
by: a state space S, an action space A, a transition kernel
P = {Pa

s ∈ ∆(S), a ∈ A, s ∈ S}1, where Pa
s is the distribu-

tion of the next state over S upon taking action a in state s,
and a reward function r : S×A→ [0, 1]. At each time step
t, the agent at state st takes an action at, the environment
then transitions to the next state st+1 ∼ Pat

st , and provides a
reward signal rt ∈ [0, 1].

A stationary policy π : S→ ∆(A) maps a state to a distri-
bution over A, following which the agent takes action a at
state s with probability π(a|s). Under a transition kernel P,
the average-reward of π starting from s ∈ S is defined as

gπP(s) ≜ lim
T→∞

Eπ,P

[
1

T

T−1∑
n=0

rt|S0 = s

]
. (1)

The relative value function is defined to measure the cumu-
lative difference between the reward and gπP :

V π
P (s) ≜ Eπ,P

[ ∞∑
t=0

(rt − gπP)|S0 = s

]
. (2)

Then (gπP , V
π
P ) satisfies the following Bellman equation

(Puterman, 1994):

V π
P (s) = Eπ,P

[
r(s,A)− gπP(s) +

∑
s′∈S

pAs,s′V
π
P (s′)

]
. (3)

1∆(S) denotes the (|S| − 1)-dimensional probability simplex
on S.

Robust average-reward MDPs. For robust MDPs, the tran-
sition kernel is assumed to be in some uncertainty set P. At
each time step, the environment transits to the next state ac-
cording to an arbitrary transition kernel P ∈ P. In this paper,
we focus on the (s, a)-rectangular uncertainty set (Nilim &
El Ghaoui, 2004; Iyengar, 2005), i.e., P =

⊗
s,a P

a
s , where

Pa
s ⊆ ∆(S). Popular uncertainty sets include those defined

by the contamination model (Huber, 1965; Wang & Zou,
2022), total variation (Lim et al., 2013), Chi-squared diver-
gence (Iyengar, 2005), Kullback-Leibler (KL) divergence
(Hu & Hong, 2013) and Wasserstein distance (Gao & Kley-
wegt, 2022). We will investigate these uncertainty sets in
detail in Section 5.

We investigate the worst-case average-reward over the uncer-
tainty set of MDPs. Specifically, define the robust average-
reward of a policy π as

gπP(s) ≜ min
κ∈

⊗
n≥0 P

lim
T→∞

Eπ,κ

[
1

T

T−1∑
t=0

rt|S0 = s

]
, (4)

where κ = (P0,P1...) ∈
⊗

n≥0 P. It was shown in (Wang
et al., 2023) that the worst case under the time-varying
model is equivalent to the one under the stationary model:

gπP(s) = min
P∈P

lim
T→∞

Eπ,P

[
1

T

T−1∑
t=0

rt|S0 = s

]
. (5)

Therefore, we limit our focus to the stationary model. We
refer to the minimizers of (5) as the worst-case transition
kernels for the policy π, and denote the set of all possible
worst-case transition kernels by Ωπ

g , i.e., Ωπ
g ≜ {P ∈ P :

gπP = gπP}. As shown in Example A.1 in the appendix, the
worst-case transition kernel may not be unique.

We focus on the model-free setting, where only samples
from the nominal MDP (centroid of the uncertainty set) are
available. We investigate two problems: 1) given a policy π,
estimate its robust average-reward gπP, and 2) find an optimal
robust policy that optimizes the robust average-reward:

max
π

gπP(s), for any s ∈ S. (6)

We denote by g∗P(s) ≜ maxπ g
π
P(s) the optimal robust

average-reward.

3. Robust RVI TD for Policy Evaluation
In this section, we study the problem of policy evaluation,
which aims to estimate the robust average-reward gπP for a
fixed policy π.

For technical convenience, we make the following assump-
tion to guarantee that the average-reward is independent of
the initial state (Abounadi et al., 2001; Wan et al., 2021;
Zhang et al., 2021a; Zhang & Ross, 2021; Chen et al., 2022;
Wang et al., 2023).
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Assumption 1. The Markov chain induced by π is a
unichain for all P ∈ P.

In general, the average-reward depends on the initial state.
For example, imagine a policy that induces a multichain in
an MDP with two closed communicating classes. A learning
algorithm would be able to learn the average-reward for each
communicating class; however, the average-rewards for the
two classes may be different. To remove this complexity, it
is common and convenient to rule out this possibility. Under
Assumption 1, the average-reward w.r.t. any P ∈ P is
identical for any start state, i.e., gπP(s) = gπP(s

′), ∀s, s′ ∈ S.

We first revisit the robust average-reward Bellman equa-
tion in (Wang et al., 2023), and further characterize the
structure of its solutions. For V ∈ R|S|, denote by
σPa

s
(V ) ≜ minp∈Pa

s
pV , PV (s, a) ≜ argminp∈Pa

s
pV and

let PV = {PV (s, a), s ∈ S, a ∈ A}.
Theorem 3.1 (Robust Bellman equation). If (g, V ) is a
solution to the robust Bellman equation

V (s) =
∑
a

π(a|s)(r(s, a)− g + σPa
s
(V )), ∀s, (7)

then 1) g = gπP (Wang et al., 2023); 2) PV ∈ Ωπ
g ; 3)

V = V π
PV

+ ce for some c ∈ R, where e denotes the vector
(1, 1, ..., 1) ∈ R|S|.

The robust Bellman equation in (7) was initially developed
in (Wang et al., 2023). The authors also defined a robust
relative value function:

V π
P (s) ≜ min

P∈P
Eπ,P

[ ∞∑
n=0

(rn − gπP)|S0 = s

]
, (8)

which is the worst-case relative value function, and showed
that (gπP, V

π
P ) is a solution to (7). However, conversely,

it may not be the case that any solution (g, V ) to (7) can
be written as V = V π

P + ce for some c ∈ R. This is in
contrast to the results for the non-robust average-reward
setting, where the set of solutions to the non-robust average-
reward Bellman equation can be written as {(gπP , V π

P + ce) :
c ∈ R} (Puterman, 1994).

In Theorem 3.1, we show that for any solution (g, V ) to
(7), the transition kernel PV ∈ Ωπ

g , i.e., it is a worst-case
transition kernel for gπP. Moreover, any solution to (7) can
be written as V = V π

PV
+ ce for some constant c. This

is different from the non-robust setting, as V π
PV

actually
depends on V . As will be seen later, this result is crucial to
establish the convergence of our robust RVI TD.

Theorem 3.1 also reveals the fundamental difference be-
tween the robust and the non-robust average-reward settings.
Under the non-robust setting, the solution set to the Bellman
equation can be written as {(gπP , V π

P + ce) : c ∈ R}. The
solution is uniquely determined by the transition kernel (up

to some constant vector ke). In contrast, in the robust set-
ting, the robust Bellman equation is no longer linear. Any
solution V to (7) is a relative value function w.r.t. some
worst-case transition kernel P ∈ Ωπ

g (up to some additive
constant vector), i.e., V ∈ {V π

P + ce : P ∈ Ωπ
g , c ∈ R}.

A natural question that arises is whether, for any P ∈ Ωπ
g ,

(gπP, V
π
P ) is a solution to (7)? Lemma 3.1 refutes this.

Lemma 3.1. There exists a robust MDP such that for some
P ∈ Ωπ

g , (gπP, V
π
P ) is not a solution to (7).

Lemma 3.1 implies that the solution set to (7) is a subset
of {V π

P + ce,P ∈ Ωπ
g , c ∈ R}. Note that explicit charac-

terization of the solution set to (7) is challenging due to
its non-linear structure; however, result 3 in Theorem 3.1
suffices for the convergence proof (see appendix for proofs).

Motivated by the robust Bellman equation in (7), we pro-
pose a model-free robust RVI TD algorithm in Algorithm 1,
where T̂ and function f will be discussed later.

Algorithm 1 Robust RVI TD
Input: V0, αn, n = 0, 1, ..., N−1

1: for n = 0, 1, ..., N − 1 do
2: for all s ∈ S do
3: Vn+1(s)← Vn(s)+αn(T̂Vn(s)−f(Vn)−Vn(s))
4: end for
5: end for

Note that (7) can be written as V = TV − g, where T
is the robust average-reward Bellman operator. Since in
the model-free setting P is unknown, in Algorithm 1, we
construct T̂V as an estimate of TV satisfying

E[T̂V ] = TV, Var[T̂V (s)] ≤ C(1 + ∥V ∥2), (9)

for some constant C > 0. In this paper, if not specified, ∥ · ∥
denotes the infinity norm ∥ · ∥∞.

It is challenging to construct such T̂ as T is non-linear in the
nominal transition kernel from which samples are generated.
In Section 5, we will present in detail how to construct such
T̂ for various uncertainty set models.

To make the iterates stable, we follow the idea of RVI in
the non-robust setting and introduce an offset function f
satisfying the following assumption (Puterman, 1994).

Assumption 2. f : R|S| → R is Lf -Lipschitz and satisfies
f(e) = 1, f(x+ ce) = f(x) + c, f(cx) = cf(x), ∀c ∈ R.

Assumption 2 can be easily satisfied, e.g., f(V ) = V (s0)

for some reference state s0 ∈ S, and f(V ) =
∑

s V (s)

|S|
(Abounadi et al., 2001). Compared with the discounted
setting, f is critical here. As we discussed above, in the
average-reward setting, the solution to the Bellman equation
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V + ce can be arbitrarily large because c can be any real
number. This may lead to a non-convergent sequence Vn

(see, e.g., example 8.5.2 of (Puterman, 1994)). Hence, a
function f is introduced to "offset" Vn and keep the iterates
stable. Also, f(Vn) serves as an estimator of the average-
reward gπP, as we shall see later.

We then assume the Robbins-Monro condition on the step-
size, and further show the convergence of robust RVI TD.
Assumption 3. The stepsize {αn}∞n=0 satisfies the Robbins-
Monro condition, i.e.,

∑∞
n=0 αn =∞,

∑∞
n=0 α

2
n <∞.

Theorem 3.2 (Convergence of robust RVI TD). Under As-
sumptions 1,2,3, and if T̂ satisfies (9), then almost surely,
(f(Vn), Vn) converges to a solution to (7) which may de-
pend on the initialization.

The result implies that f(Vn)→ gπP a.s., which means our
robust RVI TD converges to the worst-case average-reward
for the given policy π.
Remark 3.1. Our robust RVI TD algorithm is shown to
converge to a solution to (7). This model-free result is the
same as the model-based results in (Wang et al., 2023).
Though it was shown in (Wang et al., 2023) that (gπP, V

π
P )

(defined in (8)) is a solution to (7), it is not guaranteed that
the convergence is to (gπP, V

π
P + ce) for some c.

Remark 3.2. As we discussed following the statement of
Theorem 3.1, result 3) of Theorem 3.1 is crucial to the con-
vergence proof of Theorem 3.2. Specifically, it is necessary
in order to characterize the equilibrium of the associated
ODE, and thus the limit of the iterates f(Vn)→ gπP.

4. Robust RVI Q-Learning for Control
In this section, we study the problem of optimal control,
which aims to find a policy that optimizes the robust average-
reward: π∗ = argmaxπ g

π
P.

Similar to Assumption 1, we make the following assumption
to guarantee that the average-reward is independent of the
initial state (Abounadi et al., 2001; Li et al., 2022).
Assumption 4. The Markov chain induced by any P ∈ P

and any π is a unichain.

We first revisit the optimal robust Bellman equation in
(Wang et al., 2023) and further present a characterization of
its solutions. Consider a Q-function Q : S× A→ R, and
define VQ(s) = maxa Q(s, a), ∀s ∈ S.
Lemma 4.1 (Optimal robust Bellman equation). If (g,Q)
is a solution to the optimal robust Bellman equation

Q(s, a) = r(s, a)− g + σPa
s
(VQ), ∀s, a, (10)

then 1) g = g∗P (Wang et al., 2023); 2) the greedy policy
w.r.t. Q: πQ(s) = argmaxa Q(s, a) is an optimal robust
policy (Wang et al., 2023); 3) VQ = V

πQ

P + ce for some
P ∈ Ω

πQ
g , c ∈ R.

According to result 2 in Lemma 4.1, finding a solution to
(10) is sufficient to get the optimal robust average-reward
and to derive the optimal robust policy. We note that a
complete characterization of the solution set to (10) can be
obtained similarly to the one in result 3 of Theorem 3.1.
Here, we only provide its structure to simplify the presen-
tation and avoid cumbersome notation. This structure as
outlined in Lemma 4.1 is sufficient for our convergence
analysis.

We hence present the following model-free robust RVI Q-
learning algorithm.

Algorithm 2 Robust RVI Q-learning
Input: Q0, αn

1: for n = 0, ..., N − 1 do
2: for all s ∈ S, a ∈ A do
3: Qn+1(s, a) ← Qn(s, a) + αn

(
ĤQn(s, a) −

f(Qn)−Qn(s, a)
)

4: end for
5: end for

Similar to the robust RVI TD algorithm, denote the optimal
robust Bellman operator by HQ(s, a) ≜ r(s, a)+σPa

s
(VQ),

and we construct an estimate Ĥ such that for some finite
constant C,

E[ĤQ] = HQ, Var[ĤQ(s, a)] ≤ C(1 + ∥Q∥2). (11)

In Section 5, we will present in detail how to construct such
Ĥ for various uncertainty set models.

The following theorem shows the convergence of the robust
RVI Q-learning to the optimal robust average-reward g∗P
and the optimal robust policy π∗.

Theorem 4.1 (Convergence of robust RVI Q-learning).
Under Assumptions 2, 3 and 4, and if Ĥ satisfies (11),
then almost surely, (f(Qn), Qn) converges to a solution
to (10), i.e., f(Qn) converges to g∗P, and the greedy pol-
icy πQn

(s) ≜ argmaxa Qn(s, a) converges to an optimal
robust average-reward π∗.

5. Case Studies
In the previous two sections, we showed that if an unbiased
estimator with bounded variance is available for the robust
Bellman operator, then both robust algorithms proposed con-
verge to the optimum. In this section, we present the design
of these estimators for various uncertainty set models.

The major challenge in designing the estimated operators
satisfying (9) and (11) lies in estimating the support function
σPa

s
(V ) unbiasedly with bounded variance using samples

from the nominal transition kernel. However, the nominal
transition kernel P in general is different from the worst-case
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transition kernel, and the straightforward estimator is shown
to be biased. Specifically, if we centered at the empirical
transition kernel P̂ and construct the uncertainty set P̂, then
the estimator is biased: E[σ

P̂a
s
(V )] ̸= σPa

s
(V ).

We consider several widely-used uncertainty models in-
cluding the contamination model, the total variation model,
the Chi-square model, the KL-divergence model, and the
Wasserstein distance model. We show that our estimators
are unbiased and have bounded variance in the following
theorem. We will present the design in later sections.

Theorem 5.1. For each uncertainty set, denote its corre-
sponding estimators by T̂ and Ĥ as in Sections 5.1 and 5.2.
Then, there exists some constant C, such that (9) and (11)
hold.

In the following sections, we construct an operator σ̂Pa
s

to
estimate the support function σPa

s
, ∀s ∈ S, a ∈ A for each

uncertainty set. We further define the estimated robust Bell-
man operators as T̂V (s) ≜

∑
a π(a|s)(r(s, a) + σ̂Pa

s
(V ))

and ĤQ(s, a) ≜ r(s, a) + σ̂Pa
s
(VQ).

5.1. Linear Model: Contamination Uncertainty Set

The δ-contamination uncertainty set is Pa
s = {(1− δ)Pa

s +
δq : q ∈ ∆(S)}, where 0 < δ < 1 is the radius. Under
this uncertainty set, the support function can be computed
as σPa

s
(V ) = (1 − δ)Pa

sV + δmins V (s), and this is lin-
ear in the nominal transition kernel Pa

s . We hence use the
transition to the subsequent state to construct our estimator:

σ̂Pa
s
(V ) ≜ (1− δ)γV (s′) + δmin

x
V (x), (12)

where s′ is a subsequent state sample after (s, a).

5.2. Non-Linear Models

Unlike the δ-contamination model, most uncertainty sets
result in a non-linear support function of the nominal tran-
sition kernel. We will employ the approach of multi-level
Monte-Carlo which is widely used in quantile estimation
under stochastic environments (Blanchet & Glynn, 2015;
Blanchet et al., 2019; Wang & Wang, 2022) to construct an
unbiased estimator with bounded variance.

For any s, a, we first generate N according to a geometric
distribution with parameter Ψ ∈ (0, 1). Then, we take action
a at state s for 2N+1 times, and observe r(s, a) and the sub-
sequent state {s′i}, i = 1, ..., 2N+1. We divide these 2N+1

samples into two groups: samples with odd indices, and
samples with even indices. We then individually calculate
the empirical distribution of s′ using the even-index sam-
ples, odd-index ones, all the samples, and the first sample:
P̂a,E
s,N+1 = 1

2N

∑2N

i=1 1s′2i
, P̂a,O

s,N+1 = 1
2N

∑2N

i=1 1s′2i−1
,

P̂a
s,N+1 = 1

2N+1

∑2N+1

i=1 1s′i
, P̂a,1

s,N+1 = 1s′1
. Then,

we use these estimated transition kernels as nominal
kernels to construct four estimated uncertainty sets
P̂
a,E
s,N+1, P̂

a,O
s,N+1, P̂

a
s,N+1, P̂

a,1
s,N+1. The multi-level estima-

tor is then defined as

σ̂Pa
s
(V ) ≜ σ

P̂
a,1
s,N+1

(V ) +
∆N (V )

pN
, (13)

where pN = Ψ(1− Ψ)N and

∆N (V ) ≜ σ
P̂a

s,N+1
(V )−

σ
P̂

a,E
s,N+1

(V ) + σ
P̂

a,O
s,N+1

(V )

2
.

We note that in previous results of the multi-level Monte-
Carlo estimator (Blanchet & Glynn, 2015; Blanchet et al.,
2019; Wang & Wang, 2022), several assumptions are needed
to show that the estimator is unbiased. These assumptions,
however, do not hold in our cases. For example, the func-
tion σP(V ) is not continuously differentiable. Hence, their
analysis cannot be directly applied here.

We then present four examples of non-linear uncertainty
sets. Under each example, a solution to the support function
σP(V ) is given, and by plugging it into (13) the unbiased
estimator can then be constructed. More details can be
found in Appendix D and Appendix E.

Total Variation Uncertainty Set. The total variation uncer-
tainty set is Pa

s = {q ∈ ∆(|S|) : 1
2∥q − Pa

s∥1 ≤ δ}, and the
support function can be computed using its dual function
(Iyengar, 2005):

σPa
s
(V ) = max

µ≥0

(
Pa
s(V − µ)− δSpan(V − µ)

)
. (14)

Chi-square Uncertainty Set. The Chi-square uncertainty
set is Pa

s = {q ∈ ∆(|S|) : dc(P
a
s , q) ≤ δ}, where

dc(q, p) =
∑

s
(p(s)−q(s))2

p(s) . Its support function can be
computed using its dual function (Iyengar, 2005):

σPa
s
(V ) = max

µ≥0

(
Pa
s(V − µ)−

√
δVarPa

s
(V − µ)

)
. (15)

Kullback–Leibler (KL) Divergence Uncertainty Set. The
KL-divergence between two distributions p, q is defined
as DKL(q||p) =

∑
s q(s) log

q(s)
p(s) , and the uncertainty set

defined via KL divergence is

Pa
s = {q : DKL(q||Pa

s) ≤ δ} , ∀s ∈ S, a ∈ A. (16)

Its support function can be efficiently solved using the dual-
ity result in (Hu & Hong, 2013):

σPa
s
(V ) = −min

α≥0

(
δα+ α log

(
EPa

s

[
e

−V
α

]))
. (17)

The above estimator for the KL-divergence uncertainty set
has also been developed in (Liu et al., 2022) for robust dis-
counted MDPs. Its extension to our average-reward setting
is similar.
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Wasserstein Distance Uncertainty Sets. Consider the
metric space (S, d) by defining some distance metric d.
For some parameter l ∈ [1,∞) and two distributions
p, q ∈ ∆(S), define the l-Wasserstein distance between
them as Wl(q, p) = infµ∈Γ (p,q) ∥d∥µ,l, where Γ (p, q) de-
notes the distributions over S×S with marginal distributions
p, q, and ∥d∥µ,l =

(
E(X,Y )∼µ

[
d(X,Y )l

])1/l
. The Wasser-

stein distance uncertainty set is then defined as

Pa
s = {q ∈ ∆(|S|) : Wl(P

a
s , q) ≤ δ} . (18)

To solve the support function w.r.t. the Wasserstein distance
set, we first prove the following duality lemma.

Lemma 5.1. It holds that

σPa
s
(V ) = sup

λ≥0

(
−λδl + EPa

s

[
inf
y

(
V (y) + λd(S, y)l

)])
.

(19)

Thus, the support function can be solved using its dual form,
and the estimator can then be constructed following (13).

6. Experiments
We numerically verify our previous convergence results and
demonstrate the robustness of our algorithms. Additional
experiments can be found in Appendix G.

6.1. Convergence of Robust RVI TD and Q-Learning

We first verify the convergence of our robust RVI TD and
Q-learning algorithms under a Garnet problem G(30, 20)
(Archibald et al., 1995). There are 30 states and 20 actions.
The nominal transition kernel P = {Pa

s , s ∈ S, a ∈ A}
is randomly generated by a normal distribution: Pa

s ∼
N(1, σa

s ) and then normalized, and the reward function
r(s, a) ∼ N(1, µa

s), where µa
s , σ

a
s ∼ Uniform[0, 100].

We set δ = 0.4, αn = 0.01, f(V ) =
∑

s V (s)

|S| and

f(Q) =
∑

s,a Q(s,a)

|S||A| . Due to the space limit, we only show
the results under the Chi-square and Wasserstein Distance
models. The results under the other three uncertainty sets
are presented in Appendix G.

For policy evaluation, we evaluate the robust average-reward
of the uniform policy π(a|s) = 1

|A| . We implement our
robust RVI TD algorithm under different uncertainty models.
We run the algorithm independently for 30 times and plot the
average value of f(V ) over all 30 trajectories. We also plot
the 95th and 5th percentiles of the 30 curves as the upper
and lower envelopes of the curves. To compare, we plot the
true robust average-reward computed using the model-based
robust value iteration method in (Wang et al., 2023). It can
be seen from the results in Figure 1 that our robust RVI TD
algorithm converges to the true robust average-reward value.

Figure 1: Robust RVI TD Algorithm.

We then consider policy optimization. We run our robust
RVI Q-learning independently for 30 times. The curves
in Figure 2 show the average value of f(Q) over 30 tra-
jectories, and the upper/lower envelopes are the 95/5 per-
centiles. We also plot the optimal robust average-reward g∗P
computed by the model-based RVI method in (Wang et al.,
2023). Our robust RVI Q-learning converges to the optimal
robust average-reward g∗P under each uncertainty set, which
verifies our theoretical results.

Figure 2: Robust RVI Q-Learning Algorithm.

6.2. Robustness of Robust RVI Q-Learning

We then demonstrate the robustness of our robust RVI Q-
learning by showing that our method achieves a higher
average-reward when there is model deviation between train-
ing and evaluation.

6.2.1. RECYCLING ROBOT

We first consider the recycling robot problem (Example
3.3 (Sutton & Barto, 2018)). A mobile robot running on
a rechargeable battery aims to collect empty soda cans. It
has 2 battery levels: low and high. The robot can either 1)
search for empty cans; 2) remain stationary and wait for
someone to bring it a can; 3) go back to its home base to
recharge. Under low (high) battery level, the robot finds
an empty can with probabilities α (β), and remains at the
same battery level. If the robot goes out to search but finds
nothing, it will run out of its battery and can only be carried
back by human. More details can be found in (Sutton &
Barto, 2018).

In this experiment, the uncertainty lies in the probabili-
ties α, β of finding an empty can if the robot chooses the
action ‘search’. We set δ = 0.4 and implement our al-
gorithms and vanilla Q-learning under the nominal envi-
ronment (α = β = 0.5) with stepsize 0.01. To show the

7
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difference among the policies that the algorithms learned,
we plot the difference of Q values at low battery level in
Figure 3(a). In the low battery level, the robust algorithms
find conservative policies which choose to wait instead of
search, whereas the vanilla Q-learning finds a policy that
chooses to search. To test the robustness of the obtained
policies, we evaluate the average-reward of the learned poli-
cies in perturbed environments. Specifically, let x denote
the amplitude of the perturbation. Then, we estimate the
worst performance of the two policies over the testing uncer-
tainty set (0.5− x, 0.5 + x), and plot them in Figure 3(b).
It can be seen that when the perturbation is small, the true
worst-case kernels (w.r.t. δ during training) are far from the
testing environment, and hence the vanilla Q-learning has a
higher reward; however, as the perturbation level becomes
larger, the testing environment gets closer to the worst-case
kernels, and then our robust algorithms perform better. It
can be seen that the performance of Q-learning decreases
rapidly while our robust algorithm is stable and outperforms
the non-robust Q-learning. This implies that our algorithm
is robust to the model uncertainty.

(a) Q(low,wait)-Q(low,search) (b) Perturbed environment

Figure 3: Recycling Robot.

6.2.2. INVENTORY CONTROL PROBLEM

We now consider the supply chain problem (Giannoccaro &
Pontrandolfo, 2002; Kemmer et al., 2018; Liu et al., 2022).
At the beginning of each month, the manager of a warehouse
inspects the current inventory of a product. Based on the
current stock, the manager decides whether or not to order
additional stock from a supplier. During this month, if the
customer demand is satisfied, the warehouse can make a
sale and obtain profits; but if not, the warehouse will obtain
a penalty associated with being unable to satisfy customer
demand for the product. The warehouse also needs to pay
the holding cost for the remaining stock and new items
ordered. The goal is to maximize the average profit.

We let st denote the inventory at the beginning of the t-th
month, Dt be a random demand during this month, and at
be the number of units ordered by the manager. We assume
that Dt follows some distribution and is independent over
time. When the agent takes action at, the order cost is
at, and the holding cost is 3 · (st + at). If the demand
Dt ≤ st + at, then selling the item brings 5 ·Dt in total;
but if the demand Dt > st + at, then there will not be

any sale and a penalty of −15 will be received. We set
S = {0, 1, ..., 16} and A = {0, ..., 8}.

We first set δ = 0.4 and αt = 0.01, and implement our
algorithms and vanilla Q-learning under the nominal envi-
ronment where Dt ∼ Uniform(0, 16) is generated follow-
ing the uniform distribution. To verify the robustness, we
test the obtained policies under different perturbed environ-
ments. More specifically, we perturb the distribution of the
demand to Dt ∼ U(m,b), where

U(m,b)(x) =

{
1
|S| + b |S|−2

2|S| , if x ∈ {m,m+ 1},
1−b
|S| , else.

The results are plotted in Figure 4. We first fix m = 0
and plot the performance under different values of b in
Figure 4(a), then we fix b = 0.25 and plot the performance
under different values of m in Figure 4(b).

As the results show, when b is small, i.e., the perturbation of
the environment is small, the non-robust Q-learning obtains
higher reward than our robust methods; as b becomes larger,
the performance of the non-robust method decreases rapidly,
while our robust methods are more robust and outperform
the non-robust one. When b is fixed, our robust methods out-
perform the non-robust Q-learning, which also demonstrates
the robustness of our methods.

(a) m = 0 (b) b = 0.25

Figure 4: Inventory Control.

7. Conclusion
In this paper, we developed the first model-free algorithms
with provable convergence and optimality guarantee for ro-
bust average-reward RL under a broad range of uncertainty
set models. We characterized the fundamental structure of
solutions to the robust average-reward Bellman equation,
which is crucial for the convergence analysis. We designed
model-free robust algorithms based on the ideas of relative
value iteration for non-robust average-reward MDPs and
the robust average-reward Bellman equation. We developed
concrete solutions to five popular uncertainty sets, where
we generalized the idea of multi-level Monte-Carlo and
constructed an unbiased estimate of the non-linear robust
average-reward Bellman operator.
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A. Proof of Lemma 3.1
We construct the following example.

Example A.1. Consider an MDP with 3 states (1,2,3) and only one action a, and set a (s, a)-rectangular uncertainty set
P = Pa

1

⊗
Pa
2

⊗
Pa
3 where Pa

1 = {Pa
11,P

a
12}, Pa

2 = {(0, 0, 1)⊤} and Pa
3 = {(0, 1, 0)⊤}, where Pa

11 = (0, 1, 0)⊤,Pa
12 =

(0, 0, 1)⊤. Hence, the uncertainty set contains two transition kernels P = {P1,P2}. The reward of each state is set to be
r = (r1, r2, r3). The only stationary policy π in this example is π(i) = a, ∀i.

Note that this robust MDP is a unichain and hence satisfies Assumption 1 with gπP1
(1) = gπP1

(2) = gπP1
(3), gπP2

(1) =
gπP2

(2) = gπP2
(3).

Under both transition kernels P1,P2, the average-reward are identical: gπP1
= gπP2

= 0.5r2 + 0.5r3. Hence, both P1,P2 are
the worst-case transition kernels.

According to Section A.5 of (Puterman, 1994), the relative value functions w.r.t. P1,P2 can be computed as

V π
P1

=

(
r1 −

1

4
r2 −

3

4
r3,

1

4
r2 −

1

4
r3,−

1

4
r2 +

1

4
r3

)⊤

,

V π
P2

=

(
r1 −

3

4
r2 −

1

4
r3,

1

4
r2 −

1

4
r3,−

1

4
r2 +

1

4
r3

)⊤

.

When r3 > r2, only V π
P1

is the solution to (7); and when r2 > r3, only V π
P2

is the solution to (7). Hence, this proves
Lemma 3.1 and implies that not any relative value function w.r.t. a worst-case transition kernel is a solution to (7).

B. Robust RVI TD Method for Policy Evaluation
We define the following notation:

rπ(s) ≜
∑
a

π(a|s)r(s, a),

σPs
(V ) ≜

∑
a

π(a|s)σPa
s
(V ),

σP(V ) ≜ (σPs1
(V ), σPs2

(V ), ..., σPs|S|
(V )) ∈ R|S|.

B.1. Proof of Theorem 3.1

Theorem B.1 (Restatement of Theorem 3.1). If (g, V ) is a solution to the robust Bellman equation

V (s) =
∑
a

π(a|s)(r(s, a)− g + σPa
s
(V )), ∀s, (20)

then 1) g = gπP (Wang et al., 2023); 2) PV ∈ Ωπ
g ; 3) V = V π

PV
+ ce for some c ∈ R.

Proof. 1). The robust Bellman equation in (20) can be rewritten as

g + V (s)− rπ(s) = σPs
(V ), ∀s ∈ S. (21)

From the definition, it follows that

σPs
(V ) =

∑
a

π(a|s) min
Pa
s∈Pa

s

Pa
sV. (22)

Hence, for any transition kernel P = (Pa
s) ∈

⊗
s,a P

a
s ,

g + V (s)− rπ(s)−
∑
a

π(a|s)Pa
sV ≤ 0, ∀s. (23)

12



Model-Free Robust Average-Reward Reinforcement Learning

It can be further rewritten in matrix form as:

ge ≤ rπ + (Pπ − I)V, (24)

where Pπ is the state transition matrix induced by π and P, i.e., the s-th row of Pπ is∑
a

π(a|s)Pa
s . (25)

Note that Pπ has non-negative components since it is a transition matrix. Multiplying by Pπ on both sides, we have that

Pπge = ge ≤ Pπrπ + Pπ(Pπ − I)V,

ge ≤ (Pπ)2rπ + (Pπ)2(Pπ − I)V,

...

ge ≤ (Pπ)n−1rπ + (Pπ)n−1(Pπ − I)V. (26)

Now, by summing up all these inequalities in (24) and (26), we have that

nge ≤
n−1∑
i=0

(Pπ)irπ + ((Pπ)n − I)V, (27)

and hence,

ge ≤
∑n−1

i=0 (P
π)irπ

n
+

((Pπ)n − I)V

n
. (28)

Let n→∞, and we have that

ge ≤ lim
n→∞

∑n−1
i=0 (P

π)irπ
n

+ lim
n→∞

((Pπ)n − I)V

n

= gπPe, (29)

where the last inequality is from the definition of gπP and the fact that limn→∞
((Pπ)n−I)V

n = 0. Hence, g ≤ gπP for any
P ∈

⊗
s,a P

a
s .

Consider the worst-case transition kernel PV of V . The robust Bellman equation can be equivalently rewritten as

ge = rπ − V + Pπ
V V. (30)

This means that (g, V ) is a solution to the non-robust Bellman equation for transition kernel PV and policy π:

xe = rπ − Y + Pπ
V Y. (31)

Thus, by Thm 8.2.6 from (Puterman, 1994),

g = gπPV
, (32)

V = V π
PV

+ ce, for some c ∈ R. (33)

However, note that

gπPV
= g ≤ gπP = min

P∈P
gπP ≤ gπPV

, (34)

thus,

gπPV
= g = gπP. (35)

2). From (35),

gπPV
= gπP . (36)

It then follows from the definition of Ωπ
g that PV ∈ Ωπ

g .

3). Since (g, V ) is a solution to the non-robust Bellman equation

xe = rπ − Y + Pπ
V Y, (37)

the claim then follows from Theorem 8.2.6 in (Puterman, 1994).

13
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B.2. Proof of Theorem 3.2

Theorem B.2. (Restatement of Theorem 3.2) Under Assumptions 1,2,3, (f(Vn), Vn) converges to a (possible sample path
dependent) solution to (7) a.s..

We first show the stability of the robust RVI TD algorithm in the following lemma.

Lemma B.1. Algorithm 1 remains bounded during the update, i.e.,

sup
n
∥Vn∥ <∞, a.s.. (38)

Proof. Denote by

h(V ) ≜ rπ + σP(V )− f(V )e− V. (39)

Then the update of robust RVI TD can be rewritten as

Vn+1 = Vn + αn(h(Vn) +Mn+1), (40)

where Mn+1 ≜ T̂Vn − rπ − σP(V ) is the noise term.

Further, define the limit function h∞:

h∞(V ) ≜ lim
c→∞

h(cV )

c
. (41)

Then, from σPa
s
(cV ) = cσPa

s
(V ) and f(cV ) = cf(V ), it follows that

h∞(V ) = lim
c→∞

rπ
c

+ σP(V )− f(V )e− V = σP(V )− f(V )e− V. (42)

According to Section 2.1 and Section 3.2 of (Borkar, 2009), it suffices to verify the following assumptions:

(1). h is Lipschitz;

(2). Stepsize αn satisfies Assumption 3;

(3). Denoting by Fn the σ-algebra generated by V0,M1, ...,Mn, then E[Mn+1|Fn] = 0, E[∥Mn+1∥2|Fn] ≤ K(1+ ∥Vn∥2)
for some constant K > 0.

(4). h∞ has the origin as its unique globally asymptotically stable equilibrium.

First, note that

∥h(V1)− h(V2)∥ = max
s

∣∣∣∣∣∑
a

π(a|s)(σPa
s
(V1)− σPa

s
(V2))− (f(V1)− f(V2))− (V1(s)− V2(s))

∣∣∣∣∣
≤ max

s

{∣∣∣∣∣∑
a

π(a|s)(σPa
s
(V1)− σPa

s
(V2))

∣∣∣∣∣+ |(f(V1)− f(V2))|+ |(V1(s)− V2(s))|

}
≤ (2 + Lf )∥V1 − V2∥, (43)

where the last inequality follows from the fact that the support function σP(·) is 1-Lipschitz and the assumptions on f in
Assumption 2. Thus, h is Lipschitz, which verifies (1).

It is straightforward that (3) is satisfied if E[T̂Vn|Fn] = rπ + σP(Vn) and Var[T̂Vn|Fn] ≤ K(1 + ∥Vn∥2). As discussed
in Section 3, we assume the existence of an unbiased estimator T̂ with bounded variance here, and we will construct the
estimator in Section 5.

Then, it suffices to verify condition (4), i.e., to show that the ODE

ẋ(t) = h∞(x(t)) (44)

14
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has 0 as its unique globally asymptotically stable equilibrium.

Define an operator T0(V )(s) ≜
∑

a π(a|s)σPa
s
(V ). Then, any equilibrium W of (44) satisfies

T0(W )− f(W )e−W = 0. (45)

This equation can be further rewritten as a set of equations:{
W =T0(W )− ge,

g =f(W ).
(46)

The equation in (46) is the robust Bellman equation for a zero-reward robust MDP. Hence, from Theorem 3.1, any solution
(g,W ) to (46) satisfies

g = gπP,W = V π
P + ce, (47)

where V π
P is the relative value function w.r.t. some worst-case transition kernel P (i.e., gπP = minP∈P gπP ), and some c ∈ R.

Hence, any equilibrium of (44) satisfies

W = V π
P + ce, f(W ) = gπP. (48)

However, note that this robust Bellman equation is for a zero-reward robust MDP, hence for any P,

gπP = lim
T→∞

EP

[
T−1∑
t=0

rt
T

]
= 0, (49)

V π
P = EP

[ ∞∑
t=0

(rt − gπP)

]
= 0, (50)

thus gπP = 0 and W = ce for some c ∈ R. From (48), it follows that f(W ) = f(ce) = 0, for any equilibrium W . From
Assumption 2, we have that f(ce) = cf(e) = c = 0. This further implies that

W = V π
P + ce = 0. (51)

Thus, the only equilibrium of (44) is 0.

We then show that 0 is globally asymptotically stable. Recall that the zero-reward robust Bellman operator

T0V (s) =
∑
a

π(a|s)(σPa
s
(V )). (52)

We further introduce two operators:

T′
0V ≜ T0V − f(V )e, (53)

T̃0V ≜ T0V − gπPe. (54)

Note that in the zero-reward robust MDP, gπP = 0 and T̃0 = T0, but we introduce this notation for future use.

Consider the ODEs w.r.t. these two operators:

ẋ = T′
0x− x, (55)

ẏ = T̃0y − y. (56)

First, it can be easily shown that both T′
0 and T̃0 are Lipschitz with constants 1 + Lf and 1, respectively. Hence, both two

ODEs are well-posed. Also, it can be seen that (55) is the same as the ODE in (44).

Since the second equation (56) is a non-expansion (Lipschitz with parameter no larger than 1), Theorem 3.1 of (Borkar &
Soumyanatha, 1997) implies that any solution y(t) to (56) converges to the set of equilibrium points, i.e.,

y(t)→
{
W : W = T̃0W

}
, a.s.. (57)

15
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Similar to the discussion for T0, our Theorem 3.1 implies that the set of equilibrium points of (56) is {W = ce : c ∈ R}.
Hence, for any solution y(t) to (56), y(t)→ ce for some constant k that may depend on the initial value of y(t).

Now, consider the solution x(t) to (55). According to Lemma F.1 (note that T0 here is a special case of T in Lemma F.1
with r = 0), if the solutions x(t), y(t) have the same initial value x(0) = y(0), then

x(t) = y(t) + r(t)e, (58)

where r(t) is a solution to ṙ(t) = −r(t) + gπP − f(y(t)), r(0) = 0.

Note that the solution r(t) with r(0) = 0 can be written as

r(t) =

∫ t

0

e−(t−s)(gπP − f(y(s)))ds (59)

by variation of constants formula (Abounadi et al., 2001). If we denote the limit of y(t) by y∗ = ce, then limt→∞ r(t) =
gπP − f(y∗) (Lemma B.4 in (Wan et al., 2021), Theorem 3.4 in (Abounadi et al., 2001)). Hence, x(t) = y(t) + r(t)e
converges to y∗ + (gπP − f(y∗))e, i.e.,

x(t)→ ce− f(ce)e = 0. (60)

Hence, any solution x(t) to (55) converges to 0, which is its unique equilibrium. This thus implies that 0 is the unique
globally asymptotically stable equilibrium. Together with Theorem 3.7 in (Borkar, 2009), it further implies the boundedness
of Vn, which completes the proof.

We can readily prove Theorem B.2.

Proof. In Lemma B.1, we have shown that

sup
n
∥Vn∥ <∞, a.s.. (61)

Thus, we have verified that conditions (A1-A3) and (A5) in (Borkar, 2009) are satisfied. Lemma 2.1 in (Borkar, 2009) thus
implies that it suffices to study the solution to the ODE ẋ(t) = h(x(t)).

For the robust Bellman operator TV = rπ + σP(V ), define

T′V ≜ TV − f(V )e, (62)

T̃V ≜ TV − gπPe. (63)

From Lemma F.1, we know that if x(t), y(t) are the solutions to equations

ẋ = T′x− x, (64)

ẏ = T̃y − y, (65)

with the same initial value x(0) = y(0), then

x(t) = y(t) + r(t)e, (66)

where r(t) satisfies

ṙ(t) = −r(t) + gπP − f(y(t)), r(0) = 0. (67)

Thus, by the variation of constants formula,

r(t) =

∫ t

0

e−(t−s)(gπP − f(y(s)))ds. (68)
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Note that T̃ is also non-expansive, hence y(t) converges to some equilibrium of (65) (Theorem 3.1 of (Borkar &
Soumyanatha, 1997)). The set of equilibrium points of (65) can be characterized as

{
W : T̃W = W

}
= {W : W = TW − gπPe} =

{
W : W (s) =

∑
a

π(a|s)(r(s, a)− gπP + σPa
s
(W )), ∀s ∈ S

}
. (69)

From Theorem 3.1, any equilibrium of (65) can be rewritten as

W = V π
P + ce, for some P ∈ Ωπ

g , c ∈ R. (70)

Thus, y(t) converges to an equilibrium denoted by y∗:

y(t)→ y∗ ≜ V π
P∗ + c∗e, for some P∗ ∈ Ωπ

g , c
∗ ∈ R. (71)

Similar to Lemma B.1, it can be showed that r(t) → gπP − f(y∗) (Lemma B.4 in (Wan et al., 2021), Theorem 3.4 in
(Abounadi et al., 2001)). This further implies that

x(t)→ y∗ + (gπP − f(y∗))e = V π
P∗ + (c∗ + gπP − f(y∗))e, (72)

and we denote m∗ = c∗ + gπP − f(y∗). Moreover, since f is continuous (because it is Lipschitz), we have that

f(x(t))→ f(V π
P∗ + (c∗ + gπP − f(y∗))e)

= f(V π
P∗) + c∗ + gπP − f(y∗)

= f(V π
P∗) + c∗ + gπP − f(V π

P∗ + c∗e)

= f(V π
P∗) + c∗ + gπP − f(V π

P∗)− c∗

= gπP. (73)

Hence, we show that

x(t)→ V π
P∗ +m∗e, (74)

f(x(t))→ gπP. (75)

Following Lemma 2.1 from (Borkar, 2009), we conclude that a.s.,

Vn → V π
P∗ +m∗e, (76)

f(Vn)→ gπP, (77)

which completes the proof.

C. Robust RVI Q-Learning
C.1. Proof of Lemma 4.1

Part of the following theorem is proved in (Wang et al., 2023), but we include the proof for completeness.

Theorem C.1 (Restatement of Lemma 4.1). If (g,Q) is a solution to the optimal robust Bellman equation

Q(s, a) = r(s, a)− g + σPa
s
(VQ), ∀s, a, (78)

then 1) g = g∗P (Wang et al., 2023); 2) the greedy policy w.r.t. Q: πQ(s) = argmaxa Q(s, a) is an optimal robust policy
(Wang et al., 2023); 3) VQ = V

πQ

P + ce for some P ∈ Ω
πQ
g , c ∈ R.

Proof. Taking the maximum on both sides of (78) w.r.t. a, we have that

max
a

Q(s, a) = max
a
{r(s, a)− g + σPa

s
(VQ)}, ∀s ∈ S. (79)
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This is equivalent to

VQ(s) = max
a
{r(s, a)− g + σPa

s
(VQ)}, ∀s ∈ S. (80)

By Theorem 7 in (Wang et al., 2023), we can show that g = g∗P, which proves claim (1).

Recall that VQ(s) = maxa Q(s, a). It can be also written as

VQ(s) =
∑
a

πQ(a|s)Q(s, a). (81)

Here, we slightly abuse the notation of πQ, and use πQ(s) and πQ(a|s) interchangeably.

Then, the optimal robust Bellman equation in (79) can be rewritten as

Q(s, πQ(s)) = r(s, πQ(s))− g + σ
P

πQ(s)
s

(∑
a

πQ(a|·)Q(·, a)
)
. (82)

Moreover, if we denote by W (s) = Q(s, a) = Q(s, πQ(s)) = maxa Q(s, a), then the equation above is equivalent to

W (s) =
∑
a

πQ(a|s)(r(s, a)− g + σPa
s
(W )). (83)

Therefore, (W, g) is a solution to the robust Bellman equation for the policy πQ in Theorem 3.1. By Theorem 3.1, we have
that

g = g
πQ

P , (84)

W = V
πQ

P + ce, (85)

for some P ∈ Ω
πQ
g and c ∈ R.

Combining this with the claim (1) implies that πQ is an optimal robust policy. Claims (2) and (3) are thus proved.

C.2. Proof of Theorem 4.1

Lemma C.1. If Ĥ satisfies that for any Q, s ∈ S, a ∈ A, E[ĤQ(s, a)] = HQ(s, a) and Var(ĤQ(s, a)) ≤ C(1 + ∥Q∥2)
for some constant C, then under Assumptions 2, 4 and 3, Algorithm 2 remains bounded during the update almost surely, i.e.,

sup
n
∥Qn∥ <∞, a.s.. (86)

Proof. Denote by

h(Q) ≜ rπ + σP(VQ)− f(Q)e−Q. (87)

Then, the update of robust RVI Q-learning can be rewritten as

Qn+1 = Qn + αn(h(Qn) +Mn+1), (88)

where Mn+1 ≜ ĤQn − rπ − σP(VQ) is the noise term.

Further, define the limit function h∞:

h∞(Q) ≜ lim
c→∞

h(cQ)

c
. (89)

Then, note that σPa
s
(VcQ) = σPa

s
(cVQ) = cσPa

s
(VQ) for c > 0 and f(cQ) = cf(Q). It then follows that

h∞(Q) = lim
c→∞

rπ
c

+ σP(VQ)− f(Q)e−Q = σP(VQ)− f(Q)e−Q. (90)
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Similar to the proof of Lemma B.1, it suffices to verify the following conditions:

(1). h is Lipschitz;

(2). Stepsize αn satisfies Assumption 3;

(3). E[Mn+1|Fn] = 0, and E[∥Mn+1∥2|Fn] ≤ K(1 + ∥Qn∥2) for some constant K.

(4). h∞ has the origin as its unique globally asymptotically stable equilibrium.

Clearly, (2) and (3) can be verified similarly to Lemma B.1. We then verify (1) and (4).

Firstly, it can be shown that

|h(Q1)(s, a)− h(Q2)(s, a)| =
∣∣σPa

s
(VQ1

)− f(Q1)−Q1(s, a)− σPa
s
(VQ2

)− f(Q2)−Q2(s, a)
∣∣

≤
∣∣σPa

s
(VQ1

)− σPa
s
(VQ2

)
∣∣+ |f(Q1)− f(Q2)|+ |Q1(s, a)−Q2(s, a)|

≤ ∥VQ1
− VQ2

∥+ Lf∥Q1 −Q2∥+ ∥Q1 −Q2∥
≤ (2 + Lf )∥Q1 −Q2∥, (91)

where the last inequality is from the fact that ∥VQ1
− VQ2

∥ ≤ ∥Q1 −Q2∥. This implies that h is Lipschitz.

To verify (4), note that the stability equation is

Ẋ(t) = h∞(X(t)) = σP(VX(t))− f(X(t))e−X(t), (92)

where VX(t) is a |S|-dimensional vector with VX(t)(s) = maxa X(t)(s, a).

Any equilibrium Q of the stability equation (92) satisfies that

Q(s, a) = σPa
s
(VQ)− f(Q)e, (93)

which can be viewed as an optimal robust Bellman equation (10) with zero reward. Hence, by Lemma 4.1, it implies that

f(Q) = g∗P = 0, (94)

VQ = V
πQ

P + ce for some P ∈ ΩπQ
g , c ∈ R. (95)

In the zero-reward MDP, we have that V π
P = 0 for any π,P, thus VQ(s) = maxa Q(s, a) = c for any s ∈ S.

Note that from (93), Q satisfies that

Q(s, a) = σPa
s
(VQ) = σPa

s
(ce) = c. (96)

Since f(Q) = 0, it implies that

f(Q) = f(ce) = c = 0. (97)

Therefore,

c = 0, (98)
Q = 0. (99)

Thus, 0 is the unique equilibrium of the stability equation.

We then show that 0 is globally asymptotically stable. Define the zero-reward optimal robust Bellman operator

H0Q(s, a) = σPa
s
(VQ), (100)

and further introduce two operators

H′
0Q(s, a) = σPa

s
(VQ)− f(Q), (101)

H̃0Q(s, a) = σPa
s
(VQ)− g∗P. (102)
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It is straightforward to verify that H̃0 is non-expansive. Hence by (Borkar & Soumyanatha, 1997), the solution y(t) to
equation

ẏ = H̃0y − y (103)

converges to the set of equilibrium points

{W : W (s, a) = σPa
s
(VW )− g∗P}, a.s.. (104)

This again can be viewed as an optimal robust Bellman equation with zero-reward. Hence, any equilibrium W of (103)
satisfies

max
a

W (s, a) = c, ∀s. (105)

This together with (104) further implies that the equilibrium W of (103) satisfies

W (s, a) = σPa
s
(VW ) = σPa

s
(ce) = c, (106)

and hence y(t) converges to {ce : c ∈ R}. We denote its limit by y∗ = c∗e.

Lemma F.6 implies the solution x(t) to the ODE ẋ = H′
0(x)− x can be decomposed as x(t) = y(t) + r(t)e, where r(t)

satisfies ṙ(t) = −r(t) + g∗P − f(y(t)), r(0) = 0.

Then, similar to Lemma B.1, Lemma B.4 in (Wan et al., 2021) and Theorem 3.4 in (Abounadi et al., 2001), it can be shown
that r(t)→ g∗P − f(y(t)) = −c∗. Hence,

x(t)→ 0, (107)

which proves the asymptotic stability.

Thus, we conclude that 0 is the unique globally asymptotically stable equilibrium of the stability equation, which implies the
boundedness of {Qn} together with results from Section 2.1 and 3.2 from (Borkar, 2009).

Theorem C.2 (Restatement of Theorem 4.1). The sequence {Qn} generated by Algorithm 2 converges to a solution Q∗ to
the optimal robust Bellman equation a.s., and f(Qn) converges to the optimal robust average-reward g∗P a.s..

Proof. According to Lemma 1 from (Borkar, 2009) and Theorem 3.5 from (Abounadi et al., 2001), the sequence {Qn}
converge to the same limit as the solution x(t) to the ODE ẋ = H′x− x. Hence the proof can be completed by showing
convergence of x(t) and f(x(t)).

For the optimal robust Bellman operator,

HQ(s, a) = r(s, a) + σPa
s
(VQ), (108)

define two operators

H′Q ≜ HQ− f(Q)e, (109)

H̃Q ≜ HQ− g∗Pe. (110)

From Lemma F.6, we know that if x(t), y(t) are the solutions to equations

ẋ = H′x− x, (111)

ẏ = H̃y − y, (112)

with the same initial value x(0) = y(0), then

x(t) = y(t) + r(t)e, (113)

where r(t) satisfies

ṙ(t) = −r(t) + g∗P − f(y(t)), r(0) = 0. (114)
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It can be easily verified that H̃ is non-expansive. Hence y(t) converges to the set of equilibrium points of of (112) (Theorem
3.1 of (Borkar & Soumyanatha, 1997)), which can be characterized as{

W : H̃W = W
}
= {W : W = HW − g∗Pe} =

{
W : W (s, a) = r(s, a)− g∗P + σPa

s
(VW ), ∀s, a

}
. (115)

From Lemma 4.1, any equilibrium W satisfies

VW = V πW

P + ce, for some P ∈ ΩπW
g , c ∈ R, (116)

and πW is robust optimal. We denote the limit of y(t) by W ∗.

Similar to (72) to (76), it can be shown that r(t)→ g∗P − f(W ∗). This further implies that

x(t)→W ∗ + (g∗P − f(W ∗))e ≜ W ∗ +m∗e, (117)

where m∗ = g∗P − f(W ∗). Note that W ∗ +m∗e is a solution to the optimal robust Bellman equation, hence x(t) converges
to a solution to (10). Moreover, since f is continuous (because it is Lipschitz), we have that

f(x(t))→ f(W ∗ +m∗e)

= f(W ∗) + g∗P − f(W ∗)

= g∗P. (118)

This completes the proof.

D. Case Studies for Robust RVI TD
In this section, we provide the proof of the first part of Theorem 5.1, i.e., that T̂ is unbiased and has bounded variance under
each uncertainty model.

We first show a lemma, by which the problem can be reduced to investigating whether σ̂Pa
s

is unbiased and has bounded
variance.

Lemma D.1. If

E[σ̂Pa
s
V ] = σPa

s
(V ), ∀s, a, (119)

and moreover, there exists a constant C, such that

Var(σ̂Pa
s
V ) ≤ C(1 + ∥V ∥2), ∀s, a, (120)

then

E[T̂V (s)] = TV (s), ∀s, (121)

and

Var(T̂V (s)) ≤ |A|C(1 + ∥V ∥2), ∀s. (122)

Proof. From the definition, T̂V (s) =
∑

a π(a|s)(r(s, a) + σ̂Pa
s
V ). Thus,

E[T̂V (s)] = E
[∑

a

π(a|s)(r(s, a) + σ̂Pa
s
V )

]
=

∑
a

π(a|s)(r(s, a) + E[σ̂Pa
s
V ])

=
∑
a

π(a|s)(r(s, a) + σPa
s
(V )) = TV (s), (123)
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which shows that T̂ is unbiased. On the other hand, we have that

Var(T̂V (s)) = E
[(∑

a

π(a|s)(r(s, a) + σ̂Pa
s
V )− E

[∑
a

π(a|s)(r(s, a) + σ̂Pa
s
V )

])2]

= E
[(∑

a

π(a|s)(r(s, a) + σ̂Pa
s
V )−

∑
a

π(a|s)(r(s, a) + E
[
σ̂Pa

s
V
])2]

= E
[(∑

a

π(a|s)(σ̂Pa
s
V )− E

[
σ̂Pa

s
V
])2]

(a)

≤ E
[∑

a

π(a|s)(σ̂Pa
s
V − E

[
σ̂Pa

s
V
]
)2
]

=
∑
a

π(a|s)E
[
(σ̂Pa

s
V − E

[
σ̂Pa

s
V 2

]
)2
]

≤
∑
a

π(a|s)Var(σ̂Pa
s
V )

≤ |A|C(1 + ∥V ∥2), (124)

where (a) is because (E[X])2 ≤ E[X2], which completes the proof.

This lemma implies that to prove Theorem 5.1, it suffices to show that σ̂Pa
s

is unbiased and has bounded variance.

D.1. Contamination Uncertainty Set

Theorem D.1. T̂ defined in (12) is unbiased and has bounded variance.

Proof. First, note that

Vn+1(s) = Vn(s) + αn(r(s, a) + ((1− δ)Vn(s
′) + δmin

x
Vn(x)− f(Vn)− Vn(s))

= Vn(s) + αn(TVn(s)− f(Vn)− Vn(s) +Mn(s)), (125)

where

Mn(s) = r(s, a) + (1− δ)Vn(s
′) + δmin

x
Vn(x)−TVn(s), (126)

and

TVn(s) =
∑
a

π(a|s)
(
r(s, a) + (1− δ)

∑
s′

Pa
s,s′Vn(s

′) + δmin
x

Vn(x)

)
. (127)

Thus,

E[Mn(s)] = E
[
r(s, a) + (1− δ)Vn(s

′) + δmin
x

Vn(x)
]
−

∑
a

π(a|s)
(
r(s, a) + (1− δ)

∑
s′

Pa
s,s′Vn(s

′) + δmin
x

Vn(x)

)
=

∑
a

π(a|s)
(
r(s, a) + (1− δ)

∑
s′

Pa
s,s′Vn(s

′) + δmin
x

Vn(x)

)
−
∑
a

π(a|s)
(
r(s, a) + (1− δ)

∑
s′

Pa
s,s′Vn(s

′) + δmin
x

Vn(x))

)
= 0. (128)

Hence, the operator is unbiased.
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We also have that

E[|Mn(s)|2] = E
[(

r(s, a) + (1− δ)Vn(s
′) + δmin

x
Vn(x)−TVn(s)

)2]
≤ 2E

[(
r(s, a) + (1− δ)Vn(s

′) + δmin
x

Vn(x)

)2]
+ 2E[(TVn(s))

2]

(a)

≤ 8 + 8∥Vn∥2

≤ 8(1 + ∥Vn∥2), (129)

where (a) is from the fact that E
[(
(1− δ)Vn(s

′) + δminx Vn(x)
)2]

= E
[∣∣(1− δ)Vn(s

′) + δminx Vn(x)
∣∣2] ≤ E

[(∣∣(1−
δ)Vn(s

′)
∣∣+ ∣∣δminx Vn(x)

∣∣)2] ≤ E
[(
(1− δ)∥Vn∥+

(
δ∥Vn∥

)2] ≤ ∥Vn∥2.

The proof is completed.

D.2. Total Variation Uncertainty Set

The estimator under the total variation uncertainty set can be written as

σ̂Pa
s
(V ) = max

µ≥0

(
P̂a,1
s,N+1(V − µ)− δSpan(V − µ)

)
+

∆N (V )

pN
, (130)

where

∆N (V ) = max
µ≥0

(
P̂a
s,N+1(V − µ)− δSpan(V − µ)

)
− 1

2
max
µ≥0

(
P̂a,O
s,N+1(V − µ)− δSpan(V − µ)

)
− 1

2
max
µ≥0

(
P̂a,E
s,N+1(V − µ)− δSpan(V − µ)

)
. (131)

Theorem D.2. The estimated operator σ̂Pa
s

defined in (130) is unbiased, i.e.,

E[σ̂Pa
s
V ] = σPa

s
(V ). (132)

Proof. First, denote the dual function (14) by g:

gVs,a(µ) = Pa
s(V − µ)− δSpan(V − µ), (133)

and denote its optimal solution by µV
s,a:

µV
s,a = argmax

µ≥0

(
Pa
s(V − µ)− δSpan(V − µ)

)
. (134)

Then, the support function σPa
s
(V ) = gVs,a(µ

V
s,a). Similarly, define the empirical function

gVs,a,N+1(µ) = P̂a
s,N+1(V − µ)− δSpan(V − µ), (135)

gVs,a,N+1,O(µ) = P̂a,O
s,N+1(V − µ)− δSpan(V − µ), (136)

gVs,a,N+1,E(µ) = P̂a,E
s,N+1(V − µ)− δSpan(V − µ), (137)

and their optimal solutions are denoted by µV
s,a,N+1, µ

V
s,a,N+1,O, µ

V
s,a,N+1,E . We have that

E[σ̂Pa
s
V ] = E

[
max
µ≥0

(
P̂a,1
s,N+1(V − µ)− δSpan(V − µ)

)
+

∆N (V )

pN

]
= E[gVs,a,0(µV

s,a,0)] + E
[
∆N (V )

pN

]
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= E[gVs,a,0(µV
s,a,0)] +

∞∑
n=0

p(N = n)E
[
∆N (V )

pN
|N = n

]

= E[gVs,a,0(µV
s,a,0)] +

∞∑
n=0

E[∆n(V )]

= E[gVs,a,0(µV
s,a,0)] +

∞∑
n=0

E
[
gVs,a,n+1(µ

V
s,a,n+1)−

gVs,a,n+1,O(µ
V
s,a,n+1,O) + gVs,a,n+1,E(µ

V
s,a,n+1,E)

2

]

= E[gVs,a,0(µV
s,a,0)] +

∞∑
n=0

E
[
gVs,a,n+1(µ

V
s,a,n+1)− gVs,a,n(µ

V
s,a,n)

]
, (138)

where the last inequality is from Lemma F.2. The last equation can be further rewritten as

E[σ̂Pa
s
V ] = E[gVs,a,0(µV

s,a,0)] +
∞∑

n=0

E
[
gVs,a,n+1(µ

V
s,a,n+1)− gVs,a,n(µ

V
s,a,n)

]
= lim

n→∞
E
[
gVs,a,n(µ

V
s,a,n)

]
. (139)

To show that σ̂Pa
s

is unbiased, it suffices to prove that

lim
n→∞

E
[
gVs,a,n(µ

V
s,a,n)

]
= gVs,a(µ

V
s,a). (140)

For any arbitrary i.i.d. samples {Xi} and its corresponding function gVs,a,n, together with Lemma F.3, we have that

|gVs,a,n(µV
s,a,n)− gVs,a(µ

V
s,a)|

= | max
0≤µ≤V+∥V ∥e

gVs,a(µ)− max
0≤µ≤V+∥V ∥e

gVs,a,n(µ)|

≤ max
0≤µ≤V+∥V ∥e

|gVs,a(µ)− gVs,a,n(µ)|

= max
0≤µ≤V+∥V ∥e

|Pa
s(V − µ)− δSpan(V − µ)− P̂a

s,n(V − µ) + δSpan(V − µ)|

= max
0≤µ≤V+∥V ∥e

|Pa
s(V − µ)− P̂a

s,n(V − µ)|

≤ max
0≤µ≤V+∥V ∥e

∥V − µ∥∥Pa
s − P̂a

s,n∥1

≤ 3∥V ∥∥Pa
s − P̂a

s,n∥1. (141)

Thus, by Hoeffding’s inequality and Theorem 3.7 from (Liu et al., 2022),

E[|gVs,a,n(µV
s,a,n)− gVs,a(µ

V
s,a)|] ≤ 3∥V ∥ |S|

2
√
π

2
n+1
2

, (142)

which implies that

lim
n→∞

E
[
gVs,a,n(µ

V
s,a,n)

]
= gVs,a(µ

V
s,a), (143)

completing the proof.

Theorem D.3. The estimated operator σ̂Pa
s

defined in (130) has bounded variance, i.e., there exists a constant C0, such that

Var(σ̂Pa
s
V ) ≤ (1 + 18(1 + 2δ)2 + 2C0)∥V ∥2. (144)

Proof. Similar to Theorem D.2, we have that

Var(σ̂Pa
s
V )
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= E[(σ̂Pa
s
V )2]− σPa

s
(V )2

≤ E
[(

gVs,a,0(µ
V
s,a,0) +

∆N (V )

pN

)2]
+ (σPa

s
(V ))2

≤ 2E
[(

gVs,a,0(µ
V
s,a,0)

)2]
+ 2E

[(
∆N (V )

pN

)2]
+ (σPa

s
(V ))2

≤ (1 + 18(1 + 2δ)2)∥V ∥2 + 2
∞∑
i=0

E[(∆i(V ))2]

pi
, (145)

where the last inequality is from Lemma F.3. For any n ≥ 1, we have that

E[(∆n(V ))2] = E
[(

gVs,a,n(µ
V
s,a,n)−

gVs,a,n,E(µ
V
s,a,n,E) + gVs,a,n,O(µ

V
s,a,n,O)

2

)2]
= E

[(
gVs,a,n(µ

V
s,a,n)− gVs,a(µ

V
s,a) + gVs,a(µ

V
s,a)−

gVs,a,n,E(µ
V
s,a,n,E) + gVs,a,n,O(µ

V
s,a,n,O)

2

)2]
≤ 2E[(gVs,a,n(µV

s,a,n)− gVs,a(µ
V
s,a))

2] + 2E
[(

gVs,a(µ
V
s,a)−

gVs,a,n,E(µ
V
s,a,n,E) + gVs,a,n,O(µ

V
s,a,n,O)

2

)2]
(a)
= 2E[(gVs,a,n(µV

s,a,n)− gVs,a(µ
V
s,a))

2] + 2E[(gVs,a,n−1(µ
V
s,a,n−1)− gVs,a(µ

V
s,a))

2]

≤ 18∥V ∥2E[∥Pa
s − P̂a

s,n∥21] + 18∥V ∥2E[∥Pa
s − P̂a

s,n−1∥21], (146)

where (a) is due to Lemma F.2 and the last inequality follows a similar argument to (141). Note that pn = Ψ(1− Ψ)n for
Ψ ∈ (0, 0.5), thus similar to Theorem 3.7 of (Liu et al., 2022), we can show that there exists a constant C0, such that

∞∑
i=0

E[(∆i(V ))2]

pi
≤ C0∥V ∥2. (147)

Thus,

Var(σ̂Pa
s
V ) ≤ (1 + 18(1 + 2δ)2)∥V ∥2 + 2C0∥V ∥2 = (1 + 18(1 + 2δ)2 + 2C0)∥V ∥2 . (148)

D.3. Chi-Square Uncertainty Set

The estimator under the Chi-square uncertainty set can be written as

σ̂Pa
s
V = max

µ≥0

(
P̂a,1
s,N+1(V − µ)−

√
δVarP̂a,1

s,N+1
(V − µ)

)
+

∆N (V )

pN
, (149)

where

∆N (V ) = max
µ≥0

(
EP̂a

s,N+1
[V − µ]−

√
δVarP̂a

s,N+1
(V − µ)

)
− 1

2
max
µ≥0

(
EP̂a,O

s,N+1
[V − µ]−

√
δVarP̂a,O

s,N+1
(V − µ)

)
− 1

2
max
µ≥0

(
EP̂a,E

s,N+1
[V − µ]−

√
δVarP̂a,E

s,N+1
(V − µ)

)
.

Theorem D.4. The estimated operator defined in (149) is unbiased, i.e.,

E[σ̂Pa
s
V ] = σPa

s
(V ). (150)
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Proof. Denote the dual function (15) by g:

gVs,a(µ) = Pa
s(V − µ)−

√
δVarPa

s
(V − µ), (151)

and denote its optimal solution by µV
s,a:

µV
s,a = argmax

µ≥0

(
Pa
s(V − µ)−

√
δVarPa

s
(V − µ)

)
. (152)

Then, the support function σPa
s
(V ) = gVs,a(µ

V
s,a). Similarly, define the empirical function

gVs,a,N+1(µ) = P̂a
s,N+1(V − µ)−

√
δVarP̂a

s,N+1
(V − µ), (153)

gVs,a,N+1,O(µ) = P̂a,O
s,N+1(V − µ)−

√
δVarP̂a,O

s,N+1
(V − µ), (154)

gVs,a,N+1,E(µ) = P̂a,E
s,N+1(V − µ)−

√
δVarP̂a,E

s,N+1
(V − µ), (155)

and their optimal solutions are denoted by µV
s,a,N+1, µ

V
s,a,N+1,O, µ

V
s,a,N+1,E . We have that

E[σ̂Pa
s
V ] = E[gVs,a,0(µV

s,a,0)] + E
[
∆N (V )

pN

]
= E[gVs,a,0(µV

s,a,0)] +
∞∑

n=0

p(N = n)E
[
∆N (V )

pN
|N = n

]

= E[gVs,a,0(µV
s,a,0)] +

∞∑
n=0

E[∆n]

= E[gVs,a,0(µV
s,a,0)] +

∞∑
n=0

E
[
gVs,a,n+1(µ

V
s,a,n+1)−

gVs,a,n+1,O(µ
V
s,a,n+1,O) + gVs,a,n+1,E(µ

V
s,a,n+1,E)

2

]

= E[gVs,a,0(µV
s,a,0)] +

∞∑
n=0

E
[
gVs,a,n+1(µ

V
s,a,n+1)− gVs,a,n(µ

V
s,a,n)

]
, (156)

where the last inequality is from Lemma F.2. The last equation can be further rewritten as

E[σ̂Pa
s
V ] = E[gVs,a,0(µV

s,a,0)] +
∞∑

n=0

E
[
gVs,a,n+1(µ

V
s,a,n+1)− gVs,a,n(µ

V
s,a,n)

]
= lim

n→∞
E
[
gVs,a,n(µ

V
s,a,n)

]
. (157)

To show that σ̂Pa
s

is unbiased, it suffices to prove that

lim
n→∞

E
[
gVs,a,n(µ

V
s,a,n)

]
= gVs,a(µ

V
s,a). (158)

For any arbitrary i.i.d. samples {Xi} and its corresponding function gVs,a,n, together with Lemma F.4, we have that

|gVs,a,n(µV
s,a,n)− gVs,a(µ

V
s,a)|

= | max
0≤µ≤V+∥V ∥e

gVs,a(µ)− max
0≤µ≤V+∥V ∥e

gVs,a,n(µ)|

≤ max
0≤µ≤V+∥V ∥e

|gVs,a(µ)− gVs,a,n(µ)|

= max
0≤µ≤V+∥V ∥e

∣∣∣∣Pa
s(V − µ)− P̂a

s,n(V − µ)−
(√

δVarPa
s
(V − µ)−

√
δVarP̂a

s,n
(V − µ)

)∣∣∣∣
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≤ max
0≤µ≤V+∥V ∥e

|Pa
s(V − µ)− P̂a

s,n(V − µ)|+ max
0≤µ≤V+∥V ∥e

∣∣∣∣(√δVarPa
s
(V − µ)−

√
δVarP̂a

s,n
(V − µ)

)∣∣∣∣
(a)

≤ max
0≤µ≤V+∥V ∥e

∥V − µ∥∥Pa
s − P̂a

s,n∥1 + max
0≤µ≤V+∥V ∥e

√
|δVarPa

s
(V − µ)− δVarP̂a

s,n
(V − µ)|, (159)

where (a) is due to |
√
x−√y| ≤

√
|x− y|. Note that for any distribution p, q ∈ ∆(|S|) and any random variable X ,

|Varp[X]− Varq[X]| = |Ep[X
2]− Ep[X]2 − Eq[X

2] + Eq[X]2|
≤ |Ep[X

2]− Eq[X
2]|+ |(Ep[X] + Eq[X])(Ep[X]− Eq[X])|

≤ sup |X2|∥p− q∥1 + 2(sup |X|)2∥p− q∥1. (160)

Hence, √
|δVarPa

s
(V − µ)− δVarP̂a

s,n
(V − µ)| ≤

√
3δ∥V − µ∥2∥Pa

s − P̂a
s,n∥1. (161)

Thus, by Hoeffding’s inequality and Theorem 3.7 from (Liu et al., 2022),

E[|gVs,a,n(µV
s,a,n)− gVs,a(µ

V
s,a)|] ≤ 3∥V ∥

 |S|2√π
2

n+1
2

+

√
3δ|S|2

√
π

2
n+1
2

 , (162)

which implies that

lim
n→∞

E
[
gVs,a,n(µ

V
s,a,n)

]
= gVs,a(µ

V
s,a), (163)

which completes the proof.

Theorem D.5. The estimated operator σ̂Pa
s

defined in (149) has bounded variance, i.e., there exists a constant C0, such that

Var(σ̂Pa
s
V ) ≤ (1 + 18(1 +

√
2δ)2 + 2C0)∥V ∥2. (164)

Proof. We have that

Var(σ̂Pa
s
V )

= E[(σ̂Pa
s
V )2]− σPa

s
(V )2

≤ E
[(

gVs,a,0(µ
V
s,a,0) +

∆N (V )

pN

)2]
+ (σPa

s
(V ))2

≤ 2E
[(

gVs,a,0(µ
V
s,a,0)

)2]
+ 2E

[(
∆N (V )

pN

)2]
+ (σPa

s
(V ))2

≤ (1 + 18(1 +
√
2δ)2)∥V ∥2 + 2

∞∑
i=0

E[(∆i(V ))2]

pi
, (165)

where the last inequality is from Lemma F.4. For any n ≥ 1, we have that

E[(∆n(V ))2] = E
[(

gVs,a,n(µ
V
s,a,n)−

gVs,a,n,E(µ
V
s,a,n,E) + gVs,a,n,O(µ

V
s,a,n,O)

2

)2]
= E

[(
gVs,a,n(µ

V
s,a,n)− gVs,a(µ

V
s,a) + gVs,a(µ

V
s,a)−

gVs,a,n,E(µ
V
s,a,n,E) + gVs,a,n,O(µ

V
s,a,n,O)

2

)2]
≤ 2E[(gVs,a,n(µV

s,a,n)− gVs,a(µ
V
s,a))

2] + 2E
[(

gVs,a(µ
V
s,a)−

gVs,a,n,E(µ
V
s,a,n,E) + gVs,a,n,O(µ

V
s,a,n,O)

2

)2]
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(a)
= 2E[(gVs,a,n(µV

s,a,n)− gVs,a(µ
V
s,a))

2] + 2E[(gVs,a,n−1(µ
V
s,a,n−1)− gVs,a(µ

V
s,a))

2]

≤ 18(1 +
√
3δ)2∥V ∥2E[∥Pa

s − P̂a
s,n∥21 + ∥Pa

s − P̂a
s,n∥1]

+ 18(1 +
√
3δ)2∥V ∥2E[∥Pa

s − P̂a
s,n−1∥21 + ∥Pa

s − P̂a
s,n−1∥1], (166)

where (a) is due to Lemma F.2 and the last inequality follows a similar argument to (159). Note that pn = Ψ(1− Ψ)n for
Ψ ∈

(
0, 1−

√
2
2

)
. Thus, similar to Theorem 3.7 of (Liu et al., 2022), we can show that there exists a constant C0, such that

∞∑
i=0

E[(∆i(V ))2]

pi
≤ C0∥V ∥2. (167)

Thus,

Var(σ̂Pa
s
V ) ≤ (1 + 18(1 +

√
2δ)2)∥V ∥2 + 2C0∥V ∥2 = (1 + 18(1 +

√
2δ)2 + 2C0)∥V ∥2. (168)

D.4. KL-Divergence Uncertainty Sets

The estimator under the KL-Divergence uncertainty set can be written as

σ̂Pa
s
V ≜ −min

α≥0

(
δα+ α log

(
e

−V (s′1)

α

))
+

∆N (V )

pN
,

where

∆N (V ) = −min
α≥0

(
δα+ α log

(
EP̂a

s,N+1

[
e

−V
α

]))
+

1

2
min
α≥0

(
δα+ α log

(
EP̂a,O

s,N+1

[
e

−V
α

]))
+

1

2
min
α≥0

(
δα+ α log

(
EP̂a,E

s,N+1

[
e

−V
α

]))
. (169)

Theorem D.6. (Liu et al., 2022) The estimated operator σ̂Pa
s

is unbiased and has bounded variance, i.e., there exists a
constant C0, such that Var(σ̂Pa

s
V ) ≤ C0(1 + ∥V ∥2).

D.5. Wasserstein Distance Uncertainty Sets

To study the support function w.r.t. this uncertainty model, we first introduce some notation.
Definition D.1. For any function f : Z→ R, λ ≥ 0 and x ∈ Z, define the regularization operator

Φ(λ, x) ≜ inf
y∈Z

(λd(x, y)l + f(y)). (170)

The growth rate κ of function f and any distribution q over Z is defined as

κq ≜ inf

(
λ ≥ 0 :

∑
x∈Z

q(x)Φ(λ, x) > −∞
)
. (171)

Lemma D.2. (Gao & Kleywegt, 2022) Consider the distributional robust optimization of a function f :

inf
Wl(q,p)≤δ

Ex∼q[f(x)], (172)

and define its dual problem as

sup
λ≥0

(−λδl +
∑
x∈Z

p(x) inf
y∈Z

(f(y) + λd(x, y)l)). (173)

If κp <∞, then the strong duality holds, i.e.,

inf
Wl(q,p)≤δ

Ex∼q[f(x)] = sup
λ≥0

(−λδl +
∑
x∈Z

p(x) inf
y∈Z

(f(y) + λd(x, y)l)). (174)
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We first verify that this strong duality holds for our support function.

Lemma D.3. (Restatement of Equation (19)) It holds that

σPa
s
(V ) = sup

λ≥0

(
− λδl +

∑
x

Pa
s,x inf

y
(V (y) + λd(x, y)l)

)
. (175)

Proof. In our case, the regularization operator is

Φ(λ, x) = inf
s∈S

(λd(s, x)l + V (s)). (176)

Note that for any λ ≥ 0,∑
x∈S

Pa
s(x)Φ(λ, x) =

∑
x∈S

Pa
s(x) inf

s∈S
(λd(s, x)l + V (s)) ≥ −∥V ∥ > −∞. (177)

Hence, the growth rate κPa
s
= 0 <∞. Thus, the strong duality holds.

Then, the estimator under the Wasserstein distance uncertainty set can be constructed as

σ̂Pa
s
V ≜ sup

λ≥0

(
− λδl + inf

y
(V (y) + λd(s′1, y)

l)

)
+

∆N (V )

pN
+ r(s, a), (178)

where

∆N (V )

= sup
λ≥0

(
− λδl + EP̂a

s,N+1

[
inf
y
(V (y) + λd(S, y)l)

])
− sup

λ≥0

(
− λδl + EP̂a,O

s,N+1

[
inf
y
(V (y) + λd(S, y)l)

])
− sup

λ≥0

(
− λδl + EP̂a,E

s,N+1

[
inf
y
(V (y) + λd(S, y)l)

])
.

Theorem D.7. The estimated operator defined in (178) is unbiased, i.e.,

E[σ̂Pa
s
V ] = σPa

s
(V ). (179)

Proof. Denote the dual function (19) by g:

gVs,a(λ) = −λδl + ES∼Pa
s
[ inf
x∈S

(V (x) + λd(S, x)l)], (180)

and denote its optimal solution by λV
s,a:

λV
s,a = argmax

λ≥0

(
− λδl + ES∼Pa

s
[ inf
x∈S

(V (x) + λd(S, x)l)]

)
. (181)

Then, the support function σPa
s
(V ) = gVs,a(λ

V
s,a). Similarly, define the empirical function gVs,a,N+1, g

V
s,a,N+1,O, g

V
s,a,N+1,E ,

and denote their optimal solutions by λV
s,a,N+1, λ

V
s,a,N+1,O, λ

V
s,a,N+1,E . We have that

E[σ̂Pa
s
V ] = E[gVs,a,0(λV

s,a,0)] + E
[
∆N (V )

pN

]
= E[gVs,a,0(λV

s,a,0)] +
∞∑

n=0

p(N = n)E
[
∆N (V )

pN
|N = n

]
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= E[gVs,a,0(λV
s,a,0)] +

∞∑
n=0

E[∆n]

= E[gVs,a,0(λV
s,a,0)] +

∞∑
n=0

E
[
gVs,a,n+1(λ

V
s,a,n+1)−

gVs,a,n+1,O(λ
V
s,a,n+1,O) + gVs,a,n+1,E(λ

V
s,a,n+1,E)

2

]

= E[gVs,a,0(λV
s,a,0)] +

∞∑
n=0

E
[
gVs,a,n+1(λ

V
s,a,n+1)− gVs,a,n(λ

V
s,a,n)

]
, (182)

where the last inequality is from Lemma F.2. The last equation can be further rewritten as

E[σ̂Pa
s
V ] = E[gVs,a,0(λV

s,a,0)] +
∞∑

n=0

E
[
gVs,a,n+1(λ

V
s,a,n+1)− gVs,a,n(λ

V
s,a,n)

]
= lim

n→∞
E
[
gVs,a,n(λ

V
s,a,n)

]
. (183)

To show that σ̂Pa
s

is unbiased, it suffices to prove that

lim
n→∞

E
[
gVs,a,n(λ

V
s,a,n)

]
= gVs,a(λ

V
s,a). (184)

For any arbitrary i.i.d. samples {Xi} and its corresponding function gVs,a,n, together with Lemma F.5, we have that

|gVs,a,n(λV
s,a,n)− gVs,a(λ

V
s,a)|

= | max
0≤λ≤ 2∥V ∥

δl

gVs,a(λ)− max
0≤λ≤ 2∥V ∥

δl

gVs,a,n(λ)|

≤ max
0≤λ≤ 2∥V ∥

δl

|gVs,a(λ)− gVs,a,n(λ)|

= max
0≤λ≤ 2∥V ∥

δl

∣∣∣∣ES∼Pa
s
[ inf
x∈S

(V (x) + λd(S, x)l)]− ES∼P̂a
s,n

[ inf
x∈S

(V (x) + λd(S, x)l)]

∣∣∣∣
≤ max

0≤λ≤ 2∥V ∥
δl

∥Pa
s − P̂a

s,n∥1 sup
x,S∈S

(|V (x) + λd(S, x)l|)

≤
(
1 +

2Dl

δl

)
∥V ∥∥Pa

s − P̂a
s,n∥1, (185)

where the last inequality is from the bound on λ and D is the diameter of the metric space (S, d).

By Hoeffding’s inequality and similar to the previous proofs, we have that

E[|gVs,a,n(λV
s,a,n)− gVs,a(λ

V
s,a)|] ≤

(
1 +

2Dl

δl

)(
|S|2
√
π

2
n+1
2

)
∥V ∥, (186)

which implies that

lim
n→∞

E
[
gVs,a,n(λ

V
s,a,n)

]
= gVs,a(λ

V
s,a). (187)

This completes the proof.

Theorem D.8. The estimated operator σ̂Pa
s

defined in (178) has bounded variance, i.e., there exists a constant C0, such that

Var(σ̂Pa
s
V ) ≤ (3 + 2C0)∥V ∥2. (188)

Proof. We first have that

Var(σ̂Pa
s
V )
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= E[(σ̂Pa
s
V )2]− σPa

s
(V )2

≤ E
[(

gVs,a,0(λ
V
s,a,0) +

∆N (V )

pN

)2]
+ (σPa

s
(V ))2

≤ 2E
[(

gVs,a,0(λ
V
s,a,0)

)2]
+ 2E

[(
∆N (V )

pN

)2]
+ (σPa

s
(V ))2

≤ 3∥V ∥2 + 2
∞∑
i=0

E[(∆i(V ))2]

pi
, (189)

where the last inequality is from Lemma F.4. For any n ≥ 1, we have that

E[(∆n(V ))2] = E
[(

gVs,a,n(λ
V
s,a,n)−

gVs,a,n,E(λ
V
s,a,n,E) + gVs,a,n,O(λ

V
s,a,n,O)

2

)2]
= E

[(
gVs,a,n(λ

V
s,a,n)− gVs,a(λ

V
s,a) + gVs,a(λ

V
s,a)−

gVs,a,n,E(λ
V
s,a,n,E) + gVs,a,n,O(λ

V
s,a,n,O)

2

)2]
≤ 2E[(gVs,a,n(λV

s,a,n)− gVs,a(λ
V
s,a))

2] + 2E
[(

gVs,a(λ
V
s,a)−

gVs,a,n,E(λ
V
s,a,n,E) + gVs,a,n,O(λ

V
s,a,n,O)

2

)2]
(a)
= 2E[(gVs,a,n(λV

s,a,n)− gVs,a(λ
V
s,a))

2] + 2E[(gVs,a,n−1(λ
V
s,a,n−1)− gVs,a(λ

V
s,a))

2]

≤ 2

(
1 +

2Dl

δl

)2

∥V ∥2E[∥Pa
s − P̂a

s,n∥21] + 2

(
1 +

2Dl

δl

)2

∥V ∥2E[∥Pa
s − P̂a

s,n−1∥21], (190)

where (a) is due to Lemma F.2 and the last inequality follows a similar argument to (186). Note that pn = Ψ(1− Ψ)n for
Ψ ∈

(
0, 0.5

)
, thus similar to Theorem 3.7 of (Liu et al., 2022), we can show that there exists a constant C0, such that

∞∑
i=0

E[(∆i(V ))2]

pi
≤ C0∥V ∥2. (191)

Thus, we have that

Var(σ̂Pa
s
V ) ≤ 3∥V ∥2 + 2C0∥V ∥2 = (3 + 2C0)∥V ∥2. (192)

E. Case Studies for Robust RVI Q-Learning
In this section, we provide the proof of the second part of Theorem 5.1, i.e., Ĥ is bounded and unbiased under each
uncertainty model. We note that the proofs in this part can be easily derived by following the ones in Appendix D.

We first prove a lemma necessary to the proofs in this section.

Lemma E.1. It holds that

∥VQ∥ ≤ ∥Q∥. (193)

Proof. From the definition of VQ, we have that

∥VQ∥ = max
s
|VQ(s)| = max

s
|max

a
Q(s, a)| ≜ |Q(s∗, a∗)|. (194)

Clearly, |Q(s∗, a∗)| ≤ maxs,a |Q(s, a)|, hence

∥VQ∥ ≤ ∥Q∥. (195)
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Similar to Appendix D, the propositions of Ĥ can be reduced to the ones of σ̂Pa
s
.

Lemma E.2. If E[σ̂Pa
s
V ] = σPa

s
(V ), and moreover there exists a constant C, such that for any s, a, Var(σ̂Pa

s
V ) ≤

C(1 + ∥V ∥2), then E[ĤQ(s, a)] = HQ(s, a), and Var(ĤQ(s, a)) ≤ C(1 + ∥Q∥2).

Proof. First, we have that

E[ĤQ(s, a)] = E[r(s, a) + σ̂Pa
s
VQ(s)] = r(s, a) + σPa

s
(VQ) = HQ(s, a). (196)

For boundedness, note that

Var(ĤQ(s, a)) = E
[
(ĤQ(s, a)−HQ(s, a))2

]
= E

[(
σ̂Pa

s
VQ(s)− σPa

s
(VQ)

)2]
≤ C(1 + ∥VQ∥2)
≤ C(1 + ∥Q∥2), (197)

where the last inequality is from Lemma E.1.

This implies that the problem is reduced to verifying whether σ̂Pa
s

is unbiased and has bounded variance, which is identical
to the results in Appendix D. We thus omit the proofs for this part.

F. Technical Lemmas
Lemma F.1. For a robust Bellman operator T, define

T′V ≜ TV − f(V )e, (198)

T̃V ≜ TV − gπPe. (199)

Assume that x(t), y(t) are the solutions to equations

ẋ = T′x− x, (200)

ẏ = T̃y − y, (201)

with the same initial value x(0) = y(0) = x0. Then,

x(t) = y(t) + r(t)e, (202)

where r(t) satisfies

ṙ(t) = −r(t) + gπP − f(y(t)). (203)

Proof. Note that T′V = T̃V + (gπP − f(V ))e, then from the variation of constants formula, we have that

x(t) = x0e
−t +

∫ t

0

e−(t−s)T̃(x(s))ds+

(∫ t

0

e−(t−s)(gπP − f(x(s)))ds

)
e, (204)

y(t) = x0e
−t +

∫ t

0

e−(t−s)T̃(y(s))ds. (205)

Hence, the maximal and minimal components of x(t)− y(t) can be bounded as:

max
i

(xi(t)− yi(t)) ≤
∫ t

0

e−(t−s) max
i

(T̃i(x(s))− T̃i(y(s)))ds+

∫ t

0

e−(t−s)(gπP − f(x(s)))ds,

min
i
(xi(t)− yi(t)) ≥

∫ t

0

e−(t−s) min
i
(T̃i(x(s))− T̃i(y(s)))ds+

∫ t

0

e−(t−s)(gπP − f(x(s)))ds. (206)
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This hence implies that

Span(x(t)− y(t)) ≤
∫ t

0

e−(t−s)Span(T̃(x(s))− T̃(y(s)))ds

≤
∫ t

0

e−(t−s)Span(x(s)− y(s))ds, (207)

where the last inequality is because T̃ is non-expansive w.r.t. the span semi-norm (Wang et al., 2023).

Gronwall’s inequality implies that Span(x(t) − y(t)) ≤ 0 ·
∫ t

0
e−(t−s)ds = 0 for any t ≥ 0. However, since Span is

non-negative, then Span(x(t)− y(t)) = 0. Hence, we have that x(t) = y(t) + r(t)e for some r(t) satisfying r(0) = 0.

Also note that the differential of r(t) can be written as

ṙ(t)e = ẋ(t)− ẏ(t)

= T̃x(t) + (gπP − f(x(t)))e− x(t)− T̃y(t) + y(t)

= (−r(t) + gπP − f(y(t)))e, (208)

where the last equation is because

T̃x(t) = T̃(y(t) + r(t)e) = T̃(y(t)) + r(t)e, (209)
f(x(t)) = f(y(t) + r(t)e) = f(y(t)) + r(t). (210)

This completes the proof.

Lemma F.2. For any function g : ∆(|S|) → R, assume there are 2n+1 i.i.d. samples Xi ∼ q. Denote the empirical
distributions from samples {Xi : i = 1, ..., 2n+1}, {X2i−1 : i = 1, ..., 2n}, {X2i : i = 1, ..., 2n} by q̂n+1, q̂n+1,O, q̂n+1,E .
Then,

E[g(q̂n+1,O)] = E[g(q̂n+1,E)] = E[g(q̂n)]. (211)

Proof. Note that

q̂n+1,O(s) =

∑2n

i=1 1X2i−1=s

2n
, (212)

hence,

E[g(q̂n+1,O)] =
∑

p=(p1,...,p|S|)∈∆(|S|)

g(p)P(q̂n+1,O = p)

=
∑

p=(p1,...,p|S|)∈∆(|S|)

P
(∑2n

i=1 1X2i−1=s1

2n
= p1, ...,

∑2n

i=1 1X2i−1=s|S|

2n
= p|S|

∣∣∣∣q)g(p), (213)

where 2npi ∈ N and
∑|S|

i=1 pi = 1. On the other hand,

E[g(q̂n)] =
∑

p=(p1,...,p|S|)∈∆(|S|)

g(p)P(q̂n = p)

=
∑

p=(p1,...,p|S|)∈∆(|S|)

P
(∑2n

i=1 1Xi=s1

2n
= p1, ...,

∑2n

i=1 1Xi=s|S|

2n
= p|S|

∣∣∣∣q)g(p). (214)

Note that Xi are i.i.d., hence,

P
(∑2n

i=1 1Xi=s1

2n
= p1, ...,

∑2n

i=1 1Xi=s|S|

2n
= p|S|

∣∣∣∣q) = P
(∑2n

i=1 1X2i−1=s1

2n
= p1, ...,

∑2n

i=1 1X2i−1=s|S|

2n
= p|S|

∣∣∣∣q).
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Thus,

E[g(q̂n+1,O)] = E[g(q̂n)]. (215)

Similarly, E[g(q̂n+1,E)] = E[g(q̂n)] and hence it completes the proof.

Lemma F.3. Under the total variation uncertainty model, the optimal solution and optimal value for
gVs,a, g

V
s,a,N+1, g

V
s,a,N+1,E , g

V
s,a,N+1,O are bounded. Specifically,

µV
s,a, µ

V
s,a,N+1, µ

V
s,a,N+1,E , µ

V
s,a,N+1,O ≤ V + ∥V ∥e, (216)

∥µV
s,a∥, ∥µV

s,a,N+1∥, ∥µV
s,a,N+1,E∥, ∥µV

s,a,N+1,O∥ ≤ 2∥V ∥, (217)

|gVs,a(µV
s,a)|, |gVs,a,N+1(µ

V
s,a,N+1)|, |gVs,a,N+1,O(µ

V
s,a,N+1,O)|, |gVs,a,N+1,E(µ

V
s,a,N+1,E)| ≤ 3(1 + 2δ)∥V ∥. (218)

Proof. First we show the bounds on the optimal solutions. If we denote the minimal entry of V by w: w = mins V (s), then
W ≜ V − we ≥ 0. Note that,

µW
s,a = argmax

µ≥0

(
Pa
s(W − µ)− δSpan(W − µ)

)
= argmax

µ≥0

(
− w + Pa

s(V − µ)− δSpan(V − µ)
)
, (219)

which is because Span(V + ke) = Span(V ) and Pa
s(V + ke) = k+Pa

sV . Hence, µW
s,a = µV

s,a. Moreover note that W ≥ 0,
hence µW

s,a is bounded: µW
s,a ≤W , this further implies that

∥µV
s,a∥ = ∥µW

s,a∥ ≤ ∥W∥ ≤ 2∥V ∥. (220)

The bounds on µV
s,a,N+1, µ

V
s,a,N+1,O, µ

V
s,a,N+1,E can be similarly derived.

We then consider the optimal value. Note that,

gVs,a(µ
V
s,a) = Pa

s(V − µV
s,a)− δSpan(V − µV

s,a)

≤ ∥V ∥+ ∥µV
s,a∥+ δ|max

i
(V (i)− µV

s,a(i))|+ δ|min
i
(V (i)− µV

s,a(i))|

≤ 3∥V ∥+ 2δ(∥V ∥+ ∥µV
s,a∥)

≤ 3(1 + 2δ)∥V ∥. (221)

On the other hand,

gVs,a(µ
V
s,a) ≥ gVs,a(0) = Pa

sV − δSpan(V ) = Pa
sV − δmax

i
V (i) + δmin

i
V (i). (222)

Denote the maximal and minimal entries of V by V (M) and V (m), then we have that

Pa
sV − δmax

i
V (i) + δmin

i
V (i)

=
∑
x

Pa
s,xV (x)− δV (M) + δV (m)

≥ −∥V ∥ − 2δ∥V ∥, (223)

where the last inequality is from ∥V ∥ ≥ V (i) ≥ −∥V ∥ for any entry i. Thus, combining (222) and (223) implies that

−(1 + 2δ)∥V ∥ ≤ gVs,a(µ
V
s,a) ≤ 3(1 + 2δ)∥V ∥. (224)

Similarly, the bounds on gVs,a,N+1(µ
V
s,a,N+1), g

V
s,a,N+1,O(µ

V
s,a,N+1,O), g

V
s,a,N+1,E(µ

V
s,a,N+1,E) can be derived.

Lemma F.4. Under the chi-square uncertainty model, the optimal solution and optimal value for
gVs,a, g

V
s,a,N+1, g

V
s,a,N+1,E , g

V
s,a,N+1,O are bounded. Specifically,

µV
s,a, µ

V
s,a,N+1, µ

V
s,a,N+1,E , µ

V
s,a,N+1,O ≤ V + ∥V ∥e, (225)

∥µV
s,a∥, ∥µV

s,a,N+1∥, ∥µV
s,a,N+1,E∥, ∥µV

s,a,N+1,O∥ ≤ 2∥V ∥, (226)

|gVs,a(µV
s,a)|, |gVs,a,N+1(µ

V
s,a,N+1)|, |gVs,a,N+1,O(µ

V
s,a,N+1,O)|, |gVs,a,N+1,E(µ

V
s,a,N+1,E)| ≤ 3(1 +

√
2δ)∥V ∥. (227)
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Proof. First, we show the bounds on the optimal solutions. If we denote the minimal entry of V by w: w = mins V (s),
then W ≜ V − we ≥ 0. Note that,

µW
s,a = arg max

W≥µ≥0

(
Pa
s(W − µ)−

√
δVarPa

s
(W − µ)

)
= arg max

W≥µ≥0

(
− w + Pa

s(V − µ)−
√

δVarPa
s
(V − µ)

)
, (228)

which is because VarPa
s
(V − µ − we) = VarPa

s
(V − µ) + VarPa

s
(we) − 2CovPa

s
(V − µ,we) = VarPa

s
(V − µ). Hence

µW
s,a = µV

s,a. Moreover note that W ≥ 0, hence µW
s,a is bounded: µW

s,a ≤W , this further implies that

∥µV
s,a∥ = ∥µW

s,a∥ ≤ ∥W∥ ≤ 2∥V ∥. (229)

The bounds on µV
s,a,N+1, µ

V
s,a,N+1,O, µ

V
s,a,N+1,E can be similarly derived.

We then consider the optimal value. Note that,

|gVs,a(µV
s,a)| = |Pa

s(V − µV
s,a)−

√
δVarPa

s
(V − µV

s,a)|

≤ ∥V ∥+ ∥µV
s,a∥+

√
2δ∥V − µV

s,a∥2

≤ 3∥V ∥+
√
2δ(∥V ∥+ ∥µV

s,a∥)

≤ 3(1 +
√
2δ)∥V ∥. (230)

Similarly, the bounds on gVs,a,N+1(µ
V
s,a,N+1), g

V
s,a,N+1,O(µ

V
s,a,N+1,O), g

V
s,a,N+1,E(µ

V
s,a,N+1,E) can be derived.

Lemma F.5. Under the Wasserstein distance uncertainty model, the optimal solution and optimal value for
gVs,a, g

V
s,a,N+1, g

V
s,a,N+1,E , g

V
s,a,N+1,O are bounded. Specifically,

λV
s,a, λ

V
s,a,n, λ

V
s,a,n,O, λ

V
s,a,n,E ≤

2∥V ∥
δl

, (231)

|gVs,a(λV
s,a)|, |gVs,a,n(λV

s,a,n)|, |gVs,a,n,O(λV
s,a,n,O)|, |gVs,a,n,E(λV

s,a,n,E)| ≤ ∥V ∥. (232)

Proof. First, we show the bounds on the optimal solutions. Denote the optimal solution to maxλ≥0 g
V
s,a(λ) by λV

s,a.
Moreover, for each state y ∈ S and any λ ≥ 0, denote syλ ≜ argminx∈S{λd(x, y)l + V (x)}. Hence,

gVs,a(λ) = −λδl + ES∼Pa
s
[λd(S, sSλ)

l + V (sSλ)]. (233)

Moreover, note that gVs,a(λ
V
s,a) = maxλ≥0 g

V
s,a(λ), hence,

−λV
s,aδ

l + ES∼Pa
s
[λV

s,ad(S, s
S
λV
s,a

)l + V (sSλV
s,a

)] ≥ gVs,a(0) = ES∼Pa
s
[V (sS0 )] = min

x
V (x), (234)

where the last equation is due to the fact that sS0 = argminx∈S{V (x)} = minx V (x). Now consider the inner problem
ES∼Pa

s
[λV

s,ad(S, s
S
λV
s,a

)l + V (sSλV
s,a

)]. Note that,

ES∼Pa
s
[λV

s,ad(S, s
S
λV
s,a

)l + V (sSλV
s,a

)]

=
∑
x

Pa
s,x

(
λV
s,ad(x, s

x
λV
s,a

)l + V (sxλV
s,a

)
)

(a)

≤
∑
x

Pa
s,x

(
λV
s,ad(x, x)

l + V (x)
)

= EPa
s
[V (S)], (235)

where (a) is because sxλV
s,a

= argminy∈S{λV
s,ad(x, y)

l + V (y)} and hence λV
s,ad(x, s

x
λV
s,a

)l + V (sxλV
s,a

) ≤ λV
s,ad(x, x)

l +

V (x).
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Combine (234) and (235), then we further have that

min
x

V (x) ≤ −λV
s,aδ

l + ES∼Pa
s
[λV

s,ad(S, s
S
λV
s,a

)l + V (sSλV
s,a

)] ≤ −λV
s,aδ

l + EPa
s
[V (S)]. (236)

This implies that

λV
s,a ≤

EPa
s
[V (S)]−minx V (x)

δl
≤ 2∥V ∥

δl
, (237)

and hence λV
s,a is bounded.

On the other hand, note that gVs,a(λ
V
s,a) = σPa

s
[V (S)], hence,∣∣gVs,a(λV

s,a)
∣∣ ≤ ∥V ∥. (238)

Same bound can be similarly derived for λV
s,a,n, λ

V
s,a,n,O, λ

V
s,a,n,E , g

V
s,a,n(λ

V
s,a,n), g

V
s,a,n,O(λ

V
s,a,n,O), g

V
s,a,n,E(λ

V
s,a,n,E).

Lemma F.6. For an optimal robust Bellman operator: HQ(s, a) = r(s, a) + σPa
s
(VQ), define

H′Q ≜ HQ− f(Q)e, (239)

H̃Q ≜ HQ− g∗Pe. (240)

Assume that x(t), y(t) are the solutions to equations

ẋ = H′x− x, (241)

ẏ = H̃y − y, (242)

with the same initial value x(0) = y(0). Then x(t) = y(t) + r(t)e, where r(t) satisfies ṙ(t) = −r(t) + g∗P − f(y(t)).

Proof. The proof follows exactly that of Lemma F.1 if we show that H̃ is non-expansion w.r.t. the span semi-norm.

Following Theorem 17 of (Wang et al., 2023), it can be shown that

Span(H̃(Q1)− H̃(Q2)) ≤ Span(VQ1
− VQ2

). (243)

Let

s = argmax
i
{max

a
Q1(i, a)−max

a
Q2(i, a)}, (244)

t = argmin
i
{max

a
Q1(i, a)−max

a
Q2(i, a)}. (245)

Then,

Span(VQ1
− VQ2

) = (max
a

Q1(s, a)−max
a

Q2(s, a))− (max
a

Q1(t, a)−max
a

Q2(t, a))

≤ Q1(s, as)−Q2(s, as)− (Q1(t, at)−Q2(t, at))

≤ max
x,b

(Q1(x, b)−Q2(x, b))−min
x,b

(Q1(x, b)−Q2(x, b))

= Span(Q1 −Q2). (246)

where as = argmaxa Q1(S, a) and at = argmaxa Q2(t, a). This completes the proof.
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G. Additional Experiments
In this section, we first show the additional experiments on the Garnet problem in Section 6.1. Then, we further verify our
theoretical results using some additional experiments.

G.1. Garnet Problem

We first verify the convergence of our robust RVI TD and robust RVI Q-learning under the Garnet problem with the same
setting as in Section 6.1. Our results show that both our algorithms converge to the (optimal) robust average-reward under
the other three uncertainty sets.

Figure 5: Robust RVI TD Algorithm under Garnet Problem.

Figure 6: Robust RVI Q-Learning Algorithm under Garnet Problem.
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G.2. Frozen-Lake Problem

We first verify our robust RVI TD algorithm and robust RVI Q-learning under the Frozen-Lake environment of OpenAI
(Brockman et al., 2016). We set the uncertainty radius δ = 0.4, αn = 0.01 and plot the (optimal) robust average-reward
computed using model-based methods in (Wang et al., 2023) as the baseline. We evaluate the uniform policy for the
policy evaluation problem, plot the average value of f(Vt) of 30 trajectories and plot the 95/5 percentile as the upper/lower
envelope. For the optimal control problem, we plot the average value of f(Qt) of 30 trajectories and plot the 95/5 percentile
as the upper/lower envelope. The results show that both algorithms converge to the (optimal) robust average-reward.

Figure 7: Robust RVI TD Algorithm under Frozen-Lake environment.

Figure 8: Robust RVI Q-learning Algorithm under Frozen-Lake environment.
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G.3. Robustness of Robust RVI Q-Learning

We further use the simple, yet widely-used problem, referred to as the one-loop task problem (Panaganti & Kalathil, 2021),
to verify the robustness of our robust RVI Q-learning. This environment is widely used to demonstrate that robust methods
can learn different optimal polices from the non-robust methods, which are more robust to model uncertainty. The one-loop
MDP contains 2 states s1, s2, and 2 actions al, ar indicating going left or right.

The nominal environment is shown in the left of Figure 9, where at state s1, going left and right will result in a transition to
s1 or s2; and at s2, going left and right will result in a transition to s1 or s2.

s1 s2

al, 0

ar,−2al, 0

ar, 1

s1 s2al, 0

ar,−2al, 0

ar, 1

Figure 9: One-Loop Task.

We implement our robust RVI Q-learning and vanilla non-robust Q-learning as the baseline in this environment. At each
time step t, we plot the difference between Qt(s1, al) and Qt(s1, ar) in Figure 10(a). If Qt(s1, al)−Qt(s1, ar) < 0, the
greedy policy will be going right; and if Qt(s1, al)−Qt(s1, ar) > 0, the policy will be going left. As the results show, the
vanilla Q-learning will finally learn a policy π(s1) = ar, while our algorithms learn a policy π(s1) = al.

To verify the robustness of our method, we test the learned policies under a perturbed testing environment, shown on the
right of Figure 9. We plot the average-reward of policies πt under this perturbed environment. The results are shown in
Figure 10(b).

(a) Q(s1, al)−Q(s2, ar) (b) Average-Reward under Testing MDP

Figure 10: One-Loop Task.

As the results show, our robust RVI Q-learning learns a more robust policy under the nominal environment, which obtains a
higher reward in the perturbed environment; whereas the non-robust Q-learning learns a policy that is optimal w.r.t. the
nominal environment, but less robust when the environment is perturbed. This verifies that our algorithm is more robust than
the vanilla method.
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