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ABSTRACT

Conventional machine learning models often exhibit poor per-
formance when tested on data that comes from a different
probability distribution than that of the training data. This
phenomenon is known as ‘domain shift’. To overcome this
problem, domain adaptation (DA) methods have been pro-
posed to reduce the discrepancy between the two domains
and improve the performance on the target domain. However,
most of the existing DA techniques for classification have fo-
cused on One Level Classifiers (OLCs), which are not suit-
able for data that follows a hierarchical classification struc-
ture. In this paper, we propose a discriminative DA approach
for coarse-to-fine (C2F) classifiers, which provide both coarse
and fine labels. Our approach learns an invariant feature rep-
resentation of the data across domains for both the coarse and
finer levels. Our experimental results on well-known digit
datasets demonstrate that the proposed algorithm outperforms
the base C2F model in terms of the classification accuracy of
the target domain data.

Index Terms— Unsupervised Domain Adaptation, Coarse-
to-Fine Classification, Discriminative Models, Representa-
tion Learning, Neural Networks

1. INTRODUCTION

Conventional machine learning models rely on the assump-
tion that the training and test data follow the same distribu-
tion, which should result in good performance on new data.
However, in practice, these methods can perform poorly due
to distributional mismatches, also known as domain shift, be-
tween the training and test data. The discrepancy between the
two domains can prevent the trained models from adapting to
new data, leading to a decline in performance. To overcome
this issue, adaptive methods that can adjust to the target do-
main are needed.
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Domain adaptation (DA) tackles the issue of distribution
mismatch between the training and test data, by adjusting a
model trained on a specific source domain to be able to per-
form well on a different target domain with a different dis-
tribution [1]. DA has been shown to significantly improve
learning performance by reducing the discrepancy between
related but distinct domains, leading to its adoption in vari-
ous fields [2—4]. DA methods can be classified into two cate-
gories: unsupervised domain adaptation (UDA) [5] and semi-
supervised domain adaptation [6], depending on whether the
label information is available for the target domain. UDA
methods are used when no labels are available in the target
domain, whereas semi-supervised methods are applied when
labels are only partially available.

The literature proposes various approaches to DA. One
of the main approaches is the instance-based method, which
involves learning distinct weights for ranking training exam-
ples in a source domain. When utilized in a target domain,
this method can enhance learning performance [7-9]. How-
ever, accurately estimating the weights becomes increasingly
challenging as the data dimensionality increases [10]. Alter-
natively, feature-based approaches attempt to learn a shared
feature structure across different domains, enabling knowl-
edge transfer between them [11-13]. This can be achieved
by finding a feature transformation that minimizes domain
differences while preserving statistical properties [11, 14], or
by using adversarial DA, as in the two-player game of Gen-
erative Adversarial Networks (GANSs) [15]. With adversar-
ial DA, a domain discriminator is trained to reduce classi-
fication errors between the source and target domains, while
deep neural networks learn transferable domain-invariant rep-
resentations that cannot be differentiated by the domain dis-
criminator [16-18]. The UDA problem has two main dis-
criminative approaches: the Domain-Adversarial Neural Net-
work (DANN) [17] and the Adversarial Discriminative Do-
main Adaptation (ADDA) [16]. Unlike ADDA, the DANN
approach requires an additional network to model a generator
function. However, studies have shown that ADDA outper-
forms all other methods, including DANN, in terms of classi-
fication accuracy and run-time.
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Adversarial DA has been widely used for One-Level Clas-
sifiers (OLCs), but to the best of our knowledge, no existing
studies have investigated DA in the context of Coarse-to-Fine
(C2F) or Hierarchical Classifiers (HCs) [19]. A HC consists
of multiple classification levels, where the coarse level dis-
tinguishes between major categories or classes, and the fine
level refines the classification to more specific subcategories
or subclasses. HCs have applications in various fields such
as speech classification [20,21], computer vision [22,23] and
hierarchical fault diagnosis systems [24]. Therefore, it is cru-
cial to develop effective DA methods for HCs, which is the
primary focus of this work. Here, we propose an adversarial
DA approach for C2F classifiers, however, our approach can
be extended to other HC models. We aim to learn an invariant
feature representation of the data across the two domains for
both the coarse and finer levels. Our approach improves the
classification performance on the target domain, as demon-
strated by a series of experiments on well-known benchmark
datasets (e.g., MNIST and USPS) with different groupings.

2. BACKGROUND: DISCRIMINATIVE DOMAIN
ADAPTATION FOR ONE LEVEL CLASSIFIERS

Consider a labeled source dataset (X5,Y), where X is the
set of data points and Y is the corresponding set of true labels.
Each data point 7, € X, C RY has alabel y € [K], where K
is the number of classes and [K] := {1, ..., K'}. In addition
to the source dataset, (X,Y), we assume that we have an
unlabeled target dataset X; with entries z; € R".

An OLC consists of two stages: a feature extraction stage
and a classification stage. The feature extraction stage is de-
fined by a function My, : RY — RF, parameterized by 0,
that extracts F' < N features. The classification stage uses
a function Cy : RF — AK, parameterized by ¢, to predict
the class label of a given data point. Here, A% denotes the
probability simplex of dimension K. The predicted label is
obtained by selecting the class with the highest probability,
given by

p(x; 05, ¢) = argmax Cy (Mp, (x)), , 6]
ke[K]

where C, (Mp, (2)), is the k™ entry of the discriminant vec-
tor Cy(Mp, ()) € A¥. The goal of UDA in OLCs is to
find feature extraction and classification functions that enable
accurate labeling of the targer dataset.

The ADDA method proposed in [16] is one of the most
efficient UDA techniques for OLCs. It comprises two stages.
In the first stage, known as the pre-training stage, a feature ex-
tractor function My, and a classification model Cy, are trained
on the source dataset using supervised learning, i.e., the con-
ventional deep learning training method. The optimization
problem to be solved with respect to 65 and ¢ is formulated
using the cross-entropy loss and the one-hot encoding repre-

sentation for the true label as follows:

minE(,, p)~(x,v) — 108 (Co (Mo, (2),) - @)

In the second stage, referred to as the adversarial adapta-
tion stage, domain adaptation of the source and target fea-
tures takes place. For this stage, two additional functions
are introduced: the target feature extraction function My, :
RN — RF parameterized by 6, and the discriminator func-
tion Dy : R — R parameterized by ¢. These functions
are learned using the target dataset X, the source data points
set X (without the label set Y), and the learned source data
feature extraction function My, from the first ADDA stage,
where 6, is the solution of (2). The discriminator function
is a binary classifier, and its learning takes place by solving
the two unconstrained optimization problems (3) and (4) si-
multaneously using cross-entropy losses. The solution can be
obtained using alternating minimization.

min — E;, ~x, log (Dw (M, (ﬂcs)))
3)
- EItNXt IOg (1 - D"/’ (Met (lft)))

min —E,. ., log Dy (Mo, (@) ) 4)

In summary, the standard training process yields Cy and
My, from the source dataset (X, Y") through conventional
training, as described by the function in (5).

Cy, My, = StandardTraining(X,,Y") . (5)

Then, the adversarial adaptation process leverages X, X,
and My, from (5) to obtain Mp,, as summarized in (6).

My, = AdversarialAdaptation(X,, X¢, My, ). (6)

At inference time, the trained target feature extraction func-
tion My, from (6) and the trained classification function from
(5) are used to predict the label of any 2 € R”, given by

p(x; 0, ¢) = argmax Cy (Met (x))k . 7
ke[K]

3. DISCRIMINATIVE DOMAIN ADAPTATION FOR
C2F CLASSIFIERS

In this section, we describe our problem setup and present a
discriminative model for UDA that aims to predict both coarse
and fine labels of a HC in the target domain.

3.1. Source and Target Data for UDA in C2F Setting

Assume that we have a labeled source dataset D, =
{(z1,y1,21), -+, (Tn,Yn, 2n) }» Where y; € Y represents the
true coarse label of data point z; € X, and Y is a set of
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Finer Labels under “Pets”

Finer Labels under “Vehicles’

Fig. 1: An example of a tree of coarse-to-fine labels, where L = 2,
L1 =2,and Ly = 3. The sets Z1 = {1,2} and Z> = {1, 2, 3} rep-
resent the possible fine labels for the two coarse labels. The coarse
and fine labels are shown in blue font. For instance, if we have two
data points (z1,1, 1) and (22,2, 1) € Ds, where the coarse and fine
label pairs are given by (1,1) and (2, 1), respectively, they corre-
spond to (‘Vehicles’, Car’) and (‘Pets’, ‘Dog’), respectively.

coarse labels with L unique values. For each coarse label
y € Y, there exists a set of corresponding fine labels denoted
as Z,. Thus, each data point in X has a fine label z; € Z,
according to a predefined tree structure that maps coarse-to-
fine classes. See Figure 1 and its caption for an example of
a tree of coarse-to-fine classes. We use L, to represent the
number of fine labels for a given coarse label y. In addition
to the source data, we have an unlabeled target data X;. The
goal is to develop a method for UDA to obtain the coarse and
fine labels of the target data.

3.2. C2F Classification Model

Next, we present our two-stage prediction model that consists
of one coarse and L fine classifiers. Let My, : RV — RF,
parameterized by 6, ., be the feature extraction function, and
Cy, : RE — AL, parameterized by ¢.., be its corresponding
classification function, which classifies the input into one of L
coarse classes. For each i € [L], we define functions My, , :
RN — RF, parameterized by 0, f,, and Cy, : R — Al:,
parameterized by ¢y, , to represent the feature extraction and
classification stages of the i finer classifier, respectively. The
predicted coarse label is then obtained as

’l"(w; gs,ca ¢c) = argiax C¢C (MHS_C (1'))1
i€[L] '

) ®)

Based on the coarse prediction in (8), and the finer classifica-
tion model, the finer level prediction is found as

h(l’, T3 QS,fm ¢f1) = argI[na]JX C‘i’fi (Mes,fi (Sﬂ))J . (9)
JE[L;

A block diagram of the C2F model is given in Figure 2.

3.3. Proposed Algorithm

In this section, we describe the different stages of the pro-
posed algorithm for UDA in the C2F setting.

3.3.1. Stage 1: Source feature extraction and classification

In this stage, we use the data points and the coarse labels of
the source data, i.e., X and Y, to learn the feature extraction
function My, _, and the classification function Cy_ as

s,c?

Cs., My, . = StandardTraining(X,,Y") . (10)

In order to obtain the extraction and classification functions
of the finer level classifiers, first, the true coarse labels are
used to split the source dataset (X,,Y") into L disjoint sub-
sets. Specifically, for every ¢ € [L], we obtain

X ={z; € X, :y; =i}, (11)

such that X, = Uie[L] Xs(i).
We also denote by Z() the fine labels of the data points

in X §“. We can readily use standard training on the fine level
classification models to obtain, for each i € [L],

Co;» My, , = Standard Training(X (¥, 20y . (12)

3.3.2. Stage 2: Domain-adaptive feature extraction

Having obtained the coarse and fine source feature extraction
and classification functions, in this step, we leverage an adver-
sarial adaptation function for the C2F prediction model. We
first use the adversarial adaptation function to obtain the pa-
rameters of the coarse target feature extraction function. This
is accomplished by

My, . = AdversarialAdaptation(X,, Xy, Mg, ). (13)

t,

Using (13), we can obtain the predicted coarse labels of the
target data, which is the first set of labels we need for the
UDA problem in the C2F model we consider in this paper.
Next, we use the predicted coarse labels of the target data to
split X into L disjoint subsets in a similar fashion as was
done for the source data. Hence, for each i € [L], we obtain

Xt(i) ={reX;: argrﬁniaxaﬁc (Metyc(g;))j =i}, (14
jElL

such that X = ;¢ Xt(l).

After splitting the data, for each i € [L], we utilize the
adversarial adaptation method to obtain the feature extraction
function of the target data as

M, , = Adversarial Adaptation(X (), Xt(i)7 Mo, , ).
(15)
The complete procedure of our proposed method is outlined
in Algorithm 1.

3.4. Inference Time

At inference time, the UDA-trained C2F model predicts
coarse and fine labels using (16), which depends on the fea-
ture extraction functions obtained from Algorithm 1. This is
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Coarse Classification Model

Fine Classification Model

I
[ | I
: Coarse | My, (%), Chree Co. (Mgfff(x)) : _: Fine |Mo,,, () Fine Cop, (Mf’s,fr (x))l
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| Extraction| e c . E -0, c, )|Extractionf ¢ . E =
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: : Label :

Fig. 2: A block diagram of the two-stage C2F classification model.

Table 1: Performance results for the C2F base and Algorithm 1 models for the USPS adaptation to MNIST (USPS — MNIST).

H C2F Model \ C2F Scenario \ CA. (%) Ti (%) Tz (%) \ CAy, (%) CAy, (%) \ CCA (%) H
Base {0,2,4,6,8}.{1,3,5,7,9} | 73.08 99.8 472 84.62 70.33 58.44
Algorithm 1 | {0,2,4,6,8}.,{1,3,5,7,9} | 94.18 99 89.5 96.27 97.82 91.37
Base {0,1,2,3,4},{5,6,7,8,9} | 76.33 922 595 79.37 78.49 60.30
Algorithm 1 | {0,1,2,3,4},{5,6,7,8,9} | 87.64 992 754 99.11 63.84 73.92

Algorithm 1 UDA in C2F Algorithm

Input: Source labeled dataset (X, Y, Z), Target dataset X¢, num-

ber of coarse classes L.

Output: Trained C2F model that consists of the coarse functions

Cy. and My, .., and the finer functions Cy, and My, , ,Vi € [L].
1: Obtain Cy_ and My, , using X and Y using (10)

2: Split the source dataset as in (11)

3: For all fine classifiers i € [L]

4:  Obtain Cy, and My, , using X" and Z@ using (12)
5: Obtain My, . using X, X+, and My, . using (13)

6: Split the target dataset as in (14)

7: For all fine classifiers ¢ € [L]

8:  Obtain My, , using X{”, X, and My, , using (15)

2 fi

in contrast to the base model where no UDA approach is used,
and coarse and fine label predictions are made using equations
(8) and (9).
r(z; 04, 0c) = argmax Cy_ (Mgt_c(m))i ,
i€[L] !

h(x7 T3 etafr’ ¢fr) = argfna]'x C(z)fr (Mef«yfr (:L.))] :
JE[Lr

(16)

4. EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness of our proposed
algorithm in various C2F classification settings through a se-
ries of experiments.

Experimental Setting: The MNIST and USPS datasets [25]
are used for evaluation, where each example is a 28 x 28
grayscale matrix of values in [0, 1], representing a hand-
written digit from ‘0’ to ‘9’ with corresponding class labels.

We investigate two domain adaptation scenarios: MNIST—
USPS (source dataset is USPS and target dataset is MNIST)
and USPS— MNIST (source dataset is MNIST and target
dataset is USPS).

Moreover, we consider two hierarchical classification set-
tings in our experiments. In the first setting (C2F sce-
nario), we divide the class labels into two sets: even num-
bers {0,2,4,6,8} and odd numbers {1,3,5,7,9}, referred to as
the even-odd case. In the second setting, we split the labels
around 5, creating two sets: {0,1,2,3,4} and {5,6,7,8,9}.

To perform feature extraction, classification, and discrim-
ination functions, we employ standard CNN models. Specifi-
cally, we use the modified LeNet architecture available in the
Caffe source code [26] for each classifier. In addition, each
domain discriminator comprises three fully connected layers,
with the first two layers containing 500 hidden units, and the
final layer producing the discriminator output. ReLU is used
as the activation function in each of the 500-unit layers. More
details and the code for these networks are available online!.
Baseline and Evaluation Metric: The proposed algorithm
is compared with the base C2F classifier, which serves as
the baseline method. Evaluation metrics are based on mul-
tiple measures of classification accuracy (CA). We define
T;,Vi € [L] as the percentage of correctly classified samples
by the coarse classifier as label 7. This means that 7} repre-
sents the accuracy of class i. The coarse classifier’s overall
CA, denoted by CA,, is calculated as CA, = Zie[ I o; Ty
where «a; represents the ratio of the number of samples of
class ¢ to the total number of samples. For the overall CA
of the finer classifier ¢, we use CAy,. To measure the over-
all CA of the C2F model, we use the combined classifica-

Imttps://github.com/ialkhouri/
DiscriminativeUDAinC2Fs
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Table 2: Performance results for the C2F base and Algorithm 1 models for the MNIST adaptation to USPS (MNIST — USPS).

H C2F Model ‘ C2F Scenario ‘ CA. (%) Ti (%) T (%) ‘ CAy, (%) CAy, (%) ‘ CCA (%) H
Base {0,2,4,6,8},{1,3,5,7,9} 92.33 93.4 91.00 84.56 74.32 73.81
Algorithm 1 | {0,2,4,6,8}.{1,3,5,7,9} 94.22 92.5 96.3 86.55 91.14 83.57
Base {0,1,2,3,4},{5,6,7,8,9} 89.64 93.3 84.3 92.38 76.98 77.48
Algorithm 1 | {0,1,2,3,4},{5,6,7,8,9} 89.49 84.3 97 83.01 90.94 77.43
Source domain Target domain (true class) Target domain (base model) Target domain (ours)
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Fig. 3: Visualisation of the source (USPS) and target (MNIST) domains. The first row represents the coarse level classes (even =‘0’, odd

=°1"), while the second one represents the finer classes.

tion accuracy (CCA), which is defined as the percentage of
samples correctly classified by both the coarse and fine clas-
sifiers. Based on the notation introduced, the CCA is calcu-
lated as CCA = Zie[ ] @i T; CAy,. The predicted labels
are obtained using (8) and (9) for the base model and (16)
for the Algorithm 1 C2F model. Specifically, the base model
was trained using solely the available source domain dataset,
where each classifier was trained independently. These classi-
fiers are utilized at inference time to predict the target domain
labels.

Results: We present the classification performance results of
the target data of the C2F model obtained from our proposed
algorithm compared to the base C2F model, which are given
in Tables 1 and 2.

We observe that the model trained by Algorithm1 outper-
forms the base model in terms of CA performance for most
of considered C2F scenarios (listed in the last column of Ta-
ble 1 and 2) and adaptation directions (USPS — MNIST in
Table 1 and MNIST — USPS in Table 2). This improve-
ment is demonstrated not only by the values of the combined
CA (CCA), but also by most of the overall CA values of the
coarse and finer classifiers individually. For example, in the
first two rows of Table 1, the CCA for the base model is only
58.44%. However, when using our algorithm, the CCA of
the C2F model becomes 91.37%. Furthermore, we observe
that the overall coarse CA (CA.) increases from 73.08% to
94.18%. This improvement is also observed for the overall
CA of the finer 1 (finer 2) classifier, where CAy, (CAy,) in-
creases from 84.62% (70.33%) to 96.27% (97.82%).

Although Algorithm 1 consistently produces a trained
model with an overall CCA that is higher than or on par with

the base model, we observe that the even-odd C2F setting
shows a larger performance improvement compared to the
two-sided case. This means that the effectiveness of our algo-
rithm depends on the hierarchy of the C2F classification and
the source and target domains. In Figure 3, we present a visu-
alization of the source and target domain datasets (for USPS
— MNIST, even and odd splitting) using t-SNE, to visualize
high-dimensional data. As observed, our methods outperform
the base model for both coarse and finer classification.

5. CONCLUSION & FUTURE WORK

In this paper, we have developed a discriminative and adver-
sarial approach to address the unsupervised domain adapta-
tion problem in coarse-to-fine (C2F) classification models.
Our proposed algorithm leverages the standard training of the
source dataset and employs an adversarial adaptation proce-
dure between the source and target datasets using feature ex-
traction and discriminator functions to achieve higher overall
classification accuracy on the target data. Through our ex-
perimental results, we have demonstrated the efficacy of our
proposed algorithm in significantly improving the overall and
individual performance of the C2F model in most of the sce-
narios considered, including both the coarse and finer levels.

In the future, we plan to extend our work to validate the
proposed algorithm on larger datasets, non-image classifica-
tion tasks, and multi-stage coarse-to-fine classification set-
tings. Additionally, we aim to explore the potential of incor-
porating other techniques such as meta-learning and model
compression to further enhance the performance of the C2F
model in unsupervised domain adaptation scenarios.
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