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Robust Low-Tubal-Rank Tensor Completion Based
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Abstract— The goal of tensor completion is to recover a tensor
from a subset of its entries, often by exploiting its low-rank
property. Among several useful definitions of tensor rank, the
low tubal rank was shown to give a valuable characterization
of the inherent low-rank structure of a tensor. While some low-
tubal-rank tensor completion algorithms with favorable perfor-
mance have been recently proposed, these algorithms utilize
second-order statistics to measure the error residual, which
may not work well when the observed entries contain large
outliers. In this article, we propose a new objective function
for low-tubal-rank tensor completion, which uses correntropy
as the error measure to mitigate the effect of the outliers.
To efficiently optimize the proposed objective, we leverage a
half-quadratic minimization technique whereby the optimization
is transformed to a weighted low-tubal-rank tensor factorization
problem. Subsequently, we propose two simple and efficient
algorithms to obtain the solution and provide their convergence
and complexity analysis. Numerical results using both synthetic
and real data demonstrate the robust and superior performance
of the proposed algorithms.

Index Terms— Alternating minimization, correntropy, half-
quadratic (HQ), tensor completion, tensor factorization.

I. INTRODUCTION

HIGH-DIMENSIONAL and multiway data processing
have received considerable attention in recent years

given the ever-increasing amount of data with diverse modal-
ities generated from different kinds of sensors, networks,
and systems. Since tensors are algebraic objects that can be
represented as multidimensional arrays (generalizing scalars,
vectors, and matrices), they have marked ability to characterize
multiway (high order) data and capture intrinsic correlations
across its different dimensions. This fact explains their wide
usage and efficacy in numerous applications of computer
vision [1], [2], pattern recognition [3], [4], [5], [6], [7], and
signal processing [8], [9], [10].
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Similar to matrices, the data represented by tensors may
contain redundant information, which is referred to as the
low-rank property of tensors. To exploit the underlying
low-rank structure of high-order tensors, several low-rank
tensor models have been proposed based on different tensor
decompositions, including CANDECOMP/PARAFAC (CP)
decomposition [11], Tucker decomposition [12], tensor ring
decomposition [13], and tensor singular value decomposition
(t-SVD) [14].

Tensor completion, a generalization of the popular matrix
completion problem [15], [16], is the task of filling in the
missing entries of a partially observed tensor, typically by
exploiting the low-rank property of the tensor. There exist sev-
eral tensor completion algorithms tailored to different low-rank
tensor models, such as the CP decomposition-based alternating
minimization algorithm [11], [17], Tucker decomposition-
based tensor completion using the Riemannian manifold
approach [12], [18] and alternating minimization [19], the
t-SVD-based completion algorithm using convex relaxation
[20], alternating minimization [21], [22], and Grassmannian
optimization [23].

A. Robust Tensor Completion

In the real world, the data observed could be perturbed
by different kinds of noise originating from human errors
and/or signal interference. Existing algorithms largely utilize
the second-order statistics as their error measure, which works
well in certain noisy settings, such as with noise from a
Gaussian distribution. However, when the data are contam-
inated with large outliers, the performance of traditional
algorithms is unsatisfactory in general. This motivated the
development of robust algorithms for low-rank tensor recovery
that are not unduly affected by the outliers [24], [25], [26].
While many such algorithms presume that all the entries of
the tensor data are observed, several algorithms were designed
to deal with incomplete or grossly corrupted data, which is the
main focus of this work.

The vast majority of existing robust tensor completion
algorithms are based on tensor rank models that are different
from the tubal rank model considered here. In [27], an
ℓ1-norm regularized sum of nuclear norm (SNN-L1) com-
pletion algorithm is proposed. Rather than directly applying
complex Tucker decomposition, which decomposes the tensor
into a set of matrices and one small core tensor, SNN-L1
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TABLE I
OBJECTIVE FUNCTIONS OF ROBUST TENSOR COMPLETION ALGORITHMS

relaxes the low-tucker-rank constraint using a (weighted) sum
of nuclear norms of tensor unfolding matrices. Using a similar
convex relaxation of Tucker decomposition, a robust low-
tucker-rank tensor completion algorithm that uses soft/hard
thresholding (SNN-ST/HT) was developed in [28]. It intro-
duces two M-estimators, the Welsch loss and the Cauchy loss,
as error measures, which improves on SNN-L1. In the same
vein, Huang et al. [29] developed a robust ℓ1-norm regularized
tensor ring nuclear norm (TRNN-L1) algorithm based on the
tensor ring model. Similar to SNN, TRNN-L1 solves the
complex tensor ring decomposition problem by minimizing
the nuclear norm of circular unfolding matrices.

Recently, the tubal rank tensor model has been introduced
in the context of tensor completion [30]. The tubal rank
characterization is based on t-SVD [14], which rests on
the tensor-to-tensor product (t-product) as an extension of
matrix algebra. Compared with other tensor models, the tubal
rank model has provable theoretical guarantees [30]. It also
maintains the intrinsic multidimensional tensor structures as
it relates to tensor factorization as a product of tensors. Its
superior performance over alternate rank models in tensor
completion has been established in various works [20], [21],
[22]. We will further discuss the advantages of low-tubal-rank-
based tensor completion in Section II-B. Several low-tubal-
rank-based tensor completion algorithms have been developed
in the literature, including tensor nuclear norm (TNN) [20] and
its robust ℓ1-norm regularized version TNN-L1 [31], [32].

Table I summarizes the abovementioned robust tensor com-
pletion algorithms along with the tensor rank model they
adopt and the corresponding objective functions. As shown,
existing robust algorithms utilize the matrix nuclear norm for

regularization, which requires performing an SVD in every
iteration. For large matrices, SVD incurs a high computational
cost. Furthermore, because of the complex computation of an
SVD on a large matrix, algorithms, such as TNN-L1, are not
readily amenable to parallel implementation on GPU.

B. Contribution

In sharp contrast to the foregoing work, we propose a
novel SVD-free and parallelizable robust tensor completion
method based on tensor factorization and the maximum cor-
rentropy criterion (MCC) [33], [34] under the tubal rank
model. Tensor factorization is theoretically grounded on the
fact that a best tubal rank-r approximation can be obtained
from truncation of the t-SVD. Furthermore, algorithms based
on tensor factorization (as opposed to minimizing norms of
tensor unfoldings) were shown to yield accurate performance
[21], [22]. Correntropy is an information-theoretic nonlinear
similarity measure that can provably handle the negative effect
of large outliers [35], [36], [37]. Compared with the commonly
used ℓ1-norm, correntropy is everywhere differentiable and is
at the heart of several robust algorithms in different fields
[38], [39]. By introducing correntopy as our error measure,
we propose a novel correntropy-based objective function for
robust low-tubal-rank tensor completion. To efficiently solve
the formulated completion problem, we first leverage a half-
quadratic (HQ) optimization technique [40] to transform the
nonconvex problem into a weighted tensor factorization prob-
lem. Then, two efficient and simple algorithms based on alter-
nating minimization and alternating steepest descent (ASD)
are developed, and we analytically establish the convergence
of both algorithms. Also, we propose an adaptive kernel width
selection strategy to further improve the convergence rate and
accuracy. The main contributions of the work are summarized
as follows.

1) We propose a novel objective function for robust low-
tubal-rank tensor completion, which uses tensor factor-
ization to capture the low-rank structure and correntropy
as the error measure to give robustness against outliers.
As shown in Table I, our approach imposes the low-rank
structure through factorization. Compared with other
existing nuclear-norm-based robust tensor completion
algorithms, our factorization-based method does not
need to perform multiple SVD computations.

2) We reformulate the complex correntropy-based opti-
mization problem as a weighted tensor factorization by
leveraging the HQ minimization technique (Section III-
B). We develop two efficient algorithms [half-quadratic-
based tensor completion by tensor factorization (HQ-
TCTF) and half-quadratic based tensor completion by
alternating steepest descent (HQ-TCASD)] for robust
tensor completion (see Sections III-C and III-D). The
algorithms utilize alternating minimization and ASD,
which avoid the costly computation of the SVD oper-
ations and are readily parallelizable on GPU. We also
analyze the convergence and computational complexity
of the proposed algorithms.

3) We demonstrate the robust and efficient performance
of the proposed algorithms through extensive numerical
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experiments performed with both synthetic and real
data. The proposed methods can outperform nuclear-
norm-based methods in many noisy settings in terms
of peak signal-to-noise ratio (PSNR). With the use of
parallel computation, the proposed methods can also run
significantly faster than other algorithms.

This article is organized as follows. In Section II, we intro-
duce our notation and provide some preliminary background
on the tensor properties, tensor completion, and the MCC.
In Section III, we propose the new correntropy-based ten-
sor completion cost and propose two HQ-based algorithms.
In Section IV, we present experimental results to demonstrate
the reconstruction performance. Finally, the conclusion is
given in Section V.

II. PRELIMINARIES

A. Definitions and Notation

In this section, we review some important definitions and
introduce the notation used throughout this article. Boldface
uppercase script letters are used to denote tensors (e.g., X ),
and boldface letters are used to denote matrices (e.g., X).
Unless stated otherwise, we focus on third-order tensors,
i.e., X ∈ Cn1×n2×n3 where n1, n2, and n3 are the dimensions
of each way of the tensor. The notations X (i, :, :),X (:, i, :),
and X (:, :, i) denote the horizontal, lateral and frontal slices
of X , respectively, and X (:, j, k),X (i, :, k), and X (i, j, :)
denote the mode-1, mode-2, and mode-3 tubes, respec-
tively, while Xi jk denotes the (i, j, k)th entry of tensor
X . The Frobenius norm of tensor is defined as ∥X∥F =

(
∑n1

i=1
∑n2

j=1
∑n3

k=1 |Xi jk |
2)1/2.

In the frequency domain, X̄ denotes the Fourier transform
along the third mode of X . We use the convention, X̄ =

fft(X , [ ], 3) to denote the Fourier transform along the third
dimension. Similarly, we use X = ifft(X̄ , [], 3) for the inverse
transform. We also define the matrix X̄ ∈ Rn1n3×n2n3

X̄ = bdiag(X̄ ) =


X̄ (1)

X̄ (2)

. . .

X̄ (n3)


where X (i)

:= X (:, :, i) and bdiag(·) denotes the operator
that maps the tensor X̄ to the block diagonal matrix X̄ . The
block-circulant operator bcirc(·) is defined as

bcirc(X ) =


X (1) X (n3) · · · X (2)

X (2) X (1)
· · · X (3)

...
...

. . .
...

X (n3) X (n3−1)
· · · X (1)

 .
Therefore, the following relation holds:(

Fn3 ⊗ In1

)
bcirc(X )

(
F−1

n3
⊗ In2

)
= X̄ (1)

where Fn3 ∈ Cn3×n3 is the discrete Fourier transform (DFT)
matrix, ⊗ is the Kronecker product, and In1 ∈ Rn1×n1 is the
identity matrix. Furthermore, F−1

n3
can be computed as F−1

n3
=

F∗

n3
/n3, where X∗ denotes the Hermitian transpose of X .

To define the t-product, we first define the unfold operator
unfold(·), which maps the tensor X to a matrix X̃ ∈ Cn1n3×n2

X̃ = unfold(X ) =


X (1)

X (2)

...

X (n3)


and its inverse operator fold(·) is defined as

fold(X̃) = X .

We can readily state the definition of the t-product.
Definition 1 (t-Product [14]): The t-product A ∗ B of

A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 is the tensor of size
n1 × n4 × n3 given by

A ∗ B = fold(bcirc(A) · unfold(B)).

Furthermore, we will need the following lemma from [14].
Lemma 1 [14]: Suppose that A ∈ Rn1×n2×n3 and B ∈

Rn2×n4×n3 are two arbitrary tensors. Let F = A ∗ B. Then,
the following properties hold.

1) ∥A∥
2
F =

1
n3
∥ Ā∥2

F
2) F = A ∗ B and F̄ = ĀB̄ are equivalent.
According to the second property in Lemma 1, the t-product

is equivalent to matrix multiplication in the frequency domain.
Next, we state the definitions of the t-SVD and the tubal

rank.
Theorem 1 (t-SVD [14], [41]): The tensor A ∈ Rn1×n2×n3

can be factorized as A = U ∗ S ∗ V∗, where U ∈ Rn1×n1×n3

and V ∈ Rn2×n2×n3 are orthogonal and S ∈ Rn1×n2×n3 is an
f -diagonal tensor, i.e., each of the frontal slices of S is a
diagonal matrix. The diagonal entries in S(:, :, 1) are called
the singular values of A.

Definition 2 (Tensor Tubal Rank [30]): For any A ∈

Rn1×n2×n3 , the tensor tubal rank, rankt (A), is the number of
nonzero singular tubes of S from the t-SVD, i.e.,

rankt (A) = #{i : S(i, i, :) ̸= 0} .

We will also need the following definition of tensor multi-
rank.

Lemma 2 (Best Tubal Rank-r Approximation [30]): Let the
t-SVD of A ∈ Rn1×n2×n3 be A = U ∗ S ∗ V∗. Given a tubal
rank r , define Ar :=

∑r
s=1 U(:, s, :) ∗ S(s, s, :) ∗ V∗(:, s, :).

Then,

Ar = arg min
Ǎ∈A

∥A − Ǎ∥F

where A := {X ∗ Y | X ∈ Rn1×r×n3 ,Y ∈ Rr×n2×n3}.
Definition 3 (Tensor Multirank [30]): For any tensor A ∈

Rn1×n2×n3 , its multirank rankm(A) is a vector defined as
r = (rank( Ā(1)); . . . ; Ā(n3)). Specifically, the relation between
tubal rank and tensor multirank is

rankt (A) = max
(
r1, . . . , rn3

)
where ri is the i th element of r .
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B. Low-Tubal-Rank Tensor Completion

Tensor completion is the task of recovering a tensor M ∈

Rn1×n2×n3 from a subset of its entries by leveraging the
low-rank property of the tensor. When using tubal rank for
the definition of the rank, the low-tubal-rank property typically
amounts to rankt (M) ≪ max{n1, n2}. Specifically, by defin-
ing the observed subset of entries � ⊆ [n1] × [n2] × [n3]

and its indicator tensor P

Pi jk =

{
1, if (i, j, k) ∈ �
0, otherwise

(2)

the low-tubal-rank tensor completion problem can be formu-
lated through the minimization

min
Z∈Rn1×n2×n3

rankt (Z), s.t.P ◦ (Z − M) = 0 (3)

where ◦ denotes the Hadamard (elementwise) product of
the two same-size tensors. It is known that (3) is NP-hard.
To address this problem, several methods were proposed,
which can be categorized into two main categories.

1) Convex Relaxation [20], [42]: In this approach, (3)
is relaxed to obtain a convex optimization problem.
Specifically, by defining the TNN

∥A∥TNN =
1
n3

n3∑
i=1

∥∥ Ā(i)
∥∥
∗

where ∥·∥∗ denotes the matrix nuclear norm, (3) can be
relaxed to

min
Z∈Rn1×n2×n3

n3∑
i=1

∥∥Z̄(i)
∥∥
∗
, s.t. P ◦ (Z − M) = 0 . (4)

The iterative solver to the nuclear norm-based relaxation
has to compute an SVD at each iteration, which incurs
high computational complexity for large-scale high-
dimensional data.

2) Tensor Factorization: Similar to the powerfactorization
method proposed for matrix completion [43], a low-
tubal-rank tensor can be represented as the t-product of
two smaller tensors [14]. Specifically, the recovered ten-
sor M ∈ Rn1×n2×n3 can be factorized into the t-product
of two tensors X ∈ Rn1×r×n3 and Y ∈ Rr×n2×n3 , where
r is the tubal rank of M [21]. The tensor factorization
then solves tensor completion by utilizing the objective
function

min
X ,Y

J (X ,Y) := ∥P ◦ (X ∗ Y − M)∥2
F . (5)

Tensor factorization can avoid the high complexity asso-
ciated with performing the SVD, and the complexity
is reduced due to the inherent low-rank property. Two
algorithms based on tensor factorization were proposed,
namely, Tubal-Altmin (TAM) [22] and TCTF [21].

Low-tubal-rank-based tensor completion offers several
advantages over tensor completion using other tensor rank
models (e.g., CP rank, Tucker rank, and tensor ring rank).
First, other methods usually impose low-rank constraints
through the nuclear norm minimization on unfolding matrices
of the tensor, which may destroy the original multidimensional

structure of the tensor data. In contrast, based on tensor alge-
bra, the tubal rank-based methods directly impose a low-tubal-
rank constraint on a tensor and can well capture the inherent
low-rank structure of a tensor [21], [22]. Second, unlike other
rank models for which it is hard or infeasible to obtain an
optimal approximation with truncated decomposition, in the
tubal rank model, such an approximation is given in Lemma 2,
which gives a theoretical footing for our proposed method.
Third, if the tensor has a large n3, the dimensions of the
unfolding matrices will be very large, which degrades the
computational efficiency of said algorithms. On the other hand,
for the tubal-rank-based method, the SVD or factorization is
applied to matrices of size n1 × n2, which is smaller than the
unfolding matrices.

C. Maximum Correntropy Criterion

Correntropy is a local and nonlinear similarity measure
between two random variables within a “window” in the joint
space determined by the kernel width. Given two random
variables X and Y , the correntropy is defined as [33]

V (X, Y ) = E[κσ (X, Y )] =
∫
κσ (x, y)d FXY (x, y) (6)

where κσ is a shift-invariant Mercer kernel with kernel width
σ , FXY (x, y) denotes the joint probability distribution function
of X and Y , and E[.] is the expectation operator. Given a
finite number of samples {xi , yi }

N
i=1 and using the Gaussian

kernel Gσ (x) = exp(−(x2/2σ 2)) as the kernel function, the
correntropy can be approximated by

V̂ (X, Y ) =
1
N

N∑
i=1

exp
(
−

e2
i

2σ 2

)
(7)

where ei = xi − yi .
Compared with the ℓ2-norm-based second-order statistic of

the error, the correntropy involves all the even moments of
the difference between X and Y and is insensitive to outliers.
Replacing the second-order measure with the correntropy
measure leads to the MCC [44]. The MCC solution is obtained
by maximizing the following utility function:

Jmcc = E[Gσ(e(i))] . (8)

Moreover, in practice, the MCC can also be formulated as
minimizing the following correntropy-induced loss (C-loss)
function [45]:

JC−loss =
1
M

M∑
i=1

σ 2(1 − Gσ(e(i))) . (9)

The cost function above is closely related to Welsch’s cost
function, originally introduced in [46].

Fig. 1 shows the different error measures. As can be seen,
the correntropy-based error measure can efficiently reduce the
effect of a large error e caused by large outliers. Compared
with the ℓ1-norm-based error, it is also differentiable at 0,
which is convenient for optimization and allows us to leverage
an HQ technique to efficiently solve the problem. The superior
performance of correntropy over ℓ1 and ℓ2 norm has been
verified in many fields [36], [37] and is also verified in this
work.
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Fig. 1. Curves of different error measures with error e. Left: cost function J
with e. Right: derivative ∂ J/∂e with respect to e.

III. PROPOSED METHODS

A. Correntropy-Based Tensor Completion

Before we state our objective function for tensor comple-
tion, we first rewrite (5) as

min
X ,Y

J (X ,Y) :=
n1∑

i=1

n2∑
j=1

n3∑
k=1

Pi jk
(
Mi jk − (X ∗ Y)i jk

)2
.

(10)

When the observed entries Mi jk are corrupted or contain
large outliers, the ℓ2 error measure can bias the optimiza-
tion, which degrades the performance of tensor completion.
To enhance robustness, in this work, we utilize the correntropy
as the error measure. By replacing the ℓ2 error measure with
correntropy, we obtain the new optimization problem

min
X ,Y

JGσ
(X ,Y)

:=

n1∑
i=1

n2∑
j=1

n3∑
k=1

Pi jkσ
2(1 − Gσ

(
Mi jk − (X ∗ Y)i jk

))
. (11)

The formulation in (11) generalizes the correntropy-based
formulation in [36] for matrix completion. In particular, for the
special case where n3 = 1, the optimization in (11) reduces to
the correntropy-based matrix completion. Surely, since tensor
algebra is substantially different from the algebra of matrices
(even the definition of tensor rank is not unique), the solution
in [36] is no longer suitable for tensor completion, a fact that
will also be verified in Section IV. Thus, here, we seek new
approaches to solve (11).

B. Optimization via HQ Minimization

In general, (11) is nonconvex and is difficult to be directly
optimized. To tackle this difficulty, we utilize the HQ optimiza-
tion technique to optimize the correntropy-based cost function.
According to the HQ optimization theory [40], there exists a
convex conjugated function ϕ such that

Gσ (e) = max
t

(
e2t
σ 2 − ϕ(t)

)
(12)

where t ∈ R and the maximum is reached at t = −Gσ (e).
Equation (12) can be rewritten as

σ 2(1 − Gσ (e)) = min
t

(
−e2t + σ 2ϕ(t)

)
. (13)

By defining s = −t and φ(s) = σ 2ϕ(−s), (13) can be
written as

min
e
σ 2(1 − Gσ (e)) = min

e,s

(
e2s + φ(s)

)
. (14)

Thus, minimizing the nonconvex C-loss function in terms of
e is equivalent to minimizing an augmented cost function in an
enlarged parameter space {e, s}. Therefore, by substituting (14)
into (11), the correntropy-based objective function JGσ

(X ,Y)
can be expressed as

JGσ
(X ,Y)= min

W

n1∑
i=1

n2∑
j=1

n3∑
k=1

(
Wi jkPi jk

(
Mi jk−(X ∗Y)i jk

)2

+Pi jkφ
(
Wi jk

))
. (15)

Furthermore, by defining the augmented cost function

JHQ(X ,Y,W)=∥
√

W ◦ P ◦ (M−X ∗ Y)∥2
F + ψ�(W)

(16)

where ψ�(W) =
∑n1

i=1
∑n2

j=1
∑n3

k=1 Pi jkφ(Wi jk), we have the
following relation:

min
X ,Y

JGσ
(X ,Y) = min

X ,Y,W
JHQ(X ,Y,W) . (17)

Therefore, the correntropy-based optimization problem is
formulated as an HQ-based optimization.

We propose the following alternating minimization proce-
dure to solve the optimization problem (16).

1) Optimizing W: According to (12) and (14), given a
certain e, the minimum is reached at s = Gσ (e). Therefore,
given the fixed X and Y , the optimal solutions of Wi jk for
(i, j, k) ∈ � can be obtained as

Wi jk = Gσ

(
Mi jk − (X ∗ Y)i jk

)
, (i, j, k) ∈ � . (18)

Since computing Wi jk for (i, j, k) /∈ � does not affect the
solution of (11) due to the multiplication with P , henceforth
we use Wi jk for all the entries to simplify the expressions.

2) Optimizing X and Y: Given a fixed W , (16) becomes
a weighted tensor completion problem

min
X ,Y

∥
√

W ◦ P ◦ (M − X ∗ Y)∥2
F . (19)

The weighting tensor W assigns different weights to each
observed entry based on error residuals. Given the nature
of the Gaussian function, a large error will lead to a small
weight such that the negative impact of large outliers for error
statistics can be greatly reduced. In the following, we propose
and develop two algorithms to solve (19).

C. Alternating Minimization-Based Algorithm

Inspired by TCTF [21], we first propose an alternating
minimization-based approach to solve (19). By introducing an
auxiliary tensor variable Z , (19) can be rewritten as

min
X ,Y,Z

J (X ,Y,Z) := ∥
√

W ◦ P ◦ (M − Z)∥2
F

+β∥X ∗ Y − Z∥
2
F (20)
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where β is the regularization parameter. To solve (20), one
can again utilize alternating minimization and update Z , X ,
and Y in turn. Specifically, by fixing X and Y , we can update
Z as

Z = arg min
Z

∥
√

W ◦ P ◦ (M − Z)∥2
F + β∥X ∗ Y − Z∥

2
F .

(21)

To solve (21), we set the first derivative of J (X ,Y,Z)
with respect to Z to zero, i.e.,

∂ J
∂Z

= 2(W ◦ P ◦ (Z − M)+ βZ − βX ∗ Y) = 0. (22)

Equation (22) is equivalent to the requirement that

P ◦ (W ◦ Z − W ◦ M + βZ − βX ∗ Y) = 0
(1 − P) ◦ (Z − X ∗ Y) = 0. (23)

Thus, Z can be obtained in a closed form as

Z = P ◦ Z + (1 − P) ◦ Z

= X ∗ Y +
W

β1 + W
◦ P ◦ (M − X ∗ Y) (24)

where 1 denotes the tensor of all ones, and the division is
elementwise. Furthermore, by fixing Z , (20) reduces to the
following minimization:

min
X ,Y

∥X ∗ Y − Z∥
2
F . (25)

According to Lemma 1, we have

∥X ∗ Y − Z∥
2
F =

1
n3

∥X̄Ȳ − Z̄∥2
F . (26)

Given the block structure of X̄ , Ȳ , and Z̄, the above mini-
mization problem is equivalent to solving the n3 subproblems

min
X̄ (k)

,Ȳ (k)
∥X̄ (k)Ȳ (k)

− Z̄(k)∥2
F , k = 1, . . . , n3 . (27)

For each k, we can alternate between least-squares solutions
to X̄ (k) and Ȳ (k), i.e.,

X̄ (k)
= Z̄(k)

(
Ȳ (k))∗(Ȳ (k)(Ȳ (k))∗)†

Ȳ (k)
=

(
Ȳ (k)(Ȳ (k))∗)†(

Ȳ (k))∗ Z̄(k) (28)

where A† denotes the Moore–Penrose pseudoinverse of
matrix A. Therefore, to solve (16), we alternate between the
updates in (18), (24), and (28) until convergence. We name
this algorithm “HQ-TCTF.” The pseudocode of HQ-TCTF
is summarized in Algorithm 1. Note that in step 3 of the
algorithm, we use an adaptive kernel width to enhance the rate
of convergence. More details about this strategy are discussed
in Section III-E.

Note that the n3 subproblems in each alternating minimiza-
tion step are independent of each other. Thus, the solution
to these subproblems can be parallelized to further speed up
computation.

Remark 1: One can observe that as σ → ∞, Gσ (e)
approaches 1, and thus, all the entries of W become 1.

Algorithm 1 HQ-TCTF for Robust Tensor Completion
Input: P , P ◦ M, β and r
1: initial tensors X 0 and Y0, t = 0
2: repeat
3: compute σ t+1 and W t+1 using (18).
4: compute Z t+1 using (21).
5: for k = 1, . . . , n3 do
6: compute X (k),t+1 and Y (k),t+1 using (28)
7: end for
8: t = t + 1
9: until stopping criterion is satisfied
Output: X t

∗ Y t

In this special case, one does not need to optimize W in
(18), and (16) reduces to

min
X ,Y

∥P ◦ (M − X ∗ Y)∥2
F (29)

which is the tensor completion problem in (5). Furthermore,
by setting β = 0 in (24), the updates of Z , X , and Y will be
the same as in TCTF.

Remark 2: The adaptive tubal rank estimation method
developed for TCTF [21] can be naturally applied to
HQ-TCTF. Specifically, the scalar rank parameter r in Algo-
rithm 1 can be replaced with a multirank vector r =

[r1, . . . , rn3 ] and the adaptive approach in [19] and [21]
iteratively estimates the rank of the tensor.

The following proposition establishes the convergence guar-
antees for HQ-TCTF.

Proposition 1: Define the cost function

J (X ,Y,Z,W) = ∥
√

W ◦ P ◦ (M−X ∗ Y)∥2
F

+∥X ∗ Y−Z∥
2
F + ψ�(W). (30)

The sequence {Jσ t (X t ,Y t
,Z t ,W t ), t = 1, 2, . . .} gener-

ated by Algorithm 1 converges.
Proof: Since W and Z are optimal solutions to

(18) and (21), respectively, we have

J
(
X t+1,Y t+1

,Z t+1,W t+1
)
≤ J

(
X t+1,Y t+1

,Z t ,W t
)
.

(31)

Then, from Lemma 3 in the Supplementary Material of
[21], one can obtain that for each matrix X̄ (k)

, Ȳ (k)
, k =

1, . . . , n3 generated from (28), the following inequality holds:

∥X̄ (k),t+1Ȳ (k),t+1
− Z̄∥2

F ≤ ∥X̄ (k),t Ȳ (k),t
− Z̄∥2

F . (32)

From Lemma 1, we have ∥X t
∗ Y t

− Z∥
2
F =

(1/n3)
∑n3

k=1 ∥X̄ (k),t Ȳ (k),t
− Z̄∥2

F . Thus, the following
inequality holds:

∥X t+1
∗ Y t+1

− Z∥
2
F ≤ ∥X t

∗ Y t
− Z∥

2
F . (33)

Combining (31) and (33), we have

J (X t+1,Y t+1
,Z t+1,W t+1) ≤ J (X t ,Y t

,Z t ,W t ). (34)

It can be also verified that J (X t ,Y t
,Z t ,W t ) is always

bounded below for arbitrary t . Thus, {J (X t ,Y t
,Z t ,W t ),

t = 1, 2, . . .} will converge.
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D. ASD-Based Algorithm

In the context of matrix completion, ASD was introduced
to efficiently solve the completion problem [47]. ASD has
a lower per-iteration complexity than PowerFactorization and
can recover high-rank matrices. In this section, we introduce
the ASD method for tensor completion and develop an efficient
robust tensor completion algorithm.

As mentioned in Section III-B, we first optimize W using
(18). Then, instead of directly optimizing (19), we gradually
update X and Y using gradient descent. For convenience,
we first add a multiplicative factor of (1/2) to (19) such that
the minimization problem becomes

1
2

min
X ,Y

∥
√

W ◦ P ◦ (M − X ∗ Y)∥2
F . (35)

Then, using the relation (1) and Definition 1 in Section II-A,
(35) can be rewritten as

1
2

min
X ,Y

∥

√
W̃ ◦ P̃ ◦

(
M̃ − bcirc(X )Ỹ

)
∥

2
F . (36)

Based on the block-circulant diagonalization [30], we have

bcirc(X )Ỹ =
(
F−1

n3
⊗ In1

)
X̄Ŷ

= F−1 X̄Ŷ
= UŶ (37)

where F−1
= F−1

n3
⊗ In1 (consequently, F = F−1

× n3), U =

F−1 X̄ , and Â = unfold(Ā). Finally, (36) can be reformulated
as

min J (U, Ŷ) :=
1
2

∥∥∥√
W̃ ◦ P̃ ◦

(
M̃ − UŶ

)∥∥∥2

F
. (38)

Using the matrix derivatives, the partial derivative of
J (U, Ŷ) with respect to U can be computed as

gU =
∂ J
∂U

= −W̃ ◦ P̃ ◦
(
M̃ − UŶ

)
Ŷ ∗
. (39)

Note that X̄ = FU is a block diagonal matrix. Following
the method in [23], we force the update of X̄ at each iteration
to be block diagonal. Specifically, by defining the operator
bdiagz(·) which sets the nonblock-diagonal entries of a matrix
to zero, the updated gradient can be obtained as

g′

U = F−1 bdiagz(F gU ) . (40)

The steepest descent step size µ′

U for g′

U can be obtained
in the following minimizer

µ′

U = arg min
µ

∥∥∥√
W̃ ◦ P̃ ◦

(
M̃ −

(
U − µg′

U
)
Ŷ

)∥∥∥2

F

=
∥g′

U∥
2
F∥∥∥√W̃ ◦ P̃ ◦
(
g′

U Ŷ
)∥∥∥2

F

(41)

and the matrix U can be updated as

U t+1
= U t

− µ′t
U g′t

U . (42)

Similarly, by fixing U , the partial derivative of J with
respect to Ŷ can be obtained as

gŶ =
∂ J
∂Ŷ

= −U∗
(
W̃ ◦ P̃ ◦

(
M̃ − UŶ

))
. (43)

The corresponding step size µŶ will be

µŶ =
∥gŶ∥

2
F∥∥∥√W̃ ◦ P̃ ◦
(
U gŶ

)∥∥∥2

F

. (44)

Similar to ASD, the foregoing update process suffers from
a slow rate of convergence when directly applied to image
and video completion tasks. To tackle this problem, following
a Newton-like method for scaled ASD [47], we scale the
gradient descent direction for Ŷ in (43) by (U∗U)−1, i.e.,

g′

Ŷ = (U∗U)−1 gŶ (45)

and the corresponding step size µ′

Ŷ with exact line search is

µ′

Ŷ =
⟨gŶ ,g

′

Ŷ
⟩∥∥∥√W̃◦ P̃◦

(
U g′

Ŷ

)∥∥∥2

F

(46)

where ⟨A, B⟩ :=
∑

1≤i, j≤n A∗

i j Bi j . Therefore, the matrix Ŷ at
the t th iteration can be updated by combining (43) and (45),
i.e.,

Ŷ t+1
= Ŷ t

− (1 − λ)µt
Ŷ gt

Ŷ − λµ′t
Ŷ g′t

Ŷ (47)

where 0 ≤ λ ≤ 1 is a free parameter to be chosen.
Therefore, the matrices U and Ŷ can be alternately updated

using (42) and (47) until convergence. We term the above
algorithm “HQ-TCASD.”

Similar to HQ-TCTF, adaptive selection of the kernel width
σ is used to improve the rate of convergence and the perfor-
mance of HQ-TCASD. HQ-TCASD is summarized in Algo-
rithm 2. We remark that the matrices U(X̄) and Ŷ have a block
structure, so the matrix computation can be processed block-
by-block. Also, since we have F Ã = unfold(fft(A, [ ], 3))
for a tensor A, the conventional fast Fourier transform (FFT)
operation can be used in (40) instead of matrix multiplication
to further accelerate the computation.

Algorithm 2 HQ-TCASD for Robust Tensor Completion
Input: P , P ◦ M, r and λ
1: initial matrices U0 and Ŷ 0, t = 0
2: repeat
3: compute σ t+1 and W t+1 using (18).
4: compute U t+1 using (42).
5: compute Ŷ t+1 using (47).
6: t = t + 1
7: until stopping criterion is satisfied
Output: U t

∗ Ŷ t

The following proposition verifies the convergence of the
proposed HQ-TCSAD.

Proposition 2: Define the cost function

J (X ,Y,W) =
1
2
∥
√

W ◦ P ◦ (M−X ∗ Y)∥2
F+

1
2
ψ�(W).

(48)

The sequence {J (X t ,Y t
,W t ), t = 1, 2, . . .} generated by

Algorithm 2 will converge.
Proof: See the Appendix.

Remark 3: As σ → ∞ [i.e., for the standard tensor
completion cost function in (5)], one can set W̃ to be all one’s
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matrix and alternately update (42) and (47). This is itself a new
algorithm, which we term TCASD. It can be used for tensor
completion in noise-free settings or with Gaussian noise.

E. Stopping Criterion and Adaptive Kernel Width Selection

The relative error between iterations can be used to measure
the speed of convergence and develop a stopping criterion.
Specifically, the residual error tensor at the t th iteration E t is
defined as

E t
=

√
W t

◦ P ◦ (M − X t
∗ Y t ) . (49)

If ∥E t
∥F −∥E t−1

∥F falls below a sufficiently small value ε,
the algorithm is considered to have converged to a local
minimum, and the iterative procedure terminates.

To further improve the performance and achieve a faster
rate of convergence, we use an adaptive kernel width selection
strategy. Specifically, the kernel width at the (t +1)th iteration
is determined by

σ t+1
= max

(
η
(

max
(

et
�(0.25), et

�(0.75)

))
, σmin

)
(50)

where et
� ∈ R|�|×1 denotes the vector composed of all nonzero

entries of P ◦(M−X t
∗Y t ) and y(q) denotes the qth quantile

of y. The parameter η controls the kernel width, and σmin is
a lower bound on σ .

F. Complexity Analysis

We first present a complexity analysis of HQ-TCTF. Com-
puting σ involves computing X ∗ Y and finding the quantile
of e�, whose time complexities are O(r(n1 + n2)n3 log n3 +

rn1n2n3) and O(n1n2n3), respectively. The complexity of
computing W and Z is both O(n1n2n3) since X ∗ Y was
already computed. Then, the cost of updating X and Y
is O(r(n1 + n2)n3 log n3 + rn1n2n3). Therefore, the overall
complexity of HQ-TCTF is O(r(n1 +n2)n3 log n3 +rn1n2n3).

For HQ-TCASD, similar to HQ-TCTF, the complexity of
computing σ is O(r(n1 + n2)n3 log n3 + rn1n2n3). Comput-
ing g′

U using FFT has complexity O(r(n1 + n2)n3 log n3 +

rn1n3 max(n2, n3)), and calculation of µ′

U , gŶ and µŶ is of
complexity O(r(n1 + n2)n3 log n3 + rn1n2n3). Therefore, the
overall complexity of HQ-TCASD is O(r(n1 + n2)n3 log n3 +

rn1n3 max(n2, n3)).
One can observe that if n2 > n3, both HQ-TCTF and

HQ-TCASD have the same order complexity. Furthermore,
as both HQ-TCTF and HQ-TCASD are SVD-free algorithms
and are readily parallelizable, the computation can be easily
accelerated through parallel computation, which is verified in
the experiments.

IV. EXPERIMENTS

In this section, we thoroughly evaluate the performance of
the proposed algorithms HQ-TCTF, HQ-TCASD, and TCASD
using both synthetic and real data. We compare to existing
tensor completion algorithms, including TCTF [21], TAM
[22], and TNN [20], and robust tensor completion algorithms,
including SNN-L1 [24], SNN-HT/ST with Welsch loss (SNN-
WHT/WST) [28], TRNN-L1 [29], and TNN-L1 [31]. For a

fair comparison, the adaptive kernel width selection method is
also applied to SNN-WHT and SNN-WST in the experiments.
Furthermore, the correntropy-based robust matrix completion
algorithm [36] is also included in the comparisons, where
the tensor is treated as n3 matrices of dimension n1 × n2.
In the experiments, we refer to this matrix-completion-based
method as HQ-MCASD. We also report the run time of the
proposed methods on a GPU (designated with suffix “parallel”)
by simply using the “gpuArray” data structure in MATLAB.
All algorithms are implemented using MATLAB r2019b on
a standard 16-GB memory PC with a 2.6-GHz CPU and an
NVIDIA RTX3070 GPU.

In all simulations, the maximum number of iterations of
all algorithms is set to 500 unless explicitly mentioned. The
parameter η in (50) for adaptive kernel width selection is set to
6 and 2 for synthetic data and real data, respectively. The lower
bound σmin for kernel width selection is experimentally set to
0.3 for synthetic data and 0.15 for real data. The threshold
ε for the stopping criterion is set to 10−9 for synthetic data
and 10−5 for real data. The regularization parameter β for
HQ-TCTF is set to 1. For real data, λ for HQ-TCASD is
fixed to 0.2. Other parameters for each algorithm are tuned
to achieve the best performance in each task. Note that
the parameters of the different algorithms are not adapted
across different noise settings in each simulation. Fixing the
parameters is important since the noise properties could be
changing and may not be measurable in practice.

A. Synthetic Data

In this section, we verify the performance of the proposed
algorithms using synthetic data. The dimensions of the tensor
are set to n1 = n2 = 200 and n3 = 20. The low-tubal-rank
tensor M with tubal rank r̄ is obtained by the t-product of two
tensors whose entries are generated from a zero mean Gaussian
distribution with unit variance. The indicator tensor P with
observation fraction p is generated by randomly and uniformly
assigning p × 100% of the entries of P the value 1. The
performance of an instance of tensor completion is evaluated
using the relative error

rel.err =

∥∥M̂ − M
∥∥

F

∥M∥F
(51)

where M̂ is the recovered tensor. The performance is eval-
uated by taking the ensemble average of the relative error
over T independent Monte Carlo runs of different instances
of P and the noise. In this section, we only compare the
performance of the proposed algorithms to TNN, TNN-L1,
TAM, and TCTF since the other algorithms are using different
definitions for the tensor rank.

In the experiments, the observed entries of the tensor
are perturbed by additive noise generated from the standard
two-component Gaussian mixture model (GMM). The proba-
bility density function is given by (1−c)N (0, σ 2

A)+cN (0, σ 2
B),

where N (0, σ 2
A) represents the general Gaussian noise distur-

bance with variance σ 2
A and N (0, σ 2

B) with a large variance
σ 2

B captures the outliers. The variable c controls the occurrence
probability of outliers.
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Fig. 2. Curves of average relative error under different noise environments. Left: c = 0. Middle: σ 2
A = 0.01, c = 0.1. Right: σ 2

A = 0.01 and σ 2
B = 1.

We first investigate the performance of the algorithms under
different settings for the noise. The observation fraction p
is set to 0.5 and the tubal rank r̄ of M is set to 10.
The rank parameter for all the algorithms is set to the true
value, i.e., r = 10. For each noise distribution, we average
over 20 Monte Carlo runs. The average relative error under dif-
ferent noise distributions is shown in Fig. 2. One can observe
that for Gaussian noise (i.e., c = 0), all algorithms expect
TNN and TNN-L1 achieve the same favorable performance,
and however, for GMM noise with c ̸= 0, the proposed
robust algorithms HQ-TCTF and HQ-TCASD outperform all
the other algorithms. Also, HQ-TCASD is shown to slightly
outperform HQ-TCTF.

In many practical situations, the actual rank r̄ may not be
known. Therefore, we study the performance under different
settings of r . Again, the observation fraction p is set to
0.5 and the actual tubal rank r̄ = 10. We use a Gaussian
noise distribution with σ 2

A = 0.01. For all factorization-based
algorithms, we gradually change the rank parameter r between
5 and 50. Note that TNN and TNN-L1 do not require setting
the rank since they use convex relaxation as described in
Section II-B. The other parameters are set as in the previous
simulation. For HQ-TCTF, an additional algorithm with adap-
tive rank estimation (namely, HQ-TCTF-RE) is also included
for comparison. The average relative error under different rank
parameters r is shown in Fig. 3 for the different algorithms.
As shown, HQ-TCASD is still able to successfully complete
the tensor M with low relative error even when r is set larger
than actual r̄ .

Finally, we compare the performance of the proposed algo-
rithms and TNN-L1 with different tensor sizes under the GMM
noise model. Here, we only compare to TNN-L1 since it is
the only algorithm other than the proposed methods that can
yield successful recovery under the GMM noise, as shown in
Fig. 2. The tensor size is set to n1 = n2 and n3 = 20. The
parameters of the GMM noise are set to c = 0.1, σ 2

A = 0.01,
and σ 2

B = 10. The rank r̄ is set to n1 × 0.05. The rank of
HQ-TCASD with λ = 1 is set to r̄ + 5 for fast completion
speed. We gradually increase n1 from 100 to 1000 and average
the relative error over 20 Monte Carlo runs. The average
relative error and the average running time are shown in Fig. 4.

Fig. 3. Average relative error as a function of the rank parameter r with
Gaussian noise.

Fig. 4. Average relative error (left) and average run time (right) as a function
of n1 under GMM noise.

One can observe that the proposed algorithms always yield
a significantly lower relative error and smaller computation
time than TNN-L1. Specifically, the parallel computation can
further speed up the computation of the proposed methods by
an order of magnitude.
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TABLE II
COMPLETION PERFORMANCE (PSNR) COMPARISON ON FOUR IMAGES FROM THE DAVIS AND SIDD DATASETS

B. Image Inpainting

It aims to recover the missing pixels of an image from
the observed pixels of the image. Because many images can
be well approximated by a low-rank representation, image
inpainting can be seen as a matrix or tensor completion task
[21] and has been widely used for evaluating performance of
matrix and tensor completion algorithms. When the observed
pixels are corrupted with impulsive noise or outliers, the image
inpainting task is more challenging. In this section, we evaluate
the performance of the proposed HQ-TCTF and HQ-TCASD
algorithms, along with other state-of-the-art robust completion
algorithms, on the robust color image inpainting task with
multiple noise distributions and missing pixel patterns. The
performance evaluation metric is the PSNR defined as

PSNR = 10 log10
I 3
maxn1n2n3∥∥M̂ − M

∥∥2
F

where Imax denotes the largest value of the pixels of the image
data. A higher PSNR signifies better recovery performance.

We evaluate the completion performance of the different
algorithms using four images. The first two images “bus”
and “paragliding” are chosen from the Densely Annotated
Video Segmentation (DAVIS) 2016 dataset.1 [48] Different
kinds of synthetic noise are added to these two images to
obtain the noisy images. The last two images “board” and
“alphabet” are selected from the Smartphone Image Denoising
Dataset (SIDD).2 For each image, four (noisy) photographs
captured using a Samsung Galaxy S6 Edge are provided
with different lighting conditions along with the ground-truth
(noiseless) image. The noise comes from the camera itself
and no synthetic noise is added. All images are scaled to
1920 × 1080, so each color image can be regarded as a
1920 × 1080 × 3 tensor.

1https://davischallenge.org/davis2016/code.html
2https://www.eecs.yorku.ca/~kamel/sidd/index.php

Fig. 5. Average running time for each image.

The completion performance is tested on two types of
missing pixel patterns. In the first pattern, we independently
and randomly select 50% pixels from each channel as the
missing pixels. In the second pattern, a watermark is added to
all channels of the image, and the missing pixels correspond
to pixels covered by the watermark.

We evaluate the performance using four types of noises.
1) GMM Noise: All observed pixels are perturbed by GMM

noise described in the previous experiment with σ 2
A =

0.001 and σ 2
B = 1 and parameter c.

2) Possion+Salt-and-Pepper (PSP) Noise: Nearly,
c × 100% of the observed pixels are randomly
selected and perturbed with salt-and-pepper noise,
and the remaining observed pixels are perturbed with
Poisson noise.

3) Stripe GMM noise: For each channel, 50% of the
columns are randomly selected, of which 2c × 100% of
the observed pixels are perturbed with Gaussian noise
N (0, 1). The remaining observed pixels are perturbed
by Gaussian noise N (0, 0.01).
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Fig. 6. Images recovered by different algorithms under different noise distributions with c = 0.2.

Fig. 7. Enlarged regions (red rectangles of Fig. 6) from the images recovered by different algorithms.

4) Stripe PSP Noise: This is similar to stripe GMM
noise, but we replace the Gaussian noise N (0, 1) and
N (0, 0.01) in stripe GMM noise with salt-and-pepper
noise and Poisson noise, respectively.

The multirank vectors for HQ-TCASD and HQ-TCTF are
set to [150, 20, 20] and [120, 20, 20], respectively. The
average PSNR for the four images is reported in Table II for
different values of the noise parameter c, and the average run
time for each image is shown in Fig. 5. One can observe
that HQ-TCASD achieves the highest PSNR for most of
the images, and HQ-TCTF is the second best. Furthermore,
parallel computation significantly reduces the computational
cost of the proposed HQ-TCTF and HQ-TCASD. Examples

of the recovered full and partially enlarged images are shown
in Figs. 6 and 7, respectively. As shown, the methods proposed
yield visually clearer texture and more accurate colors than the
other methods.

C. Video Data Completion

In this section, we evaluate the performance of the algo-
rithms using video data. Four grayscale video sequences from
the DAVIS 2016 dataset are used for testing completion
performance. Due to the limitation of the computer memory,
the resolution of the video is scaled down to 1280 × 720 from
the original 1920 × 1080 resolution, and the first 30 frames
of each sequence are selected, such that each video sequence
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Fig. 8. Average PSNR on four videos from the DAVIS dataset versus parameter c. Missing patterns (from left to right): random (50%), watermark, and
random (50%), watermark. Noise distributions (from left to right): stripe GMM, stripe PSP, GMM, and PSP. The dashed lines are for the proposed algorithms.

TABLE III
COMPLETION PERFORMANCE (RELATIVE ERROR) COMPARISON ON TRAFFIC DATA

Fig. 9. Average running time for each video.

forms a tensor of size 1280 × 720 × 30. The multirank vec-
tors for HQ-TCASD and HQ-TCTF are set to [80, 80, . . . , 80]
and [80, 60, . . . , 60], respectively.

Similar to the image inpainting task, we compare per-
formance under different missing pixel patterns and noise
distributions. The curves of average PSNR for different values
of c are shown in Fig. 8. The corresponding average running
times are shown in Fig. 9. The proposed HQ-TCASD algo-
rithm achieves the highest PSNR values in most situations,
and HQ-TCASD achieves a threefold speedup over other
algorithms using parallel computation. To shed more light on
performance, Fig. 10 shows the examples of recovered video
frames from four video sequences. In Fig. 11, we zoom in on

the regions of Fig. 10 surrounded by the red rectangles. It can
be seen that HQ-TCASD yields the frames that are less noisy
and with better contrast than the ones recovered by the other
methods.

We also investigate the performance with an increasing
number of video frames. The “train” video with GMM noise
c = 0.2 is utilized in this experiment. The video length is
increased from 1 to 50 and the corresponding average PSNR
curves of different algorithms are shown in Fig. 12 (right).
As shown, first, the average PSNR increases rapidly as the
number of frames increases. Then, the average PSNR of all
algorithms remains unchanged or slightly decreases except
SNN-WHT and SNN-L1. To better understand the tubal rank
property with an increasing number of frames, we set the tubal
multirank to the same value r and compute the PSNR for
the best r -tubal-rank approximation of the original video. The
results are shown in Fig. 12 (left). It can be seen that the
performance only degrades slightly as the number of frames
increases. Therefore, one can use a fixed setting of the tubal
rank for different numbers of frames, which is also verified in
Fig. 12 (right).

D. Traffic Data Prediction

In this section, we further evaluate the performance of the
algorithms using traffic data. The traffic data are generated
from the large-scale PeMS traffic speed dataset3 [49]. The data
register traffic speed time series from 11 160 sensors over four

3https://doi.org/10.5281/zenodo.3939793
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Fig. 10. Frames recovered by different algorithms under different noise distributions with c = 0.2.

Fig. 11. Enlarged regions (red rectangles of Fig. 10) of recovered frames by different algorithms.

Fig. 12. Left: PSNR curves of best r -tubal-rank approximation of the original
video with a different number of frames. Right: PSNR curves of different
algorithms versus number of frames.

weeks with 288 time points per day (i.e., 5-min frequency) in
California, USA. Thus, it forms a 11 160 × 288 × 28 tensor.

Each value of the data is normalized such that all data are
in the range [0, 1]. In this experiment, we randomly and
uniformly selected 50% of the data points as the observed
data. The noise parameter σ 2

A is set to zero and the outliers
have σ 2

B = 1. For HQ-TCASD and HQ-TCTF, the elements of
the multirank vector are all fixed at 20. Twenty Monte Carlo
runs are performed for each value of c with different selec-
tions of observed data and noise. The values of the average
relative error under different simulation settings are reported
in Table III. The running time in seconds of HQ-TCASD
and HQ-TCTF using parallel computation is shown between
brackets. HQ-TCASD achieves the best performance for c =

0.2 and 0.3. To better illustrate the recovery performance,
an example of the data recovered from sensor No. 9960 on the
26th day under c = 0.3 is shown in Fig. 13. It can be seen that
the proposed HQ-TCASD outperforms the other algorithms.
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Fig. 13. Examples of the recovered missing signals of traffic data.

V. CONCLUSION

In this article, we proposed a novel robust tensor completion
method that utilizes tensor factorization to impose a low-tubal-
rank structure, which avoids the computation of the SVD.
The correntropy measure is introduced to alleviate the impact
of large outliers. Based on an HQ minimization technique,
two efficient robust tensor completion algorithms, HQ-TCTF
and HQ-TCASD, were proposed and their convergence is
analyzed. Experiments on both synthetic and real datasets
demonstrate the superior performance of the proposed methods
compared to existing state-of-the-art algorithms.

APPENDIX
PROOF OF PROPOSITION 2

Since W is an optimal solution for (18), we have

J
(
X t+1,Y t+1

,W t+1
)
≤ J

(
X t+1,Y t+1

,W t
)
. (52)

By fixing W and defining Q =

√

W̃ ◦ P̃ , we obtain the
following:

2J (U t+1, Ŷ t )− 2J (U t , Ŷ t )
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We can further simplify ⟨gU , g′

U ⟩ as〈
gU , g′

U
〉
= tr

(
g∗

U F−1 bdiagz(F gU )
)

=
1
n3

tr
(
(F gU )

∗ bdiagz(F gU )
)

=
1
n3

∥∥bdiagz(F gU )
∥∥2

F (54)

where tr(·) denotes the trace operator. Furthermore, ∥g′

U∥
2
F can

be simplified as

∥g′

U∥
2
F =

1
n3

∥F bdiagz(F gU )∥
2
F =

1
n3

∥ bdiagz(F gU )∥
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where we use the fact that F∗F = I . Therefore, according to
(54) and (55), we have∥∥g′

U
∥∥2

F =
〈
gU , g′

U
〉

(56)

and (53) can be written as

J (U t+1, Ŷ t )− J (U t , Ŷ t ) = −

(
∥g ′t

U∥
2
F

)2

2
∥∥ Q ◦

(
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U Ŷ
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≤ 0. (57)

Similarly, we can obtain

J (U t+1, Ŷ t+1)− J (U t+1, Ŷ t )

= −(1−λ)

(
∥gt
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2
F
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2
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2
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and (57) and (58) imply that

J (U t+1, Ŷ t+1) ≤ J (U t , Ŷ t ). (59)

Thus, according to the relation between U and X , and Ŷ
and Y , we have that

J (X t+1,Y t+1
,W t+1) ≤ J (X t ,Y t

,W t ). (60)

It can also be verified that J (X t ,Y t
,W t ) is always

bounded below for arbitrary t . Thus, {J (X t ,Y t
,W t ), t =

1, 2, . . .} will converge.
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