
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

8QVXSHUYLVHG�WUDLQLQJ�GDWDVHW
FXUDWLRQ�IRU�GHHS�QHXUDO�QHW�5)
VLJQDO�FODVVLILFDWLRQ

*HRUJH�6NOLYDQLWLV��-RVH�6DQFKH]�9LORULD��.RQVWDQWLQRV
7RXQWDV��'LPLWULV�3DGRV��(OL]DEHWK�6HUHQD�%HQWOH\��HW�DO�

*HRUJH�6NOLYDQLWLV��-RVH�$��6DQFKH]�9LORULD��.RQVWDQWLQRV�7RXQWDV��'LPLWULV�$�
3DGRV��(OL]DEHWK�6HUHQD�%HQWOH\��0LFKDHO�-��0HGOH\���8QVXSHUYLVHG�WUDLQLQJ
GDWDVHW�FXUDWLRQ�IRU�GHHS�QHXUDO�QHW�5)�VLJQDO�FODVVLILFDWLRQ���3URF��63,(
�������%LJ�'DWD�9��/HDUQLQJ��$QDO\WLFV��DQG�$SSOLFDWLRQV
��������&�����-XQH��������GRL��������������������

(YHQW��63,(�'HIHQVH���&RPPHUFLDO�6HQVLQJ��������2UODQGR��)ORULGD��8QLWHG
6WDWHV

'RZQORDGHG�)URP��KWWSV���ZZZ�VSLHGLJLWDOOLEUDU\�RUJ�FRQIHUHQFH�SURFHHGLQJV�RI�VSLH�RQ����-DQ�������7HUPV�RI�8VH��KWWSV���ZZZ�VSLHGLJLWDOOLEUDU\�RUJ�WHUPV�RI�XVH



Unsupervised Training Dataset Curation for
Deep-Neural-Net RF Signal Classification

George Sklivanitisa, Jose A. Sanchez Viloriaa, Konstantinos Tountasa, Dimitris A. Padosa,
Elizabeth Serena Bentleyb, and Michael J. Medleyb

aCenter for Connected Autonomy and AI, Florida Atlantic University, Boca Raton, FL, USA
bAir Force Research Laboratory, Rome, NY, USA

ABSTRACT

We consider the problem of unsupervised (blind) evaluation and assessment of the quality of data used for deep
neural network (DNN) RF signal classification. When neural networks train on noisy or mislabeled data, they
often (over-)fit to the noise measurements and faulty labels, which leads to significant performance degradation.
Also, DNNs are vulnerable to adversarial attacks, which can considerably reduce their classification performance,
with extremely small perturbations of their input. In this paper, we consider a new method based on L1-norm
principal-component analysis (PCA) to improve the quality of labeled wireless data sets that are used for training
a convolutional neural network (CNN), and a deep residual network (ResNet) for RF signal classification. Exper-
iments with data generated for eleven classes of digital and analog modulated signals show that L1-norm tensor
conformity curation of the data identifies and removes from the training data set inappropriate class instances
that appear due to mislabeling and universal black-box adversarial attacks and drastically improves/restores the
classification accuracy of the identified deep neural network architectures.

Keywords: Modulation classification, AI/ML, data curation, tensor decomposition

1. INTRODUCTION

Rapid radio spectrum characterization in congested (and sometimes contested) environments plays an important
role toward autonomous spectrum management and enforcement of policy/regulations for future spectrum shar-
ing applications. In parallel, high-quality spectrum analytics (at either the waveform/modulation or the network
protocol or the device level) o↵ers an opportunity to recognize unlicensed spectrum/interfering users, malfunc-
tioning equipment and take action. Existing approaches require expensive, high-maintenance expert systems
that rely on prior knowledge of signal properties, features and decision statistics and focus on energy detection,
localization and classification of spectrum activity under simplified hardware, propagation and radio environ-
ment models. Additionally, characterization of spectrum activity and of the corresponding radio devices requires
tuning to the band and signal of interest to perform comparisons with existing baseline signal databases, thus
incurring significant computational power and implementation/deployment cost before taking further action.

Over the past few years, large public image repositories and emerging high-performance graphics processing
units (GPUs) have accelerated the adoption of deep neural networks (DNNs) as means to carry out visual
object detection and image classification. However, the application of DNNs to raw physical-layer in-phase
(I)/quadrature (Q) samples for radio-frequency (RF) signal classification1 and device-level fingerprinting2 has
yet to be conclusively demonstrated. Deep learning relies on back-propagation with stochastic gradient descent
to optimize large parametric neural network models. However, when neural networks train on noisy or mislabeled
data, they often (over-)fit to the noise measurements and faulty labels, which leads to significant performance
degradation. Also, it has been shown that DNNs are highly vulnerable to adversarial data attacks, which raises
major security and robustness concerns. Adversarial data are malicious inputs that are obtained by slightly
perturbing an original input, in such a way that the deep learning algorithm misclassifies them. The adversarial
attacks can be divided into white-box and black-box attacks, based on the amount of knowledge that the
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adversary has about the model. In white-box attacks, the adversary has the full knowledge of the classifier, while
in black-box attacks the adversary does not have any knowledge (or has limited knowledge) of the classifier. In
this paper, we consider a new method based on L1-norm principal-component analysis (PCA) to improve the
quality of labeled wireless data sets that are used for training a convolutional neural network (CNN),3 and a deep
residual network (ResNet)1 - that typically lead to classification accuracy values around 90% for high-signal-to-
noise ratio (NSR) RF signals. We test experimentally the classification accuracy of the CNN and ResNet DNNs
using synthetically generated IQ data that are publicly available in the GNU radio machine learning (ML)
dataset.4 The dataset includes eleven (11) classes of digital and analog modulated signals (BPSK, QPSK, 8PSK,
4PAM, 16QAM, 64QAM, GFSK, CPFSK, AM-SSB, AM-DSB andWBFM signals). Random processes for carrier
frequency o↵set, sample-rate o↵set, additive white Gaussian noise, multi-path and fading introduce di↵erent
hardware and channel impairments during data generation. Examples of labeled signals per class are organized
in a three way tensor. The conformity of the tensor data per class is evaluated through iterative projections
on robust, high confidence data characterizations per class that are returned by L1-norm tensor subspaces.5–8

Non-conforming tensor slabs are likely to be contaminated by excessive noise or mislabeled examples due to
mistakes made during data annotation or due to black-box adversarial attacks and are automatically removed
from the dataset.

2. ACE: AUTONOMOUS CONFORMITY EVALUATION

We consider organizing IQ data from each class of signals c 2 {1, 2, . . . , 11} in a 3-mode tensor X 2 RI1⇥I2⇥I3 ,
where I1 denotes the signal duration in samples, I2 = 2 includes the IQ components of each signal, and I3 is
the number of signal examples per class. Autonomous conformity evaluation (ACE) converts the original tensor
data X , to a new tensor of the exact same dimensions W , where each new tensor entry measures the conformity
of that entry with respect to all other data points. The conformity metric takes values from the [0, 1] set of
real numbers, with conformity values close to 0 indicating “misbehaving” data points, and values close to 0
corresponding to nominal data points. This is achieved, by utilizing iteratively refined L1-norm (absolute-error)
data subspaces.5,6, 8 Detection of non-conforming data entries enables the identification of contaminated tensor
data slabs.

With respect to the i-th data tensor, i 2 1, 2, . . . , 11 and for its n-th mode unfolding for all n 2 {1, 2, 3}, we
create data matrices X(1) 2 RI1⇥I2I3 , X(2) 2 RI2⇥I1I3 , X(3) 2 RI3⇥I1I2 and we calculate the r1, r2, r3 L1-norm

principal components Q(0)
1 2 RI1⇥r1 , Q(0)

2 2 RI2⇥r2 , Q(0)
3 2 RI3⇥r3 by solving the following problems5,6, 9
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The resulting bases emphasize the subspaces spanned by the nominal (uncorrupted) entries of the original tensor
X . Tensor entries that are contaminated with anomalous data are not spanned by the resulting bases. Data
conformity for the 1-st mode of the tensor is calculated by projecting all columns of
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Similarly, data conformity for the 2-nd mode of the tensor is calculated as
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and conformity for the 3-rd mode of the tensor is calulcated as
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the conformity values to a tensor form as follows
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where 1I1⇥I2I3 , 1I2⇥I1I3 , 1I3⇥I1I2 stand for all-ones matrices of dimension I1 ⇥ I2I3, I2 ⇥ I1I3, and I3 ⇥ I1I2,
respectively, and the tensorization(·) operation converts the unfolded matrix to the original three-mode tensor

form (reverting the unfolding process). TensorW(1)
1 contains the conformity values corresponding to each column

of the original tensor X . We repeat the above process for the rest of the modes of the original data tensor, and

calculate the conformity tensors W(1)
2 and W(1)

3 . We calculate the final individual entry conformity tensor

W(1) by combining the above calculated tensors in an additive weighting fashion (according to assumed relative
“importance”) and max-min normalization so that each element is in the [0, 1] range
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where the weighting parameters ↵1,↵2,↵3 2 R+,
P3

n=1 ↵n = 1 measure the importance of the n-th tensor mode
min(·) returns the minimum element of its tensor argument, and max(·) returns the maximum element. The
normalization in (10) leads to value 0 for the least conforming elements and value 1 for the most conforming
ones. The final conformity tensor W(1) enables element-wise conformity of the original tensor data.

Next, the original tensor dataset is globally weighted through the conformity tensor W(1) by element-by-
element multiplication of X with W(1). The refined L1-norm tensor bases are calculated by means of L1-HOOI9

on X (1) = X �W(1), where � is the element-wise or Hadamard product. Conformity tensors W(1),W(2), . . . ,
are iteratively generated until numerical convergence to W is observed i.e.,

W = W(l), such that kW(l) �W(l�1)kF < ✏, (11)

for some small ✏ > 0. To identify tensor slabs that are contaminated by anomalous/mislabeled IQ signal examples,
we calculate the mean data conformity value per slab as follows

w̄k =
1

I1 ⇤ I2

I1X

i=1

I2X

j=1

[W ]i,j,k , k = 1, 2, . . . , I3. (12)

For each class, tensor slabs with high conformity values contain nominal IQ signal examples, while low-conformity
slabs contain contaminated IQ signal samples for this class. We choose to remove slabs with conformity value
w̄n below a pre-defined threshold tcuto↵ 2 [0, 1] from the received tensor X , thus recovering a new curated tensor
X̄ 2 RI1⇥I2⇥N , where N < I3. Our objective is to minimize the number of anomalous/mislabeled IQ signal
examples contained in the new tensor X̄ .
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Algorithm 1 Autonomous conformity evaluation (ACE) algorithm for tensor data curation

Input: X 2 RI1⇥I2⇥I3 ; init. {Q(0)
n } (e.g., arbitr. or HOSVD10); {rn}, {↵n}, n 2 {1, 2, 3}; p, ✏ > 0, tcuto↵ 2 [0, 1]
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4: Keep the remaining N < I3 indices of the original dataset and create the new training dataset X̄ 2 RI1⇥I2⇥N
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3. TRAINING-TIME ATTACKS

3.1 Mislabeling

For the mislabeling event, we considered the case of human errors during annotation/labeling of signal examples.
In practice, since most of the annotation/labeling of signals is done manually by a human analyst, the probability
of error is high. In this experiment, we consider random selection of 25% of the samples from each class (from the
11 classes of signals in our dataset), and we use these samples as our pool of outlier/mislabeled IQ signal examples.
Then, we contaminate each class with samples from our pool without repetition i.e., we avoid “contaminating”
one class with samples from the same class. Thus, the dataset is reorganized to contain 25% mislabeled signal
examples across all classes. We also consider the case where only part of the dataset is contaminated, i.e., either
low or high SNR signal examples are contaminated only. In all cases, the total amount of signal examples per
class remains as before we introduced mislabeled data.

3.2 Adversarial Attacks

For adversarial attack events, let us denote the signal received at a receiver as x. When an attacker is present,
it also transmits a signal to create a low-power perturbation rx at the receiver. Therefore, the received signal is
written as xadv = x+ rx. The attacker’s target is to design rx in such a manner that it causes misclassification
for the underlying DNN at the receiver.

Many algorithms have been proposed in the literature for designing such perturbations. In12 the authors
present an algorithm that utilizes the entire input x to the DNN classifier model and the corresponding mod-
ulation label to develop a computationally e�cient method for crafting adversarial perturbations. The main
drawbacks of such an algorithm are that it requires a-priori knowledge of the entire input. Also, each element of
x is perturbed by its corresponding element in rx, i.e., the attacker must be synchronous with the transmitter,
and it is assumed that the attacker has perfect knowledge of the underlying model. Another common method
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of creating such perturbations was presented in.13 The authors present an iterative -computational expensive-
algorithm that in each iteration generates an adversarial perturbation of each input.

In this experiment, we consider a low-computational complexity PCA-based approach that was originally
proposed in12 for generating perturbations that provide a better fooling rate on the dataset compared to.13 Given
a subset of the inputs {x1,x2, . . . ,xN} to the DNN classifier, where N < I3, and their associated perturbation
directions {nx1 ,nx2 , . . . ,nxN }, where nxi = rxiL(✓,xi,ytrue)/krxiL(✓,xi,ytrue)k2, where ✓ is the set of model
parameters, L(·) is the loss function of the model, and y

true is the true label, the algorithm can craft a universal
adversarial perturbation that can fool the model with high probability, independently of the input applied to
the model. In the ML literature, such a perturbation is called a black-box universal adversarial perturbation
(UAP).13 To achieve this, we use as the direction of the UAP the direction of the first principal component of

X
N⇥p = [nx1 , . . . ,nxN ]T where p is the dimension of the input.

4. EXPERIMENTAL STUDIES

The RadioML 2016.10A3,14 -a synthetic dataset generated with GNU Radio– contains more that 1200000 complex
IQ signal samples, where each sample is associated with one modulation scheme at a specific SNR.1 The dataset
contains 11 di↵erent modulations: OOK, 4ASK, BPSK, QPSK, 8PSK, 16QAM, AM-SSB-SC, AM-DSB-SC, FM,
GMSK, OQPSK. Signal examples are generated for 20 di↵erent SNR levels from �18 dB to 20 dB with a step of
2 dB. Each signal example is a vector of size 256 elements, which corresponds to 128 in-phase and 128 quadrature
samples. We split our data to 70% for our training set and 30% for our test set. Experiments are performed
with two NVIDIA GeForce RTX 2080 Ti GPUs.

Regarding training-time attacks, for the mislabeling event, we randomly select 25% of the data from each
one of the 11 classes. Each class is then contaminated with samples belonging to the other 10 classes, e.g.,
the OOK class is contaminated with random signal examples from 4ASK, BPSK, QPSK, 8PSK, 16QAM, AM-
SSB-SC, AM-DSB-SC, FM, GMSK, OQPSK. The same procedure is carried out for the low-SNR and high-SNR
mislabeling events, but in those cases only data with SNR below �4 dB and above �4 dB are contaminated,
respectively. Regarding the adversarial attack event, we used 20% of the training dataset for generating the
attack and introduce perturbations -as these are generated by Algorithm 2 in12- to 20% of the training set.

We first organized the data in each class in a 3-way tensor X 2 R128⇥2⇥Nc , where the first dimension 128
denotes the signal length, the second dimension 2 denotes the IQ components of the signal and Nc denotes the
number of signal examples per class. The ↵ parameters for ACE were set to ↵1 = ↵2 = ↵3 = 1

3 . On each case,
after calculating the average conformity per slab, the conformity values were sorted descendingly and 20% of the
data was dropped. This threshold of 20% was selected after experimenting with di↵erent thresholds and it was
the one that produced the best classification results.

Figures 1, 2 and 3 present the average classification accuracy of the CNN across the 11 classes versus SNR
for the mislabeling corruption event. Fig. 1 shows that classification performance is severely a↵ected, especially
in the high-SNR regime, where the performance drops from 84% to 71%. By curating the data with ACE, we
are able to restore average accuracy to 80%. The same holds for the high-SNR mislabeling event (Fig. 2), where
only samples above �4 dB were a↵ected by contamination. After data corruption, the average accuracy is 67%,
while after data curation, the accuracy returns to 81%. The low-SNR corruption event (Fig. 3) is not as visible
as the high-SNR case because the network is not able to distinguish the signals in the low-SNR regime. Still,
Fig. 3 shows that for �6 dB, the average performance of the CNN trained on the corrupted dataset is 20%, while
for training on nominal data average performance is 37%. After applying ACE, average classification accuracy
is 30%.

Figures 4, 5, and 6 present the average classification accuracy of the ResNet DNN across the 11 signal classes
versus SNR for the mislabeling event. Similar to the CNN network, ResNet classification performance is severely
a↵ected (Fig. 4), especially in the high-SNR regime, where the performance drops from 90% to 83%. Upon
applying ACE, we only get 1% gain in the high-SNR regime, while in the low-SNR regime, we get even better
performance than training on the original, non-corrupted version of the dataset. For the high-SNR mislabeling
event (Fig. 5), ResNet average accuracy is 66%, and after data curation with ACE, the accuracy is restored to
80%. Low-SNR corruption is more prevalent in the ResNet network. The accuracy is reduced significantly in
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the low-SNR regime. We observe that training with high-SNR samples (Fig. 6) is a↵ected as well. After data
curation, we are able to remove most of the corrupted signal samples and average classification performance
returns to acceptable levels.

Figures 7 and 8 present the average classification accuracy of the CNN and ResNet networks across the 11
classes versus SNR for the adversarial attack event. It is clear that while ACE is not able to recover the original
performance for CNN, we are still able to have 25% performance gain, compared to training with the attacked
dataset. For ResNet, data curation with ACE provides 20% in performance gain, compared to the performance
we get after training with the attacked dataset.

5. CONCLUSIONS

We present a blind, unsupervised way for calculating the element-by-element conformity of tensor data sets that
contain IQ signal examples from di↵erent modulation classes. The original tensor data are transformed into
tensors of the same dimensions where each new tensor entry measures the conformity of that entry through
iterative projections on refined L1-norm tensor subspaces. Data with low conformity values are removed from
the IQ signal dataset to improve training of DNNs. We show that ACE could restore DNN classification accuracy
at acceptable levels when training data is contaminated by mislabeled signal examples and black-box universal
adversarial perturbations of the input data.
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Figure 1: Average classification accuracy vs. SNR for CNN - Random mislabeling corruption.
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Figure 2: Average classification accuracy vs. SNR for CNN - High SNR mislabeling corruption.
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Figure 3: Average classification accuracy vs. SNR for CNN - Low SNR mislabeling corruption.
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Figure 4: Average classification accuracy vs. SNR for ResNet - Random mislabeling corruption.
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Figure 5: Average classification accuracy vs. SNR for ResNet - High SNR mislabeling corruption.
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Figure 6: Average classification accuracy vs. SNR for Resnet - Low SNR mislabeling corruption.
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Figure 7: Average classification accuracy vs. SNR for CNN - Universal adversarial attack.
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Figure 8: Average classification accuracy vs. SNR for ResNet - Universal adversarial attack.

3URF��RI�63,(�9RO���������������&���
'RZQORDGHG�)URP��KWWSV���ZZZ�VSLHGLJLWDOOLEUDU\�RUJ�FRQIHUHQFH�SURFHHGLQJV�RI�VSLH�RQ����-DQ�����
7HUPV�RI�8VH��KWWSV���ZZZ�VSLHGLJLWDOOLEUDU\�RUJ�WHUPV�RI�XVH


