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Abstract

We consider using gradient descent to minimize the nonconvex function f(X) = ¢(XX7T)
over an n X r factor matrix X, in which ¢ is an underlying smooth convex cost function
defined over n x n matrices. While only a second-order stationary point X can be provably
found in reasonable time, if X is additionally rank deficient, then its rank deficiency certifies
it as being globally optimal. This way of certifying global optimality necessarily requires
the search rank r of the current iterate X to be overparameterized with respect to the
rank 7* of the global minimizer X*. Unfortunately, overparameterization significantly slows
down the convergence of gradient descent, from a linear rate with » = r* to a sublinear rate
when r > r*, even when ¢ is strongly convex. In this paper, we propose an inexpensive
preconditioner that restores the convergence rate of gradient descent back to linear in the
overparameterized case, while also making it agnostic to possible ill-conditioning in the
global minimizer X*.

Keywords: Low-rank matrix recovery, Burer-Moneiro Factorization, Nonconvex Opti-
mization, Global Optimality Certification

1. Introduction

Numerous state-of-the-art algorithms in statistical and machine learning can be viewed as
gradient descent applied to the nonconvex Burer—Monteiro (Burer and Monteiro, 2003, 2005)

problem

X* = minimize f(X) % ¢(XXT) over X € R™*", (BM)

in which ¢ is an underlying convex cost function defined over n X n matrices. Typically,
the search rank r < n is set significantly smaller than n, and an efficient gradient oracle
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X — Vf(X) is available due to problem structure that costs n - poly(r) time per query.
Under these two assumptions, each iteration of gradient descent X, = X — aV f(X) costs
O(n) time and memory.

Gradient descent has become widely popular for problem (BM) because it is simple
to implement but works exceptionally well in practice (Sun and Luo, 2016; Bhojanapalli
et al., 2016a,b; Park et al., 2017; Chen and Candes, 2017; Park et al., 2018; Chen et al.,
2019). Across a broad range of applications, gradient descent is consistently observed
to converge from an arbitrary, possibly random initial guess Xy to the global minimum
X7* as if the function f were convex. In fact, in many cases, the observed convergence
rate is even linear, meaning that gradient descent converges to € global suboptimality in
O(log(1/e)) iterations, as if the function f were strongly convexr. When this occurs, the
resulting empirical complexity of e-accuracy in O(n -log(1/¢)) time matches the best figures
achievable by algorithms for convex optimization.

However, due to the nonconvexity of f, it is always possible for gradient descent to fail
by getting stuck at a spurious local minimum—a local minimum that is strictly worse than
that of the global minimum. This is a particular concern for safety-critical applications
like electricity grids (Zhang et al., 2019a) and robot navigation (Rosen et al., 2019, 2020),
where mistaking a clearly suboptimal X for the globally optimal X* could have serious
rammifications. Recent authors have derived conditions under which f is guaranteed not
to admit spurious local minima, but such a priori global optimality guarantees, which are
valid for all initializations before running the algorithm, can be much stronger than what is
needed for gradient descent to succeed in practice. For example, it may also be the case
that spurious local minima do generally exist, but that gradient descent is frequently able to
avoid them without any rigorous guarantees of doing so.

In this paper, we consider overparameterizing the search rank r, choosing it to be large
enough so that rank(X*) < r holds for all globally optimal X*. We are motivated by the
ability to guarantee global optimality a posteriori, that is, after a candidate X has already
been computed. To explain, it has been long suspected and recently rigorously shown Ge
et al. (2015); Jin et al. (2017, 2021) that gradient descent can be made to converge to an
approximate second-order stationary point X that satisfies

(VAX), V) < ellVIp, (VZAX)V]V) > —en||VI[z forall Ve R™" (1)

with arbitrarily small accuracy parameters e;,ey > 0. By evoking an argument first
introduced by Burer and Monteiro (2005, Theorem 4.1) (see also Journée et al. (2010)
and Boumal et al. (2016, 2020)) one can show that an X that satisfies (1) has global
suboptimality:

f(X)_f(X*) < Cg'eg + Cy-en +CA')\miri(XTX) (2)
gradient norm Hessian curvature rank deﬁciency

where Amin(-) denotes the smallest eigenvalue, and Cy, Cy,Cy > 0 are absolute constants
under standard assumptions. By overparameterizing the search rank so that r > r* holds,
where r* denotes the maximum rank over all globally optimal X*, it follows from (2) that
the global optimality of an X with €, = 0 and e ~ 0 is conclusively determined by its rank
deficiency term Apin (X7 X):
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1. (Near globally optimal) If X ~ X*, then X must be nearly rank deficient with
Amin(XTX) ~ 0. In this case, the near-global optimality of X can be rigorously
certified by evoking (2) with €, ~ 0 and ey ~ 0 and Apin(X7 X) ~ 0.

2. (Stuck at spurious point) If f(X) > f(X*), then by contradiction X must be nearly
full-rank with Amin(XTX) & Oy 1 (f(X) — f(X*)) % 0 bounded away from zero.

As we describe in Section 3, the three parameters €4, €fr, and Amin (X TX) for a given X can
all be numerically evaluated in O(n) time and memory, using a small number of calls to the
gradient oracle X — V f(X). (In Section 3, we formally state and prove (2) as Proposition
10.)

Aside from the ability to certify global optimality, a second benefit of overparameterization
is that f tends to admit fewer spurious local minima as the search rank r is increased beyond
the maximum rank 7* > rank(X™). Indeed, it is commonly observed in practice that any
local optimization algorithm seem to globally solve problem (BM) as soon as r is slightly
larger than r*; see (Burer and Monteiro, 2003; Journée et al., 2010; Rosen et al., 2019) for
numerical examples of this behavior. Towards a rigorous explanation, Boumal et al. (2016,
2020) pointed out that if the search rank is overparameterized as r > n, then the function
f is guaranteed to contain no spurious local minima, in the sense that every second-order
stationary point Z satisfying Vf(Z) = 0 and V2f(Z) = 0 is guaranteed to be global
optimal f(Z) = f(X*). This result was recently sharpened by Zhang (2022), who proved
that if the underlying convex cost ¢ is L-gradient Lipschitz and p-strongly convex, then
overparameterizing the search rank by a constant factor as r > max{r*, $(L/p — 1)*r*} is
enough to guarantee that f contains no spurious local minima.

Unfortunately, overparameterization significantly slows down the convergence of gradient
descent, both in theory and in practice. Under suitable strong convexity and optimality
assumptions on ¢, Zheng and Lafferty (2015b); Tu et al. (2016) showed that gradient descent
Xy =X —aVf(X) locally converges as follows

FX) = (X)) < [T —a- e Amin(XTX)] - [£(X) = f(X)]

where o > 0 is the corresponding step-size, and ¢ > 0 is a constant (see also Section 5
for an alternative derivation). In the exactly parameterized regime r = r*, this inequality
implies linear convergence, because Amin(X7 X) > 0 holds within a local neighborhood of
the minimizer X*. In the overparameterized regime r > r*, however, the iterate X becomes
increasingly singular Apin (X7 X) — 0 as it makes progress towards the global minimizer X*,
and the convergence quotient @ =1 — & - ¢ - Apin (X7 X) approaches 1. In practice, gradient
descent slows down to sublinear convergence, now requiring poly(1/e) iterations to yield an €
suboptimal solution. This is a dramatic, exponential slow-down compared to the O(log(1/¢))
figure associated with linear convergence under exact rank parameterization r = r*.

For applications of gradient descent with very large values of n, this exponential slow-
down suggests that the ability to certify global optimality via overparameterization can only
come by dramatically worsening the quality of the computed solution. In most cases, it
remains better to exactly parameterize the search rank as r = r*, in order to compute a
high-quality solution without a rigorous proof of quality. For safety-critical applications for
which a proof of quality is paramount, rank overparameterization r > r* is used alongside
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much more expensive trust-region methods (Rosen et al., 2019, 2020; Boumal et al., 2020).
These methods can be made immune to the progressive ill-conditioning Apin (X Tx ) — 0 of
the current iterate X, but have per-iteration costs of O(n?) time and O(n?) memory that
limit n to modest values.

1.1 Summary of results

In this paper, we present an inexpensive preconditioner for gradient descent that restores
the convergence rate of gradient descent back to linear in the overparameterized case, both
in theory and in practice. We propose the following iterations

X, =X —aVFX)(XTX +n)7 1, (PrecGD)

where a € (0,1] is a fixed step-size, and n > 0 is a regularization parameter that may be
changed from iteration to iteration. We call these iterations preconditioned gradient descent
or PrecGD, because they can be viewed as gradient descent applied with a carefully chosen
r X r preconditioner.

It is easy to see that PrecGD should maintain a similar per-iteration O(n) cost to regular
gradient descent in most applications where the Burer-Monteiro approach is used, where
r is typically set orders of magnitude smaller than n. The method induces an additional
cost of O(r3) each iteration to form and compute the preconditioner (X7 X +nI)~!. But in
applications with very large values of n and very small values of r, the small increase in the
per-iteration cost, from O(r) to O(r?), is completely offset by the exponential reduction in
the number of iterations, from O(1/€) to O(log(1/€)). Therefore, PrecGD can serve as a
plug-in replacement for gradient descent, in order to provide the ability to certify global
optimality without sacrificing the high quality of the computed solution.

Our results are summarized as follows:

Local convergence. Starting within a neighborhood of the global minimizer X*, and
under suitable strong convexity and optimality assumptions on ¢, classical gradient descent
converges to e suboptimality in O(1/\,log(1/¢)) iterations where A\, = Apin(X*T X*) is the
rank deficiency term of the global minimizer (Zheng and Lafferty, 2015b; Tu et al., 2016).
This result breaks down in the overparameterized regime, where r > r* = rank(X*) and
Ar = 0 holds by definition; instead, gradient descent now requires poly(1/e€) iterations to
converge to e suboptimality (Zhuo et al., 2021).

Under the same strong convexity and optimality assumptions, we prove that PrecGD
with the parameter choice 7 = ||V £(X)(XTX)~1/2| r converges to € global suboptimality in
O(log(1/€)) iterations, independent of Ax = 0. In fact, we prove that the convergence rate of
PrecGD also becomes independent of the smallest nonzero singular value A\« = Aps (X T X%
of the global minimizer X*. In practice, this often allows PrecGD to converge faster in the
overparameterized regime r > r* than regular gradient descent in the exactly parameterized
regime r = r* (see Fig. 1). In our numerical results, we observe that the linear convergence
rate of PrecGD for all values of » > r* and A~ > 0 is the same as regular gradient descent
with a perfectly conditioned global minimizer X*, i.e. with » = r* and A+ = A\ (X*T X*).
In fact, linear convergence was observed even for choices of ¢ that do not satisfy the notions
of strong convexity considered in our theoretical results.
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Figure 1: PrecGD converges linearly in the overparameterized regime. Compari-
son of PrecGD against regular gradient descent (GD), and the ScaledGD algorithm
of Tong et al. (2020) for an instance of (BM) taken from (Zhang et al., 2018a,
2019b). The same initial points and the same step-size a = 2 x 1072 was used
for all three algorithms. (Left r = r*) Set n = 4 and r* = r = 2. All three
methods convergence at a linear rate, though GD converges at a slower rate due
to ill-conditioning in the ground truth. (Right r > r*) With n =4, r =4 and
r* = 2, overparameterization causes gradient descent to slow down to a sublinear
rate. ScaledGD also behaves sporadically. Only PrecGD converges linearly to the
global minimum.

Global convergence. If the function f can be assumed to admit no spurious local minima,
then under a strict saddle assumption (Ge et al., 2015, 2017; Jin et al., 2017), classical
gradient descent can be augmented with random perturbations to globally converge to €
suboptimality in O(1/A,log(1/e)) iterations, starting from any arbitrary initial point. In
the overparameterized regime, however, this global guarantee worsens by an exponential
factor to poly(1/e) iterations, due to the loss of local linear convergence.

Instead, under the same benign landscape assumptions on f, we show that PrecGD can
be similarly augmented with random perturbations to globally converge to € suboptimality
in O(log(1/€)) iterations, independent of A, = 0 and starting from any arbitrary initial
point. A major difficulty here is the need to account for a preconditioner (X7 X + nl)~!
that changes after each iteration. We prove an O(1/6?) iteration bound to § approximate
second-order stationarity for the perturbed version of PrecGD with a fixed n = 19, by
viewing the preconditioner as a local norm metric that is both well-conditioned and Lipschitz
continuous.

Optimality certification. Finally, a crucial advantage of the overparameterizing the
search rank r > r* is that it allows a posteriori certification of convergence to a global
minimum. We give a short proof that if X is € suboptimal, then this fact can be explicitly
verified by appealing to its second-order stationarity and its rank deficiency. Conversely, we
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prove that if X is stuck at a spurious second-order critical point, then this fact can also be
explicitly detected via its lack of rank deficiency.

1.2 Related work

Benign landscape. In recent years, there has been significant progress in developing
rigorous guarantees on the global optimality of local optimization algorithms like gradient
descent (Ge et al., 2016; Bhojanapalli et al., 2016a; Sun et al., 2016; Ge et al., 2017; Sun
et al., 2018). For example, Bhojanapalli et al. (2016b) showed that if the underlying convex
function ¢ is L-gradient Lipschitz and p-strongly convex with a sufficiently small condition
number L/u, then f is guaranteed to have no spurious local minima and satisfy the strict
saddle property of (Ge et al., 2015) (see also Ge et al. (2017) for an exposition of this
result). Where these properties hold, Jin et al. (2017, 2021) showed that gradient descent is
rigorously guaranteed (after minor modifications) to converge to e global suboptimality in
O(log(1/e)) iterations, starting from any arbitrary initial point.

Unfortunately, a priori global optimality guarantees, which must hold for all initializations
before running the algorithm, can often require assumptions that are too strong to be widely
applicable in practice Ma and Fattahi (2022a,b). For example, Zhang et al. (2018b, 2019b)
found for a global optimality guarantee to be possible, the underlying convex function ¢
must have a condition number of at most L/u < 3, or else the claim is false due to the
existence of a counterexample. And while Zhang (2021) later extended this global optimality
guarantee to arbitrarily large condition numbers L/u by overparameterizing the search
rank 7 > max{r*, 1(L/u — 1)*r*}, the result does require suitable strong convexity and
optimality assumptions on ¢. Once these assumptions are lifted, Waldspurger and Waters
(2020) showed that a global optimality guarantee based on rank overparameterization would
necessarily require r > n in general; of course, with such a large search rank, gradient descent
would no longer be efficient.

In this paper, we rigorously certify the global optimality of a point X after it has been
computed. This kind of a posteriori global optimality guarantee may be more useful in
practice, because it makes no assumptions on the landscape of the nonconvex function f, nor
the algorithm used to compute X. In particular, f may admit many spurious local minima,
but an a posterior: guarantee will continue to work so long as the algorithm is eventually
able to compute a rank deficient second-order point X*, perhaps after many failures. Our
numerical results find that PrecGD is able to broadly achieve an exponential speed-up over
classical gradient descent, even when our theoretical assumptions do not hold.

Ill-conditioning and Over-parameterization When minimizing the function ¢(X X7),
ill-conditioning in this problem can come from two separate sources: ill-conditioning of the
ground truth M* and ill-conditioning of the loss function ¢. Both can cause gradient descent
to slow down (Tu et al., 2016; Zhuo et al., 2021). In this work, we focus on the former kind of
ill-conditioning, because it is usually the more serious issue in practice. In applications like
matrix completion or matrix sensing, the condition number of the loss function ¢ is entirely
driven by the number of samples that the practitioner has collected—the more samples, the
better the condition number. Accordingly, any ill-conditioning in ¢ can usually be overcome
by collecting more samples. On the other hand, the ill-conditioning in M* is inherent to
the underlying nature of the data. It cannot be resolved, for example, by collecting more
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data. For these real-world applications, it was recently noted that the condition number of
M* can be as high as 10® (Cloninger et al., 2014). Indeed, if the rank of M* is unknown or
ill-defined, as in the over-parameterized case, the condition number is essentially infinite,
and it was previously not known how to make gradient descent converge quickly.

ScaledGD. Our algorithm is closely related to the scaled gradient descent or ScaledGD
algorithm of Tong et al. (2020), which uses a preconditioner of the form (X7 X)~!. They
prove that ScaledGD is able to maintain a constant-factor decrement after each iteration, even
as \r = Amin (X *T x *) becomes small and X* becomes ill-conditioned. However, applying
ScaledGD to the overparameterized problem with A, = 0 and a rank deficient X™* leads to
sporadic and inconsistent behavior. The issue is that the admissible step-sizes needed to
maintain a constant-factor decrement also shrinks to zero as A, goes to zero (we elaborate
on this point in detail in Section 6). If we insist on using a constant step-size, then the
method will on occasion increment after an iteration (see Fig. 1).

Our main result is that regularizing the preconditioner as (X7 X +nI)~! with an identity
perturbation 7/ on the same order of magnitude as the matrix error norm || X X7 — X*X*||
will maintain the constant-factor decrement of ScaledGD, while also keeping a constant
admissible step-size. The resulting iterations, which we call PrecGD, is able to converge
linearly, at a rate that is independent of the rank deficiency term \,, even as it goes to zero
in the overparameterized regime.

Riemann Staircase. An alternative approach for certifying global optimality, often known
in the literature as the Riemann staircase (Boumal, 2015; Boumal et al., 2016, 2020), is to
progressively increase the search rank r only after a second order stationary point has been
found. The essential idea is to keep the search rank exactly parameterized r = r* during the
local optimization phase, and to overparameterize only for the purpose of certifying global
optimality. After a full-rank e second order stationary point X has been found in as few
as O(log(1/€)) iterations, we attempt to certify it as e globally suboptimal by increasing
the search rank ry = r + 1 and augmenting X, = [X,0] with a column of zeros. If the
augmented X remains e second order stationary under the new search rank r, then it is
certifiably € globally suboptimal. Otherwise, X, is a saddle point; we proceed to reestablish
e second order stationarity under the new search rank r by performing another O(log(1/e))
iterations.

The main issue with the Riemann staircase is that choices of f based on real data often
admit global minimizers X* whose singular values trail off slowly, for example like a power
series 0;(X™*) ~ 1/ifor i € {1,2,...,7} (see e.g. Kosinski et al. (2013, Fig. S3) for a well-cited
example). In this case, the search rank r is always exactly parameterized r = r*, but the
corresponding e second order stationary point X becomes progressively ill-conditioned as
r is increased. In practice, ill-conditioning can cause a similarly dramatic slow-down to
gradient descent as overparameterization, to the extent that it becomes indistinguishable
from sublinear convergence. Indeed, existing implementations of the Riemann staircase are
usually based on much more expensive trust-region methods; see e.g. Rosen et al. (2019,
2020).

Notations. We denote \;(M) as the i-th eigenvalue of M in descending order, as in

AM(M) > Xo(M) > -+ > A\ (M). Similarly we use Apax and Apin to denote the largest and

smallest singular value of a matrix. The matrix inner product is defined (X,Y") def tr(XTY),
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and that it induces the Frobenius norm as | X||r = /(X, X). The vectorization vec(X)
is the usual column-stacking operation that turns a matrix into a column vector and ®
denote the Kronecker product. Moreover, we use || X|| to denote the spectral norm (i.e. the
induced 2-norm) of a matrix. We use V f(X) to denote the gradient at X, which is itself a
matrix of same dimensions as X. The Hessian V2 f(X) is defined as the linear operator that
satisfies V2f(X)[V] = limy_0 L[V f(X +tV) — Vf(X)] for all V. The symbol B(d) shows
the Euclidean ball of radius d centered at the origin. The notation O(:) is used to hide
logarithmic terms in the usual big-O notation.

We always use ¢(-) to denote the original convex objective and f(X) = ¢(XXT) to
denote the factored objective function. We use M* to denote the global minimizer of ¢(-).
The dimension of M* is n, and its rank is 7*. Furthermore, the search rank is denoted by 7,
which means that X is n x r. We always assume that ¢(-) Lipschitz gradients, and is (u,r)
restricted strongly convex (see next section for precise definition). When necessary, we will
also assume that ¢(-) has Ly-Lipschitz Hessians.

2. Convergence Guarantees

2.1 Local convergence

Let f(X) e #(XXT) denote the a Burer-Monteiro cost function defined over n x r factor

matrices X. Under gradient Lipschitz and strong convexity assumptions on ¢, it is a
basic result that convex gradient descent My = M — aV¢(M) has a linear convergence
rate. Under these same assumptions on ¢, it was shown by Zheng and Lafferty (2015a);
Tu et al. (2016) that nonconvex gradient descent X; = X — oV f(X) also has a linear
convergence rate within a neighborhood of the global minimizer X*, provided that the
unique unconstrained minimizer M* = arg min ¢ is positive semidefinite M™* > 0, and has a
rank 7* = rank(M™*) = r that matches the search rank.

Definition 1 (Gradient Lipschitz). The differentiable function ¢ : R™*™ — R is said to be
Lq-gradient Lipschitz if

V(M + E) = Vo(M)|p < Ly - [|[Ellp
holds for all M, E € R™*™,

Definition 2 (Strong convexity). The twice differentiable function ¢ : R™*™ — R is said to

be p-strongly convex if
(V26(M)|E), E) > p| Bl

holds for all M, E € R™ ™. It is said to be (u,r)-restricted strongly convex if the above
holds for all matrices M, E € R™ "™ with rank < r.

Remark 3. Note that Zheng and Lafferty (2015a); Tu et al. (2016) actually assumed
restricted strong convexity, which is a milder assumption than the usual notion of strong
convezity. In particular, if ¢ is p-strongly convex, then it is automatically (u,r)-restricted
strongly convex for all r < n. In the context of low-rank matriz optimization, many guarantees
made for a strongly conver ¢ can be trivially extended to a restricted strongly convex ¢,
because queries to ¢(M) and its higher derivatives are only made with respect to a low-rank
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matriz argument M = XXT. We also note that in the context of our work, the conditions
in Definitions 1 and 2 actually only needs to be imposed on symmetric matrices E. However,
for clarity we will follow the standard definition.

If r*, the rank of the unconstrained minimizer M™* > 0, is strictly less than the search
rank r, however, nonconvex gradient descent slows down to a sublinear local convergence
rate, both in theory and in practice. We emphasize that the sublinear rate manifests in
spite of the strong convexity assumption on ¢; it is purely a consequence of the fact that
r* < r. In this paper, we prove that PrecGD X = X — aVf(X)(XTX + nI)~! has a
linear local convergence rate, irrespective of the rank r* < r of the minimizer M* > 0.
Note that a preliminary version of this result restricted to the nonlinear least-squares cost
f(X) = JA(XXT) — b||* had appeared in a conference paper by the same authors (Zhang
et al., 2021).

Theorem 4 (Linear convergence). Let ¢ be Li-gradient Lipschitz and (u,2r)-restricted
strongly conver, and let M* = argmin ¢ satisfy M* = X*X*T and r* = rank(M*) < r.

Define f(X) aof H(XXT); if X is sufficiently close to global optimality

* H )‘72"*(M*)
FO0) = F00°) € gt 2

and if n is bounded from above and below by the distance to the global optimizer
Cip - | XXT = M*|[p <0 < Cup - [ XXT = M*||5
then PrecGD X, = X —aVf(X)(XTX +nI)~! converges linearly

FXy) = f(X) < (I —a-7)[f(X) = f(X7)] for a <min{l,1/(},

with constants

2

-1

H Ly +p

r=——(14Cw-(1+V2+ -\/1“—7‘*))
2L1< b ( V6ip

0 =A4Ly + (2L, + 8L3) - Ot + 4L - C 2.

Theorem 4 suggests choosing the size of the identity perturbation n in the preconditioner
(XTX +nI)~! to be within a constant factor of the error norm || XX — M*||p. This
condition is reminiscent of trust-region methods, which also requires a similar choice of
7 to ensure fast convergence towards an optimal point with a degenerate Hessian (see in
particular Yamashita and Fukushima 2001, Assumption 2.2 and also Fan and Yuan 2005).
The following provides an explicit choice of i that satisfies the condition in Theorem 4 in
closed-form.

Corollary 5 (Optimal parameter). Under the same condition as Theorem 4, we have

% XXT — Mg < [VAX)(XTX)Y2|p < 2Ly - | XXT — M5
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We provide a proof of Theorem 4 and Corollary 5 in Section 6.

Here, we point out that while PrecGD becomes immune to k£ = A (M*)/A(M*), the
condition number of the ground truth M*, its dependence on x = L;/u, the condition
number of the convex loss function ¢, is apparently much worse. Concretely, gradient descent
is known to have an iteration complexity of O(x - x -log(1/€)), while Theorem 4 says that
PrecGD has an iteration complexity of O(x* - log(1/¢)). (Note that the constants Cy, and
Cub in Theorem 4 have “units” of p and L; respectively, and therefore £ = O(L1x?).)

In our numerical experiments, however, both methods have the same dependence on Y.
In other words, the iteration complexity of PrecGD is strictly better than GD in practice.
Therefore, we believe that with a more refined analysis, our dependence on the latter can
also be improved. However, as we discussed in the introduction, the ill-conditioning of M™*
is usually much more serious in practice, so it is the main focus of our work.

2.2 Global convergence

If initialized from an arbitrary point Xy, gradient descent can become stuck at a suboptimal
point X with small gradient norm ||V f(X)||r < d. A particularly simple way to escape such
a point is to perturb the current iterate X by a small amount of random noise. Augmenting
classical gradient descent with random perturbations in this manner, Jin et al. (2017,
2021) proved convergence to an ¢ approximate second-order stationary point X satisfying
IVA(X)||r <6 and Vf(X) = =6 - I in at most O(1/§log(nr/§)) iterations, assuming
that the convex function ¢ is gradient Lipschitz and also Hessian Lipschitz.

Definition 6 (Hessian Lipschitz). The twice-differentiable function ¢ : R™*™ — R is said
to be Lo-Hessian Lipschitz if

IV2$(M)[E] = V(M) [E[lr < Lo - | Ellr - |M = M'||r
holds for all M,M', E € R"*",

It turns out that certain choices of f satisfy the property that every § approximate
second-order stationary point X lies poly(d)-close to a global minimum (Sun et al., 2016,
2018; Bhojanapalli et al., 2016b). The following definition is adapted from Ge et al. (2015);
see also (Ge et al., 2017; Jin et al., 2017).

Definition 7 (Strict saddle property). The function f is said to be (eg4, €m, p)-strict saddle
if at least one of the following holds for every X :

o VX = eg;
L4 Amln(vf(X)) < —epy;
e There exists Z satisfying Vf(Z) =0 and V?f(Z) = 0 such that | X — Z||r < p.

The function is said to be (eq, €, p)-global strict saddle if it is (eg, €x, p)-strict saddle, and
that all Z that satisfy Vf(Z) =0 and V2f(Z) = 0 also satisfy f(Z) = f(X*).

Assuming that f(X) def A(XXT) is (eg, €mr, p)-global strict saddle, Jin et al. (2017) used
perturbed gradient descent to arrive within a p-local neighborhood, after which it takes

10
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gradient descent another O(1/\, log(p/€)) iterations to converge to e global suboptimality.
Viewing €4, €y, p as constants with respect to €, the combined method globally converges to
e suboptimality in O(1/A,log(1/€)) iterations, as if f were a smooth and strongly convex
function.

If the rank r* < r is strictly less than the search rank r, however, the global guarantee
for gradient descent worsens by an exponential factor to poly(1/e) iterations, due to the loss
of local linear convergence. Inspired by Jin et al. (2017), we consider augmenting PrecGD
with random perturbations, in order to arrive within a local neighborhood for which our
linear convergence result (Theorem 4) becomes valid. Concretely, we consider perturbed
PrecGD or PPrecGD, defined as

X1 = X — o[V F(Xp) (X X +nD) ™"+ Gl (PPrecGD)

where we fiz the value of the regularization parameter n > 0 and apply a random perturbation
(x whenever the gradient norm becomes small:

G~ B(B) V(X)) (X Xk +0ixd) 2| p < €, and k> Kjasy + T,
(=0 otherwise.

Here, kj.¢ denotes the last iteration index for which a random perturbation was made.
The condition k > kj.st + T ensures that the algorithm takes at least 7 iterations before
making a new perturbation.

The algorithm parameters are the step-size a > 0, the perturbation radius 5 > 0,
the period of perturbation T, the fixed regularization parameter i > 0, and the accuracy
threshold € > 0. We show that PPrecGD is guaranteed to converge to an e second-order
stationary point, provided that the following sublevel set of ¢ (which contains all iterates
Xo, X1, ..., Xk) is bounded:

X = (X € RV 6(XXT) < 6(XoXT) + 20/ Xol[E 4+ - afe}.

Let I' = maxxey | X|r. Below, the notation O(-) hides polylogarithmic factors in the
algorithm and function parameters n, L1, Lo, I', the dimensionality n, r, the final accuracy
1/e, and the initial suboptimality f(X¢) — f(X™*). The proof is given in Section 7.

Theorem 8 (Approximate second-order optimality). Let ¢ be Lq-gradient and Lo-Hessian

Lipschitz. Define f(X) d:efqb(XXT) and let X* = argmin f. For any e = O(1/(La\/I'? + 1))

and with an overwhelming probability, PPrecGD with parameters a = n/t1, 8 = O(e/La),
and T = O(L1T? /(n/Lge)) converges to a point X that satisfies

(VAX), V)< e |VIxy (VAX)V]LVY> = Lae- VI, foralV, (3)

where ||V x5 dzefHV(XTX +nI)Y?||p in at most

JERC R

n2 - 2

> iterations
where Lq = 5max{fy, 2Ty /T2 +n}/n*5, £1 = 9T?Lq, o = (4T + 2) Ly + 4T Ls.

11
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In Theorem 8, the total number of iterations it takes to converge to an approximate
second-order stationary point depends additionally on I', the maximal radius of the iterates.
The factor of I' is largely an artifact of the proof technique, and does not appear in the
practical performance of the algorithm. Previous work on naive gradient descent (see
Theorem 8 of Jin et al. (2017)) also introduced a similar factor. Clearly, I is finite if ¢(-)
is coercive, i.e., it diverges to oo as || X||p — 0o0. (See Lemma 29.) In many statistical and
machine learning applications, the loss function is purposely chosen to be coercive.

Assuming that f is (eg, eq, p)-global strict saddle, we use PPrecGD to arrive within
a p-local neighborhood of the global minimum, and then switch to PrecGD for another
O(log(p/€)) iterations to converge to e global suboptimality due to Theorem 4. (If the search
rank is overparameterized r > r*, then the switching condition can be explicitly detected
using Proposition 11 in the following section.) Below, we use O(-) to additionally hide
polynomial factors in Ly, Lo, u, I', while exposing all dependencies on final accuracy 1/e and
the smallest nonzero eigenvalue A« (M™*).

Corollary 9 (Global convergence). Let ¢ be Li-gradient Lipschitz and Lo-Hessian Lipschitz

and (u, 2r)-restricted strongly conver, and let M* = argmin ¢ satisfy M* = X*X*T and

r* = rank(M*) < r. Suppose that f(X) ) d(XXT) satisfies (eg,€m, p)-global strict saddle

with 2 (00
1 W As (M
. AL - 02 < O

2 ot en A S T T (M)

Then, do the following:

1. (Global phase) Run PPrecGD with a fized n = ny < T2 until |V f(Xk)||F < €, and
Amin(V2f (X)) > —€m, and Amin (X} Xg) < p;

2. (Local phase) Run PrecGD with n = |Vf(X)(XTX)™!|r and a = 1/4.
The combined algorithm arrives at a point X satisfying f(X) — f(X*) < € in at most

(L0100 (1 1Y g (RO i

2
o €9 €H

Corollary 9 follows by running PPrecGD until it arrives at an (€4, €f)-second-order sta-
tionary point Xy, (Theorem 8), and then using the global strict saddle property (Definition 7)
to argue that X}, is also rank deficient, with Amin(Xng) < p? via Weyl’s inequality. It
follows from second-order optimality and rank deficiency that X} is sufficiently close to
global optimality (Proposition 10 below), and therefore switching to PrecGD results in linear
convergence (Theorem 4). Viewing €4, €, p as constants, the combined method globally
converges to € suboptimality in O(log(1/€)) iterations, as if f were a smooth and strongly
convex function, even in the overparameterized regime with r > r*.

Here, we point out that the strict saddle property (Definition 7) is usually defined for
a second-order point measured in the Euclidean norm || - |7, but that Theorem 8 proves
convergence to a second-order point measured in the local norm || - ||x . Clearly, for a fixed
7 = Ngx, the two notions are equivalent up to a conversion factor. In deciding when to
switch from PPrecGD to PrecGD, Corollary 9 uses the Euclidean norm (via Proposition 10
below) to remain consistent with the strict saddle property. In practice, however, it should

12
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be less conservative to decide using the local norm (via Proposition 11 below), as this is the
preferred norm that the algorithm tries to optimize.
3. Certifying Global Optimality via Rank Deficiency

We now turn to the problem of certifying the global optimality of an X computed using
PrecGD by appealing to its rank deficiency. We begin by rigorously stating the global
optimality guarantee previously quoted in (2). The core argument actually dates back to
Burer and Monteiro (2005, Theorem 4.1) (and has also appeared in Journée et al. (2010) and
Boumal et al. (2016, 2020)) but we restate it here with a shorter proof in order to convince
the reader of its correctness.

Proposition 10 (Certificate of global optimality). Let ¢ be twice differentiable and convex

and let F(X) % ¢(XXT). If X satisfies Amin(XTX) < €y and

(VIX),V) < e Ve, (VIX)WVLV) = —en - [VIE for all V,
where €4, €, €y > 0, then X has suboptimality
F(X)—f(X*)<Cy-€+Ch-eqg+Cy €.
where Cy = 3||X||F and Cpy = 1| X*||% and Cy = 2||VZ2o(XXT) ||| X3
Proof Let (u,,v,,0,) the r-th singular value triple of X, i.e. we have Xv, = o,u, with
lvr|l = ||lur]] = 1 and 62 = Amin(XTX). For M = XXT and M* = X*X*T'| the convexity
of ¢ implies ¢p(M*) > ¢(M) + (Vp(M), M* — M) and therefore
F(X) = f(X7) = ¢(M) = ¢(M*) < (VS(M), M) — Amin[VO(M)] - tr(M*).

Substituting V' = X into the first-order optimality conditions, as in

(VI(X),V) = 2(Vo(XXT)X, X) < e|[Vl|r = ¢ - 2C,

yields (Vo(M), M) < C, - €. Substituting V = yv! with an arbitrary y € R with ||y| = 1
into the second-order conditions yields

(VZFX)V], V) <2(Vop(XXT), VVT) + |V2p(XXT)|| - | XVT + VX%
=2y V(XX )y + |V2O(XXT)|| - 07 - [Jury” + yul |7

which combined with (V2f(X)[V],V) > —eu||V |3 = —en gives
1
—y V(X XT)y < Sen +2|V2H(XXT)| - of

and therefore —Apin[Vo(M)] < Sem + Ch - Amin (X7 X). [ |

Proposition 10 can also be rederived with respect to the local norm in Theorem 8. We
omit the proof of the following as it is essentially identical to that of Proposition 10.

13
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Proposition 11 (Global certificate in local norm). Let ¢ be twice differentiable and convex

and let f(X) d:efgb(XXT). If X satisfies Amin(XTX) < e\ and

(VIXLV) < g [VIxa (VAX)VIV) 2 —enr- [VIk, for all V.

where ||V x & IV(XTX +nI)~Y2|r and €4, e, €x > 0, then X has suboptimality

J(X) = f(X*)<Cy-eg+Chr-eqg-(ex+n)+Cx-ex

where Cy = %\/HXTXH% + 77HXH%7 and Cg = %HX*H% and Cy = 2HV2¢(XXT)HHX*H%.

Remark 12. Under the same conditions as Theorem 8, it follows that | X||p, || X*||Fr <T
and ||V2p(XXT)|| < L.

Now let us explain how we can use PrecGD to solve an instance of (BM) to an X
with provable global optimality via either Proposition 10 or Proposition 11. First, after
overparameterizing the search rank r > r*, we run PPrecGD with a fixed parameter n > 0
until we reach the neighborhood of a global minimizer X* where Theorem 4 holds. The
following result says that this condition can always be detected by checking Proposition 10.
Afterwards, we can switch to PrecGD with a variable parameter n = |V f(X)(XTX)~!|F
and expect linear convergence towards to global minimum.

Corollary 13 (Certifiability of near-global minimizers). Under the same condition as
Theorem 4, let X satisfy f(X) — f(X*) < %/LEQ. If r > r*, then X also satisfies

IVA(X)lp <201 X[[F -6, Amin(VEF(X)) = =Li-€, Amin(XTX) <e.

Proof It follows immediately from $ue > f(X)— f(X*) > 2u| XXT — M*|  in Lemma 16,
which yields [|[Vé(X X7T)||r < Lie via gradient Lipschitzness and Apin(X7X) = A (X XT) <
€ via Weyl’s inequality. Finally, to see why the second statement holds, note that the Hessian
of f(X) can be written as

(V,.V2F(X)[V]) = (V,Vo(XX)V) +(V, V(X XT) [XxVT + VXT] X).

Since ¢ is convex, the second term is always non-negative. Thus the second statement follows
from the fact that [|[Vo(XXT)|r < Lye. u

On the other hand, if PPrecGD becomes stuck within a neighborhood of a spurious
local minimum or nonstrict saddle point Z, then this fact can also be explicitly detected
by numerically evaluating the rank deficiency parameter €y = Apin(X7 X). Note that if

|IX — Z||r < p, then it follows from Weyl’s inequality that A2 (Z77) > A2 (XTX)—p.

min min

Corollary 14 (Spurious points have high rank). Under the same condition as Theorem 4,
let Z satisfy Vf(Z) =0 and V2f(Z) = 0. If r > r*, then we have

2 *
FO> IO = el 2) > e A

14
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Proof It follows from Theorem 4 that any point Z that satisfies Vf(Z) = 0 within the
neighborhood f(Z) — f(X*) < R = m)ﬁ* (M*) must actually be globally optimal
f(Z) = f(X*). Therefore, any suboptimal Z with Vf(Z) = 0 and V?f(Z) = 0 and
f(Z) > f(X*) must lie outside of this neighborhood, as in f(Z) — f(X*) > R. It follows

from Proposition 10 that Z must satisfy:
R< f(Z) = f(X*) <C\ - Mnin(Z21Z) < 2Ly tr(M*) - Amin(Z21 Z).

Conversely, if r > r* = rank(M™*), then Z is globally optimal f(Z) = f(X™*) if and only if it
is rank deficient, as in Apin(Z7Z) = 0. [ ]

Finally, we turn to the practical problem of evaluating the parameters in Proposition
10. It is straightforward to see that it costs O(nr? + r®) time to compute the gradient
norm term €, = ||V f(X)|r and the rank deficiency term Amin(X7 X), after computing the
nonconvex gradient Vf(X) in n - poly(r) time via the gradient oracle. To compute the
Hessian curvature ey = —Amin[V2f(X)] without explicitly forming the nr x nr Hessian
matrix, we suggest using a shifted power iteration

Vier1 = Vk/HVkHF where Vi, = AV, — VQf(X)[Vk]’

where we roughly choose the shift parameter A so that A > Apnax[V2f(X)] and approximate
each Hessian matrix-vector product using finite differences

VIOV & S [VA(X + V) = V(X))

~ | =

The Rayleigh quotient converges linearly, achieving d-accuracy in O(log(1/d)) iterations
(Kaniel, 1966; Paige, 1971; Saad, 1980). Each iteration requires a single nonconvex gradient
evaluation Vf(X + tV), which we have assumed to cost n - poly(r) time. Technically,
linear convergence to Amin(V2f(X)) requires the eigenvalue to be simple and well separated.
If instead the eigenvalue has multiplicity b > 1 (or lies within a well-separated cluster
of b eigenvalues), then we use a block power iteration with block-size b to recover linear
convergence to Apin[V2f(X)], with an increased per-iteration cost of O(nb) time (Saad,
1980).

4. Preliminaries

Our analysis will assume that ¢ is L-gradient Lipschitz and (u, 2r)-restricted strongly convex,
meaning that
HIE|E < (V2o(M)[E), E) < L||E| (4)

in which the lower-bound is restricted over matrices M, E whose rank(M) < 2r and
rank(E) < 2r. (See Definition 1 and Definition 2.) The purpose of these assumptions is
to render the function ¢ well-conditioned, so that its suboptimality can serve as a good
approximation for the matrix error norm

F(X) = f(X*) ~ | XXT — M*||% up to a constant.

15



ZHANG, FATTAHI, AND ZHANG

In turn, we would also expect the nonconvex gradient V f(X) to be closely related to the
gradient of the matrix error norm || X X7 — M*||% taken with respect to X. To make these
arguments rigorous, we will need the following lemma from Li et al. (2019, Proposition 2.1).
The proof is a straightforward extension of Candes (2008, Lemma 2.1).

Lemma 15 (Preservation of inner product). Let ¢ be L-gradient Lipschitz and (u,r)-
restricted strongly convex. Then, we have
2
p+ L

L—p
(V2(M)[E),F) - (E, F)| < Ltu

IE||F[[Fllr

for all rank(M) < r and rank(E 4+ F) < r.

Lemma 16 (Preservation of error norm). Let ¢ be L-gradient Lipschitz and (., 2r)-restricted

strongly convex. Let M* = argmin ¢ satisfy M* = 0 and rank(M*) < r. Define f(X) deof

&(XXT) and let X* = argmin f. Then f satisfies
1 * * 1 *
SHIXXT — ME < F(X) — f(X7) < SLIXXT - M

for all rank(M) < r.

Lemma 17 (Preservation of error gradient). Under the same conditions as Lemma 16, we
have

IVFOlr 2 v- max [(B,XYT+YXT) - d|BIrIXY" +YX |r],  (50)

where v = 3(pu+ L) and § = ﬁ—:}j and E = XXT — M*.

Proof Let Y* denote a maximizer for the right-hand side of (5a), and let II denote the
orthogonal projector onto

range(X) + range(X™) = {Xu + X v : u,v € R"}.

(Explicitly, IT = QQT where Q = orth([X, X*]).) We claim that the projected matrix
Y = IIY™* is also a maximizer. Note that, by the definition of II, we have X = IIX and
E =T1IFETI. It follows that
(XYT+vx" By =M [XY*" + Y*XT]1IL E)
=(xy*" +y*XT IEN) = (XY + Y*XT E),
and
IXYT + Y X7 || p = O XY + Y X ] O|p < | XY + Y XT||p,

and [|Y||r = [|[IY*||r < ||Y*||F < 1. Therefore, we conclude that Y is feasible and achieves
the same optimal value as the maximizer Y*.
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Now, let Y* = IIY* without loss of generality due to the above. We evoke the lower-bound
in Lemma 15 and V¢(M™*) = 0 to obtain the following

(VI(X),Y*) = (Vo(XXT) = Vo(M*), XY +Y*XT)
= / 1 (V2p(M* +tE)[E), XY*T + y*XT) dt
0
>v- (B, XY +Y*XT) =6 ||E|lp- | XY +Y*XT||f]

where we crucially note that rank(XY*? + Y*XT + E) < 2r because XY*T = IIXY*TI
and E = IIFII and rank(II) < rank(X) + rank(X™*) < 2r. We conclude that (5a) is true,
because Y* is a maximizer for the right-hand side of (5a). [

5. Local Sublinear Convergence of Gradient Descent

In order to explain why PrecGD is able to maintain linear convergence in the overparameter-
ized regime r > r*, we must first understand why gradient descent slows down to sublinear
convergence. In this paper, we focus on a property known as gradient dominance (Polyak,
1963; Nesterov and Polyak, 2006) or the Polyak-Lojasiewicz inequality (Lojasiewicz, 1963),
which is a simple, well-known sufficient condition for linear convergence. Here, we use the
degree-2 definition from Nesterov and Polyak (2006, Definition 3).

Definition 18. A function f is said to satisfy gradient dominance (in the Euclidean norm,)
if it attains a global minimum f* = f(X*) at some point X* and we have

JX) - PSR = X - < IV (6)

for a radius constant R > 0 and dominance constant T > 0.

If the function f is additionally ¢-gradient Lipschitz, as in
l
F(X +aV) < F(X) +a (VF(X),V) + 5a? VI,

then it follows that the amount of progress made by an iteration of gradient descent
Xt =X —aVf(X) is proportional to the gradient norm squared:

F(X1) < J(X) = a {VF(X), VI(X) + Sa? V(X
= x) - a (1= 5o ) IVSCOIE
<JX) = SIVFCOIE  witha <.

The purpose of gradient dominance (6), therefore, is to ensure that the gradient norm
remains large enough for good progress to be made. Substituting (6) yields

FC) = fr < (=ra) (F(X) ~ f) witha <. @

17



ZHANG, FATTAHI, AND ZHANG

Starting from an initial point Xy within the radius f(Xo) — f* < R, it follows that gradient
descent Xy = X — %V f(X)) converges to an e-suboptimal point X} that satisfies

f(Xg) — f* <einat most k= O((7/¢)log(R/¢)) iterations.

The nonconvex objective f(X) &f #(X XT) associated with a well-conditioned convex

objective ¢ is easily shown to satisfy gradient dominance (6) in the exactly parameterized
regime r = r*, for example by manipulating existing results on local strong convexity (Sun
and Luo, 2016) (Chi et al., 2019, Lemma 4). In the overparameterized case r > r*, however,
local strong convexity is lost, and gradient dominance can fail to hold.

The goal of this section is to elucidate this failure mechanism, in order to motivate the
“fix” encompassed by PrecGD. We begin by considering a specific instance of the following
nonconvex objective fy, corresponding to a perfectly conditioned quadratic objective ¢g:

def 1
fo(X) = do(XXT) = fi + SIIXXT — M* . (8)
The associated gradient norm has a variational characterization
IV fo(X)|lr = max (Vfp(X),Y) = max (XX - M* XY"+YX"), (9
IY|r=L IY]r=1

which we can interpret as a projection from the error vector X XT — M* onto the linear
subspace {XYT + Y XT :Y € R"™"}, as in

IV fo(X)|Ir = IXXT = M*|[p[| XY™ + Y*XT || cos 6. (10)
Here, the incidence angle 6 is defined
(XXT — M*, XYT +YXT)

0= 11
BT e [XXT — MA|pl[XYT + Y XT|5 (11)

and Y™* is a corresponding maximizer for (11) scaled to satisfy ||Y*||r = 1. Substituting the
suboptimality fo(X) — f§ in place of the error norm || X X7 — M*||r via Lemma 16 yields a
critical identity:

SIV S0 = XY+ VXT3 cos” - [o(X) — £ (12)

The loss of gradient dominance implies that at least one of the two terms || XY*T + Y*X7T||p
and cos 6 in (12) must decay to zero as gradient descent makes progress towards the solution.

The term cos @ in (12) becomes small if the error X X7 — M* becomes poorly aligned
to the linear subspace {XY”? + Y XT : Y € R™"}. In fact, this failure mechanism cannot
occur within a sufficiently small neighborhood of the ground truth, due to the following key
lemma. Its proof is technical, and is deferred to Appendix A.

Lemma 19 (Basis alignment). For M* € R™*"™ M* = 0, suppose that X € R™*" satisfies
I XXT — M*||p < pAp= (M*) with r* = rank(M*) and p < 1/+/2. Then the incidence angle
0 defined in (11) satisfies

(7 = XXD)M*(I - XXD)|lp _ 1 p

sinf = < ——— 13
I XXT — M*||p T V21— p? (13)

where T denotes the pseudoinverse.
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The term || XY*T + Y*X7T||r in (12) becomes small if the error vector X X7 — M*
concentrates itself within the ill-conditioned directions of {XYT +YXT :Y € R™"}. In
particular, if X X7 — M™* lies entirely with the subspace {u,y? + yul : y € R"} associated
with the r-th eigenpair (A, u,) of the matrix X X7, and if the corresponding eigenvalue
Ar = Amin(XTX) decays towards zero, then the term || XY*T + Y*X7||r must also decay
towards zero. The following lemma provides a lower-bound on || XY*T + Y*X7T||r by
accounting for this mechanism.

Lemma 20 (Basis scaling). For any H € R™" and X € R"*", there exists a choice of
Y* = arg maxy <H, XyT + YXT> such that

IXY*T £ V*XT)% > 2- M(XXT) - |[Y*)% where k = rank(X).

Proof Define J : R"*" — 8™ such that J(Y) = XYT +YX7T for all Y. We observe that
Y* = J1(H) where t denotes the pseudoinverse. Without loss of generality, let X = [%;0]

where ¥ = diag(o1,...,0,) and 01 > --- > 0, > 0. Then, the minimum norm solution is
written

. SYT +wy SYf [Huy Hpll|P [LH:

jTH:ar min [ 1 2| - = |2 ET,
( ) gY:[Yl;YQ] Yo 0 H1T2 Hoo H%;

where X = diag(afl, cee a,;l, 0,...,0). From this we see that the pseudoinverse J' has
operator norm

1T lop =  max (| THH)|| = (V20r) ",

H|lF=1

with maximizer H}; = 0 and Hj, = 0 and Hj, = %ekhT, where h is any unit vec-
tor with ||h|| = 1 and ey is the k-th column of the identity matrix. The desired claim
then follows from the fact that Y* € range(J T) and therefore Y* = J17 (Y*) and
IY*1E < 1703 - 1T (V)13 =

Suppose that cos? @ > 1/2 holds due to Lemma 19 within the neighborhood f(X)—f* < R
for some radius R > 0. Substituting Lemma 20 into (12) yields a local gradient dominance
condition

SV Fo O 2 A (X7 X) - [fofX) — . (14)

In the overparameterized case r > r*, however, (14) does not prove gradient dominance,
because Amin(X 7 X) becomes arbitrarily small as it converges towards A,(M*) = 0. Indeed,
the inequality (14) suggests a sublinear convergence rate, given that

fo(X4) = f§ < (1 = edmin (X7 X)) (fo(X) = £3), (15)

has a linear convergence rate 1 — a\,.(XX7) that itself converges to 1.

6. Local Linear Convergence of Preconditioned Gradient Descent

In the literature, right preconditioning is a technique frequently used to improve the condition
number of a matrix (i.e. its conditioning) without affecting its column span (i.e. its
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alignment); see e.g. Saad (2003, Section 9.3.4) or Greenbaum (1997, Chapter 10). In this
section, we define a local norm and dual local norm based on right preconditioning with a
positive definite preconditioner

def def 1/2 def

1/2 * —
1Ulxn = 0P, VI, = VP, llF, Pyy = XTX +1l.

If we can demonstrate gradient dominance under the dual local norm

FX) = <R = 1xy [f(X) = 1<V,

DO | —

for some radius constant R > 0 and dominance constant 7p > 0, and if the function f
remains gradient Lipschitz under the local norm

FX +aV) < f(X)+a(VFX),V)+ &T”’aQHVH%(,m

for some new lipschitz constant £x ;, then it follows from the same reasoning as before that
the right preconditioned gradient descent iterations X, = X — oV f(X)Py %7 achieves linear
convergence

fXD) —f<l—a-1xy) - (f(X)=F) with step size a < E;f,ln'

Starting from an initial point Xy within the radius f(Xo) — f* < R, it follows that precondi-
tioned gradient descent converges to an e-suboptimal point X}, that satisfies f(Xy) — f* <e
in at most k = O((7x,,/lx,5) log(R/€)) iterations.

In order to motivate our choice of preconditioner P ,, we return to the perfectly
conditioned function fo(X) = f§ + 3[|XXT — M*||%. considered in the previous section.
Repeating the derivation of (10) results in the following

IVfo(X) %, = max (Vfo(X),Y)= max (XX" - M*" XY"+YX")
Y lx,=1 [Ylp=1
= XXT = M*||p| XV*T + Y*XT || cos b, (16)

in which the incidence angle 6 coincides with the one previously defined in (11), but the
corresponding maximizer Y* is rescaled so that ||Y*|x, = 1. Suppose that cos?§ > 1/2
holds due to Lemma 19 within the neighborhood f(X) — f* < R for some radius R > 0.
Evoking Lemma 20 with ¥ « YP)_;IW/ “and X + X P);;/ ? to lower-bound || XY*T +Y*XT ||
yields:

ST FoOl5)? 2 Amin (P XTX L) - [1o(X) — f5). (17)

While right preconditioning does not affect the term cos 6, which captures the alignment
between the column span of X and the ground truth M™*, it can substantially improve the
conditioning of the subspace {XYT + Y XT .Y € R™"}.

In particular, choosing 77 = 0 sets Px o = XTX and )\min(PX;/zXTXP)}}n/Q) = 1. While
fo fails to satisfy gradient dominance under the Fuclidean norm, this derivation shows that
gradient dominance does indeed hold after a change of norm. The following is a specialization
of Lemma 24 that we prove later in this section.
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Corollary 21 (Gradient dominance with n = 0). Let ¢ be (u, r)-restricted strongly convex

and L-gradient Lipschitz, and let M* > 0 satisfy Vo(M*) = 0 and r* = rank(M*) < r.

Then, f(X) & H(XXT) satisfies gradient dominance

:U’)‘?"*( *) /‘62 * 1
m = i'[f(X)—f]S

In fact, the resulting iterations X, = X —aV f(X)(XTX)™! coincide with the ScaledGD
of Tong et al. (2020). One might speculate that gradient dominance in this case would
readily imply linear convergence, given that

FIX0) = fF< (U =arxo)(f(X) = f)  with o < max{1, £ }.

However, the Lipschitz parameter £x , may diverge to infinity as  — 0, and this causes
the admissible step-size o < max{l,ﬁ)}}n} to shrink to zero. Conversely, if we insist on
using a fixed step-size o > 0, then the objective function may on occasion increase after
an iteration, as in f(Xy) > f(X). Indeed, this possible increment explains the apparently
sporadic behavior exhibited by ScaledGD.

Measured under the Euclidean norm, the function f is gradient Lipschitz but not gradient
dominant. Measured under a right-preconditioned P-norm with P = X7 X, the function f
is gradient dominant but not gradient Lipschitz. Viewing the Euclidean norm as simply a
right-preconditioned norm with P = I, a natural idea is to interpolate between these two
norms, by choosing the preconditioner Py, = X TX +nl. It is not difficult to show that
keeping 7 sufficiently large with respect to the error norm || X X7 — M*||r is enough to
ensure that f continues to satisfy gradient Lipschitzness under the local norm. The proof
of Lemma 22 and Lemma 23 below follows from straightforward linear algebra, and are
deferred to Appendix B and Appendix C respectively.

f(X) =17 < (IVFX) k0 (18)

[\

Lemma 22 (Gradient Lipschitz). Let ¢ be L-gradient Lipschitz. Let M* = argmin ¢ satisfy

M* > 0. Then f(X) d:efcb(XXT) satisfies

FX V) < FX) + (VA V) + STV,

2
2| XXT — M*||r 4+ 4|V x4 < V11X )
)\min + n

where €x,, = L- |4+ N (XTX) 41 (XTX)

Lemma 23 (Bounded gradient). Under the same conditions as Lemma 22, the search
direction V. =V f(X)(XTX +nI)~! satisfies |V x., = VO, < 2L XXT — M*||p.

Substituting X = X — aVf(X)(XTX +nI)~! into Lemma 22 yields the usual form of
the Lipschitz gradient decrement

x Ux, .
F(X) < FX) = a- (IVF %) + o - =S IVAX) 1)° (19a)
in which the local Lipschitz term £, is bounded by Lemma 23 as

[ XXT — M*||r
Amin(XTX) +77

Oxy <AL+ (2L + 8L?) (19b)

2
+4L3 . <|XXT B M*|F>

)\min(XTX) + n

21



ZHANG, FATTAHI, AND ZHANG

By keeping 7 sufficiently large with respect to the error norm || X X7 — M*||, it follows
that £x, can be replaced by a global Lipschitz constant ¢ > {x , that is independent of X.

Our main result in this paper is that keeping n sufficiently small with respect to the
error norm || X X7 — M*|r is enough to ensure that f satisfies gradient dominance, even in
the overparameterized regime where r > r*.

Lemma 24 (Gradient dominance). Let ¢ be L-gradient Lipschitz and (u,2r)-restricted

strongly convex. Let M* = argmin¢ satisfy M* »= 0 and r* = rank(M*) < r. Then,

f(X) i H(XXT) satisfies

FX) - s g ) =

(1+L/p)
[ co+ 1T —T1* IV,

-1/2
= (1+n- <
ﬁ( 1 ||XXT—M*||F) = I XXT = M*||r

where ¢cg = 142 and ¢; = (L + p) /+/iiL.

Substituting f(X) — f* < £|| XXT — M*||% from Lemma 16 into Lemma 24 recovers the
usual form of gradient dominance

(V£ ) (20a)

N

Txn - [f(X) = f7] <
in which the local dominance term 7x , reads

T s 1+ Jotayr—r _1>0
o T IXXT =M '

_ 20b
5T (20b)
By keeping 7 sufficiently small with respect to the error norm || XX — M*||F, it follows
that 7x, can be replaced by a global dominance constant 7 < 7x, that is independent of
X. Finally, substituting the global Lipschitz constant ¢ > {x , and the global dominance
constant 7 < 7x, into (19) and (20) yields a proof of linear convergence in Theorem 4.
Proof [Proof of Theorem 4]It follows from (19b) that

2L +8L?  AL3? gt

n>Cp |XXT - M*lp = Ix,<AL+—"——+ =1L
Cib i

Substituting £ > £x , into (19a) yields a guaranteed gradient decrement
a . ) _
fX5) - f(X) < —§(||Vf(X)||X,n)2 <0 for v < min{1, 71}, (21)

for a fixed step-size a > 0. It follows from (20b) that

—1
2 . gk
D Co- IXXT =M = Tx,nsz(”mCl : ) et

Substituting 7 < 7x ,, and gradient dominance (20a) into the decrement in (21) yields linear
convergence

FX4) = f*<(t—a-7)- (f(X)— f*) for @ < min{1, 67"},
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which is exactly the claim in Theorem 4. |
Proof [Corollary 5] Within the neighborhood stated in Lemma 24 where f is gradient

dominant, it follows immediately from Lemma 23 and Lemma 24 that the choice of n =
IV7(X) g satisties

H *
Nl IXXT = M*||p < [IVF(X)|k0 < 2L | XXT = M*|F,
which is exactly the claim in Corollary 5. |

We now turn our attention to the proof of Lemma 24. Previously, in motivating our
proof for gradient dominance under the Euclidean norm, we derived a bound like

IVFo(X)IF = max (XXT = M*, XYT +yYXT)
Y||r=1

= | XXT — M*||p|| XY + Y*XT||p cos b (22)

where Y* is a maximizer such that [|[Y*||r = 1. We found that cos 6 is always large, because
the error X X7 — M* is guaranteed to align well with the linear subspace {XY7 + Y X7 :
Y € R™ "}, but that the term || XY*T + Y*X7T||r can decay to zero if the error concentrates
within the degenerate directions of the subspace.

In our initial experiments with PrecGD, we observed that small values of n caused the
error to preferrably align towards the well-conditioned directions of the subspace. Suppose
that X contains k large, well-conditioned singular values, and r — k near-zero singular values.
Let X} denote the rank-k approximation of X, constructed by setting the r — k near-zero
singular values of X as exactly zero:

k
X, = ZaiuiviT = argXH%in {||)~( - X||: rank(f() < k‘} .
i:l c nxr

Then, our observation is that small values of 7 tend to concentrate the error X X© — M*
within the well-conditioned subspace {X; Y7 + Y X[ : Y € R}

In order to sharpen the bound (22) to reflect the possibility that {XY7 +Y X7 :Y ¢
R™ 7} may contain degenerate directions that do not significantly align with the error vector
XXT — M*, we suggest the following refinement

IV fo(X)||F > Jax {(XXT - M* XYT +YXT) : Yo, =0fori >k}
=1

= max (XXT - M* X, YT +vX])
Y llr=1

= | XXT = M*||pl| XY™ + Y X || Fcos O,

where each cosf), measures the alignment between the error X X7 — M* and the well-
conditioned subspace {X; Y7 +YX] : Y € R"™"}. While cos 6 must be necessarily be
worse than cos 6, given that the well-conditioned subspace is a subset of the whole subspace,
our hope is that eliminating the degenerate directions will allow the term || XY + Y X[|| ¢
to be significantly improved from || XY*T + Y*X7| 5.
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Lemma 25 (Alignment lower-bound). Let X = >°I_, oyuv] with |ju;|| = ||vi|| = 1 and
o1 > --- > 0, denote its singular value decomposition. Under the same conditions as Lemma
24, we have

195, Bt L costy—0

max . 23
| XXT = M*|lp ~ k2 V2 T4/ M (XXT) %)

where § = é—;/’j and each 0y is defined

0 (XXT — M*, X, YT + Y X])
cosf, = ma ,
BT yemner [ XXT — M| p|| X YT + YXT | 5

k
Xy = Z ol . (24)
i=1

Proof Let E = XXT — M* and JY)= XYT4+YXT and J, = X3, YT —|—YX,?. Repeating
the proof of Lemma 17 yields the following corollary

IV A5 = v {| max <E,J<Y>>—6||EHFHJ<Y>HF}

Yllxn=1

where v = (u+ L) and § = L+ For any k € {1,2,...,r}, we can restrict this problem so

that

"'
V70T 2 {”Ylﬁlax—l (B,T(Y)) =S Er|TY)F:Yvi=0 fori> ]{7}
. {||Yf|f§‘x1 (B, (V) - 5|yE|F|,jk(y>HF}
> v || Bl p|| Te(Y) || (cos O — 9)

where Y = JIJ(E) denotes the solution of (24) rescaled so that [|Y||x, = 1. Let P =
XTX + nI and observe that HY;,;H%Q77 = ||y P22, Tt follows from Lemma 20 with

X + X P72 and Y + Y P'/? that
XY T + VXN = 2 Anin (PTH2XT X0 P7H2) 1Y%

In turn, we have P = Y (02 + n)v;v] and therefore

I\ (P—1/2XTX P_1/2) . 01'2 013 1
: = min = = .
. kK i<k | n+o? n+o: 1+n/o}

Substituting these together yields

IV v - 1 Ellp - [T (Y) P - (cos O — 6)
Sutl V2
2

NElF - ———
N

- (cos by — 9).
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From Lemma 25, we see that gradient dominance holds if the subspace { X Y7 + YX,Z’ :
Y € R™*"} induced by the rank-k approximation of X is well-conditioned, and if the error
vector X X1 — M* is well-aligned with it. Specifically, this is to require both A\ (X X7) and
cos 0 to remain sufficiently large for the same value of k. Within a neighborhood of the
ground truth, it follows from Weyl’s inequalty that A(XX7) will remain sufficiently large
for k = r*; see Lemma 26 below. In the overparameterized regime r > r*, however, it is
not necessarily true that cosf — 1 for £ = r*. Instead, we use an induction argument:
if cos 0 is too small to prove gradient dominance, then the smallness of cosfj provides
a lower-bound on A\ 1(XX7T) via Lemma 27 below. Inductively repeating this argument
for k = r*,7* 4+ 1,... arrives at a lower-bound on \,(XX7). At this point, Lemma 19
guarantees that cos @, is large, and therefore, we conclude that gradient dominance must
hold.

Lemma 26 (Base case). Under the same conditions as Lemma 24, let f(X) — f(X*) <

m A2 (M™*). Then,

A (XXT) = (VT4 L/i—1) - |XXT = M.
Proof By our choice of neighborhood, we have

* 2 * 1 *
IXX" — M H%Sﬁ-[f(X)*f(X )] Sm'ﬁ*(M )-

The desired claim follows from Weyl’s inequality:
A (XXT) = N (M* + X XT — M)
> A (MF) = [ XXT — M*||p
> (V1+Lin—1)- IXXT = M*| .

Lemma 27 (Induction step). Under the same conditions as Lemma 24, let f(X) —
fXY) < m A2, (M*). Then, cosOy, defined in (24) gives the following lower-bound

on Mgy (XXT):

N XXTY. (r—k 2
kH( ) - (r ) pL < L ) — cos? 0.

— >
[ XXT — M*||% (L+wp? = \L+p

Proof For k < r, we have

(1 — Xp X)X XT — M) (I - X, X))|3
< = XeXDX XTI = Xe XD+ 1 — X XM (I — X X)) (1%
N2 (XXTY(r— k) + ||(1 - xXHMH(1 - xx1)|%
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and therefore
gy < Mt XN —B) (= XXDM (- XX
- XXT - M| [XXT — M*||%

By the choice of the neighborhood, we have

Ly 2 \ 1 .
HXXT—MW%SZ-UMW—ﬂXNéiifm‘ﬁ% )-

1 < -L into Lemma 19 proves that

V1+L/p — V2

(I — XXT)M*(T — XX,
IXXT — M+,

Substituting p =

1 p %
21—p2 2L

sin® 6, = <

Splitting

1_“_(1/f o (BL2 = p?)
\L+pu 2L (L + p)?

2L
L \? uL
> +
_<L+u> (L + p)?

and bounding cos? ), > 1 — sin? 6}, yields the desired bound. |

Rigorously repeating this induction results in a proof of Lemma 24.
Proof [Lemma 24] Lemma 25 proves gradient dominance if we can show that both cos 6y,
and \g(X X7T) remain large for the same value of k. By Lemma 26 we have

Ar (XXT) >V1+L/p—1>vV2-1= ! (25)
[XXT =M = S BEERCY
If cosf« > ﬁu’ then substituting (25) into Lemma 25 with & = r* yields gradient
dominance:
IVFse | (L) (L L=p\(, 0\
Xt 2 va \Txa Iwa) T o
~1/2
n 142
>—11 . . 26
. ﬁ( 1 XXT - A (26)

Otherwise, if cos 0« < LLW, then we proceed with an induction argument. Beginning at the
base case k = r*, we evoke Lemma 27 and use cos 0, < LL—W to lower-bound A4 1(XX7T) by
a constant:
X (XXTY (r—k L 2
kH( ) 5 )— H 5 > —cos29k>0,
[ XXT — M| (L +p) L+p
A1 (XXT) . 1Vl
| XXT — M*||p = Vr—r L+p
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If cos O 1 > LL_W, then substituting (27) into Lemma 25 yields gradient dominance:
IV (X)),  (u+ L) ( L L—M> <1+ n )1/2
[ XXT—M*|— V2 \L+p L+up Ae+1(XXT)
S ~1/2
L i (28)
eI =M e )
Otherwise, if cosfy1 < LL—HA’ then we repeat the same argument in (27) with k& < k + 1,
until we arrive at k = r. At this point, Lemma 27 guarantees cos 6, > LL-HL’ since

)‘%H(XXT) (r—k) pL

2
>(——) —cos?0
=T IXXT - M (L+u)2—<L+u> o P

=0 because k=r

so the induction terminates with (28). Finally, lower-bounding the two bounds (26) and
(28) via min{a=!,b71} > (a + b)~! yields the desired Lemma 24. [ ]

7. Global Convergence

In this section, we study the global convergence of perturbed PrecGD or PPrecGD from
an arbitrary initial point to an approximate second order stationary point. To establish
the global convergence of PPrecGD, we study a slightly more general variant of gradient
descent, which we call perturbed metric gradient descent.

7.1 Perturbed Metric Gradient Descent

Let P:R% — Sﬁlr + denote an arbitrary metric function, which we use to define the following

two local norms
lolle € \/oTP(z)o, o]t € /o7 P(x) 1o

Let f: RY — R denote an arbitrary ¢;-gradient Lipschitz and ¢o-Hessian Lipschitz function.
We consider solving the general minimization problem f* = min, f(x) via perturbed metric
gradient descent, defined as

Ter1 = op — aP(ay) 'V f(21) + a, (PMGD)
in which the random perturbation (i is chosen as

G ~B(B) if [[Vf(x)||% <e, and it has been at least T iters since last perturbation
=0 otherwise.

Indeed, PPrecGD is a special case of PMGD after choosing = = vec(X) and P(z) =
(XTX +nol,) ® I,. Our main result in this section is to show that PMGD converges to
e-second order stationary point measured in the metric norm

IVf@)ll; <e V2f(2) = —V/Lae- P(x),

for some constant Ly to be defined later, in at most O(e~2) iterations under two assumptions:
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e The metric P should be well-conditioned:
pil = P(x) <X pupl for all z € RY. (29)
for some pyp, > pip, > 0.
e The metric P should be Lipschitz continuous:
1P(z) = P(y)| < Lp- | —yl  forall z,y € RY, (30)
for some Lp > 0.

Comparison to Perturbed Gradient Descent. Jin et al. (2021) showed that the
episodic injection of isotropic noise to gradient descent enables it to escape strict saddle
points efficiently. Indeed, this algorithm, called perturbed gradient descent or PGD for
short, can be regarded as an special case of PMGD, with a crucial simplification that the
metric function P is the identity mapping throughout the iterations of the algorithm. As
will be explained later, such simplification enables PGD to behave almost like the power
method within the vicinity of a strict saddle point, thereby steering the iterations away from
it at an exponential rate along the negative curvature of the function. Extending this result
to PMGD with a more general metric function that changes along the solution trajectory
requires a more intricate analysis, which will be provided next. Our main theorem shows
that PMGD can also escape strict saddle points, so long as the metric function P(z) remains
well-conditioned and Lipschitz continuous.

Theorem 28 (Global Convergence of PMGD). Let f be ¢1-gradient and {2-Hessian Lipschitz,

and let P satisfy ppl = P(x) X pul and |P(x) — P(y)|| < Lp - ||z — y||. Then, with an

overwhelming probability and for any e = O(1/(Lgpu)), PMGD with perturbation radius

B =0(e/Ly) and time interval T = O(£1/(pv/Lae)) converges to a point x that satisfies
IVf@); <e and V*f(x) = —/Lge- P(x),

in at most O(C(f(z) — f*)/€%) iterations, where f* is the optimal objective value, and

Ld = 5max{€2, Lpgl\/]ﬁ}/pﬁ;s, C = gl/plzb.

Before providing the proof for Theorem 28, we first show how it can be invoked to prove
Theorem 8. To apply Theorem 28, we need to show that: (i) f(X) = ¢(XX7) is gradient
and Hessian Lipschitz; and (ii) P = (XX + nl) is well-conditioned. However, the function
f(X) = ¢(XXT) may neither be gradient nor Hessian Lipschitz, even if these properties hold
for ¢. To see this, consider ¢(M) = ||M — M*||%. Evidently, ¢(M) is 2-gradient Lipschitz
with constant Hessian. However, f(X) = ¢(XX ") = | XX T — M*||% is neither gradient-
nor Hessian-Lipschitz since it is a quartic function of X. To alleviate this hurdle, we show
that, under a mild condition on the coercivity of ¢, the iterations of PPrecGD reside in a
bounded region, within which f(X) is both gradient and Hessian Lipschitz.

Lemma 29. Suppose that ¢ is coercive. Let I'r and I'y be defined as

Tr= max{||X||F LH(XXT) < (X0 XT) + 24/ 1 Xo0ll% + 1 are} (31)
'y = max { X2 : d(XXT) < (X0 XT) + 24/ Xol% + 7 are} : (32)

Then, the following statements hold:
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Every iteration of PPrecGD satisfies | X¢||p < T'r and || X¢|| < Ts.

The function f(X) is 9% Ly -gradient Lipschitz within the ball {M : |M||p < Tp}.

The function f(X) is (40 + 2)Ly + 4% Ly)-Hessian Lipschitz within the ball {M :
[M]|p < Tp}.

For Px, = (XTX +nI,) ® I, we have nI = Px, = (I‘% +n)I and |Px, — Py, <
20 || X = Y| within the ball {M : || M|| < Ty}.

Equipped with Lemma 29 and Theorem 28, we are ready to present the global convergence
result for PPrecGD.

Proof [Theorem 8] Due to our definition of I'r and Ty, every iteration of PPrecGD belongs
to the set D ={X : | X|lr <T'p,|X]| <T2}. On the other hand, Lemma 29 implies that
f(X) is 9L T%-gradient Lipschitz and ((4T g + 2)Ly + 4I'% Lo)-Hessian Lipschitz within D.
Moreover, nI < Px, < (I3 +n)I and ||Px, — Py,| <23 || X — Y| within D. Therefore,
invoking Theorem 28 with parameters ¢ = 9L1F%, lo=(4Tp +2)L1 + 4F%L2), P = 17,
Pub = F% +n, and Lp = 2I's completes the proof. [ |

7.2 Proof of Theorem 28

To prove Theorem 28, we follow the main idea of Jin et al. (2021) and split the iterations
into two parts:

e Large gradient in local norm: Suppose that ||V f(z)||; > € for some € > 0. Then,
we show in Lemma 30 that a single iteration of PPrecGD without perturbation reduces
the objective function by Q(e?).

e Large negative curvature in local norm: Suppose that ||V f(z)|| > € and x is
not an e-second order stationary point in local norm, i.e., V2f(x) # —V/LaeP(z). We

show in Lemma 31 that perturbing = with an isotropic noise followed by O(e1/?)
iterations of PPrecGD reduces the the objective function by Q(e/2).

Combining the above two scenarios, we show that PMGD decreases the objective value by
Q(e?) per iteration (on average). Therefore, it takes at most O((f(xo) — f*)e2) iterations
to reach a e-second order point in local norm.

Lemma 30 (Large gradient —> large decrement). Let f is {1-gradient Lipschitz, and let
pind = P(x) X pup! for every x. Suppose that x satisfies ||V f(z)||5 > €, and define

zy =z —aP(z) 'Vf(z)

with step-size o = pn,/(2¢1). Then, we have

flas) = fl) <~ e
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Proof Due to the gradient Lipschitz continuity of f(z), we have:

Flay) < f(2) + a(V (@), —P(x) "V f(z)) + f— 2|P@) V@2 (33)
= f(2) - a(|VF(@)]2)? (1 - éma) , (34)
< f(2) = IV F @12 (35)
< flz) - p“) e, (36)

4€1

where in the last inequality we used the optimal step-size o« = py,/(2¢1) and the assumption

IVF @)l > u

Lemma 31 (Escape from saddle point). Let f be ¢1-gradient and l2-Hessian Lipschitz.
Moreover, let pp,I = P(z) < puwl and ||P(x) — P(y)|| < Lpl|lx — y|| for every x and y.
Suppose that & satisfies ||V f(z)||E < € and V2f(z) # —/Lqe - P(z). Then, the PMGD
defined as

Tpal = T — aP(xk)_1Vf(a:k), starting at =T+ a-&,

with step-size o = py,/(2¢1) and initial perturbation & ~ B(B) with B = €/(400Lqt®) achieves
the following decrement with probability of at least 1 — ¢

1 63 El
—1Z) = =3\ ter T = ——==1 iterations,
flae) = f(2) < 505\ I, after Plb\/mb iterations
—_———
=F

where Ly = 5max{ls, Lpl1\/pup}/P%> and v = c-log(pundli(f(z0) — [*)/(pilaed)) for some

absolute constant c.

Before presenting the sketch of the proof for Lemma 31, we complete the proof of
Theorem 28 based on Lemmas 30 and 31.
Proof [Theorem 28] Let us define T = 2 (7 /F + 4¢1/(pe?)) - (f(wo) — f*). By con-
tradiction, suppose that x; is not a e-second order stationary point in local norm for
any ¢ < T. This implies that we either have ||V f(x)|5, > €, or ||V f(x)|;, < € and
V2f(xt) # —v/Lae- P(xt) for every t < T. Define T} as the number of iterations that satisfy
IV f(xe)|s, > €. Similarly, define T5 as the number of iterations that satisfy |V f(x)[|;, <€
and V2f (:ct) % —v/Lge - P(x;). Evidently, we have Ti + Ty = T'. We divide our analysis into

two parts:

e Due to the definition of 75, and in light of Lemma 31, we perturb the metric gradient
at least Ty /7T times. After each perturbation followed by T iterations, the PMGD
reduces the objective function by at least F with probability 1 — §. Since the objective
value cannot be less than f*, we have

f@o) = (F/TTz = f* = T2 < (T/F) - (f(zo) = ),
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which holds with probability of at least

f(wo) — J*
f

where ¢ is chosen to be small enough so that §' = (f(zg) — f*)0/F < 1.

1— (T/T)6 > 1 — §=1-¢,

e Excluding T5 iterations that are within 7 steps after adding the perturbation, we
are left with Ty iterations with ||V f(z¢)||s, > €. According to Lemma 30, the PMGD
reduces the objective by py,e2/(441) at every iteration x; that satisfies |V f(z¢)||%, > e.
Therefore, we have

f(wo) = (pv€?/(400))T1 > f* = Tu < (401/(pwe®)) - (f (w0) = f*)

I%
Tt

Recalling the definition of 7', the above two cases imply that T7+75 < T with probability of at
least 1—4', which is a contradiction. Therefore, ||V f(z¢)||%, < e and V2 f(x¢) &= —+/Lae-P(x¢)
after at most 2 (7 /F + 461 /(pie?)) - (f(wo) — f*) iterations. Finally, note that

-0 ( (g5 pia) e - 10-1)
oo Ut =),

€2

This completes the proof. |

Finally, we explain the proof of Lemma 31. To streamline the presentation, we only
provide a sketch of the proof and defer the detailed arguments to the appendix.

Sketch of the proof for Lemma 31. The proof of this lemma follows that of (Jin et al.,
2021, Lemma 5.3) with a few key differences to account for the metric function P(x), which
will be explained below.

Consider two sequences {x;}_, and {y:}1, generated by PMGD and initialized at
x9g = T+ a; and yo = T + a(y, for some (1,(2 € B(B). By contradiction, suppose that
Lemma 31 does not hold for either sequences {x¢}/_, and {y;}]_, i.e., f(z) — f(z) > —F
and f(y) — f(z) > —F for t <T. That is, PMGD did not make sufficient decrement along
{x4}]_ and {y:}]_,. As a critical step in our proof, we show in the appendix (see Lemma 36)
that such small decrement in the objective function implies that both sequences {xt}z;o and
{y:}]_, must remain close to Z. The closeness of {x;}7_, and {y;}/_, to & implies that their
differences can be modeled as a quadratic function with a small deviation term:

P(@)"? (241 — yes1)
=P ()" (21 — yp) — aP(2)/2(P(x) "'V f(2:) — P(y) "'V f (1))

- (I - aP(57>71/2V2f(37)P(55)71/2) P(2)" 2 (2 — yi) + ab(@, 1, 1) (37)
where the deviation term &(Z, x4, y;) is defined as

@, w0, y) = P(@)"? (P(2) 7'V F(@) (=) = (P(a) 7'V f ) = Ply) "'V f(w0)
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Jin et al. (2021) showed that, when P(x:) = P(y:) = P(Z) = I, the deviation term &(Z, z+, y¢)
remains small. However, such argument cannot be readily applied to the PMGD, since the
metric function P(z) can change drastically throughout the iterations. The crucial step in
our proof is to show that the rate of change in P(x) slows down drastically around stationary
points.

Lemma 32 (Informal). Let f be ¢1-gradient and lo-Hessian Lipschitz. Let P(x) be well-
conditioned and Lipschitz continuous. Suppose that u satisfies ||V f(u)|]i < e. Then, we
have

IC(u, z,y)|| < Crmax{|z —ul, |ly —ul} HP(u)1/2(J: — y)” + Cae

P(w)(z — )|,
for constants C1 and Cs that only depend on £1,¢s, Lp, pib, Pub-

The formal version of Lemma 32 can be found in appendix (see Lemma 35). Recall
that due to our assumption, the term max{||z; — Z||, ||y: — Z||} must remain small for every
t < T. Therefore, applying Lemma 32 with v = Z, * = x4, and y = y; implies that
IC(Z, ze, ye) || = o(||ze — y¢||). Therefore, (37) can be further approximated as

P@)"2 () = (1= aP@) 92 @ P@) ) P@ w0 -w) (39

Indeed, the above approximation enables us to argue that P:fl/ 2 (x¢ — yi) evolves accord-
ing to a power iteration. In particular, suppose that zy and yg are picked such that
P(2)'/2(zo — yo) = cv, where v is the eigenvector corresponding the smallest eigenvalue
Amin (P(2)"Y2V2f(z)P(z)"Y/?) = —y < —\/Lge < 0. With this assumption, (38) can be
approximated as the following power iteration:

P(@)'"? (2 — yr) ~ c(1 + a)fv (39)

Suppose that {x;}/_, does not escape the strict saddle point, i.e., f(z;) — f(zo) > —F. This
implies that {xt}z;o remains close to . On the other hand, (39) implies that the sequence
{yt}fzo must diverge from T exponentially fast, which is in direct contradiction with our initial
assumption that {y;}/_, and & remain close. This in turn implies that f(z;) — f(z) < —F or
f(w) — f(#) < —F. In other words, at least one of the sequences {z;}/_, and {y;}/_, must
escape the strict saddle point. Considering {y;}/_, as a perturbed variant of {z;}/_,, the
above argument implies that it takes an exponentially small perturbation in the direction of v
for PMGD to escape the strict saddle point Z. The sketch of the proof is completed by noting
that such perturbation in the direction v is guaranteed to occur (with high probability) with
a random isotropic perturbation of xg.

8. Numerical Experiments

In this section, we provide numerical experiments to illustrate our theoretical findings. All
experiments are implemented using MATLAB 2020b, and performed with a 2.6 Ghz 6-Core
Intel Core i7 CPU with 16 GB of RAM.
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We begin with numerical simulations for our local convergence result, Theorem 4, where
we proved that PrecGD with an appropriately chosen regularizer 7 converges linearly
towards the optimal solution M™*, at a rate that is independent of both ill-conditioning and
overparameterization. In contrast, gradient descent is slowed down significantly by both
ill-conditioning and overparameterization.

We plot the convergence of GD and PrecGD for three choices of ¢(-), which corre-
spond to the problems of low-rank matrix recovery (Candes and Plan, 2011), 1-bit matrix
sensing (Davenport et al., 2014), and phase retrieval (Candes et al., 2013) respectively:

e Low-rank matrix recovery with ¢, loss. Our goal is to find a low-rank matrix
M* = 0 that satisfies A(M*) = b, where A : R**" — R™ is a linear operator and
b € R™ is given. To find M*, we minimize the objective

¢(M) = [|A(M) - b||? (40)

subject to the constraint that M is low-rank. The Burer-Montiero formulation of this
problem then becomes: minimize f(X) = [|[A(XXT) — b||? with X € R™*".

e 1-bit matrix sensing. The goal of 1-bit matrix recovery is to recovery a low-rank
matrix M* = 0 through 1-bit measurements of each entry M;;. Each measurement
on the M;; is equal to 1 with probability o(M;;) and 0 with probability 1 — o(M;;),
where o(-) is the sigmoid function. After a number of measurements have been taken,
let cv;; denote the percentage of measurements on the (4, j)-entry that is equal to 1. To
recover M*, we want to find the maximum likelihood estimator for M™ by minimizing

G(M) =" (log(1 + ) — ay; M;;). (41)

i=1 j=1
subject to the constraint rank(M) < r.

e Phase retrieval. The goal of phase retrieval is to recover a vector z € R% from
m measurements of the form y; = |(a;, 2)|?, where a;,i = 1,...,m are measurement
vectors in C?. Equivalently, we can view this problem as recovering a rank-1 matrix
zz* from m linear measurements of the form y; = (a;a}, zz*). To find zz* we minimize
the 45 loss

S(M) =" ((aia}, M) — y;)? (42)

i=1

subject to the constraint that M is rank-1.

One can readily check that both low-rank matrix recovery (40) and 1-bit matrix sensing (43)
satisfy (u,r)-restricted strong convexity (see Li et al. 2019 for details), so our theoretical
results predict that PrecGD will converge linearly. While phase retrieval (42) does not satisfy
restricted strong convexity, we will nevertheless see that PrecGD continues to converge
linearly for phase retrieval. This indicates that PrecGD will continue to work well for more
general optimization problems that present a low-rank structure. We leave the theoretical
justifications of these numerical results as future work.
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8.1 Low-rank matrix recovery with /> loss

In this problem we assume that there is a n X n, rank r* matrix M* > 0, which we call
the ground truth, that we cannot observe directly. However, we have access to linear
measurements of M* in the form b = A(M*). Here the linear operator A : R"*" — R™ is
defined as A(M*) = [(A1, M*),... (A, M*)], where each A; is a fixed matrix of size n x n.
The goal is to recovery M* from b, potentially with m < n? measurements by exploiting
the low-rank structure of M*. This problem has numerous applications in areas such as
colloborative filtering (Rennie and Srebro, 2005), quantum state tomography (Gross et al.,
2010), power state estimation (Zhang et al., 2019a).

To recover M*, we minimize the objective ¢(M) in (40) by solving the unconstrained

problem

min f(X) = ¢(XXT) = [[AXXT) —b|?
XeRnxr

using both GD and PrecGD. To gauge the effects of ill-conditioning, in our experiments
we consider two choices of M™*: one well-conditioned and one ill-conditioned. In the well-
conditioned case, the ground truth is a rank-2 (r* = 2) positive semidefinite matrix of size
100 x 100, where both of the non-zero eigenvalues are 1. To generate M*, we compute
M* = QTAQ, where A = diag(1,1,0,...,0) and Q is a random orthogonal matrix of size
n X n (sampled uniformly from the orthogonal group). In the ill-conditioned case, we set
M* = QTAQ, where A = diag(1,1/5,0,...,0).

For each M* we perform two set of experiments: the exactly-parameterized case with
r = 2 and the overparameterized case where r = 4. The step-size is set to 2 x 1076 for
both GD and PrecGD in the first case and to 1 x 107 in the latter case. For PrecGD, the
regularization parameter is set to n = ||V f(X )H}O Both methods are initialized near the
ground truth. In particular, we compute M* = ZZT with Z € R™*" and choose the initial
point as Xog = Z 4+ 10~ 2w, where w is a n x r random matrix with standard Gaussian entries.
In practice, the closeness of a initial point to the ground truth can be guaranteed via spectral
initialization (Chi et al. 2019; Tu et al. 2016). Finally, to ensure that ¢(M) = || A(M) — b||?
satisfies restricted strong convexity, we set the linear operator A : R™*"™ — R™ to be
A(M*) = [(Ay, M*),... (A, M*)], where m = 3nr and each A; is a standard Gaussian
matrix with i.i.d. entries (Recht et al. 2010).

We plot the error || XX — M*||z versus the number of iterations for both GD and
PrecGD. The results of our experiments for a well-conditioned M™* are shown on the first
row of Figure 2. We see here that if M™* is well-conditioned and r = r*, then GD converges
at a linear rate and reaches machine precision quickly. The performance of PrecGD is almost
identical. However once the search rank r exceeds the true rank r*, then GD slows down
significantly, as we can see from the figure on the right. In contrast, PrecGD continue to
converge at a linear rate, obtaining machine accuracy within a few hundred iterations.

The results of our experiments for an ill-conditioned M* are shown on the second row of
Figure 2. We can see that ill-conditioning causes GD to slow down significantly, even in the
exactly-parameterized case. In the overparameterized case, GD becomes even slower. On the
other hand, PrecGD is fully agnostic to ill-conditioning and overparameterization. In fact,
as Theorem 1 shows, the convergence rate of PrecGD is unaffected by both ill-conditioning
and overparameterization.
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Figure 2: Low-rank matrix recovery with ¢» loss. First row: Well-conditioned (x = 1), rank-2 ground
truth of size 100 x 100. The left panel shows the performance of GD and PrecGD for r = r* = 2.
Both algorithms converge linearly to machine error. The right panel shows the performance of
GD and PrecGD for r = 4. The overparameterized GD converges sublinearly, while PrecGD
maintains the same converge rate. Second row: Ill-conditioned (x = 5), rank-2 ground truth of
size 100 x 100. The left panel shows the performance of GD and PrecGD for r = r* = 2. GD
stagnates due to ill-conditioning while PrecGD converges linearly. The right panel shows the
performance of GD and PrecGD for r = 4. The overparameterized GD continues to stagnate,
while PrecGD maintains the same linear convergence rate.

In Figure 3 , we also plot a comparison of PrecGD, ScaledGD Tong et al. (2020) and
GD with all three methods initialized at a random initial point and using the same step-size.
Here, we see that both GD and PrecGD was able to converge towards the global solution,
while ScaledGD behaves sporadically and diverges.

8.2 1-bit Matrix Sensing

Similar to low-rank matrix recovery, in 1-bit matrix sensing we also assume that there is a
low rank matrix M™* > 0, which we call the ground truth, that we cannot observe directly,
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Figure 3: PrecGD, ScaledGD and GD with random initialization. Comparison of
PrecGD against regular gradient descent (GD), and the ScaledGD algorithm.
All three methods uses the same global Gaussian random initialization. The
same step-size o = 2 x 1073 was used for all three algorithms. With n = 4,
r = 4 and r* = 2, overparameterization causes gradient descent to slow down
to a sublinear rate. ScaledGD behaves sporadically and diverges. Only PrecGD
converges linearly to the global minimum.

but have access to a total number of m 1-bit measurements of M*. Each measurement
of M;; is 1 with probability o(M;;) and 0 with probability 1 — o(M;;), where o(-) is the
sigmoid function. This problem is a variant of the classical matrix completion problem and
appears in applications where only quantized observations are available; see (Singer, 2008;
Gross et al., 2010) for instance.

Let aj; denote the percentage of measurements on the (i, j)-entry that is equal to 1.
Then the MLE estimator can formulated as the minimizer of

S(M) = (log(1+ M) — ayjMyy). (43)

i=1 j=1

It is easy to check that V2¢(M) is positive definite with bounded eigenvalues (see Li et al.
2019), so ¢(M) satisfies the restricted strong convexity, which is required by Theorem 4.

To find the minimizer, we solve the problem min ycgnxr ¢(X X7T) using GD and PrecGD.
For presentation, we assume that the number of measurements m is large enough so that
aij = o(M;;). In this case the optimal solution of (43) is M* and the error || X XT — M*||
will go to zero when GD or PrecGD converges.

In our experiments, we use exactly the same choices of well- and ill-conditioned M™* as
in Section 8.1. The rest of the experimental set up is also the same. We perform two set of
experiments: (1) the exactly-parameterized case with » = 2 and (2) the overparameterized
case where r = 4. Moreover, we use the same initialization scheme and same regularization
parameter n = ||V f(X)|% o for PrecGD. The step-size is chosen to be 0.5 in all four plots.

Our experiments are shown in Figure 4. We observe almost identical results as those of
low-rank matrix recovery in Figure 2. In short, for 1-bit matrix sensing, both ill-conditioning
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Figure 4: 1-bit matrix sensing. First row: Well-conditioned (x = 1), rank-2 ground truth of size 100 x 100.
The left panel shows the performance of GD and PrecGD for » = r* = 2. Both algorithms
converge linearly to machine error. The right panel shows the performance of GD and PrecGD
for r = 4. The overparameterized GD converges sublinearly, while PrecGD maintains the same
converge rate. Second row: Ill-conditioned (k = 10), rank-2 ground truth of size 100 x 100.
The left panel shows the performance of GD and PrecGD for r = r* = 2. GD stagnates due
to ill-conditioning while PrecGD converges linearly. The right panel shows the performance of
GD and PrecGD for r = 4. The overparameterized GD continues to stagnate, while PrecGD
maintains the same linear convergence rate.
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Figure 5: Phase retrieval. First row: Well-conditioned (x = 1), rank-2 ground truth of size 100 x 100. The
left panel shows the performance of GD and PrecGD for » = r* = 2. Both algorithms converge
linearly to machine error. The right panel shows the performance of GD and PrecGD for r = 4.
The overparameterized GD converges sublinearly, while PrecGD maintains the same converge
rate. Second row: Ill-conditioned (x = 5), rank-2 ground truth of size 100 x 100. The left panel
shows the performance of GD and PrecGD for r = r* = 2. GD stagnates due to ill-conditioning
while PrecGD converges linearly. The right panel shows the performance of GD and PrecGD
for r = 4. The overparameterized GD continues to stagnate, while PrecGD maintains the same
linear convergence rate.

and overparameterization causes gradient descent to slow down significantly, while PrecGD
maintains a linear convergence rate independent of both.

8.3 Phase Retrieval

For our final set of experiments we consider the problem of recovering a low matrix M* = 0
from quadratic measurements of the form y; = aiTM *a; where a; € R™ are the measurement
vectors. In general, the measurement vectors a; can be complex, but for illustration purposes
we focus on the case where the measurements are real. Suppose that we have a total of m
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measurements, then our objective is

m
. T v 112 2
cain, 100 =3 (el X1 - 0 (44)
In the special case where M™* is rank-1, this problem is known as phase retrieval, which
arises in a wide range of problems including crystallography (Harrison, 1993; Millane, 1990),
diffraction and array imaging (Bunk et al., 2007), quantum mechanics (Corbett, 2006) and
SO on.

To gauge the effects of ill-conditioning in M*, we focus on the case where M™* is
rank-2 instead. As before, we consider two choices of M™*, one well-conditioned and one ill-
conditioned, generated exactly the same way as the previous two problems. The measurement
vectors a; are chosen to be random vectors with standard Gaussian entries.

We perform two set of experiments: (1) the exactly-parameterized case with r» = 2 and
(2) the overparameterized case where r = 4. In the case r = 2, the step-size is set to 4 x 10~
and in the case r = 4, the step-size is set to 1074, As before, both methods are initialized
near the ground truth: we compute M* = ZZ7 with Z € R™*" and set the initial point
Xo = Z + 102w, where w is a n x r random matrix with standard Gaussian entries.

Our experiments are shown in Figure 4. Even though the objective for phase retrieval no
longer satisfies restricted strong convexity, we still observe the same results as before. Both
ill-conditioning and overparameterization causes gradient descent to slow down significantly,
while PrecGD maintains a linear convergence rate independent of both.

8.4 Certification of optimality

A key advantage of overparameterization is that it allows us to certify the optimality of
a point X computed using local search methods. As we proved in Proposition 10, the
suboptimality of a point X can be bounded as

f(X)—f(X*)SCg’Gg—FCH-GH-i-C)\'E)\. (45)
Here we recall that (Vf(X),V) < e - [[V]p, (VEf(X)[V],V) > —eg - [|[V]|% for all V, and

Amin (X T'x ) < ex. To evaluate the effectiveness of this optimality certificate, we consider
three problems as before: matrix sensing with £y loss, 1-bit matrix sensing, and phase
retrieval. The experimental setup is the same as before. For each problem, we plot the
function value f(X) — f(X*) as the number of iterations increases, where X* is the global
minimizer of f(-). Additionally, we also compute the suboptimality as given by (45). The
constants in (45) can be computed efficiently in linear time. For e in particular, we apply
the shifted power-iteration as described in Section 3.

The results are shown in Figures 6 and 7, for matrix sensing, phase retrieval, and 1-bit
matrix sensing, respectively. We see that in each case, the upper bound in (45) indeed
bounds the suboptimality f(X)— f(X*). Moreover, this upper bound also converges linearly,
albeit at a different rate. This slower rate is due to the fact that €4, the norm of the gradient,
typically scales as (/e (Jin et al. 2017; Nesterov and Polyak 2006), hence it converges to
0 slower (by a square root). As a result, we see in all three plots that the upper bound
converges slower roughly by a factor of a square root. In practice, this mean that if we want
to certify n digits of accuracy within optimality, we would need our iterate to be accurate
up to roughly 2n digits.
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Figure 6: Certificate of global optimality. Left: Matrix sensing with a well-conditioned (x = 1), rank-2
ground truth of size 100 x 100. The search rank is set to » = 4 and the algorithm is initialized
within a neighborhood of radius 102 around the ground truth. The stepsize is set to 5 x 107°.
Right: Phase retrieval with a well-conditioned (x = 1), rank-2 ground truth of size 100 x 100.
The search rank is set to r = 4 and the algorithm is initialized within a neighborhood of radius
1072 around the ground truth. The step-size is set to 3 x 107°.
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Figure 7: Certificate of global optimality for 1-bit matrix sensing with a well-conditioned (x = 1), rank-2
ground truth of size 100 x 100. The search rank is set to r = 4, and the algorithm is initialized
within a neighborhood of radius 1072 around the ground truth. The step-size is set to 3 x 1072.
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9. Conclusions

In this work, we consider the problem of minimizing a smooth convex function ¢ over a
positive semidefinite matrix M. The Burer-Monteiro approach eliminates the large n x n
positive semidefinite matrix by reformulating the problem as minimizing the nonconvex
function f(X) = ¢(XXT) over an n x r factor matrix X. Here, we overparameterize the
search rank r > r* with respect to the true rank r* of the solution X*, because the rank
deficiency of a second-order stationary point X allows us to certify that X is globally optimal.

Unfortunately, gradient descent becomes extremely slow once the problem is overpa-
rameterized. Instead, we propose a method known as PrecGD, which enjoys a similar
per-iteration cost as gradient descent, but speeds up the convergence rate of gradient descent
exponentially in overparameterized case. In particular, we prove that within a neighborhood
around the ground truth, PrecGD converges linearly towards the ground truth, at a rate
independent of both ill-conditioning in the ground truth and overparameterization. We also
prove that, similar to gradient descent, a perturbed version of PrecGD converges globally,
from any initial point.

Our numerical experiments find that preconditioned gradient descent works equally well
in restoring the linear convergence of gradient descent in the overparmeterized regime for
choices of ¢ that do not satisfy restricted strong convexity. We leave the justification of
these results for future work.
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Appendix A. Proof of Basis Alignment (Lemma 19)
For X € R™" and Z € R™ ", suppose that X satisfies

of | XXT — 7227 1
def | lr 1 (46)
Ain(Z1Z) V2

In this section, we prove that the incidence angle 6 defined as

o_ (XXT —ZZT XyT +YXT)
ST s [XXT — ZZT[p | XYT + YXT |7

satisfies
|- XX1z2Z"1 - XXDp _ 1 p

IXXT =227 || F T V21—
where 1 denotes the pseudoinverse.

First, note that an X that satisfies (46) must have rank(X) > r*. This follows from
Weyl’s inequality

(47)

sinf =

Ao (XXTY > Nu (227 — | XXT — 22T ||p > <1 ) N (227).

1
V2
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Next, due to the rotational invariance of this problem, we can assume without loss of
generality! that X, Z are of the form

X = [)f)l QJ 7 [Zl}, Omin(X1) > Oan(Xa) (48)

where X; € RF¥F 7, € RF*™ . For k > r*, the fact that rank(X) > r* additionally implies
that Umin(Xl) > 0.

The equality in (47) immediately follows by setting k& = rank(X) and solving the
projection problem

1E]| 7 sin 6 = min I(XYT +YXT) — (XX - Z22T)||p

XY+ vix?t o xa vk XXt -2zt 7,72t
= min T - T T
Y1,Ys Y2X1 0 2122 —ZQZ2

= 12223 | = |(I - XX ZZ"(I - XX)|F.

F

Before we prove the inequality in (47), we state and prove a technical lemma that will be
used in the proof.

Lemma 33. Suppose that X, Z are in the form in (48), and k > r*. If p defined in (46)
satisfies p < 1/\/5, we have )\min(ZfZl) > )\maX(ZQTZQ).

Proof Denote y1 = Amin(Z7 Z1) and 72 = Amax(Z4 Z3). By contradiction, we will prove
that 71 < 2 implies p > 1/4/2. This claim is invariant to scaling of X and Z, so we
assume without loss of generality that Ayin(Z7Z) = 1. Under (48), our radius hypothesis
p > || XXT — ZZ7||p reads
2> 1XXT = 22T 3+ 2| 2283 + | X XT — 2783

> X X7 - 2,272 T T2 N (2T 730 T

= 141 141 ||F + HXQXQ ZaZ, HF +2 mm(Zl Zl) maX(Zz Z2)-
Below, we will prove that X, Xy that satisty omin(X1) > omax(X2) also satisfies

IX1 X7 = 2121 |} + | Xa X5 — ZaZ3 ||
>  min {[dl — "}/1]2 + [dg — ’)/2]2 tdy > dg} (49)

T dy,ds eRy

If y1 < 79, then d; = ds holds at optimality, so the minimum value is %(’yl —72)%. Substituting
v = )\min(ZlTZ1) and o = )\maX(ZQTZz) then proves that

(71 — 72)2

2
>
="

1
+2y172 = 5(71 +72)2.
But we also have

Y1+ %2 = Mnin(Z7 Z1) 4+ Amax(Z3 Z2) > Aain(Z8 Z1 + Z3 Zo) = A\oin (27 Z) = 1

1. We compute the singular value decomposition X = USV7T with U € R"*™ and V € R"%", and then set
X+ U"XVand Z <+ U"Z.
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and this implies p? > 1/2, a contradiction.
We now prove (49). Consider the following optimization problem

min {[|X0XT = 202 (| + 1 XX5 = 2225 [[F : Amin (X2 XT) > Amax (X2X3) }
1,22

We relax X1X1T into S1 = 0 and X2X2T into So = 0 to yield a lower-bound

> i —ZZT2 —ZZT21)\min >)\max .
_Slgﬁlsgto{!\sl 123 |7 + 182 — 2225 || % (S1) > (S2)}

The problem is invariant to a change of basis, so we change into the eigenbases of Z; Z{ and
7577 to yield

= min_ {||s1 = MZ1Z])|> + ||s2 — A(Z2Z3)||* : min(s1) > max(s2)}
5120,52>0

where \(Z1Z1) > 0 and A(Z22%) > 0 denote the vector of eigenvalues. We lower-bound

this problem by dropping all the terms in the sum of squares except the one associated with

Y1 = Amin(Z{ Z1) and 72 = Amax(Z221") to obtain

> min {[di —]® +[d2 — 72]® : di > da} (50)
d1,d2€R+
which is exactly (49) as desired. [ |

Now we are ready to prove the inequality in (47).
Proof For any k > r* and within the radius p < 1/4/2, we begin by proving that the
following incidence angle between X and Z satisfies

aof (1 =XXNZ|p _ NZer  _ IXXT—2ZZ"||p _

@) NemZ72) © Aen(Z277)

This follows from the following chain of inequalities

(51)

IXXT — 22" % = | X0 XT = 202015 + 2(Z] 21, Z5 Zs) + | X2 X — Z2Z3 ||
> 2(Z{ 71,23 Zo) > 2Amin(Z1 Z0)|| Z2||% = Ain(Z7 Z)|| Z2|| T

where we use /\min(ZlTZl) > %)\min(ZTZ) because
Min(ZTZ) = Muin(Z1 Z1 + 21 Z5) < Auin(ZE Z1) 4 Amax(Z1 Z5) < 20in(Z1 Z1)  (52)

where we used Ain(Z% Z1) > Amax(Z3 Z3) via Lemma 33. Moreover, for any k > r*, we
have opin(X1) > 0 and therefore

(7 = XXHZZ"(1 = XXT)||p = I - X2X]) 2223 (I = XoX}) |7 < | 2223 || -

Then, (47) is true because

|1 2223 |13 ® | Zs||% ® | Zs||%
IXXT = ZZT\% = 2(2{ 21,25 Zo) — 2Amin(Z{ Z1)|| 22| %
(©) 2 (d)  sin? 2
20min(ZTZ) — || Zo||%] — 2[1 —sin?¢] — 21 — p?

43



ZHANG, FATTAHI, AND ZHANG

Step (a) bounds || Z2 2T || p < || Z2||% and 2(Z1 Z1, Z¥ Zo) < | X XT—ZZT||%. Step (b) bounds
(ZTZ1,ZF Zo) > Awin(ZT Z1) - t1(Z2ZT). Step (c) uses (52) and || Z2]|% > Amax(Z1 Z2). Fi-
nally, step (d) substitutes (51). [ |

Appendix B. Proof of Gradient Lipschitz (Lemma 22)

Proof Let ¢ be L-gradient Lipschitz. Let M* = arg min ¢ satisfy M™* > 0. In this section,

we prove that f(X) def H(X XT) satisfies

V]

L
FOX+V) < J00) + (VACOY) + 2o
2B+ AV, | IV IR
)\min +n ()\min + 77)2

where |V x,, = [|[V(XTX +n)72||p and Amin = Amin(X7X) and E = X X7 — M*. First,
it follows from the L-gradient Lipschitz property of ¢ that

(X +MX +V)) = o(XXT) +(Vo(XXT), xVT + VXT)

f(X+V) f(X) (V(X),V)

2
X,m

where vx, =4+

L
+(Vo(XXT),vvT) + EHXVT +VXT +vvT)a.
Substituting the following
VXD |p < (XTX + 0D 2XT) 1V x, < 1V
IVVI e < I(XTX +0D) 7Y - VK, = Pmin(XTX) + 0] VIR,
IVO(XXT)||p = [VO(XXT) = Vo(M*)||p < LI|E||p,
bounds the error term
L
(Vo(XXxT),vvT) + §||XVT +VXT+VVT5

IVo(XXD)pIVI%, | L 4||V\|§c,n+ VI, )

- +5 (4\\VH%<,n +

>\min + n 2 >\min + n ()\min + 77)2
LAV () 2B+ 4V, VIR,
o 2 )\min + n ()\Inin + 77)2 )
This completes the proof. |

Appendix C. Proof of Bounded Gradient (Lemma 23)

Proof Let ¢ be L-gradient Lipschitz, and let f(X) def H(XXT). Let M* = arg min ¢ satisfy

M* = 0. In this section, we prove that V = Vf(X)(XTX 4 nI)~! satisfies
IVlixy = IVFON %, < 2LIXXT — M|F,
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where ||V |[x, = [VPYollp and [VF(X)[%,, = IVA(X)Py,/?|lr and P, = XTX +ql.
Indeed, [|V|x = [V f(X)|%, can be verified by inspection. "We have

IV 50 =
< [Vo(X XD pIXY + VX7 |p
< IVO(XXT) = Vo (M) (20X (XTX + 1) 2] ¥ x )
< L|XXT — M*||p-2.

R (Vo(XXT),XYT +vXT)
1

| |X,n:

This completes the proof. |

Appendix D. Proofs of Global Convergence
In this section, we provide the proofs of Lemmas 31 and 29 which play critical roles in

proving the global convergence of PMGD (Theorem 28) and PPrecGD (Corollary 8).

D.1 Proof of Lemma 31

To proceed with the proof of Lemma 31, we define the following quantities to streamline our
presentation:

Dib € 141 P [ €3 €
_ s — = —— = . 54
o P won, T T v T T s Ld ) \/ La
5 ly, Lpl u f*)
L= max{l2, Lpl1\/Pub } ¢ log (p bdli(f ) (55)
P> p1b4265

for some absolute constant ¢. Once Lemma 34 below is established, the proof of Lemma 31
follows by identically repeating the arguments in the proof of (Jin et al., 2021, Lemma 5.3).

Lemma 34 (Coupling Sequence). Suppose that T satisfies |V f(Z)||% < e and V?f(Z) #
—V/Lge - P(%). Let {x}]_y and {y:}]_, be two sequences generated by PMGD initial-
ized respectively at xo and yo which satisfy: (1) max{||zo — Z||, [|[yo — Z||} < aB; and (2)
P(2)Y2 (20 — yo) = aw - v, where v is the eigenvector corresponding to the minimum eigen-
value of P(Z)~'\2V2f(Z)P(z)""/? and w > @ :=23"4/*. S. Then:

min{f(z7) — f(zo), f(yT) — f(yo)} < —2F.

We point out that the Lemma 34 is not a direct consequence of (Jin et al., 2021, Lemma
5.5) which shows a similar result but for the perturbed gradient descent. The key difference
in our analysis is the precise control of the general metric function as a preconditioner
for the gradients. In particular, we show that, while in general P(x) and P(y) can be
drastically different for different values of x and y, they can essentially be treated as constant
matrices in the vicinity of strict saddle points. More precisely, according to (37), the term

le/g (t4+1 — Yr+1) can be written as

P2 (@es1 = ya) = (1= aP@) 72V @) P(TY2) P(2) (2 — o) + €(3 2, m1)
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where £(Z, x4, y¢) is a deviation term defined as

(&, 20, p1) = aPy (P2 f (@) (e — ) — (Pr," V f () — Py V f (1))
Our goal is to show that &(Z, z¢, y) remains small for every t < 7.

Lemma 35. Let f be {1-gradient and ly-Hessian Lipschitz. Let piyI < P(z) < pu!l and
|P(z) — P(y)|| < Lpl|lx — y|| for every x and y. Suppose that u satisfies |V f(u)||i < e.

Moreover, suppose that x and y satisfy max{||z — u||, ||y — u||} < S and € < S/\/pup for
some § > 0. Then, we have

¢, 9)l < LaS | P)(x — )]
Proof Note that we can write

(u,x,y) = — P(u)?P(2) "'V f(z) + P(u)*P(y) 'V f(y) + P(u) V2 f(u)(z — y)
=—P(u) 2V f(z) + P(w) 2V f(y) + P(u)"2V2 f(u)(z — y)

T
— P(w)'/? ((P() "'V f(z) = P(w) 'V f(2)) + (P(u) "'V f(y) = P(y) 'V ().

Ts

We bound the norm of 77 and 75 separately. First, we have
T3] = IIP( )2 (V @) = Vi) - V() —y) |
IVf(z) = VFy) = Vf(u)(@ —y)|

\ﬁ
1

b

ly
< -maxq ||z — u|, ||y —u r—vy
NS {ll I 13- I,

(VQf(y +tx—y) = Vf(u) dt-(z— y)H

where the last inequality follows from the assumption that the Hessian is Lipscthiz. On the
other hand, we have
12l < o [|[P(2) 'V f(2) = P(u) 7'V f (@) + Pu) 'V f(y) = Py) "' V()|
= |(P(z)™" = P(w)")(Vf(z) = VI(y) + (Px)"" = P(y) V()]
Lp.\/Dub LP\/pub
S P lz = ylllIVf(W)Il-
b

[ =l - &z =yl +

Since the gradient is £1-Lipschitz, we have

IVF)I < IVF@)] + ully = ull < pif7 - IV @)%+ bally = ull < pyie + ailly - ul.

As a result, we get

P\/pu

lb

Lp\/pub
1Ty < —5—|
b

z—ul -Gz -yl + Iz = yll (v/Puve + Gally — ul])

1
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Combining the derived upper bounds for 77 and 75 leads to

QmaX{EQ,Lpﬂl,/p b} Lppuy
1¢(u, z,y)|| < P == (ll = ull + lly — ul) [l — yl| + pgu ellz =yl
b b

Invoking the assumptions max{||z — u||, ||y — v/} < S and € < §/,/pup yields

5max{ly, Lpli\/Dub}

[¢(u, z,y)|| < 5 -S|z -yl
Dy,
5max{la, Lpl1\/Pub}
< 2 - S|P (u)*(z — y)|
b

This completes the proof.
|

To prove Lemma 34, we also need the following lemma, which shows that, for ¢ < T, the
iterations {x;} remain close to the initial point z¢ if f(z¢) — f(x¢) is small. The proof is
almost identical to that of (Jin et al., 2021, Lemma 5.4) and is omitted for brevity.

Lemma 36 (Improve or Localize). Under the assumptions of Lemma 31, we have for every

t<T:

1
zy — x| < ——=/2at(f(xg) — flxy)).
| 0||_\/]Tb\/ (f(z0) = f(x0))
Proof [Lemma 34.] By contradiction, suppose that

min{ f(z7) — f(x0), f(y7) — f(y0)} > —2F.

Given this assumption, we can invoke Lemma 36 to show that both sequences remain close
to Z, i.e., for any t < T

1 1
max{||z, — z], [ly. — 2|} < ﬁﬂaﬁ: «/25%’;@ <+ /Lid =S (56)

where the first equality follows from our choice of o, T, F, and r. Upon defining z; =
P(%)Y2(x; — y;), we have

2ep1 = 2t — aP(3) V2P () IV () — Plye) "'V f(ye)]
== (I - OéH)Zt - af(j7$t7yt)

t
= (I —aH)™M 2 - aZ(I — aH)"TE(7, 2y, yr),
——

p(t+1) =0

q(;:l)
where H = P(i)_1/2v2f(i’)P(f)_l/27 and

E@, e, y1) = aP (@) (P(2) 7'V f(2) (@0 — o) — (Pla) 'V f (@) = P(y) "'V f(w)))
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In the dynamic of z;11, the term p(t + 1) captures the effect of the difference in the initial
points of the sequences {}7_, and {y;}._,. Moreover, the term q(t + 1) is due to the fact
that the function f is not quadratic and the metric function P(x) changes along the solution
trajectory. We now use induction to show that the error term ¢(¢) remains smaller than the
leading term p(¢). In particular, we show

la@Il < llp@Il /2, teT.

The claim is true for the base case t = 0 as ||g(0)|| = 0 < ||z0]| /2 = ||p(0)|| /2. Now suppose
the induction hypothesis is true up to t. Denote Ayin (H) = —y with v > y/Lge. Note that
zp lies in the direction of the minimum eigenvector of H. Thus, for any 7 < ¢, we have

Izl < llp(DIl + llg(r)Il < 21p(D)l] = 2[|(I — aH) 20]| = 2(1 + )" aw. (57)

On the other hand, we have

t t
lg(t + D)l = ||ad (I = nH) (@, @, p0) || <a > (T = nH) 7| - LaS| ||
=0 7=0
t t
< az (I —nH) 7| - LgS - (2(1 + ay)"aw) < 2aLlgS Z(l + ay)law
7=0 7=0

< 2aLgSTp(t +1)

where in the first inequality we used Lemma 35 to bound ||((Z,xt,y:)||. Moreover, in
the second and last inequalities we used (57), ¢t < T, and (1 + ay)'aw < p(t + 1). Due
to our choice of «, Ly, S, and T, it is easy to see that 2aL;ST = 1/5. This leads to
llg(t + 1)|| < ||lp(t + 1)||/5, thereby completing our inductive argument. Based on this
inequality, we have

1 1 1

27| 2 pril —lleTll) =
o= lerll = o=l = larl) > =
>(1+av)7—0zw(

) 2/2py, ()
= w
4 Pub \V pubgl

max{ ||z — xol|, lyT — @oll} > o7l

S

A\

> S.

where in (a), we used the inequality (14 z)'/% > 2 for every 0 < z < 1 and in (b), we used
the definition of w. The above inequality contradicts with (56) and therefore completes our
proof. |

D.2 Proof of Lemma 29

To prove Lemma 29, first we provide an upper bound on f(Xj).

Lemma 37. For every iteration Xy of PPrecGD, we have

F(Xe) < f(Xo) +24/[[ XollF +n - afe
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Proof Note that f(Xi+1) < f(X}), except for when X; is perturbed with a random
perturbation. Moreover, we have already shown that, each perturbation followed by T
iterations of PMGD strictly reduces the objective function. Therefore, f(X) takes its
maximum value when it is perturbed at the initial point. This can only happen if Xy is
close to a strict saddle point, i.e.,

IVf(Xo)llxopm <€ and V2f(Xo) # —v/Lae - Pxop,
Therefore, we have X; = Xy + a(, where ¢ ~ B(/3). This implies that

a2l

el

a’L *
F(X1) = F(X0) < a{V(X0), )+ I < | [PY2, || 197 (X0} g 11+

(@) ; Lt oy, ® 5
<y [ Xollz +n- e+ 7a2ﬂ2 < 24/ | Xol|z +n-eaB

where (a) follows from our assumption [V f(Xo)||, , < € and (b) is due to our choice of o

and B. This implies that f(X;) < f(X1) < f(Xo) +21/|| Xo||% 4 7 - €8, thereby completing
the proof. ]

The above lemma combined with the coercivity of ¢ implies that

X, e M (¢<X0X0T> L2/ Xol2 +1- aﬁe)

for every iteration X; of PPrecGD. Now, we proceed with the proof of Lemma 29.

Proof [Lemma 29.] First, we prove the gradient lipschitzness of f(X). Due to the definition
of I'r and Lemma 37, every iteration of PPrecGD belongs to the ball {M : ||M||r <T'r}.
For every X,Y € {M : |M||r <T'r}, we have

IV/(X) = V)l = 2| V(X X)X = Vo(ryT)y]|
< |[VoxxT) = Vo y )| X1y +2 ey )| X =Y
<2LiTp HXXT - YYTHF +5LTS X — Y|,
<2L.Tp HX(X )T (v - X)YTHF 4 5LTE X — Y|,
<OLITE X =Yl

which shows that f(X) is 9L1T'%-gradient Lipschitz within the ball {M : ||M|/r < T[g}.
Next, we prove the Hessian lipschitzness of f(X). For any arbitrary V with ||V = 1, we
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have
(V2F(X)V], V) = (V2 () [V], V)
—2 Kw(XXT) — VYY), VVT>’
+ ‘<V2¢(XXT), xvT + VXT> _ <V2¢(YYT), YvT 4+ VYT>‘
<2|Vo(xxT) - vory )|
+ ‘<V2¢(XXT), xvT + VXT> - <v2¢>(YYT), xvT + VXT>‘
+ ’<V2¢(YYT), YVT+vyT) = (VR T), xvT + VXT>‘
<2L, HXXT - YYTHF
+[|v2exxT) - 2oy | [ xvT Vx|
+ |72y | |jor = v T v - )T
SALITp || X = Y| p+4LoT% | X = Y| p 4201 | X =Y 5
=((4Tp +2)L1 +4T%Lo) | X — Y| o -

Therefore, f(X) is ((4TF + 2)L;1 + 41'% Ly)-Hessian Lipschitz within the ball {M : | M||p <
I'r}. Finally, it is easy to verify that the eigenvalues of Px, = (XTX + nl,) ® I, are
between 7 and I'3 + 7 within the ball {M : [[M]| < I';}. Moreover, |[Px, —Py,| <
[XTX —YTY|| <2Iy | X — Y. This completes the proof of this lemma. |
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