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Abstract—This paper proposes an iterative method of estimat-
ing power system forced oscillation (FO) amplitude, frequency,
phase, and start/stop times from measured data. It combines
three algorithms with favorable asymptotic statistical properties:
a periodogram-based iterative frequency estimator, a Discrete-
Time Fourier Transform (DTFT)-based method of estimating
amplitude and phase, and a changepoint detection (CPD) method
for estimating the FO start and stop samples. Each of these have
been shown in the literature to be approximate maximum like-
lihood estimators (MLE), meaning that for large enough sample
size or signal-to-noise ratio (SNR), they can be unbiased and
reach the Cramer-Rao Lower Bound in variance. The proposed
method is shown through Monte Carlo simulations of a low-order
model of the Western Electricity Coordinating Council (WECC)
power system to achieve statistical efficiency for low SNR values.
The proposed method is validated with data measured from the
January 11, 2019 US Eastern Interconnection (EI) FO event. It
is shown to accurately extract the FO parameters and remove
electromechanical mode meter bias, even with a time-varying FO
amplitude.

I. INTRODUCTION

Accurately estimating forced oscillation (FO) parameters
from measured power system outputs is important when one
is attempting to characterize the system-wide shape of the
FO response, localize the source of the FO, or perform
electromechanical mode estimation in the presence of FOs.
This is especially true with the ongoing increase in inverter-
based resources and microgrids seen in the modern power
system [1]. The mode estimation problem can be troublesome
if FOs are not handled correctly; indeed a mode meter can
model a FO as a system mode with nearly 0% damping and
can trigger false alarms of system instability [2]-[7].

A recent example of such a situation occurred on January
11, 2019 in the United States Eastern Interconnection (EI)
where a large 0.25-Hz FO was observed from 08:44:40 to
09:02:26 UTC [8]. Originating from a failed turbine controller
on a single generator in Florida, the FO was seen throughout
the entire EI due to the close proximity of its frequency to that
of a major interarea electromechanical mode. As described in
[8], while reliability coordinators (RCs) were quickly aware of
the event due to data-driven wide-area situational awareness
(WASA) tools, a lack of information led to mischaracterization
of the FO.
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Thus, it is of great importance that FO parameters be
accurately estimated in order for WASA tools such as mode
meters to provide RCs the best possible picture of the state
of the grid. This paper presents an iterative algorithm for
estimating FO parameters. It combines a statistically efficient
frequency estimator from [9] with the Discrete-Time Fourier
Transform (DTFT) to estimate amplitude and phase, and
utilizes the changepoint detection (CPD) method from [10]
to estimate the FO start/stop times. The proposed method
is characterized using Monte Carlo simulations and validated
using data from the January 2019 EI event.

The paper is organized as follows. Section II provides
reviews the linear modeling of power systems under FO
conditions along with parameter estimation techniques and
performance assessment. Section III introduces the proposed
algorithm. Simulation results are shown in Section IV, while
the EI event is covered in Section V. Finally, Section VI
provides concluding remarks and future research directions.

II. BACKGROUND

A. Model Definitions

Under small signal conditions, power systems experiencing
forced oscillations may be modeled as an autoregressive
moving average with exogenous input (ARMAX) system from
the point of view of lowpass filtered and detrended phasor
measurement unit (PMU) data [6]. Measured system output
ylk] can be expressed as

Cl9) B(q)
where input e[k] is Gaussian White Noise (GWN) filtered by
C(q)/A(q) to create ARMA process x[k| and periodic input
ulk] is filtered by B(q)/A(q) to create FO s[k]:
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Note that A(g), B(q) and C(q) are the AR, X, and MA
polynomials in delay operator ¢ such that ¢~ "y[k] = y[k —n],



and a total of N samples of y[k] are collected at a rate of f
samples per second. Input u[k] is defined as

P
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where A;, f; and 6; are the amplitude, frequency (Hz) and
phase of the i input cosine, and indicator function I defines
the FO starting sample ¢; and ending sample 7; by
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The FO that is actually observed in the system output is
s[k], which will contain the same frequencies as u[k] but will
in general have different amplitudes and phases. Additionally,
while u[k] is modeled as having abrupt starts and stops via
the indicator function, s[k] will start and stop with transients
according to the system response. For the remainder of this
paper, the subscripts on the parameters in (4) are dropped
and it is assumed that u[k] is comprised of a single sinusoid
(p = 1). The methods presented here can easily be extended
top> 1.

B. Parameter Estimation

In [11], the problem of estimating the amplitude, frequency,
and phase of a real cosine in noise is heavily studied. It is
shown that if frequency f is neither near O nor the Nyquist
rate, the Discrete-Time Fourier Transform (DTFT) of y[k],
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can be used to provide accurate estimates of FO amplitude,
frequency and phase. In particular, the approximate Maximum
Likelihood Estimator (MLE) of frequency is found by maxi-
mizing the periodogram
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and the approximate MLEs for amplitude and phase are found

by evaluating the DTFT at the estimated frequency:
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Note that calculating (7) is not straightforward. A course
estimate may be obtained with the Discrete Fourier Transform
(DFT or FFT), which may then be refined using any number
of methods in the literature, e.g., [9], [12]-[14]. However,
many of these methods are biased due to interference from
the sidelobes of —f or show heavy dependence upon initial
phase 6. Here, the method of [9] is used, which iteratively
refines an interpolated FFT of y[k] that has had its negative f
component removed. It is shown in [9] to be asymptotically
unbiased and reaches the CRLB while being insensitive to
variations in 6. See [9] for implementation details.

The estimation of the FO start and stop samples € and 7,
was first addressed in the context of power systems in [15]. In
[10], an approach based on the MLE for CPD given in [16] was
implemented using a linear programming scheme. While more
computationally intensive than that of [15], the CPD approach
was shown to significantly improve estimation accuracy, and
was the method implemented in this paper. Note that the CPD
approach to estimating € and 7 requires an estimate of the
FO frequency. Also note from (8) and (9), that the estimates
of A and 6, while easy to calculate, also depend upon f
Thus, starting with a high quality implementation of (7) is
paramount.

C. Estimation Assessment

In order to assess the quality of the FO parameter esti-
mators, one must consider both accuracy and precision. In
the simulation setting, Monte Carlo trials may be utilized
whereby a system is simulated hundreds of times, each with
an independent random input. FO parameters are estimated
from each of the outputs, and accuracy may be assessed by
comparing the means of the parameter estimates to the true
values. An unbiased estimate should on average converge to
the true value.

To assess precision, the variance of the estimates may be
compared to the Cramer-Rao Lower Bound (CRLB), which
defines the minimum achievable variance for any unbiased
estimator. The variance of a statistically efficient estimator
should on average converge to the CRLB. Note that if an
estimator is biased, it may achieve variance lower than the
CRLB. For A, f, and 0, the CRLB are well-known for the
cosine-in-GWN case (see [11] for example). In power system
FO applications, however, the cosine is in colored noise;
specifically an ARMA process. In [17], [18], expressions for
the CRLB have been derived. The CRLB on FO start/stop
samples € and 7 has, to the best of the authors’ knowledge,
never been derived and is a subject of ongoing work.

III. ITERATIVE ESTIMATION OF FO PARAMETERS

An important detail surrounding the estimation of A, f,
and 0 that methods described by (7) - (9) assume the FO
is present throughout the entire data set. Indeed, when y[k]
contains some length of ARMA process noise before and/or
after the FO, issues arise that can reduce the performance of
the estimators. Specifically, A will be biased low since (8) is
scaled by the length of y[k], not the length of the portion of
the data record where the FO is present. More generally, as the
FO length 1 — e gets smaller relative to IV, the SNR between
the FO and ARMA noise drops in kind, which will result in
a overall degradation of estimator performance.

This paper proposes the following algorithm to address the
issue at hand. As seen in Algorithm 1, the frequency estimator
is abbreviated “SD” after the author of [9], the amplitude
and phase estimator is named “DTFT” due to its use of the
Discrete-Time Fourier Transform, and the start/stop sample
estimator is named “CPD” for its use of changepoint detection.



The superscripts indicate iteration number of a particular
estimate.

The procedure starts with the FO detection scheme from
[19], which also provides a course frequency estimate, f (),
Once detected, the FO frequency estimate is passed to the
algorithm along with y[k] and parameter (), the number of
iterations to perform. FO amplitude and phase are initialized
as 1 and 0, and the starting and ending samples are initialized
as 0 and N — 1.

The initial frequency estimate f (1) is found by refining f (0)
with SD. The initial amplitude and phase estimates are found
using the DTFT and f (1), and the initial start/stop samples are
estimated using CPD with A, (1) and 6. Note that the
entire dataset y[k] is used for this initial round of estimates.

For ¢ > 1, the initial estimates are refined @Q — 1 times,
where A®, £ and () are found using he window of data
where the FO is present approximately throughout, i.e., y[k]
from samples ¢~ to #(*~1). In contrast, the FO start/stop
samples are refined using all of y[k] in order to ensure the
previous start/stop estimates didn’t exclude portions of the FO.

Algorithm 1 Iterative Estimation of FO Parameters
Input: y[k], /), and Q
Initialize: A(°)=1, §{°)=0, é(?)=0, and /{°)=N —1
Output: A, f, 6, ¢, and 7

1: fori=1to @ do

2 f@ :SD(y [g(i—l) ;ﬁ(i—l)} ’f(z‘—l))

3: [Aug(;(i)} :DTFT<y 6= ;G- f(i))

e

[ ()] :CPD(y[O N 1], A®), fi)’g(i))
5: end for
6: return { A@, f(Q)’é(Q),g(Q)JA](Q)]

IV. SIMULATION RESULTS

To assess the performance of the algorithm, a 17t" order
ARMA approximation of the minniWECC model of the West-
ern Electricity Coordinating Council (WECC) power system
was used. Developed in [20], its output approximates a volt-
age angle difference where the the “North-South B” (NSB)
interarea mode of 0.372 Hz and 4.67 % damping is especially
observable in the minniWECC. The ARMA model takes into
account the detrending and downsampling typically performed
on measured PMU data, resulting in a comparatively low-order
representation of the minniWECC sampled at 3 samples-per-
second. See [20] for more details on the AMRA approximation
and [21] for details on the minniWECC.

Ambient power system and FO data were simulated by
filtering GWN and a cosine, respectively, through the ARMA
model to create 30 minutes of data with the FO present for the
middle 15 minutes. The FO in the output had an amplitude of
1, a phase of 7/8, and a frequency that was identical to that
of the NSB mode, 0.372 Hz. The variance of the GWN was
varied to create FO-to-ambient-data SNRs ranging from -5 to
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Fig. 1. [Initial and refined estimates of FO amplitude from approximate
minniWECC model.

20 dB, and 300 Monte Carlo simulations of each SNR case
were created. Note these results were obtained with () = 2 in
Algorithm 1. That is, no additional accuracy was gained with
further iterations in the refinement step.

In Fig. 1, the amplitude biasing discussed above is apparent.
These results are to be expected, since the FO is present for
half the data record so a DTFT-based estimator should estimate
the FO with half of the true amplitude. The refined estimates
are excellent, showing little bias, and variance that reaches
the CRLB. The estimates of frequency and phase are shown
in Figs. 2 and Fig. 3 demonstrate a stark improvement between
the initial and refined estimates, with the mean and variance
converging to the true value and CRLB, respectively.

The FO start and stop samples also demonstrated an im-
provement during the refinement process with both nearly
reaching the true values, as seen in Fig. 4. With the CRLB
unavailable, the variance may only be compared in a before-
and-after refinement sense. Although a small improvement was
observed, the variance of the initial and refined estimates was
very small across all SNR, and so are omitted due to space
constraints.

V. US EASTERN INTERCONNECTION RESULTS

The proposed algorithm was applied with Q=2 to the
January 2019 FO event discussed in Section I. The top of
Fig. 5 shows frequency measurements taken at Union College
in Schenectady, NY during the event, while the bottom shows
the detrended and downsampled version.

The FO parameters were estimated using the proposed
algorithm on 40 minutes of data that contained the FO in
the middle. Note the SNR here was estimated to be 10.8
dB (see below for details). Similar to the simulation results,
the FO amplitude estimates demonstrated the biggest change,
going from an initial value of 2.6 mHz up to 5.9 mHz
after refinement, while the frequency and phase estimates
showed minor adjustment, going from 0.25 Hz and -1.76
rad to 0.25001 Hz and -1.79 rad. The estimated starting and
ending samples did not change in the refinement stage, and
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Fig. 5. January 11, 2019 EI FO event measured at Union College (top) and
preprocessed (bottom).

were found to be 3274 and 8520, respectively. Note that
the timestamps given in [8] correspond to samples 3228 and
8558. It was observed that the algorithm detected neither the
initial low-amplitude portion of the onset transient nor the low-
amplitude end of the offset transient. Accounting for this is a
subject of ongoing work.

Next, a mode meter study was conducted. The data were
analyzed by the LS-ARMA mode meter algorithm, which
assumes that y[k] is an ARMA process with no FO present
[5]. Three data sets were used, each 40 minutes in duration,
with the first comprised of purely ambient data before the FO,
the second contained the FO, and the third was purely ambient
data after the FO. As seen in Table I, both sets of ambient data
estimated the major interarea mode to be about 0.2 Hz with
damping greater than 10%, which agrees with the analyses in
[8]. During the FO, however, the mode meter is exceptionally
biased as it tries to model the FO as a system mode with 0.25
Hz and 0% damping.

The refined FO parameter estimates were used with the LS-
ARMAX mode meter, which models the FO as system input
u[k], a cosine at the FO frequency with unity amplitude and
zero phase [6]:

alk] = COS(27T£

Initially, little improvement was seen. However, as noted in [8],
the amplitude of the FO was time-varying. To account for this,
the amplitude was re-estimated by applying the proposed algo-
rithm to a sliding 20-minute window that advanced one sample
at a time, calculating a new amplitude estimate each time.
The other FO parameter estimates were virtually unchanged

throughout this process and retained their aforementioned
values.

k)Ie 5 k] (10)

A reconstructed estimate of the FO using the time-varying
amplitude estimate is shown in Fig. 6, where very good
agreement is seen. Indeed, this was used to estimate the 10.8



TABLE I
JANUARY 11, 2019 EI FO EVENT: MODE ESTIMATES

frequency | damping
Prior to FO | 0.2076 Hz | 16.96 % LS-ARMA
During FO 0.2493 Hz | 0.387 % LS-ARMA
0.2218 Hz | 11.93 % | LS-ARMAX
After the FO | 0.1954 Hz | 12.85 % LS-ARMA
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Fig. 6. Comparison of the estimated EI FO with the preprocessed measured
data (top) with a zoomed view (bottom).

dB SNR condition. A new estimated input that contained the
slowly varying amplitude was created

alk] = Alk] cos(ZWfik)Igﬁ[k] (11)
and applied to the LS-ARMAX mode meter. The results,
shown in bold in Table I, align nicely with the pre- and
post-FO ambient data, suggesting the validity of the proposed

method.

VI. CONCLUSIONS

This paper presents a method of estimating FO parameters
from measured power system data. Through simulations it is
shown that the refinement stage can result in estimators that
are unbiased and reach the CRLB over a wide range of SNR.
The algorithm was applied to an actual FO event, where the
estimated FO parameters showed good agreement with the
analysis of [8] and were shown to effectively correct the bias
seen by an ambient mode meter - even in the presence of
time-varying FO amplitude.

Future work includes a study of the convergence of the
algorithm. In both the simulation and EI settings investigated
here, it was found that convergence was mostly achieved at
(Q=2, with the occasional Monte Carlo trial converging at Q=3.
A much more robust investigation into convergence is needed.
Other future research topics include extending the work to
address FOs that are nonstationary in both amplitude and
frequency, as well as an extensive simulation study of the

effects of the algorithm on mode meter performance. Finally,
for the purpose of mode meter bias removal, conceptualizing
FOs as exogenous power system inputs is fine. However, there
is still much to be done in the area of analyzing the physical
sources of FOs and their appropriate corrective measures.
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