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ABSTRACT

Domain Adaptation (DA) has recently received significant
attention due to its potential to adapt a learning model across
source and target domains with mismatched distributions.
Since DA methods rely exclusively on the given source and
target domain samples, they generally yield models that are
vulnerable to noise and unable to adapt to unseen samples from
the target domain, which calls for DA methods that guarantee
the robustness and generalization of the learned models. In this
paper, we propose DRDA, a distributionally robust domain
adaptation method. DRDA leverages a distributionally robust
optimization (DRO) framework to learn a robust decision
function that minimizes the worst-case target domain risk by
transferring knowledge from a given labeled source domain
sample. We utilize the Maximum Mean Discrepancy (MMD)
metric to construct an ambiguity set of distributions that
provably contains the source and target domain distributions
with high probability. Hence, the risk is shown to upper bound
the out-of-sample target domain loss. Our experimental results
demonstrate that our formulation outperforms existing robust
learning approaches.

Index Terms— Domain Adaptation, robust learning, re-
gression.

1. INTRODUCTION

The performance of conventionally trained machine learning
models can significantly degrade when the distribution of the
data at the time of inference is different from that at the time of
training. Domain adaptation (DA) is concerned with adapting
learning algorithms trained in a source domain using samples
from a given distribution to a target domain where the test
samples are drawn from a different distribution [1]. Given its
ability to mitigate the distributional mismatch, DA has made
significant strides in diverse application domains, including
but not limited to computer vision [2-5], natural language
processing [6-8], and regression analysis [9].

The key challenge underlying DA is to reduce the dis-
crepancy between the source and target domain distributions,
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which has been tackled using a number of approaches. One
main approach is instance weighting in which the source sam-
ple instances are re-weighted to minimize the distribution
mismatch while learning a decision function [10, 11]. An
alternative strategy is to find across-domain feature representa-
tions that simultaneously minimize the discrepancy between
distributions and preserve intrinsic statistical and structural
properties of the data [12—14]. The main shortcoming of the
foregoing approaches is that the decision function they learn
is often insufficiently robust to generalize to unseen samples
from the target domain. This is largely because they minimize
the discrepancy between the empirical distributions associated
with the given source and target samples rather than the true
population distributions. In turn, the learned decision function
has propensity for unpredictable performance in the presence
of noise or with out-of-sample data.

Distributionally Robust Optimization (DRO) is the prob-
lem of finding the optimal decision function that minimizes
the worst-case risk over an uncertainty (or ambiguity) set of
distributions. Several ways have been proposed in the liter-
ature to construct such ambiguity sets. One approach uses
moment-based ambiguity sets, which include all distributions
that satisfy certain statistical properties in the form of some
moment constraints [15]. An alternative approach — the focus
of this work — constructs distance-based ambiguity sets, which
define a ball of distributions that are within a certain distance
with respect to some discrepancy metric from an empirical
distribution. A key result of the latter is that, if the ambiguity
set is large enough to contain the true population distribution
with high probability, then the worst-case risk gives a high-
probability upper bound on the population risk.

Different discrepancy metrics have been used to construct
the ambiguity set such as the Wasserstein distance [16, 17] and
the Kullback-Leibler divergence [18, 19]. While this choice
of metrics is motivated by a number of structural results that
facilitate the solution to the DRO formulation, the resulting
ambiguity sets have main drawbacks. The Kullback—Leibler di-
vergence set contains only discrete distributions with the same
finite support as the empirical distribution, which makes it
unsuitable when the true population distribution is continuous.
The Wasserstein ambiguity set is computationally expensive
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and, more importantly, its radius has to scale with the data
dimension to certify out-of-sample performance. To address
these limitations, [20] defines the ambiguity set with respect
to the Maximum Mean Discrepancy (MMD) [21], resulting in
an optimization over embedding means of distributions. The
MMD DRO averts the aforementioned drawbacks since the
MMD ambiguity set contains both discrete and continuous
distributions and its radius is independent of the data dimen-
sion. The unifying work of [22] introduces a wide range of
kernel-based ambiguity sets and relaxes the assumptions on
the loss function in the DRO formulation.

Here, we propose a distributionally robust framework for
domain adaptation. The main objective of our formulation
is to learn a robust and generalized regression function that
generalizes well on a target domain given a labeled and an
unlabeled sample from the source and target domains, respec-
tively. Some previous works have considered the use of DRO
across domains for DA [23-26]. There, the search is over an
uncertainty set of probabilistic (conditional) mappings from in-
put to output subject to moment constraints. In sharp contrast,
here we define an uncertainty set of joint distributions within
a given distance from a weighted empirical source domain
distribution with respect to the MMD metric, with the main
goal of establishing guarantees on out-of-sample performance.
Our work makes three contributions. First, we formulate a
robust DA problem, dubbed Distributionally Robust Domain
Adaptation (DRDA), to learn a robust regression model that
guarantees the out-of-sample performance in the target do-
main. Second, we construct an MMD ambiguity set and prove
that it contains the source and target domain distributions with
high probability, thereby ensuring the generalization of the
learned model. Third, we develop a solution methodology to
the formulated DRDA problem leveraging a DRO formulation
under an additional common assumption on the loss function.

2. BACKGROUND
2.1. Notation

Let X C RY be a topological input space, and P the set
of all probability measures defined on X. Let [;, be a loss
function associated with a decision function h, and d : P x
P — R a distance metric between probability measures. We
denote the pair (z,y) by (. We use P(.) = L ZT:l d¢; (1)
to represent the empirical distribution on the sample {(; }1]'?1:1,
where ¢ is the Dirac measure. Let 7 be a Reproducing Kernel
Hilbert Space (RKHS) associated with a characteristic kernel
k, ¢ : RV — H is the corresponding feature map, (.,.)3
is the inner product on #, and ||.||% is the induced norm.
We define up = EF [¢(2)] to be the embedding mean of the
probability measure P, where up € H and EF[.] denotes
the expectation with respect to measure P. The kernel & is
assumed to be characteristic, thus every probability measure
P € P is embedded as a unique element in H [27]. Hence,
the embedding mean pp is an injective map.

2.2. Domain Adaptation (DA)

In the unsupervised DA setting, we are given a labeled source
domain sample Dy = {z;,y;};, and an unlabeled target
domain sample D; = {z;}."*, drawn from two different dis-
tributions, where ng and n, are the source and target domain
sample sizes, respectively. In DA, one seeks to find a decision
function h that minimizes the target domain risk R; = EF¢[l;,].
Since the labeling information is unavailable for the target do-
main sample, DA transfers knowledge from the source domain
to improve the performance of the learned decision function
in the target domain.

Covariate shift and density ratio: Under the covariate shift
assumption, it is assumed that the conditional distributions
of the labels given the features are similar across domains,
but the marginals are different [11]. We define the density
ratio between the target and source domain distributions as
w(() = E:Eg; , where P is absolutely continuous with respect

to Pg. Also, let us denote by Py (.) = L3 w(G)oe, ()
the empirical weighted source domain distribution.

The Maximum Mean Discrepancy (MMD) distance, de-
noted by d,,,, between two probability distributions Q and P

is defined as

dn(Q,P) = sup EQ[f(z)] —EP[f(x)]

Il <1

= sup < f,uq — pp >n= lluq — pelln -
[flln <t

ey

Since the embedding mean is an injective map when the

kernel associated with the RKHS is characteristic, the MMD
metric can measure the distance between distributions by find-
ing the distance between their embedding means.
Kernel Mean Matching (KMM) [11] is concerned with find-
ing the weights w(x) > 0 such that the MMD distance be-
tween the weighted source and target probability measures is
minimized. Thus, the KMM problem is defined as follows

min [E[w(z)¢(x)] — EP*[¢()]]|»
subjectto  w(x) >0, EP=[w(z)] =1.

For a given source D, and target D; domain samples, one
can define the empirical KMM as follows:

N N 2

=Y wla)dle) - o> o)

n
S =1 i=1

ZS: w(w;) — ng

i=1

min
w(z;),1<i<ng

H
c>0.

3

s.t. w(x;) €0, B, < nge,

2.3. Distributionally Robust Optimization (DRO)

Let (q,...,(, be an i.i.d. sample drawn from a probability
distribution P € P. The Distributionally Robust Optimization
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(DRO) problem is defined as

J,, = inf sup EQ[1] 4)
h Qe

where Q = {Q|d(Q, P) < €} is the ambiguity set. The DRO
problem (4) finds the learning model A that minimizes the
worst-case risk. Specifically, it optimizes over all distributions
in the ambiguity set, i.e., that are within a distance e from
the empirical distribution P. A key challenge in the DRO
problem is to construct an ambiguity set that contains the true
population distribution with high confidence. Formally, if
we ensure that P € Q with high probability, then fixing any

model h, EP[I,] < supgcq ER[l5] with high probability, i.e.

it provides a high probability bound on the true population
risk.

3. DISTRIBUTIONALLY ROBUST DOMAIN
ADAPTATION (DRDA)

In this section, we present the problem setup, formulate the
DRDA problem, and establish our main theoretical result.

We are given two samples Dy and Dy in the source and
target domains, respectively, where the labels of D, are not
available. The samples are drawn from probability measures
P and Py, respectively. The goal of DRDA is to learn a
hypothesis A : & — R that simultaneously minimizes the
target domain risk R; = EPt[l;,], and generalizes well on any
unseen sample from the target domain distribution Py.

Towards this goal, we seek to solve the following DRO
problem

Jn, = inf sup EQ[l], )
h Qe
where the ambiguity set 2, := {Q|d(Q, P¢) < ¢} is centered
at the empirical target domain probability measure f’t(.) =
i >t 8¢, (.). The DRO formulation in (5) finds the decision
function h that minimizes the worst-case target domain risk.
In principle, if we ensure that Py € €, with high confidence,
then EP¢[l,] < supgeq, E?[lx] with high probability.
However, a key difficulty for establishing such guarantee
is that the labels for the given target domain sample D, are
not available. Therefore, we make use of the labeled source
domain sample Dy to learn a hypothesis h that achieves the
desired two-fold objective. Hence, we propose the following
DRO problem

Jp, =inf sup EQ[,] (6)
h Qe

where Qp = {Q|d(Q,Py) < e}, recalling that P is the
empirical weighted source domain probability. The introduced
set Q) can be viewed as a transferred version of a source
domain ambiguity set {25 (that is centered at the empirical
source domain distribution f’s). However, how do we set the
radius €, to ensure that Py € {2, with high confidence? We
answer this question by establishing the following result.

Theorem 1. Let k : X x X — R be a positive definite
kernel on the space X with ||¢p(z)||ly < VM ,Vx € X. Let
w(x) € [0,B], and 0 < § < 1. Then, with probability at least

1—09,
. | M 2

Theorem 1 establishes a high probability upper bound
on the distance between the empirical source and true target
domain probabilities and its proof is deferred to an extended
version of this work. By setting ¢,/ to the RHS of (7), we can
guarantee that Py € (), with probability at least 1 — 6, and in
turn that EP+[1,,] < Supqeq,, ER(l).

Given the primal robust domain adaptation problem in (6),
the value of jnf,/ depends on the density ratio w(z), since we
are optimizing over all distributions that lie in the ambiguity
set {2;. The main problem is to find the decision function
h corresponding to the worst-case distribution such that the
discrepancy between the source and target domain probability
measures is minimized. We propose to achieve this objective in
two different ways: (i) we can estimate w by solving the KMM
(2) then use (6) to estimate the decision function h; (ii) we can
optimize jointly over the decision function h and the density
ratio w, and since supqcq,, EQ[l,] < SUpQegq,, EQ[l,] +
d?,(Py,P;), we can instead solve

inf sup E[l,] + Bd>,(Py,Py), (8)
h,wQGQt,

where 5 > 0 is introduced to control the domain adaptation
component.

Optimizing jointly over & and w is desirable since the
parameters that control the learned density ratio and the deci-
sion function are not independent [28]. More specifically, the
source domain sample is common in both the estimation of the
weights w and for learning the decision function /. Hence, op-
timizing first over w (using KMM) then over h using the DRO
formulation in (6) would yield a sub-optimal solution. We re-
fer to the formulation in (8) as Distributionally Robust Domain
Adaptation (DRDA). The first term in the DRDA formulation
accounts for the generalization of the learned model on the tar-
get domain, while the second regularizing term is to minimize
the discrepancy between the two domain distributions.

4. PROPOSED DRDA FORMULATION

In this section, we present a DRO-based formulation to solve
the DRDA problem in (8) under the assumption that [ € H.
A similar assumption was made in [20] for the DRO problem.
Since pp is an injective map, we have that

sup EQ[l;] < sup
QeQ,

- <:uQ7 l>7'l
NQ-HNQ_NPH ||?-t_€t/ (9)

= EPvl]+ el
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The inequality in (9) is because not every element of the RKHS
is an embedding mean of some probability measure. Therefore,
we can rewrite the DRDA problem as

inf sup EQ [Ir) +Bd'?n
h,aw(z) Qe

< hglfz) EPY [In] + ev[|Ul2 + B3, (Py, Py) .

Since we do not have access to the true underlying source
and target domain distributions and only have samples from
both domains, we make use of the empirical MMD distance
dm(f’t/, Pf) In addition, the weights w(x;) are bounded
by a constant B per the assumption in Lemma 1. Also, the
weighted source domain probability must sum up to 1, i.e.,

(Pt/ ) Pt)

S w(z)dPg = 1, thus for the empirical one Z w(x;) = ns.

=1
We can readily formulate the final DRDA problem as

. 1 &
inf - ; w(ai)ln(2:) + e [In]l3 + B2, (Py, Py)
S.t. w(mz) S [O,B], Zw(;[;i) —ng| <nge, ¢>0.
=1
(10)

5. PROPOSED SOLUTION

In this section, we present our solution to the DRDA formula-
tion in (10). We consider the RKHS H,, induced by a Gaussian

_ lz—yl?

52 ) of bandwidth o, and as-

kernel k. (x,y) = exp (

sume a quadratic loss function I, = (h(z) — g(x))?, where
g(x) is a labeling function. We use ||.||, and (., .}, to denote
the norm and inner product of the corresponding RKHS #,,,
respectively. Therefore, we need to minimize the objective
function

EP [(h(z) - g(x))?] e || (h—9)2||o+Bd2, Py, Py). (11)

To bound the norm ||(h — g)?||,, we need the following lemma
from [20, Theorem 4.1].

Lemma 2 ([20]). Ifh,g € H,, that is, the RKHS corresponds
to the Gaussian kernel, then ||hg||% < Al gl

Since fg € 7—[%, from the triangular inequality, it fol-
)2 2| . 2y .
tows that [[(h — 9)%ls < 122, + ll9%] = + 2l llglo.

Therefore, the objective function in (11) can be bounded by

EP [(h(x) — g(2))?] + e (112 = + |19 =

L (12)
+2|[hllllglle) + Bdy, Py, Py)

In addition, d2, (P, P;) can be written as

N 1
dfn(Ptl,Pt) = 727.UK§UJ -

S

w'K$'1,, + const,

13)

niNg

and the first term in (12) as

EPY [(h(x) — 1)) = — (Ka — y) "W(KSa — ) |

(14)
where the matrix K? has the elements k. (x;,2;),1,] =
1,...,ng, the matrix K%' has the elements k,(z;,2;),i =
1,...,ns,7 = 1,...,n,, W = diag(w(zy),...,w(x,,))
and y = (y1,...,Yn.), Where diag(.) returns a diagonal ma-
trix of its vector argument. Since h € H,,, then by the represen-
ter Theorem [29], we have the expansion h = Z?;l a;d(x;).
Using the bound in (12), the DRDA problem in (10) can be
expressed as

inf (Kéa — )T W(K:a — y,) + )\Tr((DaK“'%)"‘)
a,w 2

1
+2a Ko + B(—wKyw — —wTK?'1,,)
n? NN 15)
s.t. w(x;) € [0, B] (
Zw(ml) —ng| <nse, c¢>0
i=1
where a = (aq,...,a,. )T, Dy = diag(ay,...,a,,) and

Tr(.) is the trace operator.

6. GENERALIZATION BOUND

In this section, we derive a generalization bound on the true
(population) target domain risk R, = EP¢[l;] = EP*[(h(x) —

g(2))?] in terms of the empirical source domain risk R; =
EPs[(h(x) — g(x))?]. This bound is in the same spirit of
[20, Theorem 4.3], which was derived for the original DRO
problem (without domain adaptation).

Theorem 3. Let the labeling function g satisfy ||gll, < 0.

Therefore, for any § > 0, with probability 1 — 9, the following
holds for all functions h satisfying that ||h||, < 7:

Ry gBRS+4n2B,/% <1+\/210g(25> .
N

We note that the RHS of (16) is inversely proportional to
the source and target domain samples sizes ng, and directly
proportional to B. Therefore, for large sample size (i.e., ns —
o0), we have that R; < BRS, i.e., depends on B, which is
indicative of the degree of discrepancy between both domains.

(16)

Table 1: Different least-square methods (W in W-RLS and W-DRO
is estimated using the KMM formulation in (2)).

Method Formulation
Regularized Least Squares (RLS) min, [K3a — y[3 + AaTKa
Weighted RLS (W-RLS) ming (Kio — y)"W(Kia — y) + AT Ko
Weighted DRO (W-DRO) )
DRDA (15)
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7. EXPERIMENTAL RESULTS

In this section, we verify the performance of the proposed
approach. First, we generate data following the regression
model y = g(x)+n, where g(x) = k,(z,1) — ko (2, —1), nis
drawn from a normal distribution with zero mean and variance
0.12, and the source and target domain samples follow the
distributions N(1,0.5?) and (-1, 0.62), respectively.

In our first experiment, we verify the robustness of our
learned model to perturbations. We sample 50 source and
target samples of size 100. For each instance, we learn a
regression model and test it on an unseen target domain sample
X, of size 500 for different noise levels. A depiction of these
samples along with the true model are shown in Figure 1a.

We perturb X; with additive noise A ~ N(0, p?) with dif-
ferent noise levels p , i.e., Xt = Xy + A. We compute the test
loss (risk) R, for X, for each noise level p € [0, 1] and report
their average loss R, and the corresponding 95% interval. We
compare the performance of DRDA to different least-square
regression approaches (see Table 1). In the approach that we
call weighted-DRO (W-DRO), we first solve for the weights
w using (2), then optimize over the decision function h in (6),
in contrast to the joint optimization in DRDA. The hyperpa-
rameters 3 and A are set to 10 and 1.2, respectively.

Figure 1b demonstrates the test loss of the DRDA learned
model for various noise levels in comparison to the least-square
models. Our DRDA model achieves the lowest average loss
for all noise levels due to the built-in robust domain adaptation
capability along with the joint optimization over the weights
and decision function in (8). To highlight the importance of
the domain adaptation inherent in our framework, we also
tested the standard DRO scheme, which only uses the source
sample for training the model. We found DRO without domain
adaptation to be considerably less robust than DRDA in this
setting. For example, at p = 0.8, the DRO model yields an
average test loss of 1.540 versus 0.556 for the DRDA model.
Moreover, W-RLS and W-DRO, which first learn the weights
then optimize over the model, underperform the DRDA model,
underscoring the gain of jointly optimizing over w and h.

15 1.4

——RLS ‘
2 —— WRLS

’ ——DRDA
N — WDRO 4
0o o1
N

« Source domain
o Traget domain 0.

(R) _

Test loss

e

--—True model

-3 -1 1 3 0 02 04 06 _ 08 1
X Noise Level(p)

(a) (b)

Fig. 1: (a) True model (dashed line), source (blue) and target (red)
domain samples; (b) Test loss of different regression models as func-
tion of the noise level p.

For the second experiment, we demonstrate the effect of

Table 2: Population Risk for different sample sizes.

Sample size 50 100 | 150 | 200 | 250 | 300
Population risk | 0.54 | 042 | 0.35 | 0.33 | 0.27 | 0.22

sample size on the target domain population risk. We sample
source and target domain samples of different sizes. For each
size, we use the source and target domain samples to learn
the DRDA model. Table 2 shows the target domain risk as a
function of the sample size. As expected, the risk decreases
with the sample size, since training with a larger sample size
(source and target) results in a model of higher accuracy.

In our third experiment, we evaluate the performance of
the proposed DRDA when the perturbations are added to the
response. Specifically, Y; is perturbed with additive noise A,
ie., Yt = Y; + A. Performance is evaluated on both synthetic
and real-world data (‘puma8nh’ [11]) for which a sampling
bias scheme is used to create the source and target datasets. As
shown in Fig. 2, our approach outperforms other regression
approaches as it achieves the lowest average loss at all noise
levels.

o

——RLS 1

RLS
WRLS
———DRDA
——— WDRO

=y
3

()

Test Loss
Test Loss (R;)

0 02 04 06 08 1 0
Noise Level (p)

(a) (b)

Fig. 2: Test loss for (a) synthetic data and (b) ’puma8nh’ dataset of
different regression models as function of the noise level p.

1 2 3 4
Noise Level (p)

8. CONCLUSION

Existing approaches to domain adaptation often fall short of
yielding a decision model that is robust to perturbations and
generalizes well to unseen target domain data. To address this
limitation, we formulated a robust domain adaptation problem,
dubbed Distributionally Robust Domain Adaptation (DRDA),
that leverages a DRO framework. Our formulation simultane-
ously accounts for domain adaptation and the uncertainty in
the target domain sample. Since the target domain labels are
unavailable, we re-weight the source domain sample to mini-
mize the discrepancy between the two domains. Also, we con-
structed an uncertainty set, centered at the empirical weighted
source domain distribution, and prove that it contains the true
target domain distribution with high probability. In turn, the
worst-case risk gives a high probability upper bound on the
true population risk, thereby providing a guarantee on the gen-
eralization of the learned model. Our experimental results
demonstrate that the learned regression model outperforms
existing least-square approaches both in terms of robustness
to noise and generalization power.
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