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ABSTRACT

We present two major improvements over the Compressible High-ORder Unstructured Spectral difference (CHORUS) code published in
Wang et al., “A compressible high-order unstructured spectral difference code for stratified convection in rotating spherical shells,” J.
Comput. Phys. 290, 90–111 (2015). The new code is named CHORUSþþ in this paper. Subsequently, we perform a series of efficient simu-
lations for rotationally constrained convection (RCC) in spherical shells. The first improvement lies in the integration of the high-order spec-
tral difference method with a boundary-conforming transfinite mapping on cubed-sphere grids, thus ensuring exact geometric
representations of spherical surfaces on arbitrary sparse grids. The second improvement is on the adoption of higher-order elements (sixth-
order) in CHORUSþþ vs third-order elements for the original CHORUS code. CHORUSþþ enables high-fidelity RCC simulations using
sixth-order elements on very coarse grids. To test the accuracy and efficiency of using elements of different orders, CHORUSþþ is applied
to a laminar solar benchmark, which is characterized by columnar banana-shaped convective cells. By fixing the total number of solution
degrees of freedom, the computational cost per time step remains unchanged. Nevertheless, using higher-order elements in CHORUSþþ
resolves components of the radial energy flux much better than using third-order elements. To obtain converged predictions, using sixth-
order elements is 8.7 times faster than using third-order elements. This significant speedup allows global-scale fully compressible RCC simu-
lations to reach equilibration of the energy fluxes on a small cluster of just 40 cores. In contrast, CHORUS simulations were performed by
Wang et al. on supercomputers using approximately 10 000 cores. Using sixth-order elements in CHORUSþþ, we further carry out global-
scale solar convection simulations with decreased rotational velocities. Interconnected networks of downflow lanes emerge and surround
broader and weaker regions of upflow fields. A strong inward kinetic energy flux compensated by an enhanced outward enthalpy flux
appears. These observations are all consistent with those published in the literature. Furthermore, CHORUSþþ can be extended to magneto-
hydrodynamic simulations with potential applications to the hydromagnetic dynamo processes in the interiors of stars and planets.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0158146

I. INTRODUCTION

Turbulent thermal convection is ubiquitous in the interiors of
rotating stars and planets, such as the Sun and Jupiter. With advances in
computing powers, numerical simulations of rotationally constrained

convection (RCC) are considered for studies of many astrophysical

hydrodynamic phenomena, such as differential rotation, solar granula-

tion, and meridional circulation. However, global-scale simulations of

the convection zone with realistic conditions are challenging. Given that
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the fluid Reynolds number (Re) and Rayleigh number (Ra) in the Sun
are on the order of 1012 and 1020,1,2 it is hard to resolve the broad range
of length scales in turbulent solar convection, but substantial progress
has been made in simulations with reduced flow parameters. Early lami-
nar convection simulations3–5 reproduced many salient features of solar
convection, e.g., the large differential rotation, which takes the form of
equatorial acceleration. More recent studies,6–9 which were based on
turbulent RCC simulations at higher Reynolds numbers, reproduced
structures of convective cells on the Sun and revealed how differential
rotation and meridional circulation are established. Further research
found that convective patterns in laminar and turbulent states are signif-
icantly different.6 The convective pattern in the laminar case is domi-
nated by banana cells, which is consistent with observations in the early
simulations. However, the turbulent case exhibits broad and weak
upflow regions surrounded by narrow and strong downflow lanes. This
pattern resembles solar granulation but on a much larger scale. A subse-
quent study based on turbulent RCC simulations with Re ¼ 400
revealed that coherent downflow structures associated with giant cells
play a significant role in maintaining differential rotation.9 Purely
hydrodynamic simulations of global-scale RCC were also extended to
magnetohydrodynamic (MHD) simulations, and the interplay between
convection, rotation, and magnetic fields was investigated.8

Although many efficient codes for RCC simulations have been
developed, they may still have some limitations. The first limitation is
that most of them are based on pseudo-compressible approximations.
For example, the anelastic spherical harmonic (ASH) code,10 one of
the most successful codes for RCC simulations in spherical shells, uses
the anelastic approximation.11 This approximation is valid when char-
acteristic velocities remain substantially subsonic, and the stratification
does not become appreciably superadiabatic. It does not hold near the
photosphere of the Sun, where the Mach number approaches unity.
The second limitation is that many of them are based on a specific
gridding system and cannot be implemented on arbitrary unstructured
grids. For example, the ASH code is based on the spherical harmonic
basis functions, which only apply to the spherical geometry. The
PENCIL code,12,13 a popular code for compressible astrophysical fluid
dynamics, is designed for structured grids. Although it was successfully
applied to a spherical star immersed inside of a Cartesian tube,14 its
early applications15,16were concentrated on the spherical wedge geom-
etry which omits polar regions. The third limitation is that parallel
slowdown may appear as a result of a communications bottleneck.
The reason is that most codes use anelastic or incompressible approxi-
mations and, therefore, need computationally expensive global com-
munication to enforce the divergence-free constraint of the velocity
field.

To avoid aforementioned three limitations, a Compressible
High-ORder Unstructured Spectral difference (CHORUS) code was
developed,17 which uses fully compressible models, unstructured grids,
and compact computational stencils favored by massively parallel
computing. To provide high fidelity, the high-order accurate spectral
difference (SD) method18–22 is used. This is a compact high-order
method, which uses element-wise polynomials for reconstruction.
Similar methods, like the spectral element method (SEM),23 were
applied to direct numerical simulations of rotating convection in a
cube.24 By comparing with the SEM, the discontinuous Galerkin (DG)
method, which solve the integral form of the Navier–Stokes (NS)
equations, the SD method solves the differential form of the NS

equations. It is especially attractive since explicit integral computations
are not needed, and all interpolation and differentiation are performed
in efficient one-dimensional (1D) procedures.

By comparing with the original CHORUS code, which uses the
isoparametric mapping to perform coordinate transformations, the
new code, CHORUSþþ, employs exact transfinite mapping and
implements the SD method on a cubed-sphere grid. With transfinite
mapping, geometric errors for capturing the curvature of spherical sur-
faces are exactly zero on arbitrary sparse grids. Dense distribution of
computational elements near curved boundaries is no longer needed.
We can use element-wise high-order polynomials to reconstruct solu-
tions and fluxes on sparse grids to achieve high accuracy and save
computational costs. The superiority of higher-order reconstruction
compared with lower-order counterparts is shown for RCC simula-
tions in terms of accuracy and computing costs in Sec. VI. Moreover,
the topology of the cubed-sphere grid is optimal since the grid resolu-
tion on each horizontal surface is the same in polar and equatorial
regions. By contrast, grids used in ASH and PENCIL distribute grid
points uniformly in latitudinal, longitudinal, and radial dimensions.
Thus, dense grid points are concentrated in polar regions, and sparse
grid points are scattered in equatorial regions. However, this distribu-
tion of grid points is not optimal since the polar regions, compared to
the equatorial regions, are less susceptible to the Coriolis force and
may exhibit fewer intricate small-scale flow structures.

CHORUSþþ suffers from severe Courant–Friedrichs–Lewy
(CFL) constraint when the compressible flows are in the regimes of
very low Mach numbers since it is based on fully compressible models
and explicit time stepping. To circumvent this issue, the stellar lumi-
nosity is artificially increased to achieve higher Mach numbers,17,25,26

and the rotational velocity is increased correspondingly to keep a
solar-like Rossby number.

This paper is organized as follows. In Sec. II, RCC equations and
simulation setups are introduced. Procedures for cubed-sphere bound-
ary-conforming grid generation are given in Sec. III. The implementa-
tion of the SD method based on the transfinite mapping is described
in Sec. IV. The parallelization of CHORUSþþ is discussed in Sec. V.
Numerical results on the laminar solar benchmark and its variants
with different rotational velocities are presented in Secs. VI and VII.

II. SIMULATION SETUP

To model global-scale RCC, governing equations for the hydro-
dynamics of an ideal gas are solved in a rotating spherical shell. The
radius is equal to r¼ rb at the inner spherical surface and r¼ rt at the
outer spherical surface. These boundaries are impenetrable. A constant
heat flux is continuously fed into the spherical shell from the bottom
boundary to induce thermal instability and ensuing convection.

A. Governing equations

The simulations are conducted in a reference frame whose origin
coincides with the geometric center of the spherical-shell-shaped con-
vection zone. The reference frame is uniformly rotating about the z
axis with rotational velocity X0. The governing equations for the RCC
in a rotating reference frame are expressed in the form of hyperbolic
conservation law as

@Q

@t
þr � �F ¼ M; r � �F ¼

@F

@x
þ
@G

@y
þ
@H

@z
; (1)

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 086120 (2023); doi: 10.1063/5.0158146 35, 086120-2

Published under an exclusive license by AIP Publishing

 2
1
 A

u
g
u
s
t 2

0
2
3
 1

8
:5

5
:0

0



where Q ¼ ðq;qU;EÞT is the vector of conserved variables, q is the
density, U ¼ ðu; v;wÞ is the velocity vector, and E is the total energy.
Since an ideal gas is assumed, we have p ¼ qRT , where R is the gas
constant. �F ¼ ðF;G;HÞ is the total flux vector; F, G, and H are three
components of the flux in the x, y, and z directions; and M is the
source term. The total flux �F ¼ �F inv � �Fvis consists of the inviscid flux
minus the viscous flux. The inviscid and viscous flux vectors are

�F invðQÞ ¼

qU

qU� Uþ pI

UðE þ pÞ

0

B

@

1

C

A
; �FvisðQ;rQÞ ¼

0

�s

U � �s � q

0

B

@

1

C

A
;

where q, p, and E are the density, hydrodynamic pressure, and total
energy, respectively. The total energy E is defined as

E ¼
p

c� 1
þ
1

2
qjjUjj2; (2)

where c is the specific ratio of ideal gas and jj � jj is the Euclidean vec-
tor norm. �s is the shear stress tensor,

�s ¼ lðrUþ ðrUÞTÞ þ kðr � UÞI; (3)

where l ¼ q� is the dynamic viscosity, � is the kinematic viscosity,
and k ¼ �2=3l based on the Stokes’ hypothesis. The heat flux vector
q ¼ �jqTrS� jrqCprT , where T is the temperature, j is the
entropy diffusion coefficient, jr is the radiative diffusivity, and S is the
specific entropy, which is defined as

S ¼ Cp ln p1=c=q
� �

; (4)

where Cp is the specific heat at constant pressure. Here, the entropy
diffusion term parameterizes the energy flux due to unresolved,
subgrid-scale convective motions, which tend to mix entropy.6,17,27,28

The source term M is the combination of Coriolis force term and the
gravitational force term, which is defined as

M ¼

0

qg� 2qX0 � U

qU � g

0

B

@

1

C

A
; (5)

where X0 ¼ ð0; 0;X0Þ is the angular velocity vector. In the rotating
reference frame, the Coriolis force is considered. The gravity is mod-
eled as g ¼ �g r̂ ¼ �ðGM�=r

2Þr̂, G is the gravitational constant,M�

is the total mass of gases in the solar convection zone, and r̂ is the
radial unit vector. qU � g is the work done by buoyancy.

B. Boundary conditions

The top and bottom boundaries are impenetrable, which means
that radial velocities are zero at all boundaries,

Ur ¼ U � r̂ ¼ 0: (6)

Meanwhile, all boundaries are stress-free. Stress tensors �s on boundary
faces are computed in the Cartesian coordinate systems by computing
the velocity gradients. They are then transformed to spherical coordi-
nate systems, and their tangential components are dropped. After this
operation, they are transformed back to the Cartesian coordinate
systems.

A fixed heat flux is imposed at the bottom boundary,

q ¼ �jqTrS� jrqCprT ¼ ðL�=AbÞn at r ¼ rb; (7)

where L� is the stellar luminosity, Ab ¼ 4pr2b is the area of the hori-
zontal surface at the bottom boundary, and n is the outward-pointing
unit normal vector. The temperature at the top boundary is fixed.

C. Initial conditions

In this part, how to initialize the flow field to trigger thermal
instability and initiate convection is introduced.

Note that initially, all flow variables only vary in the radial
dimension. Initially, the fluid is in a hydrostatic balance state (U ¼ 0),

dp=dr ¼ �qg: (8)

The classical polytropic solution for static stratification27 can give the
initial profiles for pressure p, density q, and temperature T as

p ¼ pb 1�
U� Ub

CpTb

� �c=ðc�1Þ

;

q ¼ qb 1�
U� Ub

CpTb

� �1=ðc�1Þ

;

T ¼ Tb 1�
U� Ub

CpTb

� �

;

(9)

where U ¼ �GM�=r is the Roche potential, the temperature at the
bottom boundary is given by

Tb ¼
Ut � Ub

Cp 1� expð�ðc� 1ÞNqÞ
� � ; (10)

the density at the bottom boundary qb is an input to the codes, which
refer to the gas density near the base of the solar convection zone and
is set as qb ¼ 0:21 g cm�3; the subscripts b and t denote the bottom
and top boundaries, respectively; and Nq ¼ lnðqb=qtÞ is the number
of density scale heights. However, the profiles in Eq. (9) do not satisfy
the thermal equilibrium. To achieve an approximate thermal equilib-
rium, an almost flux balance approach17 is utilized. If the simulation
starts from a thermally relaxed state, the total flux through horizontal
surfaces at any radial position should be constant,8

q � r̂ ¼ L�=ð4pr
2Þ from rb to rt: (11)

Using the polytropic solutions of p, q, and T in Eq. (9), a target
entropy gradient is computed,

dS

dr
� C ¼

1

qTj

L�

4pr2
þ qCpjr

dT

dr

� 	

: (12)

Then, a target entropy profile is computed,

SðrÞ ¼ Sb þ

ðr

rb

Cdr; (13)

where Sb is the specific entropy at the bottom boundary. After this
step, the polytropic solutions are not needed anymore in the following
computations. Taking spatial derivative of the specific entropy in Eq.
(4) along the radial dimension and using Eq. (8), we have
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C

Cp
¼ �

1

q

dq

dr
þ
g

c

q

p

� 	

: (14)

Rearranging the above equation gives an ordinary differential equation
with respective to the density q,

dq

dr
¼ � q

C

Cp
þ
g

c
q2�c exp �

cS

Cp

� 	

" #

with q ¼ qb at r ¼ rb; (15)

where the target entropy S and entropy gradient C are already com-
puted. Numerical integration of Eq. (15) gives the initial density pro-
file, which should be a little different from the polytropic solution of
the density in Eq. (9). Based on the initial density and entropy profiles,
initial profiles of other thermodynamic variables, like pressure p and
temperature T, can be computed.

The simulation starts from a thermally relaxed state. Thus, convec-
tion will not occur immediately. However, since a constant heat flux
flows into the convection zone from the bottom boundary and the tem-
perature at the top boundary is fixed, the temperature gradient will
increase and gradually become supercritical. Then, thermal instability
can be triggered and convection starts. In fact, how the thermal convec-
tion in a rotating spherical shell transitions and enters symmetry-
breaking state depends on a wide range of parameters. However, this is
not the focus of the current paper. To investigate the dependence of the
thermal instability on non-dimensional parameters, S�anchez and Juan29

gave an efficient estimation based on dynamical system tools, which can
serve as a parameter setting guide before direct numerical simulations.

III. GRID GENERATION

The physical domain for simulations is a spherical shell. It is
partitioned into non-overlapping unstructured hexahedral ele-
ments. Traditional grid generation uses isoparametric elements,
which are constructed by polynomial-based shape functions
defined on nodal points. However, shapes of the hexahedral ele-
ments in the current study are described by analytical functions.
The current study ensures that elements seamlessly fill in the
spherical shell without any singularity.

The grid is generated by stacking a series of surface meshes on
horizontal surfaces of different radius of curvature r (rb � r � rt) in
the radial dimension with equidistant spacings. The number of spac-
ings is Nr. Cubed-sphere gridding technique30 is used to generate the
surface meshes. It is based on a decomposition of the sphere into six
identical regions, which are obtained by projecting the sides of a cir-
cumscribed cube onto a spherical surface, as shown in Fig. 1. Using
this projection, tiling a cubed face with Na � Na square elements uni-
formly is equivalent to constructing the angularly equidistant grids on
one of the six identical regions of the sphere. For example, for region,1

angular variables a and b are chosen,

a ¼ arctanðy=xÞ; b ¼ arctanðz=xÞ; � p=4 � a;b � p=4;

and each element face is enclosed by angularly equidistant curves,

ai; aiþ1½ 	 � bj; bjþ1

� �

;

ai ¼ �p=4þ ip=2; bj ¼ �p=4þ jp=2; 0 � i; j � Na;

as illustrated in Fig. 2(b). Figure 3 shows a sample grid with Na¼ 20 and
Nr¼ 8. The total number of hexahedral elements in the grid is 6N2

aNr .

IV. NUMERICAL METHODS

A. Transfinite mapping

A transfinite mapping, which can be expressed by analytical
functions, is used to transform all elements from the physical domain
(x, y, z) into a standard element

ðn; g; fÞ 2 0; 1½ 	 � 0; 1½ 	 � 0; 1½ 	 (16)

FIG. 1. The cubed-sphere gridding technique maps the spherical surface on the
six faces of a cube (labeled as region ½1	; ½2	;…; ½6	), which are shown here
opened on a plane.

FIG. 2. Element faces belong to two types: type 1 and type 2. (a) Illustration of two faces, which belong to type 1 and type 2, respectively. (b) A face of type 1. It is located in
region1 of the cubed-sphere illustrated in Fig. 1. It is enclosed by four semicircular curves with a ¼ ai and aiþ1 and b ¼ bj and bjþ1. (c) A face of type 2. It is enclosed by
two radii and two arcs.
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as shown in Fig. 4. The mapping can be expressed as

ðx; y; zÞ ¼ Pðn; g; fÞ: (17)

The mapping can be calculated as algebraic combinations of some
projectors,31

P ¼ Pn þ Pg þ Pf � PnPg � PnPf � PgPf þ PnPgPf; (18)

where projectors Pn; Pg, and Pf are computed as

Pnðn; g; fÞ ¼ ð1� nÞPð0; g; fÞ þ nPð1; g; fÞ; (19)

Pgðn; g; fÞ ¼ ð1� gÞPðn; 0; fÞ þ gPðn; 1; fÞ; (20)

Pfðn; g; fÞ ¼ ð1� fÞPðn; g; 0Þ þ fPðn; g; 1Þ; (21)

projectors of the form of bilinear products are computed as

PnPgðn; g; fÞ ¼ w1ðn; gÞPð0; 0; fÞ þ w2ðn; gÞPð1; 0; fÞ

þw3ðn; gÞPð1; 1; fÞ þ w4ðn; gÞPð0; 1; fÞ;

PnPfðn; g; fÞ ¼ w1ðn; fÞPð0; g; 0Þ þ w2ðn; fÞPð1; g; 0Þ

þw3ðn; fÞPð1; g; 1Þ þ w4ðn; fÞPð0; g; 1Þ;

PgPfðn; g; fÞ ¼ w1ðg; fÞPðn; 0; 0Þ þ w2ðg; fÞPðn; 1; 0Þ

þw3ðg; fÞPðn; 1; 1Þ þ w4ðg; fÞPðn; 0; 1Þ

with the basis functions

w1ðn; gÞ ¼ ð1� nÞð1� gÞ;

w2ðn; gÞ ¼ nð1� gÞ;

w3ðn; gÞ ¼ ng;

w4ðn; gÞ ¼ ð1� nÞg;

and the trilinear projector, which corresponds to the trilinear isopara-
metric mapping, is computed as

PnPgPfðn; g; fÞ ¼ ð1� nÞð1� gÞð1� fÞPð0; 0; 0Þ

þ ð1� nÞgð1� fÞPð0; 1; 0Þ

þ ð1� nÞgð1� fÞPð0; 1; 0Þ

þ ð1� nÞð1� gÞfPð0; 0; 1Þ þ ngð1� fÞPð1; 1; 0Þ

þ nð1� gÞfPð1; 0; 1Þ þ ð1� nÞgfPð0; 1; 1Þ

þ ngfPð1; 1; 1Þ:

Notice that Pðn; g; fÞ is a 3D mapping from a physical volume to a
standard cubic volume, but relying on the above computation, we can
instead compute one-dimensional (1D) mappings from standard
straight lines to element edges in the physical domain, like Pðn; 0; 0Þ,
and two-dimensional (2D) mappings from standard square faces to
curved element faces, like Pðn; g; 0Þ. For all hexahedral elements,
which are depicted in Fig. 4, there are four straight edges in the radial
dimension and eight edges, which are arcs on spherical surfaces. 1D
mappings from ½0; 1	 to straight edges are simply 1D isoparametric
mappings. 1D mappings from n 2 ½0; 1	 to arcs are linear mappings
between n and the arc angle #. For 2D mappings, all elements have six
faces, which can be divided into two types, as illustrated in Fig. 2.
There are two faces of type 1. They are located on spherical surfaces
and generated by the cubed-sphere surface meshing. Therefore, the
2D mapping Pðn; g; 0Þ, which maps a standard square face onto a face
enclosed by the semicircular curves a ¼ ai and aiþ1 and b ¼ bj and
bjþ1 with radius r, can be done by

a ¼ ai þ nDa; b ¼ bj þ gDb; Da ¼ Db ¼ p=ð2NaÞ;

x ¼ r=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2aþ tan2b
p

; y ¼ x tan a; z ¼ x tanb:

Remaining four faces belong to type 2 and are composed of two
straight radial edges and four arc edges. The 2D mapping is a tensor
product of an isoparametric mapping along the radial dimension and
a linear mapping of a co-ordinate onto the arc angle #.

When mapping one point ðn; gÞ in the standard square face to a
point (x, y, z) in 3D space on a 1/6 spherical surface with radius r, one
face among the six faces in Fig. 1, geometric errors are measured by
Dr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

� r. Figure 5 shows that geometric errors intro-
duced by the isoparametric mappings are exactly zero at nodal points
where the shape functions are defined, for example, like corner points
and mid-edge points. However, errors are extremely large in the center
of the face. The maximum non-dimensional geometric error jDrj=r is
42%; 16%, and less than 10�10% for linear isoparametric mapping,
quadratic isoparametric mapping, and transfinite mapping, respec-
tively. Such large geometric errors introduced by the isoparametric
mappings cannot be removed without massive meshing. By contrast,
the geometric error introduced by the transfinite mapping is always
near the error of machine precision and is irrelevant with the mesh
resolution.

The Jacobian matrix J for the mapping Pðn; g; fÞ is

FIG. 3. Illustration of a grid whose Na¼ 20 and Nr¼ 8. (a) Front view of the sur-
face mesh on each horizontal surface generated by the cubed-sphere gridding
technique. (b) Volume mesh to partition the simulation domain, which is a spherical
shell. The portion of the mesh where x> 0, y> 0, and z> 0 is removed to show
the topology of the volume mesh in the interior.

FIG. 4. Transfinite mapping of a hexahedral element with curved surfaces from the
physical domain (x, y, z) to the standard cubic domain ðn; g; fÞ. Point O is the ori-
gin of the reference frame.
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J ¼
@ðx; y; zÞ

@ðn; g; fÞ
¼

xn xg xf
yn yg yf
zn zg zf

0

@

1

A: (22)

Using the transfinite mapping, the governing equations (1) are then
transformed into the computational domain within the standard cubic
element

@ ~Q

@t
þ
@~F

@n
þ
@ ~G

@g
þ
@ ~H

@f
¼ ~M; (23)

where ~Q ¼ jJjQ; ~M ¼ jJjM and fluxes are transformed as

~F
~G
~H

0

B

@

1

C

A
¼ jJjJ�1

F

G

H

0

@

1

A; (24)

in which fluxes can be written explicitly as

Finv ¼ qu; qu2 þ p; quv;quw; uðE þ pÞ
� �T

;

Ginv ¼ qv; qvu;qv2 þ p; qvw; vðE þ pÞ
� �T

;

Hinv ¼ qw;qwu;qwv; qw2 þ p;wðE þ pÞ
� �T

;

(25)

and

Fvis ¼ sxx; syx; szx; usxx þ vsyx þ wszx þ qxð ÞT ;

Gvis ¼ sxy; syy; szy; usxy þ vsyy þ wszy þ qyð ÞT ;

Hvis ¼ sxz; syz; szz; usxz þ vsyz þ wszz þ qzð ÞT ;

(26)

where qx, qy, and qz are three components of the heat flux vector q in
the x, y, and z directions and sij are the components of the shear stress
tensor in Eq. (3).

B. Spectral difference method

Within the computational domain, in order to construct a degree
ðN � 1Þ polynomial along the n, g or f dimension, N solution points
(SPs) are required in each dimension. In each dimension, the SPs are
chosen as the Chebyshev–Gauss points,

Xs ¼
1

2
1� cos

2s� 1

2N
p

� 	� �

; s ¼ 1; 2;…;N: (27)

To be consistent with the conservation law, where spatial derivatives
of the fluxes and the conserved variables are on the same stage, the
polynomial to reconstruct the fluxes should have degree N. Hence,
ðN þ 1Þ flux points (FPs) are needed in each dimension. They are
denoted as Xsþ1=2; s ¼ 0; 1;…;N and chosen as X1=2 ¼ 0 and
XNþ1=2 ¼ 1 plus ðN � 1Þ roots of the Nth order Legendre polynomial.
In each dimension, Lagrange interpolation is used to construct solu-
tion polynomials and reconstruction flux polynomials with nodal
Lagrange basis functions at the SPs and FPs,

hiðXÞ ¼
Y

N

s¼1;s 6¼i

X � Xs

Xi � Xs

� 	

; (28)

liþ1=2ðXÞ ¼
Y

N

s¼0;s 6¼i

X � Xsþ1=2

Xiþ1=2 � Xsþ1=2

 !

: (29)

For the 3D computational domain, the SPs are located at ðn; g; fÞ
¼ ðXi;Xj;XkÞ, where i; j; k ¼ 1; 2;…;N . The FPs can be divided into
three families along three dimensions, which are

ðn; g; fÞ ¼ ðXiþ1=2;Xj;XkÞ; family along n-dimension;

i ¼ 0; 1;…;N; j; k ¼ 1; 2;…;N;

ðn; g; fÞ ¼ ðXi;Xjþ1=2;XkÞ; family along g-dimension;

j ¼ 0; 1;…;N; i; k ¼ 1; 2;…;N;

ðn; g; fÞ ¼ ðXi;Xj;Xkþ1=2Þ; family along f-dimension;

k ¼ 0; 1;…;N; i; j ¼ 1; 2;…;N:

Tensor products of the three one-dimensional Lagrange basis func-
tions construct solutions,

Qðn; g; fÞ ¼
X

N

k¼1

X

N

j¼1

X

N

i¼1

~Qi;j;k

jJi;j;kj
hiðnÞ � hjðgÞ � hkðfÞ: (30)

After extrapolating solutions from the SPs to the FPs, inviscid fluxes
are computed at the FPs. However, they are only element-wise contin-
uous, but discontinuous across element interfaces. For the inviscid
flux, the Rusanov solver32 (also known as Local Lax–Friedrichs solver)
is employed to compute common inviscid fluxes at interfaces to ensure
flux conservation. The Rusanov solver is implemented in the computa-
tional domain along interface normal direction. At the same time, to
ensure that solutions are continuous across element interfaces, the

FIG. 5. Comparison of (a) linear isoparametric mapping, (b) quadratic isoparametric mapping, and (c) transfinite mapping in terms of non-dimensional geometric errors intro-
duced by mapping the standard square face ðn; gÞ 2 ½0; 1	2 to a 1/6 spherical surface.
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common solution at element interfaces is computed as the average of
values interpolated from the left and right elements (also known as the
BR1 scheme33). Sun et al.34 proposed an efficient way to compute solu-
tion gradients in 3D unstructured grids,

rQ ¼
@Q

@n
rnþ

@Q

@g
rgþ

@Q

@f
rf

¼
1

jJj

@ðQ~SnÞ

@n
þ
@ðQ~SgÞ

@g
þ
@ðQ~SfÞ

@f

" #

;

where~Sn ¼ jJjrn,~Sg ¼ jJjrg; ~Sf ¼ jJjrf and the derivatives at the
SPs along each dimension are computed,

Q~Sn
@n

 !

i;j;k

¼
X

N

r¼0

Q~Sn

� �

rþ1=2;j;k
� l0rþ1=2ðXiÞ;

Q~Sg
@g

 !

i;j;k

¼
X

N

r¼0

Q~Sg

� �

i;rþ1=2;k
� l0rþ1=2ðXjÞ;

Q~Sf
@f

 !

i;j;k

¼
X

N

r¼0

Q~Sg

� �

i;j;rþ1=2
� l0rþ1=2ðXkÞ:

(31)

Then, the solution gradients are extrapolated from the SPs to the
FPs. Again, the common solution gradients are averaged on ele-
ment interfaces. After obtaining both solutions and solution gra-
dients at the FPs, viscous fluxes are computed at the FPs. The total
fluxes, which combine both the inviscid and viscous fluxes, are
reconstructed,

~F ¼
X

N

k¼1

X

N

j¼1

X

N

i¼0

~F iþ1=2;j;kliþ1=2ðnÞ � hjðgÞ � hkðfÞ;

~G ¼
X

N

k¼1

X

N

j¼0

X

N

i¼1

~G i;jþ1=2;khiðnÞ � ljþ1=2ðgÞ � hkðfÞ;

~H ¼
X

N

k¼0

X

N

j¼1

X

N

i¼1

~H i;j;kþ1=2hiðnÞ � hjðgÞ � lkþ1=2ðfÞ:

(32)

Spatial derivatives of fluxes at the SPs are then computed,

@~F

@n

 !

i;j;k

¼
X

N

r¼0

~Frþ1=2;j;k � l
0
rþ1=2ðXiÞ; (33)

@ ~G

@g

 !

i;j;k

¼
X

N

r¼0

~G i;rþ1=2;k � l
0
rþ1=2ðXjÞ; (34)

@ ~H

@f

 !

i;j;k

¼
X

N

r¼0

~H i;j;rþ1=2 � l
0
rþ1=2ðXkÞ: (35)

C. Time stepping scheme

After computing the spatial derivatives of fluxes, Eq. (23) can be
written in a residual form,

@Q

@t
¼ �

1

jJj

@~F

@n
þ
@ ~G

@g
þ
@ ~H

@f

 !

þM: (36)

A five-stage third-order explicit strong stability-preserving Runge–
Kutta method [SSPRK(5,3)] is used in the present work, whose coeffi-
cients are tabulated in Table 1 of Ruuth.35

V. PARALLEL COMPUTING

The CHORUSþþ code is written in Fortran 90, and the message
passing interface (MPI) is used for interprocessor communication. It
uses the METIS package36 for domain decomposition. Before the par-
allel computations start, the root processor calls the mpmetis pro-
gram, a serial program, to partition the mesh into parts. Then, each
processor reads in its own part of the mesh. Due to the compactness of
the SD method, most computations are done locally, except informa-
tion communications occurring at element interfaces whose two
neighboring elements are located in different processors. By compar-
ing with the load for local computations, the load for communications
is negligible since the number of FPs on interprocessor element inter-
faces is much smaller than the number of other FPs.

Figure 6 shows the strong scaling for CHORUSþþ using third-,
fourth-, and sixth-order elements. This test is carried on a cluster
whose nodes are equipped with 2-sockets Intel Xeon Gold 6148 CPU
with 20 cores each at 2.40GHz for a total of 40 cores per node. Linear
speedup is well achieved up to 40 processors for all orders. With the
increase in the number of processors, CHORUSþþ gradually deviates
from the linear speedup due to increased portion of interprocessor
communications in overall computational costs. When the number of
processors becomes very large, CHORUSþþ using sixth-order ele-
ments has better speedup than CHORUSþþ using lower-order ele-
ments. This is consistent with the fact that the computational cost in
the interiors of elements is proportional to N3 while the communica-
tion cost on the element interfaces is proportional toN2.

VI. LAMINAR SOLAR BENCHMARK

To test the accuracy of the CHORUSþþ code, it is applied to the
laminar solar benchmark proposed by Wang et al.17 This benchmark
has been investigated thoroughly using both the original CHORUS
code and ASH code and can serve as a test case for verification of
CHORUSþþ. Parameters for the laminar solar benchmark are listed

FIG. 6. Strong scaling of CHORUSþþ.
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in Table I. We use the Sun values for the length of the solar convection
zone, as reflected by values of rt and rb. The radiative diffusivity is

parameterized as jr ¼ krðc0 þ c1xþ c2x
2Þ, where c0 ¼ 1:560 097 5

�108; c1 ¼ �4:563 171 8� 107; c2 ¼ 3:337 036 8� 106, and x ¼ r

�10�10. The parameter kr is set by making sure that Fr ¼ L�=ð4pr
2Þ

at r¼ rb, where Fr is the radiative flux in Eq. (39). The current study
artificially increases the stellar luminosity L� 1000 times to achieve
higher Mach numbers17,25,26 so that the severity of the CFL constraint
can be alleviated to some extent. However, with the boosted luminos-
ity, the convective flow is still in a low-Mach regime since the maxi-
mum Mach number in the whole domain during simulations is less
than 0.05. The flow velocities in the near-photospheric layers would
not become supersonic since the number of density scale heights is
chosen as 3, a small value representing that the change in the Mach
number along the radial dimension would not be as drastic as the real
Sun. As a consequence of the boosted luminosity, the root mean
square (rms) of fluid velocity is enlarged ten times according to the

mixing-length theory of convection that U 0
rms / L

1=3
� , where U 0

rms

¼
ffiffiffiffiffiffiffiffiffiffiffi

hU 02i
q

, h�i represents the time-averaged operation, the overbar

represents the spatially averaged operation, U 02 ¼ u02 þ v02 þ w02,
and u0 ¼ u� hui. To preserve a solar-like Rossby number
Ro ¼ U 0

rms=ð2X0dÞ, the rotational velocity should be enlarged for ten

times accordingly. Given that the rotational velocity for the real Sun is

X
Sun
0 ¼ 2:6� 10�6 s�1, the laminar solar benchmark considers a fast-

rotating Sun and uses X0 ¼ 8:1� 10�5 s�1 
 31:2XSun
0 . Note that

even if the value of ðL�Þ
1=3=X0 in the simulation matches that of the

real Sun, the convective structure and predicted convective velocities
cannot match that on the Sun exactly. Much evidence suggests that
the large-scale convective velocities obtained by solar convection simu-
lations might be over-estimated. This is called the convective conun-
drum.37 There are many ongoing works38–40 about exploring factors
that may affect the amplitude of the convective velocities and
approaching the solar-like convection regime. Table II shows that the
non-dimensional parameters for the Sun and laminar solar bench-
mark and disparity in Reynolds number can be noticed. Data for the
Sun is from Jones et al.41

Six different grids, G1, G2, …, G6, are used for computations of
the laminar solar benchmark, as shown in Table III. According to the
number of solution degrees of freedom (DoFs), they can be divided
into two groups. G1, G3, and G5 belong to the first group, and G2, G4,
and G6, which are refined 1.5 times along all dimensions, belong to
the second group. For the SD method, DoFs measure computational
costs per time step. Comparisons within a group allow us to investigate
the superiority of high-order accuracy objectively.

All simulations run up to the time when the equilibration of
components of the energy flux almost reaches. Neglecting structural
stellar evolution, the thermal relaxation occurs in the thermal

timescale or Kelvin–Helmholtz timescale TKH ¼ Et=L�, where Et is
the total thermal energy. For rotating stars, TKH is generally very large
and can exceed 105 years. However, a more relevant timescale for the
equilibration of the convection is the thermal diffusion timescale
Td ¼ d2=j, which equals to 58:44T� for the solar benchmark, where
T� ¼ 2p=X0 is one rotational period of time for stars. To ensure final
equilibration, all simulations run up to t ¼ Tf ¼ 4:8� 105 s

 61:88T�. This simulation time is much longer than the affordable
simulation time for the original CHORUS code,17 which is 15T�. The
time interval Tf < t < Tf þ 30T� is chosen as the sampling time for
computing time-averaged values. U 0

rms ¼ 4:0398� 104 cm s�1 for the
laminar solar benchmark, and non-dimensional parameters in Table
II are computed based on this value.

Figure 7 shows that the kinetic energy,

KE ¼
1

V

ð

V

1

2
q U � Uð ÞdV ; (37)

achieves a nonlinear saturation and reaches a dynamic equilibrium
after a fast exponential growth stage and a descending stage. Lack of
grid resolution would underestimate KE, as shown by the predicted
line of G1. Figure 8 shows convective patterns predicted from the six
grids. Light fluids with high temperature rise to the top and form the
upflow indicated by the red color while heavy fluids with low tempera-
ture sink to the bottom and form the downflow indicated by the blue
color. Given the same DoFs, compared with G3 and G5, G1 with
third-order elements gives the most crude solution: there are many

TABLE I. Summary of parameters for the laminar solar benchmark.

Top boundary rt ¼ 6:61� 1010 cm, bottom boundary rb ¼ 4:87� 1010 cm, depth of the convection zone d ¼ rt � rb ¼ 1:74� 1010 cm,
stellar luminosity L� ¼ 3:846� 1036 ergs s�1, gravitational constant G ¼ 6:67� 10�8 g�2 cm2, stellar massM� ¼ 1:988 91� 1033 g,

qb ¼ 0.21 g cm�3, Nq ¼ 3; c ¼ 5=3, gas constantR ¼ 1:4� 108 ergs g�1 K�1, Cp ¼ 3:5� 108 ergs g�1 K�1,
kinematic viscosity � ¼ 6:0� 1013 cm2 s�1, entropy diffusion coefficient j ¼ 6:0� 1013 cm2 s�1, X0 ¼ 8:1� 10�5 s�1

TABLE II. Comparison between some non-dimensional parameters for the Sun and
the laminar solar benchmark. For the benchmark, DS ¼ 7:798� 105 erg g�1 K�1

and U0
rms ¼ 4:040� 104 cm s�1.

Parameters Sun benchmark

Rayleigh number
Ra ¼ GM�dDS=ð�jCpÞ

1020 1:429� 106

Reynolds number
Re ¼ U 0

rmsd=�
1012 11.72

Ekman number
Ek ¼ �=ðX0d

2Þ
10�14 2:447� 10�3

Taylor number
Ta ¼ 4X2

0d
4=�2

1019 � 1027 6:682� 105

Prandtl number
Pr ¼ �=j

10�6 � 10�4 1

Rossby number
Ro ¼ U 0

rms=ð2X0dÞ
0.1–1 1:433� 10�2

Number of density
scale heights Nq ¼ lnðqb=qtÞ

16 3
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small artificial pothole-shaped convective cells in the mid-latitude
region, and contours of convective cells near the equator are not quite
smooth. Using sixth-order elements, the so-called banana cells are cap-
tured without obvious oscillations shown on the contour lines: colum-
nar convective rolls are aligned with the rotation axis but sheared
slightly in the prograde direction near the equator by the differential
rotation. After refining the grids, solution smoothness of G2 is much
higher than that of G1, but convective patterns predicted from G5 and
G6 are almost the same, which means that the simulation is almost
converged for G6. By comparing with results from G6, banana cells
predicted from G2 are wider in the longitudinal direction and shorter
in the latitudinal direction.

To check whether the convection reaches equilibration, the radial
energy flux needs to be examined. Four components of the energy flux
are involved in transporting energy in the radial direction, namely, the
enthalpy flux Fe, radiative flux Fr, entropy flux Fu, and kinetic energy

flux Fk. Appendix B in Ref. 26 derives the equation of flux balance in
detail. When the system reaches a statistically steady state, the sum of
these four fluxes should equal to the full luminosity imposed at the
bottom boundary

Fe þ Fr þ Fu þ Fk ¼ F� ¼
L�

4pr2
; (38)

where

Fe ¼ �qCpUrðT � �T Þ;

Fr ¼ �jr�qCp
@�T

@r
;

Fu ¼ �j�qT
@�S

@r
;

Fk ¼
1

2
�qUrðU � UÞ;

(39)

the overbars denote mean values averaged over horizontal surfaces.
Figure 9 shows the decomposition of the energy flux at t¼Tf for solu-
tions computed from CHORUSþþ on the six grids. To make a com-
parison, results based on CHORUS and ASH are also attached.17 Due
to prohibitive computational costs, even with Yellowstone high-
performance computing clusters at National Center for Atmospheric
Research (NCAR), CHORUS fails to run the benchmark until equili-
bration of the energy flux, as maxððFe þ Fr þ Fu þ FkÞ=F� � 1Þ

 30% in Fig. 9(g). Using sixth-order CHORUSþþ, predicted com-
ponents of the energy flux are smooth in Figs. 9(e) and 9(f). High con-
sistency between them verifies the convergence of simulations. The
energy flux balance is almost achieved for G5 and G6 at t¼Tf since
maxððFe þ Fr þ Fu þ FkÞ=F� � 1Þ 
 5%. Results show that the radi-
ative flux Fr dominates the energy flux in the lower convection zone
while the entropy flux Fu dominates in the upper convection zone.

TABLE III. Computational efforts for the laminar solar benchmark using CHORUSþþ on G1, G2, …, G6 are shown. The number of elements in grids are 6� ðN2
a � Nr Þ and

Na=Nr ¼ 1:5 for all grids. Computational efforts for the same benchmark using CHORUS and ASH are attached for comparison. The sparsest grid needed for a third-order
CHORUSþþ to get converged components of energy flux is given in the last column.

No. of elements

G1
6� ð242 � 16Þ

¼55 296

G2
6� ð362 � 24Þ

¼186 624

G3
6� ð182 � 12Þ

¼23 328

G4
6� ð272 � 18Þ

¼ 78 732

G5
6� ð122 � 8Þ

¼ 6912

G6
6� ð182 � 12Þ

¼ 233 328

SD order Third-order Third-order Fourth-order Fourth-order Sixth-order Sixth-order

DoFs 1 492 992 5 038 848 1 492 992 5 038 848 1 492 992 5 038 848

Max Dt (s) 17.9 11.5 13.8 8.6 8.5 5.0

CPU hours per
time step

1:03� 10�3 3:48� 10�3 1:05� 10�3 3:54� 10�3 1:01� 10�3 3:41� 10�3

CPU hours to
run 10 days

44.6 234.7 59.0 319.3 92.2 529.0

Valid or not � � � � � �

CHORUS ASH Third-order CHORUSþþ

DoFs 19 660 800 100� 256� 512 ¼ 2 907 000 6� ð752 � 50Þ � 33 ¼ 45 562 500

Dt (s) 4 20 5.3

CPU hours per time step 8:03� 10�2 5:32� 10�3 3:16� 10�2

CPU hours to run 10 days 17 352.0 230.0 4624.9

FIG. 7. Time evolution of the kinetic energy computed from six different grids in the
laminar solar benchmark.
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Both Fe and Fk decrease to 0 at boundaries due to the impenetrable
boundary conditions. The enthalpy flux Fe peaks at about r ¼ 0:95rt
with a peak value close to 0:3L�. By contrast, all third- and fourth-
order CHORUSþþ fail at the same DoFs since spurious oscilla-
tions of Fu appear. These oscillations are not physical and stem
from lack of spatial discretization accuracy. Increasing mesh reso-
lution can alleviate this issue. Refining G3 to G4, the amplitude of
unphysical oscillations in Fu decreases significantly. Spurious oscil-
lations of Fu computed from G1 and G2 are too violent to show
with the same scale of other components. Refining G1 to G2 also
results in a physical prediction of the enthalpy flux Fe. With
improved mesh resolution, boundary conditions are better satis-
fied. It can be noticed that for G3, the boundary condition of heat
flux at the bottom boundary is not even satisfied well. After refin-
ing the mesh from G3 to G4, Fr þ Fu ¼ F� satisfies extremely well
at both the bottom and top boundaries. However, the sixth-order

CHORUSþþ does not have all these problems at the same DoFs.
It demonstrates that given the same DoFs, sixth-order accuracy
provides enhanced simulation fidelity. To achieve the same level of
accuracy, higher-order CHORUSþþ needs much fewer DoFs.

Table III compares the computing efficiency of CHORUSþþ,
CHORUS, and ASH. Data for CHORUS and ASH is collected from
Ref. 17. Sixth-order CHORUSþþ is far more efficient than
CHORUS. However, since CPU hours for CHORUSþþ and
CHORUS are measured on different computing architectures, this
conclusion needs to be further verified. Based on the current third-
order CHORUSþþ, we refine the mesh resolution until the energy
flux is fully resolved. Numerical experiments show that Nr¼ 50 is
needed to get converged components of the energy flux. The sixth-
order CHORUSþþ runs 4624:9=529:0 
 8:7 times faster than the
third-order CHORUSþþ. This amazing speedup enables us to
carry out the RCC simulation on G6 until equilibration of

FIG. 8. Instantaneous radial velocity Ur ¼ U � r̂ for the laminar solar benchmark at the horizontal surface r ¼ 0:95rt . Red and blue tones denote the upflow and downflow,
respectively, as indicated by the color bar. The horizontal surfaces are displayed in a Mollweide projection that includes all 360� of longitude and in which lines of constant lati-
tude are horizontal. Shown are results computed on (a) G1, (b) G2, (c) G3, (d) G4, (e) G5, and (f) G6.
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components of the energy flux using just one Intel Xeon Gold 6148
Processor about 1.5 weeks. Here, one Intel Xeon Gold 6148
Processor has 40 total threads and 2.4 GHz base frequency. If we
neglect the difference of computing facilities, the computing

efficiency of the sixth-order CHORUSþþ code is even close to
that of the ASH code. However, CHORUSþþ is implemented on
unstructured grids, based on equations of compressible flows, and
orders of spatial accuracy can be chosen arbitrary.

FIG. 9. Components of the normalized,
horizontally integrated radial energy flux
for the laminar solar benchmark computed
on (a) G1, (b) G2, (c) G3, (d) G4, (e) G5,
and (f) G6 using CHORUSþþ. Spurious
oscillations of the entropy flux Fu com-
puted using the third-order accuracy on
G1 and G2 are too violent to show
directly. Predictions for the same problem
using CHORUS and ASH are shown in
(g) and (h), respectively.17
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The CFL constraint for discontinuous high-order methods with
explicit Runge–Kutta time marching schemes42 is formulated as

Dt / h=ðp2oÞ (40)

with empirical data close to

Dt / h=ðp1:4o Þ; (41)

where Dt is the time step, h is the element size, and po is the degree of
the polynomials for local reconstruction. For the SD method,
po ¼ N � 1, where N is the order of the SD method. Given the com-
putational domain size and the number of computational elements in
the radial direction is l and Ne and the total number of DoFs in the
radial direction is fixed as NDoFs, it follows that h ¼ l=Ne; N
¼ NDoFs=Ne. We then reach the expression that

TABLE IV. Summary of non-dimensional parameters for solar convection simulations with varied rotational velocity X0.

X0 (s
�1) 2:6� 10�5 3:7� 10�5 4:8� 10�5 5:9� 10�5 7:0� 10�5 8:1� 10�5

U 0
rms (cm s�1) 8:573� 104 7:548� 104 6:697� 104 5:745� 104 4:922� 104 4:040� 104

Reynolds number Re 24.86 21.89 19.42 16.66 14.27 11.72

Rossby number Ro 3:041� 10�2 2:678� 10�2 2:376� 10�2 2:038� 10�2 1:746� 10�2 1:433� 10�2

FIG. 10. Instantaneous radial velocity Ur ¼ U � r̂ at the horizontal surface r ¼ 0:95rt for the cases of varied rotational velocity. The horizontal surfaces are displayed in a
Mollweide projection. (a) X0 ¼ 2:6� 10�5, (b) X0 ¼ 3:7� 10�5, (c) X0 ¼ 4:8� 10�5, (d) X0 ¼ 5:9� 10�5, (e) X0 ¼ 7:0� 10�5, and (f) X0 ¼ 8:1� 10�5 s�1.
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Dt /
N0:4
e

ðNDoFs � NeÞ
1:4 : (42)

According to the above equation, changing the mesh from G1 to G3
would reduce the maximum time step by a factor of 1.32, which is
computed as 17:9=13:8 ¼ 1:30 in real numerical computations. The
slight discrepancy is acceptable due to the nonlinearity of compressible
NS equations, non-uniform distribution of the source term, and radia-
tive diffusivity jr. Overall, increasing the polynomial orders signifi-
cantly improves the spatial accuracy at the sacrifice of acceptably
shortened time steps.

VII. VARYING THE ROTATIONAL VELOCITY

Vasil et al.43 predicted that the dynamical Rossby number for
real solar convection is less than unity below the near-surface shear
layer, and, therefore, the convection is rotationally constrained.
Investigation of the rotational effect is of great important to studies of
the solar convection. Rotation tends to suppress convection.44 For a
weak rotation, small-scale flow structures are reduced with increased
rotational velocity.45

By varying the rotational velocity X0 in the laminar solar bench-
mark, we investigate the rotationally constrained effect on convection.
Five simulations with X0 ¼ 2:6� 10�5; 3:7� 10�5; 4:8� 10�5;
5:9� 10�5, and 7:0� 10�5 s�1 are computed on G6 using sixth-
order elements. Along with the original solar benchmark with X0

¼ 8:1� 10�5 s�1, six cases are listed in Table IV with non-
dimensional parameters quoted.

Figure 10 shows that with the decrease in the rotational velocity,
asymmetry between upflows and downflows enhances and downflow
lanes become more narrow and strong. For slowly rotating cases, the
banana cells become more irregular, indicating a more turbulent state.
The downflow lanes near the poles are generally more isotropic and
possess smaller spatial scales while that near the equator is influenced

by the rotation with obvious longitudinal shear toward the rota-
tional direction. Figure 11 shows that for the slowest rotating case,
an intricate network of downflow lanes appears near the top
boundary and the width of the downflow lanes is generally smaller
in the upper convection zone and larger in the deep convection
zone. By comparing with the fast rotating laminar solar bench-
mark, convective structures near the poles in the slowest rotating
case are more complex. Figure 12 shows that with the rotational
velocity decreasing to X0 ¼ 3:7� 10�5 s�1, downflows become so
strong that an inward kinetic energy flux indicated by negative Fe
is witnessed and the inward Fe grows in the case of X0

¼ 2:6� 10�5 s�1. A strong inward kinetic energy flux must be
compensated by an enhanced outward enthalpy flux,9 which is
consistent with our results. To investigate differential rotation, we
define longitudinally averaged angular velocity of the fluid around
the z-axis

DX ¼

ð2p

0

�yuþ xv

x2 þ y2
dh; h ¼ arctan

y

x
: (43)

Figure 13 shows contours of non-dimensional angular velocity
DX=X0 at t¼Tf for varied rotational velocity of the spherical shell.
Although all current simulations predict a fast-rotating equator and
slow-rotating poles, the predicted contrast of angular velocity is far
from that in the Sun. For the Sun, XSun

0 ¼ 2:6� 10�6 s�1, corre-
sponding to TSun

� 
 28TEarth
� . The rotational period of time for the

Sun is approximately 25TEarth
� near the equator and 35TEarth

� near the
poles. This corresponds to DX=X0 
 0.12 near the equator and �0.2
near the poles. Decreasing X0 would enhance the contrast of angular
velocity in general, and there is one exception. The amplitude of con-
trast does not change significantly for cases of X0 ¼ 2:6� 10�5 and
X0 ¼ 3:7� 10�5 s�1. To further enhance the differential rotation,
decreasing the viscosity of the fluid and increasing the Rossby number
can be choices.

FIG. 11. 3D visualization of instantaneous radial velocity Ur ¼ U � r̂ for the cases of (a) X0 ¼ 8:1� 10�5 and (b) X0 ¼ 2:6� 10�5 s�1. The volume 0:868rt < r < 0:95rt
is shown and the portion where x> 0 and z> 0 is removed to show the convection structures in the interior.
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VIII. CONCLUSIONS AND DISCUSSIONS

CHORUS is the first stellar convection code that employs
unstructured grids. In the current research, we further improve it to
CHORUSþþ for rotationally constrained convection simulations in
spherical shells. Like CHORUS, CHORUSþþ is based on fully com-
pressible models, flexible on grids and suitable for massively parallel
computing. However, compared with CHORUS which uses the iso-
parametric mapping, CHORUSþþ embeds a boundary-conforming
transfinite mapping into the spectral difference (SD) method on
cubed-sphere grids, thus achieving exact representations of spherical
surfaces on arbitrary sparse grids. This allows us to carry out high-
fidelity simulations of a laminar solar benchmark using sixth-order
elements on very coarse grids. Banana-shaped convective cells are well
resolved without spurious oscillations. Given a relatively small number
of solution degrees of freedom, using sixth-order elements produces
smooth and converged predictions for components of the radial

energy flux while using third- and fourth-order elements fails. To give
converged predictions, using sixth-order elements in CHORUSþþ is
8.7 times faster than using third-order elements. Moreover, using
high-order elements is shown to have enhanced speedup when the
number of processors becomes very large. It takes only 1.5weeks to
run the global-scale laminar solar convection until equilibration of
energy flux using just one Intel Xeon Gold 6148 Processor of 40
threads, which is not possible for the original CHORUS code even on
supercomputers. This efficiency is even comparable to the anelastic
spherical harmonic (ASH) code. To test the applicability of using
sixth-order elements in CHORUSþþ to cases with more complex
convective patterns, CHORUSþþ is applied to rotating convection
simulations with decreased rotational velocity. Asymmetry between
upflows and downflows enhances. Downflow lanes become narrow
and strong, separating broad and weak upflow regions. Calculations of
the energy flux are aligned with observations of strong downflow lanes:

FIG. 12. Components of the normalized,
horizontally integrated radial energy flux

for the cases of (a) X0 ¼ 2:6� 10�5, (b)

X0 ¼ 3:7� 10�5, (c) X0 ¼ 4:8� 10�5,

(d) X0¼5:9�10�5, (e) X0¼7:0�10�5,

and (f) X0¼8:1�10�5 s�1.
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a strong inward kinetic energy flux appears, and as a compensation,
the outward enthalpy flux enhances. These observations are consistent
with decreasing rotational constraints and other results from the
literature.

In reality, the interiors of many stars, including the Sun, and gas
giants, planets like Jupiter and Saturn, consist of ionized gases (plas-
mas), which behave as conducting fluids. To model motions of con-
ducting fluids and ensuing evolution of magnetic fields inside these
fluids, CHORUSþþ needs to be extended to magnetohydrodynamic
(MHD) simulations. To achieve this goal, a potential challenge is an
efficient way to deal with the divergence-free constraint of the mag-
netic field on unstructured grids. An increase in the divergence error
would lower the accuracy, affect the stability, and even induce unphys-
ical behaviors of the MHD system.46 Chen and Liang47 showed that
the divergence cleaning approach proposed by Derigs et al.48 can be
coupled with the SD method to control the divergence error on
unstructured grids. With the assist of the artificial dissipation method,
the resulting method can simulate both subsonic and supersonic
MHD flows efficiently. It paves the way for simulations of high-Mach
number solar dynamo, for example, dynamo in red giants and photo-
sphere of the Sun.
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