
An Iterative Algorithm for Accurate Estimation of

Power System Forced Oscillation Parameters

Luke Dosiek and Sanjay Hosur

Department of Electrical, Computer, and Biomedical Engineering

Union College

Schenectady, NY 12309

Emails: dosiekl@union.edu, hosurs@union.edu

Abstract—This paper proposes an iterative method of estimat-
ing power system forced oscillation (FO) amplitude, frequency,
phase, and start/stop times from measured data. It combines
three algorithms with favorable asymptotic statistical properties:
a periodogram-based iterative frequency estimator, a Discrete-
Time Fourier Transform (DTFT)-based method of estimating
amplitude and phase, and a changepoint detection (CPD) method
for estimating the FO start and stop samples. Each of these have
been shown in the literature to be approximate maximum like-
lihood estimators (MLE), meaning that for large enough sample
size or signal-to-noise ratio (SNR), they can be unbiased and
reach the Cramer-Rao Lower Bound in variance. The proposed
method is shown through Monte Carlo simulations of a low-order
model of the Western Electricity Coordinating Council (WECC)
power system to achieve statistical efficiency for low SNR values.
The proposed method is validated with data measured from the
January 11, 2019 US Eastern Interconnection (EI) FO event. It
is shown to accurately extract the FO parameters and remove
electromechanical mode meter bias, even with a time-varying FO
amplitude.

I. INTRODUCTION

Accurately estimating forced oscillation (FO) parameters

from measured power system outputs is important when one

is attempting to characterize the system-wide shape of the

FO response, localize the source of the FO, or perform

electromechanical mode estimation in the presence of FOs.

This is especially true with the ongoing increase in inverter-

based resources and microgrids seen in the modern power

system [1]. The mode estimation problem can be troublesome

if FOs are not handled correctly; indeed a mode meter can

model a FO as a system mode with nearly 0% damping and

can trigger false alarms of system instability [2]–[7].

A recent example of such a situation occurred on January

11, 2019 in the United States Eastern Interconnection (EI)

where a large 0.25-Hz FO was observed from 08:44:40 to

09:02:26 UTC [8]. Originating from a failed turbine controller

on a single generator in Florida, the FO was seen throughout

the entire EI due to the close proximity of its frequency to that

of a major interarea electromechanical mode. As described in

[8], while reliability coordinators (RCs) were quickly aware of

the event due to data-driven wide-area situational awareness

(WASA) tools, a lack of information led to mischaracterization

of the FO.
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Thus, it is of great importance that FO parameters be

accurately estimated in order for WASA tools such as mode

meters to provide RCs the best possible picture of the state

of the grid. This paper presents an iterative algorithm for

estimating FO parameters. It combines a statistically efficient

frequency estimator from [9] with the Discrete-Time Fourier

Transform (DTFT) to estimate amplitude and phase, and

utilizes the changepoint detection (CPD) method from [10]

to estimate the FO start/stop times. The proposed method

is characterized using Monte Carlo simulations and validated

using data from the January 2019 EI event.

The paper is organized as follows. Section II provides

reviews the linear modeling of power systems under FO

conditions along with parameter estimation techniques and

performance assessment. Section III introduces the proposed

algorithm. Simulation results are shown in Section IV, while

the EI event is covered in Section V. Finally, Section VI

provides concluding remarks and future research directions.

II. BACKGROUND

A. Model Definitions

Under small signal conditions, power systems experiencing

forced oscillations may be modeled as an autoregressive

moving average with exogenous input (ARMAX) system from

the point of view of lowpass filtered and detrended phasor

measurement unit (PMU) data [6]. Measured system output

y[k] can be expressed as

y[k] =
C(q)

A(q)
e[k] +

B(q)

A(q)
u[k] = x[k] + s[k] (1)

where input e[k] is Gaussian White Noise (GWN) filtered by

C(q)/A(q) to create ARMA process x[k] and periodic input

u[k] is filtered by B(q)/A(q) to create FO s[k]:

x[k] =
C(q)

A(q)
e[k] (2)

s[k] =
B(q)

A(q)
u[k] (3)

Note that A(q), B(q) and C(q) are the AR, X, and MA

polynomials in delay operator q such that q−ny[k] = y[k−n],



and a total of N samples of y[k] are collected at a rate of fs
samples per second. Input u[k] is defined as

u[k] =

p
∑

i=1

Ai cos

(

2π
fi
fs

k + θi

)

Iǫi,ηi
[k] (4)

where Ai, fi and θi are the amplitude, frequency (Hz) and

phase of the ith input cosine, and indicator function I defines

the FO starting sample ǫi and ending sample ηi by

Iǫi,ηi
[k] =

{

1, ǫi ≤ k ≤ ηi

0, else
(5)

The FO that is actually observed in the system output is

s[k], which will contain the same frequencies as u[k] but will

in general have different amplitudes and phases. Additionally,

while u[k] is modeled as having abrupt starts and stops via

the indicator function, s[k] will start and stop with transients

according to the system response. For the remainder of this

paper, the subscripts on the parameters in (4) are dropped

and it is assumed that u[k] is comprised of a single sinusoid

(p = 1). The methods presented here can easily be extended

to p > 1.

B. Parameter Estimation

In [11], the problem of estimating the amplitude, frequency,

and phase of a real cosine in noise is heavily studied. It is

shown that if frequency f is neither near 0 nor the Nyquist

rate, the Discrete-Time Fourier Transform (DTFT) of y[k],

Y (f) =

N−1
∑

n=0

y[n]e−j2π f
fs

n (6)

can be used to provide accurate estimates of FO amplitude,

frequency and phase. In particular, the approximate Maximum

Likelihood Estimator (MLE) of frequency is found by maxi-

mizing the periodogram

f̂ = argmax
f

1

N
|Y (f)|2 (7)

and the approximate MLEs for amplitude and phase are found

by evaluating the DTFT at the estimated frequency:

Â =
2

N
|Y (f̂o)| (8)

θ̂ = Y (f̂o) (9)

Note that calculating (7) is not straightforward. A course

estimate may be obtained with the Discrete Fourier Transform

(DFT or FFT), which may then be refined using any number

of methods in the literature, e.g., [9], [12]–[14]. However,

many of these methods are biased due to interference from

the sidelobes of −f or show heavy dependence upon initial

phase θ. Here, the method of [9] is used, which iteratively

refines an interpolated FFT of y[k] that has had its negative f̂
component removed. It is shown in [9] to be asymptotically

unbiased and reaches the CRLB while being insensitive to

variations in θ. See [9] for implementation details.

The estimation of the FO start and stop samples ǫ and η
was first addressed in the context of power systems in [15]. In

[10], an approach based on the MLE for CPD given in [16] was

implemented using a linear programming scheme. While more

computationally intensive than that of [15], the CPD approach

was shown to significantly improve estimation accuracy, and

was the method implemented in this paper. Note that the CPD

approach to estimating ǫ and η requires an estimate of the

FO frequency. Also note from (8) and (9), that the estimates

of A and θ, while easy to calculate, also depend upon f̂ .

Thus, starting with a high quality implementation of (7) is

paramount.

C. Estimation Assessment

In order to assess the quality of the FO parameter esti-

mators, one must consider both accuracy and precision. In

the simulation setting, Monte Carlo trials may be utilized

whereby a system is simulated hundreds of times, each with

an independent random input. FO parameters are estimated

from each of the outputs, and accuracy may be assessed by

comparing the means of the parameter estimates to the true

values. An unbiased estimate should on average converge to

the true value.

To assess precision, the variance of the estimates may be

compared to the Cramer-Rao Lower Bound (CRLB), which

defines the minimum achievable variance for any unbiased

estimator. The variance of a statistically efficient estimator

should on average converge to the CRLB. Note that if an

estimator is biased, it may achieve variance lower than the

CRLB. For A, f , and θ, the CRLB are well-known for the

cosine-in-GWN case (see [11] for example). In power system

FO applications, however, the cosine is in colored noise;

specifically an ARMA process. In [17], [18], expressions for

the CRLB have been derived. The CRLB on FO start/stop

samples ǫ and η has, to the best of the authors’ knowledge,

never been derived and is a subject of ongoing work.

III. ITERATIVE ESTIMATION OF FO PARAMETERS

An important detail surrounding the estimation of A, f ,

and θ that methods described by (7) - (9) assume the FO

is present throughout the entire data set. Indeed, when y[k]
contains some length of ARMA process noise before and/or

after the FO, issues arise that can reduce the performance of

the estimators. Specifically, Â will be biased low since (8) is

scaled by the length of y[k], not the length of the portion of

the data record where the FO is present. More generally, as the

FO length η− ǫ gets smaller relative to N , the SNR between

the FO and ARMA noise drops in kind, which will result in

a overall degradation of estimator performance.

This paper proposes the following algorithm to address the

issue at hand. As seen in Algorithm 1, the frequency estimator

is abbreviated “SD” after the author of [9], the amplitude

and phase estimator is named “DTFT” due to its use of the

Discrete-Time Fourier Transform, and the start/stop sample

estimator is named “CPD” for its use of changepoint detection.



The superscripts indicate iteration number of a particular

estimate.

The procedure starts with the FO detection scheme from

[19], which also provides a course frequency estimate, f̂ (o).

Once detected, the FO frequency estimate is passed to the

algorithm along with y[k] and parameter Q, the number of

iterations to perform. FO amplitude and phase are initialized

as 1 and 0, and the starting and ending samples are initialized

as 0 and N − 1.

The initial frequency estimate f̂ (1) is found by refining f̂ (o)

with SD. The initial amplitude and phase estimates are found

using the DTFT and f̂ (1), and the initial start/stop samples are

estimated using CPD with Â(1), f̂ (1), and θ̂(1). Note that the

entire dataset y[k] is used for this initial round of estimates.

For i > 1, the initial estimates are refined Q − 1 times,

where Â(i), f̂ (i), and θ̂(i) are found using he window of data

where the FO is present approximately throughout, i.e., y[k]
from samples ǫ̂(i−1) to η̂(i−1). In contrast, the FO start/stop

samples are refined using all of y[k] in order to ensure the

previous start/stop estimates didn’t exclude portions of the FO.

Algorithm 1 Iterative Estimation of FO Parameters

Input: y[k], f̂ (o), and Q
Initialize: Â(o)=1, θ̂(o)=0, ǫ̂(o)=0, and η̂(o)=N − 1
Output: Â, f̂ , θ̂, ǫ̂, and η̂

1: for i = 1 to Q do

2: f̂ (i) =SD
(

y
[

ǫ̂(i−1) : η̂(i−1)
]

, f̂ (i−1)
)

3:

[

Â(i), θ̂(i)
]

=DTFT
(

y
[

ǫ̂(i−1) : η̂(i−1)
]

, f̂ (i)
)

4:
[

ǫ̂(i), η̂(i)
]

=CPD
(

y[0 : N − 1], Â(i), f̂ i), θ̂(i)
)

5: end for

6: return
[

Â(Q), f̂ (Q), θ̂(Q), ǫ̂(Q), η̂(Q)
]

IV. SIMULATION RESULTS

To assess the performance of the algorithm, a 17th order

ARMA approximation of the minniWECC model of the West-

ern Electricity Coordinating Council (WECC) power system

was used. Developed in [20], its output approximates a volt-

age angle difference where the the “North-South B” (NSB)

interarea mode of 0.372 Hz and 4.67 % damping is especially

observable in the minniWECC. The ARMA model takes into

account the detrending and downsampling typically performed

on measured PMU data, resulting in a comparatively low-order

representation of the minniWECC sampled at 3 samples-per-

second. See [20] for more details on the AMRA approximation

and [21] for details on the minniWECC.

Ambient power system and FO data were simulated by

filtering GWN and a cosine, respectively, through the ARMA

model to create 30 minutes of data with the FO present for the

middle 15 minutes. The FO in the output had an amplitude of

1, a phase of π/8, and a frequency that was identical to that

of the NSB mode, 0.372 Hz. The variance of the GWN was

varied to create FO-to-ambient-data SNRs ranging from -5 to

-5 0 5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

M
e

a
n

DTFT FO Amplitude Estimates

True

Initial

Refined

-5 0 5 10 15 20

SNR (dB)

-50

-40

-30

-20

-10

V
a

ri
a

n
c
e

 (
d

B
)

CRLB

Initial

Refined

Fig. 1. Initial and refined estimates of FO amplitude from approximate
minniWECC model.

20 dB, and 300 Monte Carlo simulations of each SNR case

were created. Note these results were obtained with Q = 2 in

Algorithm 1. That is, no additional accuracy was gained with

further iterations in the refinement step.

In Fig. 1, the amplitude biasing discussed above is apparent.

These results are to be expected, since the FO is present for

half the data record so a DTFT-based estimator should estimate

the FO with half of the true amplitude. The refined estimates

are excellent, showing little bias, and variance that reaches

the CRLB. The estimates of frequency and phase are shown

in Figs. 2 and Fig. 3 demonstrate a stark improvement between

the initial and refined estimates, with the mean and variance

converging to the true value and CRLB, respectively.

The FO start and stop samples also demonstrated an im-

provement during the refinement process with both nearly

reaching the true values, as seen in Fig. 4. With the CRLB

unavailable, the variance may only be compared in a before-

and-after refinement sense. Although a small improvement was

observed, the variance of the initial and refined estimates was

very small across all SNR, and so are omitted due to space

constraints.

V. US EASTERN INTERCONNECTION RESULTS

The proposed algorithm was applied with Q=2 to the

January 2019 FO event discussed in Section I. The top of

Fig. 5 shows frequency measurements taken at Union College

in Schenectady, NY during the event, while the bottom shows

the detrended and downsampled version.

The FO parameters were estimated using the proposed

algorithm on 40 minutes of data that contained the FO in

the middle. Note the SNR here was estimated to be 10.8

dB (see below for details). Similar to the simulation results,

the FO amplitude estimates demonstrated the biggest change,

going from an initial value of 2.6 mHz up to 5.9 mHz

after refinement, while the frequency and phase estimates

showed minor adjustment, going from 0.25 Hz and -1.76

rad to 0.25001 Hz and -1.79 rad. The estimated starting and

ending samples did not change in the refinement stage, and
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Fig. 2. Initial and refined estimates of FO frequency from approximate
minniWECC model.
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Fig. 3. Initial and refined estimates of FO phase from approximate minni-
WECC model.
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Fig. 4. Initial and refined estimates of FO starting and stopping samples from
approximate minniWECC model.
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Fig. 5. January 11, 2019 EI FO event measured at Union College (top) and
preprocessed (bottom).

were found to be 3274 and 8520, respectively. Note that

the timestamps given in [8] correspond to samples 3228 and

8558. It was observed that the algorithm detected neither the

initial low-amplitude portion of the onset transient nor the low-

amplitude end of the offset transient. Accounting for this is a

subject of ongoing work.

Next, a mode meter study was conducted. The data were

analyzed by the LS-ARMA mode meter algorithm, which

assumes that y[k] is an ARMA process with no FO present

[5]. Three data sets were used, each 40 minutes in duration,

with the first comprised of purely ambient data before the FO,

the second contained the FO, and the third was purely ambient

data after the FO. As seen in Table I, both sets of ambient data

estimated the major interarea mode to be about 0.2 Hz with

damping greater than 10%, which agrees with the analyses in

[8]. During the FO, however, the mode meter is exceptionally

biased as it tries to model the FO as a system mode with 0.25

Hz and 0% damping.

The refined FO parameter estimates were used with the LS-

ARMAX mode meter, which models the FO as system input

u[k], a cosine at the FO frequency with unity amplitude and

zero phase [6]:

û[k] = cos(2π
f̂

fs
k)Iǫ̂,η̂[k] (10)

Initially, little improvement was seen. However, as noted in [8],

the amplitude of the FO was time-varying. To account for this,

the amplitude was re-estimated by applying the proposed algo-

rithm to a sliding 20-minute window that advanced one sample

at a time, calculating a new amplitude estimate each time.

The other FO parameter estimates were virtually unchanged

throughout this process and retained their aforementioned

values.

A reconstructed estimate of the FO using the time-varying

amplitude estimate is shown in Fig. 6, where very good

agreement is seen. Indeed, this was used to estimate the 10.8



TABLE I
JANUARY 11, 2019 EI FO EVENT: MODE ESTIMATES

frequency damping

Prior to FO 0.2076 Hz 16.96 % LS-ARMA

During FO 0.2493 Hz 0.387 % LS-ARMA

0.2218 Hz 11.93 % LS-ARMAX

After the FO 0.1954 Hz 12.85 % LS-ARMA
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Fig. 6. Comparison of the estimated EI FO with the preprocessed measured
data (top) with a zoomed view (bottom).

dB SNR condition. A new estimated input that contained the

slowly varying amplitude was created

û[k] = Â[k] cos(2π
f̂

fs
k)Iǫ̂,η̂[k] (11)

and applied to the LS-ARMAX mode meter. The results,

shown in bold in Table I, align nicely with the pre- and

post-FO ambient data, suggesting the validity of the proposed

method.

VI. CONCLUSIONS

This paper presents a method of estimating FO parameters

from measured power system data. Through simulations it is

shown that the refinement stage can result in estimators that

are unbiased and reach the CRLB over a wide range of SNR.

The algorithm was applied to an actual FO event, where the

estimated FO parameters showed good agreement with the

analysis of [8] and were shown to effectively correct the bias

seen by an ambient mode meter - even in the presence of

time-varying FO amplitude.

Future work includes a study of the convergence of the

algorithm. In both the simulation and EI settings investigated

here, it was found that convergence was mostly achieved at

Q=2, with the occasional Monte Carlo trial converging at Q=3.

A much more robust investigation into convergence is needed.

Other future research topics include extending the work to

address FOs that are nonstationary in both amplitude and

frequency, as well as an extensive simulation study of the

effects of the algorithm on mode meter performance. Finally,

for the purpose of mode meter bias removal, conceptualizing

FOs as exogenous power system inputs is fine. However, there

is still much to be done in the area of analyzing the physical

sources of FOs and their appropriate corrective measures.
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