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ABSTRACT

The purpose of this article is to initiate a systematic study of dimension-
free relations between basic communication and query complexity mea-
sures and various matrix norms. In other words, our goal is to obtain
inequalities that bound a parameter solely as a function of another pa-
rameter. This is in contrast to perhaps the more common framework in
communication complexity where poly-logarithmic dependencies on the
number of input bits are tolerated.

Dimension-free bounds are also closely related to structural results,
where one seeks to describe the structure of Boolean matrices and func-
tions that have low complexity. We prove such theorems for several com-
munication and query complexity measures as well as various matrix and
operator norms. In several other cases we show that such bounds do not
exist.

We propose several conjectures, and establish that, in addition to ap-
plications in complexity theory, these problems are central to characteriza-
tion of the idempotents of the algebra of Schur multipliers, and could lead
to new extensions of Cohen’s celebrated idempotent theorem regarding
the Fourier algebra.
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1. Introduction

A matrix is called Boolean if its entries are either 0 or 1, and similarly, a
function is called Boolean if it takes only 0 and 1 values. Our goal in this article
is to study whether dimension-free relations exist between basic communication
and query complexity measures and various matrix norms for Boolean matrices
and functions.

The field of communication complexity, formally defined in 1979 in a paper by
Yao [YaoT77], studies the communication costs of computing Boolean functions
whose input is split between two or more parties. Developed by complexity
theorists, this field has been naturally influenced by the more classical areas
of complexity theory such as computational complexity where the main chal-
lenges lie in separation of complexity classes. The communication complexity
classes are defined in [BFS86] as the set of problems that can be solved using
protocols with communication costs log®(n) in the corresponding model, where
n is the number of input bits and ¢ is some positive constant. As a result, a
major part of the literature of communication complexity is focused on find-
ing explicit instances (e.g. set-disjointness [Shel4], Hadamard matrix [For02],
gap Hamming distance [CR12]) that require communication cost log®(n) in one
model (e.g., non-deterministic), whereas they require a much higher commu-
nication cost in a different model (e.g., randomized), ideally Q(n). However,
a O(log(n)) versus Q(n) separation unfortunately does not overrule the existence
of dimension-free relations, as for instance, it is possible that one parameter is
upper-bounded by an exponential function in the other parameter.



Vol. 253, 2023 COMMUNICATION COMPLEXITY 557

Thus, we call a relation between two measures a dimension-free relation
or bound if it provides a bound on one of the measures solely as a function of
another one. Dimension-free bounds are also often closely related to structural
results. For instance, it is well-known that if the deterministic communication
complexity of a Boolean matrix is bounded by a constant ¢, then the matrix
is highly structured. Namely, its rank is upper-bounded by 2¢, and it can be
partitioned into a constant number of all-zero or all-one submatrices. In other
words, its partition number is upper-bounded by 2°¢.

The simple example of the identity matrix, often called the equality func-
tion in the context of communication complexity, shows that having small ran-
domized communication complexity does not imply a small partition number,
or equivalently a small rank. While this and a handful of other known exam-
ples show that the rank of a matrix with bounded randomized communication
complexity can be arbitrarily high, they do not overrule the possibility that
such matrices might be structured in a different way, or at least contain highly
structured parts. Investigating such structures is another focus of this article.

All the known examples of matrices with small randomized communication
complexity contain a large all-zero or all-one submatrix. The following conjec-
ture in [CLV19] speculates that this structure holds in general.

CONJECTURE I: If the randomized communication complexity of an n X n
Boolean matrix M is bounded by ¢, then it contains an all-zero or all-one
dcn X 6en submatrix, where 6. > 0 is a constant that only depends on c.

In fact [CLV19] conjectures that one can take 6,=2"°(¢)in the above statement.
It is well-known that the normalized approximate trace norm || M ||y .,
which is the smallest ||M’||;, for a real matrix M’ such that

M(i,§) = M'(i,5)| < 1/3 for every i, j,

provides the lower bound of Q(log %) for the randomized communication
complexity (see Lemma 2.9). Hence, one way to establish Conjecture T would
be to show that every Boolean matrix with small normalized approximate trace
norm contains a large constant submatrix. This motivates us to ask the follow-

ing tantalizing question about the trace norm itself.

CONJECTURE II: If an n x n Boolean matrix M satisfies % < ¢, then it
contains an all-zero or all-one 6.n X d.n submatrix, where 6. > 0 is a constant
that only depends on c.
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This conjecture is interesting also from the point of view of graph theory.
The trace norm of the adjacency matrix of a graph is considered an important
graph parameter, and is often called graph energy [LSG12] in that context.
Furthermore, there is an extensive body of research that investigates graph
theoretic [Chuld] or spectral conditions [GN08, BN07, Nik06, LLT07, Nik09]
that guarantee the existence of large complete bipartite subgraphs in a graph
or its complement. Conjecture II, if true, provides a very natural condition
based on graph energy.

The motivation behind the subject of this article goes beyond communication
complexity and combinatorics. Several of the problems considered in this article
are basic questions about Boolean matrices, and unsurprisingly, they also arise
naturally in other areas of mathematics such as operator theory, and Harmonic
analysis.

Let X and ) be fixed countable sets, finite or infinite, and consider the set
of X x ) Boolean matrices M : X x ) — {0,1}. We shall think of rank-one
Boolean matrices as the most structured of those. Every such matrix is of the
form 1x,®1y, for some Xy € X and Yy € V. These matrices, which correspond
to combinatorial rectangles Xy x )Vy C X x ), are the building blocks of
communication complexity. We denote by

Rect = {M : X x)Y — {0,1} | tk(M) = 1}
the set of all rank-one Boolean matrices.

The next important class of structured Boolean matrices for the purposes
of this article is defined as follows. We call a matrix M : X x ) — {0,1}
blocky if there exist, possibly infinitely many, disjoint sets X; C A and disjoint
sets ); C )V such that the support of M is

A simple example of a blocky matrix is the identity matrix. We denote by Blocky
the set of all blocky matrices. Figure 1 demonstrates examples of a combinatorial
rectangle, and blocky matrices.

These basic matrices appear naturally in different contexts, including those
related to the topic of this article, and have been given different names. In graph
theory, blocky matrices correspond to equivalence relations on the vertex set of
a graph, and thus they have been called equivalence graphs [Duc79, Fra82,
Alo86, BK95]. In complexity theory, blocky matrices have found applications
in proving bounds against circuits and branching programs [PR94, Juk06].
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Figure 1. A combinatorial rectangle, and two blocky matrices.

A Dblocky matrix is essentially a blow-up of the identity matrix, obtained

by duplicating rows and columns, adding all-zero rows and columns, and then

permuting them. Hence, similar to the identity matrix, the randomized commu-

nication complexity of every finite blocky matrix is bounded by a fixed constant.

Blocky matrices also arise in the context of Schur multipliers. Recall that the

and My, denoted by Mj o Mo, is their entry-wise product. Let B(X,)) denote
the space of bounded linear operators A : l2(X) — ¢5()) endowed with the

Schur product (also called the Hadamard product) of two X x ) matrices M;
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operator norm. A matrix Myxy is called a Schur multiplier if for every
A€ B(X,)), we have M o A € B(X,Y). Every Schur multiplier M defines a
map B(X,)) — B(X,)) via A+ M o A, which assigns an operator norm to it:

(1) | M]|m, ::HMHB(X,)})—>B(X,3})
=sup{[|M o Al x)= 0. | Allea )20y < 13-

Note that Schur multipliers form a Banach algebra via the Schur product:

[My o Myl < || My|m| Mz -

An element a of an algebra is said to be idempotent if a> = a. The following
question arises naturally:

What are the idempotents of the algebra of Schur multipliers?

Every idempotent of this algebra must satisfy M = MoM, and thus is a Boolean
matrix. However, not every (infinite) Boolean matrix is a bounded Schur multi-
plier, as it is possible to have || M||,, = oo for a Boolean matrix M. It is shown
in [Liv95] that blocky matrices are exactly the set of all contractive idempotents.
In other words, an idempotent Schur multiplier satisfies || M|, < 1 if and only if
it is a blocky matrix. Livshits’s characterization of idempotent Schur multipliers
has been extended to other related settings [BH04, Neu06, KP05, Lev14, MP16].
An important question in this area (see, e.g., [ELT16]) is whether idempotent
Schur multipliers are exactly those Boolean matrices that can be written as
a linear combination of finitely many contractive idempotents, or equivalently
blocky matrices. A simple compactness argument, as outlined in Theorem 3.10,
shows that this problem is equivalent to the following basic question about

Boolean matrices.

CONJECTURE III: For every ¢ > 0, there exists k. € N such that the following
holds. If a finite Boolean matrix M is a linear combination of rank-one Boolean
matrices with coefficients \; satisfying >, |\i| < ¢, then M is a +1-linear com-
bination of at most k. blocky matrices.

On the other hand, it is not difficult to see that if M is a +1-linear combina-
tion of at most k. blocky matrices, then M can be written as a linear combina-
tion of rank-one Boolean matrices with coefficients whose absolute values sum
to at most O(k.).
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Remark 1: Conjecture III is equivalent to asking whether M is a linear combi-
nation of at most k. blocky matrices (given the assumption of Conjecture III).
Indeed, assume that M = Zle AiM; is an m x n Boolean matrix, and M; are
blocky matrices. Identify M and each M; with their supports. Note these are
subsets of [m] x [n]. For k' < 2% let S,..., Sk be the atoms of the o-algebra
generated by M;’s. Since M is measurable with respect to this o-algebra, we

have
M = USi for some I C {1,...,k'}.
i€l
Note that for j € {1,...,k’}, S, is an intersection of M;’s and complements

of M;’s. The intersection of two blocky matrices is a blocky matrix, and the
complement of a blocky matrix B is J— B, where J is the all-one (blocky) matrix.
We conclude that each S; can be written as a F1-linear combination of at
most 2% blocky matrices, and thus M can be written as a +1-linear combination
of at most 22* blocky matrices.

By Grothendieck’s inequality, the assumption in Conjecture III can be equiv-
alently replaced with the bound | M|, = O(1), where

M|, = min{[| Blla—co[|Cll12 : M = BC}.

The connection to Schur multipliers is due to the fact, stated in Theorem 2.3,
that 72 norm coincides with the norm of M as a Schur multiplier.

Next, let us state the connection to Harmonic analysis. Let G be a locally
compact Abelian group with dual group G. Let M(G) denote the measure
algebra of G, that is to say the algebra of bounded, regular, complex-valued
measures on G with the convolution operator as multiplication. Note that
every idempotent p of this algebra satisfies p % = p, and this is equivalent
to the statement that the Fourier transform i satisfies 71> = i, and thus is
Boolean. Paul Cohen, in a celebrated article [Coh60], proved that p is an
idempotent if and only if /i can be expressed as a +1-linear combination of
the indicator functions of a finite number of cosets of G. More recently, Green
and Sanders [GS08], and Sanders [San20] have proven effective bounds on the
required number of cosets as a function of ||u|| when G is finite.

As we will explain below, Cohen’s idempotent theorem is closely related to
Conjecture III. Consider a finite Abelian group G. In this case, since G & @,
and M(G) = L*(G), by switching the roles of G and G, one can state Cohen’s
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idempotent theorem as follows. For every ¢ > 0, there exists k. > 0 such that
the following holds. If f : G — {0, 1} satisfies

(2) Iflla =" 1F )l <.

xe@
then
ke
(3) f = Z :l:lHiJra-n
i=1
where each H; < G is a subgroup, and each a; € G. The norm || - || 4 is called

the Fourier algebra norm, and for finite Abelian groups, it is equal to the sum
of absolute values of Fourier coefficients of the function.
Note that

||1Hi+ai ||A =1,

and furthermore it is not difficult to prove that the indicator functions of cosets
1774+, are the only non-zero contractive idempotents of the Fourier algebra. This
is called the Kawada-Ité theorem [KI40, Theorem 3] and dates back to 1940.
In other words, if f : G — {0, 1} satisfies ||f||a = 1, then f = 1g, for some
coset H + a. Hence, Cohen’s idempotent theorem says that every idempotent
of the Fourier algebra of G can be expressed as a linear combination of £(]| f]|.4)
many contractive idempotents for some function x(-). This is precisely what
Conjecture III is trying to establish regarding the idempotents of the algebra
of Schur multipliers. As we explain below, this connection is more than just a
verbal analogy.

Let G be a finite Abelian group. Consider a Boolean f : G — {0,1} sat-
isfying (2), and let the Boolean matrix F' : G x G — {0,1} be defined as
F(z,y) = f(x —y). It is well-known [LS09, Lemma 36] that

1] o
0 171 = L = 3 1F001 = 1

xeG

Hence if ||f||a < ¢, then the assumption of Conjecture III holds, and if the
conjecture is true, one should be able to express F' as a linear combination
of a bounded number (as a function of ¢) of blocky matrices. Indeed in this
case, Conjecture III follows from Green and Sander’s quantitative versions of
Cohen’s idempotent theorem, since a coset 1p,44, in (3) corresponds to the
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blocky matrix supported on the entries in
U Hi+b) x (Hi+b-a).
beG/H

Thus Green and Sander’s idempotent theorem implies that both Conjecture II
and Conjecture III are true for matrices of the form F(x,y) = f(z —y). In this
regard, Conjecture III can be thought of as an extension, or more accurately, an
analogue of Cohen’s idempotent theorem for the algebra of Schur multipliers.
Obviously due to lack of group structure, one cannot hope to find cosets—
instead Conjecture III promises blocky matrices.

Finally, let us discuss the approximate version of Cohen’s idempotent the-
orem, significant to us due to connections to randomized query and commu-
nication complexity. Let G be an Abelian group, and let f : G — {0,1}
be a Boolean function. Now, instead of assuming that ||f||4 is small, let us
assume a weaker condition that f has an approximator with small algebra
norm. More precisely, there exists a function g : G — R, not necessarily
Boolean, such that ||f — g|lec < € and ||g||la < ¢. Such functions have been
studied by Méla [M82] and Host, Méla and Parreau [HMP86] under the name
e-quasi-idempotent. In [M82] Méla shows that in general, a structure similar
to Cohen’s idempotent theorem does not necessarily hold for such functions.
However, in the spirit of Conjecture I, we conjecture that for G = Z3, every
e-quasi-idempotent contains a highly structured part.

CONJECTURE IV: Let f,g:Z5 —R be such that f is Boolean, || f — gl|co < %, and
llglla <e. There exists a coset V=H + a CZ% such that f is constant on V, and
% > 6. >0,

where 6. > 0 is a constant that only depends on c.

The constant % in the statement is not important and can be replaced by any
fixed constant € € (0,1/2), as it is not difficult to see that all such statements
will be equivalent.

Conjecture 1V, if true, would imply Conjecture I for matrices of the form
F(z,y) = f(x —y) where f : Z5 — {0,1}. Indeed, this follows from the
fact that randomized communication complexity upper-bounds the approximate
trace norm, and Proposition 3.11 (a generalization of Equation (4)) applied to
the following symmetrization of the function G(x,y) approximating F(z,y)

é(x,y) =E.[G(z+z,2+y)]
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PUBLIC-COIN VERSUS PRIVATE-COIN RANDOMNESS.  We caution the reader
that in this article, randomized communication complexity always refers to the
public-coin model where randomness is shared between the players. We also
reserve the notation R(M) to denote the public-coin randomized communication
complexity of a Boolean matrix M. See Section 2.2.2 for formal definitions.

QUALITATIVE VERSUS QUANTITATIVE AND DIMENSION-FREE-NESS. In this ar-
ticle we are interested in dimension-free results. In other words, we call two
parameters qualitatively equivalent if each can be bounded as a function
of solely the other one. Furthermore, since the main purpose of this article is
establishing dimension-free dependencies, we will not be concerned with quan-
titative effectiveness of these bounds.

For example, the well-known relations

log rk(M) < D(M) < tk(M),

between rank and deterministic communication complexity, show that insofar as
this article is concerned, they are qualitatively equivalent. In contrast, despite
Newman’s theorem [New91], which states that for n x n matrices,

R(M) < RP™V#e(N) < O(R(M) + loglog(n)),

due to the loglog(n) term (which is necessary), public and private randomized
communication complexities are not qualitatively equivalent.

In fact, the private-coin model is not interesting from our standpoint: For
every Boolean matrix M,

Q(log D(M)) = RP™™* (M) < D(M),

and thus, as far as this article is concerned, the private-coin randomized com-
munication complexity is qualitatively equivalent to the deterministic commu-
nication complexity [KN97, Lemma 3.8].

1.1. OUR CONTRIBUTIONS. In this section, we summarize some of the results

proven in this article.

e In Section 3.1 we prove that the deterministic communication complex-
ity with access to an equality oracle is qualitatively equivalent to the
smallest k such that the matrix can be written as a linear combination
of k blocky matrices.



Vol. 253, 2023 COMMUNICATION COMPLEXITY 565

In Section 3.2, we show that zero-error randomized communication com-
plexity and rank are qualitatively equivalent. Consequently, combining
this with a recent result of Gal and Syed [GS19] establishes qualitative
equivalence between approximate rank, zero-error randomized commu-
nication complexity, deterministic communication complexity, and rank.
In Section 3.3, we establish Conjecture I for one-sided error randomized
communication complexity.
In Section 3.4, in Theorem 3.10 we use a compactness argument to show
that Conjecture III is equivalent to the statement that every idempotent
of the algebra of Schur multipliers is a linear combination of finitely
many contractive idempotents.
In Section 3.5, we consider matrices that are constructed from functions
on finite groups. Cohen’s idempotent theorem has been generalized to
hold for non-Abelian groups as well by Lefranc [Lef72], and effective
bounds were given by Sanders [Sanll]. We use these results, in con-
junction with a theorem of Davidson and Donsig [DDO07] to verify Con-
jecture IT and Conjecture III for matrices of the form F(z,y) = f(y~'z),
where f: G — {0,1} and G is any finite group.
In Section 4, we consider XOR-lifts Fig(z,y) = f(x1 D y1,-.., Tn B Yn),
where f : {0,1}" — {0,1}. Note that XOR-lift is a special case of
F(z,y) = f(y~'z), where G = Z%, and thus, as we mentioned above,
Conjecture II and Conjecture III are true for these matrices. We fur-
ther discuss the analogue of Conjecture I for the @-query model, i.e.,
for parity decision trees. In other words, we consider Conjecture IV in
relation to randomized ®-query complexity. Furthermore, we show that
the zero-error randomized @-query complexity is qualitatively equiva-
lent to both the deterministic ®-query complexity and the number of
non-zero Fourier coefficients.
In Section 5, we consider AND-lifts F(z,y) = f(x1 Ay1, ..., Tn A Yn)
for f:{0,1}™ — {0,1}. We prove that the analogue of Conjecture IV
is true in the A-query model. Namely, in Theorem 5.3, we prove that
if the randomized AND-decision tree of f : {0,1}" — {0,1} is small,
then there is a small set J of coordinates such that f is constant on
{z:2; =0Vje J}

We remark that Conjecture I, Conjecture II and Conjecture III all
remain unresolved for AND-lifts.
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e In Section 6, we explain our failure in proving Conjecture I, Conjec-
ture II and Conjecture III by providing an example which shows that
the common technique used in proving Cohen’s idempotent theorem,
and several similar theorems, including some of our results in this arti-
cle, are inherently inadequate for establishing these conjectures.

2. Preliminaries

Let D denote the complex unit disk {z € C | |z] < 1}. For a positive integer
n, we use [n] to denote {1,...,n}. For a set S we denote by 1g the indicator
function of S. For a vector x € {0,1}", and S C [n], we denote by x5 € {0,1}°
the restriction of x to the coordinates in S. The Hamming weight of x is defined
as |z| == > x;. For a matrix M its (i, j)-th entry is denoted by M;; or M (i, 7).
All logarithms in this article are in base 2.
For two functions f: N — R and g : N — R, we use the following asymptotic

notations:
= O(g(n)), if hm sup ||fg §‘| < 0.
Q(g(n)), if and only if g(n) = O(f(n)).
= 0(g(n)), if f(n) = O(g(n)) and f(n) = Q(g(n)).
), FACOIp—

= o(g(n)), if nh_)xrgo oo =

n) =w(g(n)), if Jim EE;?" = 00.

We sometimes identify {0,1}" or Z with the vector space F} over Fy. In
this context, we refer to cosets H +a C Z3 as affine subspaces, which naturally
assign a dimension and a codimension to them.

For sets & and ), we will often identify a function f : & x ) — C with its
corresponding matrix [f(z, y)]zex yey-

For a measure space (9, 1), and p € [1,00), we denote by LP(u) the normed
space of functions f: Q — C with [ |f[Pdu < oo, together with the norm

1/p
1l = < / Iflpdu> ,

and || f[| e (y) is defined as the essential supremum of |f|.
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For a finite set 2, we write uqo to denote the uniform probability measure
on €, and we shorthand || f| zr(uq) to [|fllzr(q)- When € is a countable set, we
define the normed space £,({2) according to the counting measure:

£leser = (X If(w)lp)l/p-

e
There are several natural norms on the space of m x n matrices. Considering
an m X n matrix M as a linear operator M : C" — C™ endows the space with
operator norms: For p,q € [1,00], we use the notation ||M]||,—, to denote its
operator norm from /¢, to £, that is

[Mllpsqg= sup  [[Mzlq,.
2€Cn |lzlle, <1

It is easy to see that
||M||2~>2 = Omax;

where op,ax is the largest singular value of M.
We shall need the following well-known inequality.

LEMMA 2.1 (Hoeffding’s inequality): For i = 1,...,n, let X; be independent
random variables taking values from range [a;,b;] and let X =Y | X;. Then,
for all t > 0,

Pr|X — E[X]| > ¢] < 2exp<— ﬁ)

2.1. MATRIX NORMS AND RANKS. In this section we describe some well-known
as well as some new matrix parameters which arise from representations of
general matrices in terms of more structured matrices. Allowing § to be various
sets of structured matrices (for example, S = Rect or § = Blocky) we define, in
a generic way, the matrix parameters that come up in this article. This also
makes it easier to see how some of these parameters relate to each other. For
a fixed set § of structured matrices, we introduce a notion of matrix rank in
terms of S, which we call S-rank, and a matrix norm in terms of §, which we

call S-norm analogously.
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Definition 2.2: Let Z be a finite set, and let § be a spanning subset of the vector
space {f : Z — C}.

e Define the S-rank of a function f, denoted by rk(s, f), to be the small-

est k such that f can be expressed as a linear combination of at most &

functions in § over C.
e Define | f]|s as

T T

I1£lls = inf{z il 1 f =) Nigi, for g € S, M €Cor € N}.

i=1 i=1

It is easy to verify that ||- || is always a semi-norm. By considering different §
we can recover many of the norms and parameters related to this article.

e (Normalized trace norm) The trace norm of an m x n matrix M is de-
fined as the sum of its singular values omax == 01 >+ 2 Onin(m,n) = 0,

namely
min(m,n)

M= D o
i=1
In this article, it is more convenient to work with the following normal-
ized version of this norm, which we call the normalized trace norm:
ntr \/ﬁ .
When § is the set of all m x n matrices of the form a®b, where a € R™
and b € R" satisfy

m

1/2
e = (302 <1
L2(m) *— Z m >

i=1
and
n |b|2 1/2
b = Badd <1
bl = (5 50) <t
then rk(s, M) coincides with rk(M) over C, and it follows from the
singular value decomposition theorem that

[M]ls = [IM[ur-

e (pu-norm) If § = Rect, that is the set of rank-one Boolean matrices a®b,
where a € {0,1}™ and b € {0,1}", then || - || g is commonly known
as the || - ||, norm. Note that to define | - ||, one could equivalently
take a ® b, where a € [0,1]™ and b € [0, 1]™.
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e (v-norm) If § is the set of all m x n matrices of the form a ® b, where

aec {-1,1} and b € {-1,1}", then || - ||s is commonly known as

the [|- ||, norm. Again to define |- ||, one could equivalently take a®b,
where a € [-1,1]™ and b € [-1, 1]™.
It immediately follows that || - ||, < |- ||, but in fact the two norms

are equivalent, since every {—1, 1}-valued vector can be written as the
difference of two Boolean vectors:

1o < AP Ml < 40 1l

Note that for the n x n identity matrix I,,, we have

L(e,y) = 5 O (~D)es(-1ybes,
SCn)
and thus [|I,]|, = 1.
(72-norm) We can relax the v-norm further. Let S be the set of all m xn
matrices with ij-entries (a;, b;), where a; and b; are unit vectors in any
Hilbert space H.

Taking H to be R, we have only two unit vectors £1 and thus we
recover v norm. Hence |- ||,, < -|l,. It turns out that v,-norm is also
equivalent to the v norm. This is in fact the well-known Grothendieck
inequality (see Theorem 2.3):

™

. <[, <—————" -
Il <1l < el

The constant m is due to Krivine [Kri79], and it holds for both
real and complex Hilbert spaces. Note also that the unit ball of || - |,

is the set of m x n matrices with ij-entries (a;, b;), where
laif| <1 and |[b;[ <1

in some Hilbert space H.

(Blocky-rank and norm) For § = Blocky, we study rk(Blocky, f), which
we prove is qualitatively equivalent to the deterministic communication
complexity with access to equality oracle (see Proposition 3.1). We refer
to || - || sy s blocky-norm. Blocky matrices are the blow-ups of the
identity matrix, and thus every non-zero blocky matrix B satisfies

1Bl = 1Bl = 1.



570

L. HAMBARDZUMYAN, H. HATAMI AND P. HATAMI  Isr. J. Math.

On the other hand, every a®@ b, where a € {—1,1}" and b € {—1,1}",
can be written as the difference of two blocky matrices, and thus satisfies
la ® b||spky, < 2. We conclude

1 llo <A ooty < 201 - 1]o-

Combining this with Equation (5) and with the fact that a rank-one
Boolean matrix is also a blocky matrix, we deduce

1
2l e = 1 Nl < - -

(Fourier rank and algebra norm) Let G be a finite Abelian group with
dual G. Then for f: G — C,

tk(G, f)

corresponds to the so-called Fourier rank of f, which is the number of
non-zero Fourier coefficients of f. In this case, the corresponding norm

coincides with Fourier algebra norm

Ifllg = If]la-

(Monomial rank and norm) Consider the space of functions
f:{0,1}" — C, and let

Mon = {xHHmsg [n]}

€S
be the set of all monomials where every variable appears with degree
at most 1. Then, for a function f:{0,1}" — C,

rk(Mon, f)

corresponds to the number of non-zero coeflicients in the (unique) poly-
nomial representation of f. This is often called the sparsity of f in the
literature of computer science. Note also that || f||ap, is the sum of ab-
solute values of the coefficients in the unique polynomial representation
of f in the ring

(C[zl,...,:cn]/(z? :zl,...,:ci =x,).
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SCHUR MULTIPLIERS. Let X and ) be two countable sets. The Schur prod-
uct (also called the Hdamard product) of two X x ) matrices A = [a,,] and
B = [by,], denoted by A o B, is their entry-wise product [agybay].

Consider the two Hilbert spaces H1=/02()) and Ho =/(2(X), and let B(H1, Hz)
be the space of all bounded linear operators A : Hy — Ha together with the
operator norm || A||#,—,- A matrix My«y is called a Schur multiplier if for
every A € B(H1,Hz), the matrix M o A € B(H1,H2). Every Schur multiplier
defines a map B(H1, Ha) — B(H1,Ho) via

A Mo A.

To distinguish from the norm on bounded operators, we will write || M||,, for
the norm of a Schur multiplier:

[M [ = sup{[|M o All3, 525 ¢ [[Alls 2, < 1}

It turns out that || - ||, coincides with 72 norm defined above. The following
relations are essentially due to Grothendieck (see also [LS07, Pis12]).

THEOREM 2.3 (Grothendieck [Gro52]): For every matrix M,

™
M| = | M|, <M, < ————||M]|~,.
Ml = 1M < 1Ml < P M

For a proof of the first equality, we refer the reader to [Pis12, Proposition 3.3].

In other words, || - ||m, || - ||x, || - I, and || - ||, are all within constant factors
of each other. Let us also mention the following common property of || - ||,
and || - ||, norm.

PROPOSITION 2.4: Let M; be a sequence of matrices. Then the following holds
for their direct sum:

P
i=1

In particular, the equality also holds for || - ||,.

= sup || Mi[|m.
m 1

Proof. First note that || @;-, M;|m > sup; | M;||m as the operator norm does
not increase under restriction.

For the other direction, denote M = @;~, M;, and let M/ be the extension
of M; such that it has the dimensions of M and is all-zero outside of M;.
From the definition of || - ||, there is a matrix A such that ||A|#,—#, = 1
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and | M|, = ||M o Al|34;, —n,- Given A, we can deduce

M [l = 1M © All3, 30, = sup [ Mj o Allgg, 52,
(8) '

< sup || M| m = sup || Mil|m.-
K2 K2

Here the second equality is a property of operator norm, which is straightforward
to verify. |

IDEMPOTENTS AND BOOLEAN MATRICES. Schur multipliers on B(H1, Hs2) form
a Banach algebra via the Schur product, since

[My o Myl < |[My|m| Mz .-

When #H; and Ho are finite dimensional, Boolean matrices and idempotents
of this algebra coincide: M o M = M if and only if M is a Boolean matrix.
However, in the infinite dimensions, not every Boolean matrix is a bounded
Schur multiplier.

We will be interested in characterizing the idempotents of the algebra of Schur
multipliers. As we shall see in Theorem 3.10, this reduces to characterizing the
structure of finite Boolean matrices M with a uniform bound on || M ||,,.

First let us consider the contractive idempotents. Note that every rank-one
Boolean matrix is a contraction. As a result, by Proposition 2.4, the identity
matrix and, more generally, all blocky matrices are contractions.

Note that the Schur multiplier norm is monotone in the sense that the norm
of a submatrix cannot be larger than the original matrix. Since |[1|,, = 1, it
follows that every non-zero Boolean matrix satisfies || M|, > 1. Livshits [Liv95]
showed that the 2 x 2 matrix with three 1’s is not contractive.

LEMMA 2.5 ([Liv95]): We have

O - T
0 1f| V3T
Since || - || norm is invariant under row and column permutations, it fol-

lows that a contractive idempotent M cannot have any 2 x 2 submatrices with
exactly 3 ones. In this context, the property is often called the 3-of-4 prop-
erty, which fully characterizes such matrices as being the same as the set of
blocky-matrices.
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THEOREM 2.6 ([Liv95]): M is a contractive idempotent of the algebra of Schur
multipliers if and only if M € Blocky. More generally, this is true for idempotents

that satisty ||M ||, < %

RELATION TO THE NORMALIZED TRACE NORM. As we saw above |||y, = |||,

Il - Ilz, and || - ||o, are all equivalent. Furthermore, it is easy to see [LSO07,
Section 2.3.2] that

9) I Tlate < - [l

However, || - ||ntr could be much smaller than the above norms since adding
all-zero rows or columns would decrease the normalized trace norm, while other

norms would remain intact.

2.1.1. The Fourier algebra norm. Let f : {0,1}" — {0,1} be a Boolean func-
tion. Identifying {0,1}" with the finite Abelian group G = Z} allows us to
consider the Fourier expansion of f = eré f(x)x, where G is the dual of G.

It is common in theoretical computer science to represent this expansion as
F=> f(Sxs
SCln]
by representing the characters of Z3 as
Xg T H(—l)ﬂ“.
€S

The Fourier algebra norm of f, denoted by | f] 4, is the sum of absolute values
of Fourier coeflicients:

1flla =Y 1F(S)I:
S

The name comes from the fact that it satisfies || fifalla < || f1llallf2]|a for
any f1,fo : G — C. In the literature of theoretical computer science, this
norm is sometimes called the spectral norm of f, but in order to avoid con-
fusion with spectral norm of matrices, we will use the harmonic analysis term,
Fourier algebra norm.

The above definition immediately generalizes to every finite Abelian group G,
namely the Fourier algebra norm of f : G — C is the sum of absolute values of
Fourier coefficients. This can be further generalized to every locally compact
Abelian group, and in fact Eymard in [Eym64] generalized the definition of
the Fourier algebra to every locally compact group. In this article, we are only
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concerned with finite groups. Suppose that G is a finite group and f,g : G — C.
The convolution f * g of f and g is then defined point-wise by

(10) f*g(x) =Eyeaf(y)gly'z)).

This can be used to introduce the convolution operator: given h : G — C,
define Ly, : L?(G) — L?(G) via Ly, : v +— v * h. The Fourier algebra norm of f
is then defined as

[flla = sup{{f, h) : [|LnllL2(c)~L2(@) < 1}-

When G is an Abelian group, it is not difficult to see that this coincides with
the sum of absolute values of Fourier coefficients of f:

1£lla= D" 1F00l-

xe@

2.2. COMMUNICATION COMPLEXITY.

2.2.1. Deterministic communication complexity. The field of communication
complexity studies the amount of communication required to solve a problem
of computing discrete functions when the input is split between two parties.
Every Boolean function f: X x YV — {0,1} defines a communication problem.
An input z € X is given to Alice, and an input y € Y is given to Bob. Together,
they should both compute the entry f(z,y) by exchanging bits of information
in turn, according to a previously agreed-on protocol. There is no restriction on
their computational power; the only measure we care to minimize is the number
of exchanged bits.

A deterministic protocol 7 specifies, for each of the two players, the bit to
send next, as a function of their input and history of the communication so far.
A protocol naturally corresponds to a binary tree as follows. Every internal
node is associated with either Alice or Bob. If an internal node v is associated
with Alice, then it is labeled with a function a, : X — {0, 1}, which prescribes
the bit sent by Alice at this node as a function of her input. Similarly, Bob’s
nodes are labeled with Boolean functions on ). Each leaf is labeled by 0 or 1
which corresponds to the output of the protocol. We denote the number of bits
exchanged on the input (z,y) by cost,(x,y). This is exactly the length of the
path from the root to the corresponding leaf. The communication cost of
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the protocol is simply the depth of the protocol tree, which is the maximum of
cost,(x,y) over all inputs (x,y).
CC(n) = max costr(z,y).

Every such protocol 7 computes a function X x ) — {0, 1}, which we also
denote by w. Namely m(x,y) is the label of the leaf reached by the path cor-
responding to the players’ communication on the input (z,y). We say that 7
computes f if 7(z,y) = f(z,y) for all z,y. The deterministic communica-
tion complexity of f, denoted by D(f), is the smallest communication cost of
a protocol that computes f.

A useful insight is that a bit sent by Alice at a node v corresponds to a par-
tition of the rows into two parts a, 1(0) and a; !(1), and every bit sent by Bob
corresponds to a partition of the columns. Every time Alice sends a bit, we re-
strict to a subset of the rows, and proceed with the created submatrix. Similarly
Bob’s communicated bits restrict the columns. As this process continues, we
see that every c-bit protocol induces a partition of the matrix f into at most 2¢
submatrices. In the context of the communication complexity, submatrices are
often called combinatorial rectangles or simply rectangles. If the proto-
col computes f, then all submatrices in this partition are monochromatic,
namely, labeled by a unique element 0 or 1.

Note that every rank-one Boolean matrix is of the form 1y, - 150 for sub-
sets Xy C X and Yy C V. Thus rank-one Boolean matrices are essentially the
same as l-monochromatic rectangles. We conclude the following proposition.

PROPOSITION 2.7 ([KN97]): For every Boolean matrix f, we have
logrk(f) < D(f) < tk(f) < rk(Reet, f) < ¢ < 270,

where ¢ is the partition number of f, which is the smallest ¢ > 0 such that f
can be partitioned into ¢ constant submatrices. In particular, all the above
parameters are qualitatively equivalent.

To the extent that we are concerned with qualitative results, Proposition 2.7
provides a satisfactory description of the structure of Boolean matrices whose
deterministic communication complexities are uniformly bounded. However,
quantitatively, closing the exponential gap between D(f) and logrk(f) into a
polynomial dependency is called the log-rank conjecture, and is perhaps the
most famous open problem in communication complexity [Lov14].
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2.2.2. Randomized communication complexity. In this article, we use the public
coin model, where a probabilistic protocol 7y is simply a distribution over
deterministic protocols. In this notation R is a random variable, and every
fixation of R to a particular value r leads to a deterministic protocol m,. We
define the communication cost of a probabilistic protocol mr as the maximum
cost of any deterministic protocol 7, in the support of this distribution:

CC(mr) = max CC(m,) = max max cost,_(z,y).

T,y
We also define the average cost of such a protocol as the expected number of
exchanged bits over the worst input (z,y):

Ccavg (ﬂ.R) — max ]ER[COStﬂ'R (ZE’, y)]
z,Y

In the probabilistic models of computation, three types of error are often con-
sidered.

e Two-sided error: This is the most important notion of randomized com-

munication complexity. For every z,y, we require

Prra(e,y) # f(@v)] < e

where € is a fixed constant that is strictly less than 1/2. Note that e=1/2
can be easily achieved by outputting a random bit; hence it is cru-
cial that € in the definition is strictly less than 1/2. It is common to
take € = % Indeed, the choice of € is not important so long as e € (0, 1/2),
since the probability of error can be reduced to any constant € > 0 by
repeating the same protocol independently for some O(1) times, and
outputting the most frequent output.

The two-sided error communication complexity is simply called the
randomized communication complexity. It is denoted by R.(f)
and is defined as the smallest communication cost CC(mr) of a prob-
abilistic protocol that computes f with two-sided error at most e. We
set € = 1/3 as the standard error, and denote

R(f) = Ry (/).
e One-sided error: In this setting the protocol is only allowed to make an
error if f(z,y) = 1. In other words, for every x,y with f(z,y) =0, we

have
FI‘%r[ﬂR(x,y) =0]=1,
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and for every x,y with with f(z,y) = 1, we have
Prima(e.y) # fa.y)] <

Again the choice of € is not important so long as € € (0,1) because the
probability of error can be reduced from € to €* by repeating the same
protocol independently & times and outputting 1 only when at least one
of the repetitions outputs 1. We denote by R.(f) the smallest CC(7R)
over all protocols mr with one-sided error of at most e. We set € = 1/3
as the standard error, and denote

e Zero error: In this case the protocol is not allowed to make any errors.
For every x,y, we must have Prgr[ng(x,y) # f(z,y)] = 0. In this
setting, CC*™8&(-) is comnsidered, as CC(-) leads to the same notion of

complexity as the deterministic communication complexity. We denote
Ro(f) = inf CCan(TrR),

over all such protocols.

Note that one can convert a zero-error protocol m with average cost ¢ to a
one-sided error protocol ' with cost 3¢, by terminating the protocol after at
most 3¢ steps, and outputting 0 in the case where the protocol is terminated
prematurely. The protocol 7’ clearly does not make any errors on O-inputs. Fur-
thermore, since the average cost of 7 is ¢, by Markov’s inequality, the probability
that the protocol 7’ is terminated prematurely is at most % We conclude

R(f) < R'(f) <3Ro(f).

Obviously, R(f), R*(f),Ro(f) are all upper-bounded by D(f).

2.3. QUERY COMPLEXITY. In Section 2.2, we introduced various models of com-
munication complexity. In this section we discuss query complexity. Let X be a
finite set, often endowed with a product structure, most commonly X = {0, 1}".
In query complexity, a function f : X — {0, 1} is fixed, and a player, who does
not know the input x, wants to find out the value of f(x) by making queries
about . The goal is to minimize the number of queries. Depending on what
type of queries are allowed, we arrive at different models of query complexity.
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The most natural setting is to have f : {0,1}" — {0,1}. Denoting the in-
put z = (x1,...,x,) € {0,1}", we consider three important types of queries,
each leading to a different model of query complexity:

e The coordinate queries z; for i € {1,...,n}.
e The parity queries ®ie g i, which are the XOR of the coordinates
in S, for S C [n].

e The AND queries [[,.q;, for S C [n].

€S

Note that, similar to communication complexity, a protocol in each of these
models corresponds to a binary tree where each internal node is labeled with a
query, and the computation branches according to the output of these queries.
The leaves are labeled with the output of the protocol. When only coordinate
queries are allowed, these trees are simply called decision trees. The parity
decision trees, and AND-decision trees, respectively correspond to parity
queries and AND queries.

The cost of such a protocol is the maximum number of queries made on an
input, which is equal to the depth of the tree. Such trees naturally correspond
to Boolean functions, and the decision tree complexity dt(f), the parity
decision tree complexity dt¥(f), and the AND-decision tree complex-
ity dt"(f) are defined as the smallest depth required for the function f.

A randomized protocol is simply a distribution over deterministic protocols,
and the notions of cost, average cost, zero-error, one-sided error, and two-sided
error are defined analogous to communication complexity. The complexity mea-
sures corresponding to zero-error, one-sided error, and two-sided error are de-
noted respectively by rdty, rdt!, rdt.

In the AND-query model, we denote these by rdtg, rdt"!, rdt”, and in the
parity query model by rdtg, rdt®!, rdt®.

In the simple decision tree model of coordinate queries, a theorem of Nisan
[Nis91] shows that all these parameters are qualitatively equivalent, in fact with
polynomial dependencies.

PROPOSITION 2.8 (Coordinate Query Equivalencies [Nis91]): For every Boolean
function f : {0,1}" — {0,1}, we have

rdt(f) < rdt'(f) < 3rdte(f) < 3dt(f) < 81rdt(f)>%
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In light of Proposition 2.8, from the point of view of this article, the case of the
coordinate query has been completely resolved. However, as we shall see later,
in both the XOR and AND models, there are examples for which the randomized
query complexity is O(1), while the deterministic query complexity is Q(n). We
discuss the XOR-model in Section 4, and the AND-model in Section 5.

2.4. LIFTING THEOREMS. Let G be a finite group. Every function f : G — C
defines a matrix

(11) F:GxG—=C, F:(x,9)— fly ‘o).

These constructions sometimes allow us to lift lower-bounds on the query
complexity to lower-bounds on the communication complexity. Similarly, one
can relate results regarding the function spaces on G to the setting of the matrix
spaces on G X G.

The study of lifting theorems has been a very active and successful area
of theoretical computer science, particularly in the past two decades [RM97,
CKLM19, HHL18, GPW18, GLM™16, GPW17, GKPW17]. Not all these lift-
ing theorems follow the above f(y~'z) framework , nevertheless they gener-
ally fit the theme of translating a query complexity result regarding functions
f: X — {0,1} to the communication complexity bounds on the matrices F' that
are constructed from f.

THE XOR LIFT. The case of G = Z% in (11) is closely related to the parity
query complexity. The group operation on Zj5 corresponds to the point-wise
XOR operation on {0,1}", and hence for a given function f : {0,1}™ — {0,1},
Equation (11) translates to

Fg(r,y) = f(z@y).

The Fourier transform of f carries important information about the matrix Fig.
Indeed Fourier characters are the eigenvectors of Fyg, Fourier coefficients of f
(scaled by the factor of 2™) are their corresponding eigenvalues, and as a result

(12) rk(Fg) = ke (f),

where rkg (f) denotes the number of non-zero Fourier coefficients of f.
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The relation between parity query complexity parameters of f and their cor-
responding communication complexity parameters of Fg has been studied ex-
tensively [HHL18, TWXZ13, Zhal4, ZS10, MS20, MOO09].

Note that for x,y € {0,1}™,

@(fc@y)i = <@$z) ® <@yz>7
i€s i€s i€s
which in particular allows one to translate every party decision tree to a commu-
nication protocol. Namely, every time that a query P, g has been made in the
parity decision tree, in the communication setting, the players can individually
compute the two bits @, g z; and €, g ¥; and exchange them to find out the
answer to the query on = @ y. It follows that D(Fg), Ro(Fa), R*(Fyp), R(Fyp)
are upper-bounded respectively by 2dt®(f), 2rdtd (f), 2 rdt®(f), 2rdt®(f).
The difficult part of establishing a lifting theorem is indeed upper-bounding
the query complexity in terms of the communication complexity. We will discuss
these in Section 4.

THE AND LIFT. In this case, we will work with the semigroup ({0,1}™, A)
where A corresponds to the pointwise product. Namely,

T AY = (T1Y1,. -« TnYn),

and the lifted function is defined as

Fp(z,y) = f(z Ay).

Similar to the XOR setting, one easily shows that D(Fu), Ro(Fx), R'(FA), R(F))
are upper-bounded respectively by 2 dt" (f), 2 rdty (f), 2 rdt"(f), 2rdt"(f). We
will discuss the AND-lift in detail in Section 5.

2.5. APPROXIMATE NORMS AND RANDOMIZED COMPLEXITY, A GENERAL AP-
PROACH. The study of randomized complexity classes is often naturally linked
to approximate norms. For every matrix norm || - || and every ¢ > 0, we define
a corresponding e-approximate norm for real matrices M as

[M|le = inf{||N| : [M(z,y) = N(z,y)| < € Va,y},

where in the infimum N is a real matrix of the same dimensions as M.
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Similarly, for every norm || - || on the space of real-valued functions f : X — R,
we define the e-approximate version of the norm as

[flle =nf{llgll: [/ = gllc <€ g: & =R}

We also define the notion of the approximate S-rank similarly:
rke(S, f) = min{rk($, ) : [[f —gllc <€ g: X = R},

where we are using the notation of Definition 2.2.

We use rk. (M) to denote the e-rank of a real matrix M, which is the minimum
rank over real matrices that approximate every entry of M to within an addi-
tive e. Similar to randomized complexity measures, the choice of € is not very
important, as changing e could only affect the value of the approximate-rank of
a Boolean matrix polynomially [KS07].

APPROXIMATE NORMS AND RANDOMIZED PROTOCOLS, A GENERAL APPROACH.
Suppose we are given a function f : Z — {0,1}, and we are interested in
complexity of f in a randomized model of computation M. Here M could be
the communication complexity model, in which case we think of Z = & x ), or
any of the query complexity models discussed above, in which case Z = {0, 1}".

Consider also the set of all the deterministic (query or communication) proto-
cols 7, each computing a corresponding function 7 : Z — {0, 1}. Furthermore,
the cost of every deterministic protocol 7, denoted by cost(w) € N, is the worst-
case number of queries or communicated bits used by the protocol over the set
of all inputs. This defines the deterministic complexity of a function f as

D™(f) := inf{cost(n) : m(2) = f(z) Vz € Z}.

A randomized protocol 7g is a probability distribution over deterministic pro-
tocols 7., and the cost of a randomized protocol is defined to be the maximum
cost of a deterministic protocol in its support. This leads to the notion of the
randomized complexity of a function f:

R (f) == inf{cost(mr) : %I’[WR(Z) # f(z)] <eVze Z}.

The following lemma provides a connection between the randomized complexity
and a suitable notion of approximate norm.
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LEMMA 2.9 (Equivalence of R (f) and ||f||s.c): Consider the setting described
above. Let S be a spanning subset of functions Z — D, and € € (0, %) be a
parameter.

(i) If there exists an increasing function k : RT — R such that for every
function f : Z — {0,1},

1flls < £(D(F)),
then
1/ ls.e < KR ().
(i) If every h € S satisfies

DY (h) < ¢,

then
32clog(2/€)

R () < =502

IFIIS -

Proof. (i) Consider a randomized protocol g of cost at most ¢ that computes f
with two-sided error at most €. Then

I Erlmr] — flleo <,
while by convexity

£lls.e < IEalralls < Erllmalld < max |
13
(13) < max £(D¥(x,) < max n(cost(r,)) = K(R2(£)),

T

as desired.

(ii) Let 6 = 1=2¢. Recall that the approximate norm || f|s, is defined as the
infimum of || f'||s such that ||f — f'[lcc < €, however, there might not exist a
function f’ witnessing the infimum. Hence, instead let \; € C and h; € $ be

such that f' = Zle Aih; satisfies ||f — f/'|lco < €+ 4, and

k
L= [l < [ fls.e.
i=1

We will convert this to a randomized protocol.
For every i, define




Vol. 253, 2023 COMMUNICATION COMPLEXITY 583

so that |[\]| = 1. Pick g randomly from {\ hi,..., A\, hy} according to the
probability distribution

Prlg = Xhi] = — i
Zi:l |Adl
Note that E[g] = f’/L, and furthermore ||g||cc <1 by our assumption about §. Let
32L%log(2/¢)
=20"2L%log(2 —_—
82/€) = =A%z

and g1, ...,gn be i.i.d. copies of g, and define G = % vazl g;. For every z € Z,
by applying Hoeffding’s inequality (Lemma 2.1) to the real part of C:’, we have
~ 262
Pr]| re(G(2)) — re(f Uﬂ>ﬂ<%m(fﬂwﬁmﬁﬂ§a
where the last inequality is by the choice of N. Next, let G be the Boolean
rounding of G, that is G(z) = 1 if and only if re(G(z)) > 1/2. Noting
that [re(f'(2)) — f(2)| < e+ d, we have

" rﬂﬂ@#f@ﬂgﬁﬂw@@»—w(<m>——e—ﬂ
< Prf|re(G(2)) — re(f'(2))] > 3] < e.

Note that by our assumption each h; can be computed at cost at most c.
Since é(z) can be computed by rounding a linear combination of N such h;’s,
it can be computed at cost ¢N. This concludes the statement. |

Next we apply Lemma 2.9 to specific models of query and communication
complexity.

COROLLARY 2.10: For € > 0, et ¢, = lag_(éé)i) We have

(a) AND-query model:
10gg || fllon,e < 1dt2(f) < Oce  [f | 3n,e)-

(b) XOR-query model:
logy || flla.e < rdtZ(f) < Ofee -

2
A,E)'
(¢) Randomized communication complexity:

10y || Fllue < Re(F) < Ofce -

which, in particular, implies

108y | F[lys.e < Re(F) < O(ce - | FI2, 2)-
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Proof. (a) AND-query model: Z ={0,1}", and § = Mon.

Later in Proposition 5.1, we will prove that || f||ae, < 39" (/). Hence
the lower bound follows from Lemma 2.9 (i).

The upper bound follows directly from Lemma 2.9 (ii), as for ev-
ery hs = [[;cgzi € Mon, dt"(hs) = 1.

(b) XOR-query model: Z = {0,1}",and § = {xg}scn], the set of characters

of Zy.

By Cauchy-Schwarz inequality

1[4 < Vike(f) - [ fllz2z) < Vike(f),

which, combined with Proposition 4.1 below, gives || f||a < 24t°(/) Now
Lemma 2.9 (i) yields the lower bound.

The upper bound follows from Lemma 2.9 (ii), noting that dt® (x 4)=1
for all S C [n].

(¢) Randomized Communication Complexity: Z =X x YV, § = Rect.

A communication protocol of cost ¢ provides a partition of F' into at
most 2¢ monochromatic rectangles, and thus || F||,, < 2P#). Now the
lower bound follows from Lemma 2.9 (i).

The upper bound follows from Lemma 2.9 (ii) by noting that

D(h) = 0O(1)
for every h € Rect. |

2.6. IMPORTANT EXAMPLES: EQUALITY, GREATER-THAN, THRESHOLD
FuncTIONs. In this section, we review the properties of some specific examples
of matrices and functions. These will be used in later sections.

As usual denote by J,, the n x n all-one matrix. We start from the identity

matrix.

Example 2.11 (Identity Matrix, Equality Function): The n x n identity ma-
trix I,, and its complement I, := J,, — I,, satisfy the following:
(i) See [KN97, Example 3.9]:

Ro(In) = Ro(In) = O(log(n)).
(ii) See [KN97, Example 3.9]:
R'(1,) = O(log(n)) and RYT,)=O0(1).
In particular, R(I,) = O(1).
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Next, we consider the greater-than matrix, where all the entries on the diag-
onal and below it are 0, and all the entries above the diagonal are 1.

Example 2.12 (Greater-than): The n x n greater-than matrix GT,,, defined
as GT,(i,j) = 1 if and only if i < j, and its complement GT,, := J, — GT,,
satisfy the following:

(i) See [KN97, Exercise 3.10]:
RY(GT,) = ©(og(n)) and R'(GT,) = O(log(n)).
In particular,
Ro(GT,) = Ro(TT») = ©(log(n)).
(i) See [Viols, RS15] and [KN97, Exercise 3.18]:
R(GT,,) = O(loglog(n)).

Finally, we turn to threshold functions. For an integer k > 0, define the
threshold function thry : {0,1}" — {0,1} as thry(z) = 1 if and only
if Y7 @ > k. We will also write

%k:].*thrk.

Denote the XOR and AND-lifts of thr, as Thrf(z,y) = thry(z © y)
and Thry (z,y) = thri(z A y), respectively. Recall that rke(f) denotes the
number of non-zero Fourier coefficients of a function f : {0,1}" — {0, 1}, which
is also equal to the rank of

FO(x,y) = f(z dy).

LEMMA 2.13 (Threshold function in the XOR-model): For every constant k > 0,
and n > k, we have:

(i) rdt@(thrk) < rdt®1(thrk) =200 In particular, R(Thr,?) = 20(k)

(ii) We have rkg (thry) = rk(Thr{) > 2"/2, and consequently

dt® (thry) = Q(n).

Proof. (i) The randomized protocol will first randomly partition {1,...,n} into
sets Si,...,S%, where each element j € [n] is uniformly and independently
assigned to one of the k sets. Next, for each i € [k], pick a subset T; C S;
uniformly at random, and query P je; Ti- Output 1 if all the queries are 1,
and output 0 otherwise.
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If thry(z) = 0, then we will always correctly output 0, as in this case there
s, is all zeros. On the other hand, if thry(z) = 1,
with probability at least % > e~ %, every S; will contain at least one 1. Con-

always exists ¢ such that x

ditioned on the prior event, with probability at least 2% every query satis-
fies eajeTi x; = 1, in which case the protocol correctly outputs 1. Thus, the
probability of error is at most 1 — (2¢)~*. Finally, by standard error-reduction,
repeating this procedure 2°*) times can reduce the error to at most 1/3. We
conclude that there is a constant ¢ = 2°) such that rdt®1(thrk) = Ck.

(ii) First note that fixing the values of variables can only decrease the size of
the support of the Fourier transform. Now if k£ < n/2, then setting k — 1 of the
variables to 1 will result in the function that is 1 everywhere except on 0. This
restricted function has a full Fourier support, which is of size 27— k+1 > 27/2,
Similarly, if & > n/2, then setting n — k of the variables to 0 yields a function
which is 0 everywhere except on 1. Hence this function has a full Fourier
support, which is of size 28 > 27/2

Next, Proposition 4.1 from below implies

dt®(thry) > = log ke (thry) >

DN | =
=3

The threshold functions are also important instances for the AND-query model.

LEMMA 2.14 (Threshold functions in AND-model [KLMY20, Example 6.3]): For
every constant k > 0, and n > k, we have:

(i) dt"(thry) >log (}) ~n- H(%), where H is the binary entropy function
defined as H(z) = —xlogy & — (1 — ) log, (1 — ).
(ii) rdt"(thr,_g) = rdt" (thr,_;) < rdt"!(thr,_;) = 200,
In particular,

R(Thr) ) =200,

Proof. (i) Consider an AND-decision tree T' computing thry. It suffices to show
that T has at least (Z) leaves. Let ([Z]) denote the set of all elements of Hamming
weight exactly k. Note that if the output of a query A;cgs is the same for two
elements z,y € {0,1}", then the query will also return the same value for x Ay.
This shows that the computation in T for two distinct z,y € ([Z]) cannot lead
to the same leaf, as then A y must also lead to the same leaf, but

1 = thry(z) # thry(z Ay) = 0.
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(ii) Note that thr, x(z) = 1 if and only if # € {0,1}" contains at
least k+1 0’s. We partition [n] uniformly at random into k+1 sets S, ..., Sg+1,
and query Ajes,x; for ¢ € [k + 1]. If all of the queries return 0, we out-
put 1, and otherwise we output 0. This protocol is always correct on inputs x
with thr,,_x(z) = 0, and furthermore for inputs with thr,, _j(z) = 1, the prob-
ability of error is at most 1 — % < 1—ekf*1 The claim now follows from
standard error reduction. |

Finally, we prove a lower bound on the Fourier algebra norm of threshold

functions.

LEMMA 2.15 (Fourier algebra norm of threshold functions): For k < n/2, we
have

o (k1)

k—1 n
> (1) = Il <

i=0
In particular, by Corollary 3.13, the same bounds hold for

P P
[IThry, [luee = [[Thry [|,

Proof. Define p: {—1,1}" — R as

SC[n] i€S
|S|<k-1

and note that

ply)= > thr()xr, (x) = 2"thry(T)),
ze{0,1}"

where T, = {i : y; = —1}. Hence,
— 1
[Ehrklla = 2 D W) = ol -1aym)-
y

By Parseval

||p||L2({—1,1}") =

and furthermore, since deg(p) < k — 1, by generalization of Khintchine’s in-
equality to degree k — 1 polynomials ([O’D14, Theorem 9.22]), we have

e * Dplaciyny < ploig-ray < lpleg-1aym. 8
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3. Main results: General matrices

We start by proving the results that apply to general Boolean matrices. Later,
in Section 4 and Section 5, we study special classes of XOR and AND-matrices.

3.1. BLOCKY MATRICES AND BLOCKY-RANK. As we have discussed earlier, EQ
provides a separation between deterministic communication complexity and ran-
domized communication complexity, in both one-sided and two-sided error mod-
els. Now suppose that we equip the players, Alice and Bob, with an equality
oracle. To be more precise, we allow these protocols to have query nodes v, on
which the players map their inputs to strings «, (z) and 8, (y), respectively, and
the oracle will broadcast the value of EQ(a, (), 8, (y)) to both players. This
will contribute only one to the communication cost which is measured in bits.
Note that the usual communicated bits can also be simulated by oracle queries.
For example, if it is Alice’s turn to send a bit a,(x), then they can use the query
EQ(ay(x),1) to transmit this bit to Bob. Hence, in this model, we can assume
that all the communication is done through oracle queries.

Obviously, having access to an equality oracle, Alice and Bob can solve EQ
deterministically at cost O(1), namely by querying the oracle for EQ(z,y).

Let DEQ(M ) denote the smallest cost of a deterministic protocol with equality
oracle for the matrix M.

PROPOSITION 3.1: Let M : X x Y — {0,1} be a matrix. Then
1
5 log rk(Blocky, M) < DEQ(M) < rk(Blocky, M),

and

1
5 log M | s10cgy < D¥(M).

Proof. We first prove D¥Q(M) < rk(Blocky, M). Let k = rk(Blocky, M ). We con-
struct an EQ-oracle protocol for f. In advance, Alice and Bob agree on a decom-
position M = Zle AiM;, where M; is a blocky matrix and \; € R for ¢ € [k].
Since each blocky matrix M; corresponds to an EQ query, for an input (z,y)
Alice and Bob make k queries to the oracle to determine M (x,y), ..., Mg(z,y).
At this point both Alice and Bob can compute

k
M(z,y) = Z AiMi(z,y).

=1
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For the lower bounds, let d = D¥?(M). Consider a leaf ¢ in the EQ-oracle
protocol tree computing M and let P, denote the path of length ky < d from
the root to £. Note that each non-leaf node v in the tree corresponds to a query
to the equality oracle, and each such query corresponds to a blocky matrix B,.
For the matrix M,, define B! = B, and B = B, = Jxxy — B,.

Suppose Py = vy, v, ..., Uk, {, and consider the matrix

(o
. R Ovg Vkg
= DBy, o By,?0---0 kaz

Mp

[4 I

where o,, € {0,1} and o,, = 1 if and only if the edge (v;—1,v;) is labeled
by 1. Hence, after simplification, Mp, can be written as a sum of at most 2%
summands with £1 coefficients, where each summand is a Schur product of at
most k; blocky matrices. Observe that the Schur product of two blocky matrices
is a blocky matrix. Thus, Mp, can be written as a sum of at most 2¢ blocky
matrices with 1 coefficients.

Summing over all the leaves that are labeled by 1, we get

M= Y Mg,

¢ is a 1-leaf

As the number of leaves is bounded by 2%, and each Mp, is a 1 linear com-
bination of at most 2¢ blocky matrices, it follows that rk(Blocky, M) < 224
and ||M||Q¥[oc@ < 92d, [ |

Combining the two inequalities, we have the following useful relation:
1
(15) 3 log || M || stocky < rk(Blocky, M ).
The opposite direction turns out to be equivalent to Conjecture III.

CONJECTURE 3.2: There exists k : RT™ — RT such that for every Boolean

matrix M,

rk(Blocky, M) < k(|| M || siocky)-
ProrosiTION 3.3:  Conjecture 3.2 and Conjecture III are equivalent.

Proof. Conjecture III = Conjecture 3.2: Conjecture III implies that there is a
function 7 : R — R such that M can be written as a sum of 7(||M||,,) blocky
matrices with 1 coefficients. Hence, by Equation (7),

rk(Blocky, M) < 7(4 - || M || stocky) -
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Conjecture 3.2 = Conjecture III: By the proof of Proposition 3.1, M can
be written as a sum of 22D"¢(M) blocky matrices with £1 coefficients. If Con-
jecture 3.2 is true, then for some x : RT — RT,

(16) DQ(M) < rk(Blocky, M) < (|| M |l te)-

Now, by the assumption of Conjecture III, ||A]|,, < ¢ for some constant c. Recall
from Equation (7) that || M ||sey < |[M]4; s0 [|[M]|spky < c. Combining this

with Equation (16), we conclude that M can be written as a sum of k, = 22%(¢)
blocky matrices with £1 coefficients. |

3.1.1. Relation to randomized communication complezity and Conjecture I.

PROPOSITION 3.4: For a function f: X x Y — {0, 1},
R(f) < O(D*X(f) - log D¥(f)).

Proof. Suppose d = D¥® (f). An EQ oracle protocol tree of depth d can be
used to design a randomized protocol for f: The parties simply simulate the
tree, where at each node the equality oracles are simulated (up to some error
probability) via an efficient randomized communication protocol for EQ. By a
simple union bound, to ensure that the final error is bounded by 1/3, it suffices

to use randomized equality protocols with error at most ﬁ. Recall that by
Example 2.11, R(EQ) = O(1), and thus R 1 (EQ) < O(c). As a result,

R (EQ) <O(logd) and R(f) <O(dlogd). ®
It follows from this and Proposition 3.1 that
(17) R(f) < O(xk(Blocky, f) - log rk(Blocky, [)).

The function WSB from Lemma 2.13 demonstrates that the opposite rela-
tion is not true—small randomized communication does not imply having a
small k(Blocky, -). Indeed, by Lemma 2.13 (i), R(Thry ) = R(Thr®) = O(1).
On the other hand, since the v norm of every blocky matrix is at most 1, by
Equation (15), we have

@ @ 1 ®
rk(Blocky, Thry ) > = log || Thry || sy, > 3 log || Thry ||4,,

N~

and by Lemma 2.15, we have

=
log [ Thr; |, > Q(logn).
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Remark: By the above discussion,
D T =@
D®Q(Thry ) > Q(log | Thry [lse,) > Q(log | Thry |,,) > Q(logn).

Thus, the function mf on n input bits witnesses a gap of O(1) vs. Q(log(n))
between randomized communication complexity and deterministic communica-
tion complexity with access to equality oracle. The difference between these
two parameters had also been studied in [CLV19], where a function on n bits
with R(f)=0(logn) and DEQ(f)=Q(n) is exhibited. However, the separation
of [CLV19] was not ruling out a dimension-free relation between these parame-
ters.

As Equation (17) shows, randomized communication complexity can be
upper-bounded by a function of blocky-rank, and thus it is natural to wonder
whether a relaxation of Conjecture I holds for matrices with bounded blocky-
rank, or equivalently D¥?(-) = O(1). Tt is not hard to see that this is indeed
true.

LEMMA 3.5: If an n x n matrix M satisfies rk(Blocky, M) < ¢, then M has a
monochromatic rectangle of size 6.n X d.n, where §. > 0 only depends on c.

Proof. We prove by induction on ¢ that the statement is true with . > 37¢.
As the base case we first show that every n x n blocky matrix has an n/3 x n/3
monochromatic rectangle. Suppose B is a blocky matrix with blocks

X1XY1,...,XtX}/t.

We assume without loss of generality that
Ux
i

as otherwise ([n]\ U, X;)x[n] contains an n/3xn/3 all-zero rectangle. Moreover,
note that if for some i € [t], |X;| > n/3, then one of X; x Y; or X; x [n]\Y;
contains an n/3 x n/3 monochromatic rectangle. Now, suppose that for all 7,

> 2n/3,

This implies that there is k such that

k
> 1Xi| € (n/3,2n/3).

=1
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Note that both (U<, Xi) % ([n]\U;<; Yi) and ([n]\U;<, Xi) % (U<, Yi) are
monochromatic 1rect;mgles7 and furthermore one of them contains an 7;/ 3xn/3
monochromatic rectangle.

Now suppose that M is an n X n matrix such that M = 221 AiB;, where B;
are blocky matrices. By the base case, By, has an n/3 x n/3 monochromatic
rectangle X x Y. Then

m—1
M= (M — \uBp)|xxy = Z XiBilxxv,
i=1
which shows rk(Blocky, M') < ¢ — 1. Consequently, M’ has an ;f‘l 3‘31

monochromatic rectangle, which translates to an gz X 3z monochromatic rec-
tangle in M. |

X

Lemma 3.5 combined with the lower bound from Proposition 3.1 implies that
a weaker version of Conjecture I holds where instead of assuming bounded
randomized communication complexity, one makes the stronger assumption
that DEQ() = O(1).

3.2. ZERO-ERROR COMPLEXITY AND APPROXIMATE-RANK ARE QUALITATIVELY
EQUIVALENT TO RANK. In this section, we prove that both approximate-rank,
and zero-error randomized communication complexity are qualitatively equiva-
lent to the rank, and deterministic communicating complexity.

It is known that, allowing a loss of O(loglog(n)), the gap between the zero-
error randomized communication complexity, and the deterministic communi-
cation complexity of an n x n matrix M can be at most quadratic [KN97,
Exercise 3.15]:

Q(v/D(M) —loglog(n)) < Ro(M) < D(M).
The above bound does not provide a dimension-free equivalence between D(M)
and Ro(M) due to the O(loglog(n)) term which is from applying Newman’s
lemma to convert zero-error private randomness to zero-error public random-
ness. To obtain a dimension-free equivalence, we use a different method.

Our approach is to find copies of submatrices that have large zero-error ran-
domized communication complexity in every high-rank Boolean matrix. The
following key lemma states that if the rank of a Boolean matrix is sufficiently
large, then it must contain, as a submatrix, a large copy of at least one of the
four matrices: the identity matrix Iy, its complement Ty, greater-than func-
tion GT}, or its complement GT}.
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LEMMA 3.6 (Key lemma for zero-error and approximate-rank): Let M be a
Boolean matrix of rank r, and let k = logs(r)/4. Then M contains a copy of at
least one of I, Iy, GTy, or GTj as a submatrix.

Proof. The proof is similar to the proof of the existence of Ramsey numbers.
Let R(kq1, ke, k3, k) be the smallest r such that every Boolean matrix of rank r
contains a copy of at least one of Ij,, I,, GTk,, or GT},. We will show by
induction that

(18) R(k1, ko, k3, ka) < gkit+hkatkatha
The base cases are when k; = 1 for some ¢ € {1,...,4}, in which case
R(kl, kg, kg, k4) < 2,

as any matrix of rank 2 must contain both 0 and 1 entries, and thus must
contain, as a submatrix, a copy of each of I,TI;,GT,GT;.

To prove the induction step, assume k; > 2 for all ¢ € [4], and consider a
Boolean matrix M = [a;;]mxn of rank at least 51 +k2thatks - Since rk(M) > 2,
M contains both 0’s and 1’s, we may assume without loss of generality that the
n-th column contains both 0’s and 1’s. This partitions the rows of the matrix

into two non-empty sets:
Ro={ie[m]:a;, =0} and Ry ={i€[m]:a;, =1}

Let a € {0,1} be chosen such that R, x [n] corresponds to the submatrix with
the larger rank, that is

rk(M|gr,xn)) > tk(M)/2,

where we used the subadditivity of rank. By permuting the rows if necessary,
we can assume that m € R,, or equivalently d,,, # a. Define

Co={jen:am =0} and Cy={j€[n]:am; =1}
Let My be the submatrix of M on
(Ro N [m — 1]) X (CO N [n — 1]),

and define Moy, My, My, similarly (see Figure 2).
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C, C,

I, [0
Mm [EF Mm 6T, 0

0
R 1 0 0
0 0 | ’ 0
] 0
0
1
M, M, 1
1
R, 1
0000/0 0 0o0[0[1[1 1 1[1]d]

G, G
MO{J MOT 0
0
0
Ro 0
0
0
M‘ID M‘H 1
1 0 1 1
- 0 1
GT, 0 I

R, . Lt 0| |4
|
0000[0 0 0[o0/1]1 1 1/1 [0

Figure 2. The matrix M with the row partitions Ry and Ry, the
column partitions Cy and C;, and the respective submatrices
Moo, Mo1, Mo and M1,. When a,,, = 1, as shown in the top
figure, a copy of Iy in Myg can be extended to Ix1, and a copy
of GTj in My; to ﬁk+1. When a,,, = 0, as in the bottom
figure, a copy of Iy in M1; can be extended to Iy.1, and a copy
of GTk in M10 to GTk+1-

For a matrix N, let m1(N) denote the largest k such that N contains a copy
of Iy. Define mz(N), mar(N), and mgp(N) similarly.
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If @y = 1, then
mi(M) > mi(Mo) +1 and mggp(M) > mgs(Mo) + 1,

since one can use the last row and the last column to extend those submatrices
in Myg and My, to larger ones in M. Note also that in this case, since a = 0,

I‘k(Moo) + I‘k(MOl) > rk(M|R0><[n]) > I‘k(]\f)/27
which implies that either
rk(Mog) > sritkethstha=l > Rk — 1, ko, k3, kq)

or
rk(Moy) > pritkethstha=l > Rk ko ks, kg — 1).

In both cases, the induction hypothesis yields the desired bound Equation (18).
Similarly if a,,, = 0, then

mz(M) > mz(M11) +1, and mgr(M) > mgr(Mio) + 1,
and in this case, since a = 1, we obtain
rk(Mio) + rk(Mir) + 1 = rk(M| g, x[n)) = tk(M)/2,
which implies
rk(Myg) > 5Frthethstha=l > Rk ko ks — 1, ky)

or
k(M) > pRitkethstha=l > Rk ko — 1 ks, ky).

Again in both cases, the induction hypothesis implies (18) as desired. |
It was proved in [GS19] that for every Boolean matrix M,
(M) = Q(log(rk(M))).

This combined with Lemma 3.6 shows that zero-error randomized communica-
tion complexity, approximate rank, and rank are all qualitatively equivalent.

THEOREM 3.7 (Equivalence between zero-error, rank, and approximate rank):
There exists a constant ¢ > 0 such that for every Boolean matrix M we have

(19) cloglogrk(M) < Ro(M) < rk(M),
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and furthermore for every e < 1/2 there exists a constant ¢, > 0 such that
(20) celogrk(M) < rke(M) < rk(M).

Proof. Equation (20) is due to [GS19].

The upper bound in (19) follows from Ro(M) < D(M). It remains to prove
the lower bound in (19). By Lemma 3.6, we are guaranteed to find a copy
of I, I1, GTs, or GT; as a submatrix in M, where k = ilog5 rk(M). By
Example 2.11 and Example 2.12, all the four matrices I, I, GT}, GT; have
zero-error randomized communication complexity 2(logk), which yields the
lower bound of (19). |

3.3. ONE-SIDED ERROR COMPLEXITY. In this section, we consider one-sided
error randomized protocols, and study the structure of matrices M that sat-
isfy R'(M) = O(1). As in the case of two-sided error randomized communi-
cation, the identity matrix (Example 2.11) shows that there is a gap between
rank and one-sided error randomized communication complexity. The XOR lift
of the threshold function also witnesses such a gap; for a constant k, we have

RY(Thr{) = O(1) and rk(Thry) > 2%™

by Lemma 2.13. These examples demonstrate that even for matrices with uni-
formly bounded one-sided error randomized communication complexity we can-
not hope to obtain a full structure through bounded rank. Therefore, similar
to the theme of Conjecture I, we focus on finding a highly structured object in

such matrices.

THEOREM 3.8 (Conjecture I for one-sided error): For every ¢ > 0, there exists
a constant 6. > 0 such that if the one-sided error randomized communication
complexity R'(M) of an n x n Boolean matrix M is bounded by ¢, then it
contains an all-zero or all-one d.n X d.n submatrix.

Proof. Let t be a constant to be determined later. Assume n > 277!, as other-

wise the claim is trivial with 6. = 27t 1. Fix a small constant 0 < ¢ < 9— % —4

2 as otherwise we can find a large all-one

We will assume |[supp(M)| < en
submatrix as follows: Given a one-sided error randomized protocol mr for M
with communication at most ¢, there is a fixing of the randomness r, so that
S = {(z,y) | 7r(x,y) = 1} satisfies |S| > en?/3, where 7, is a deterministic

protocol. As g is a one-sided error protocol, we have S C supp(M). Since 7,



Vol. 253, 2023 COMMUNICATION COMPLEXITY 597

is deterministic, then it provides a partitioning of S into at most 2¢ all-one
2

EN

320"

Let S be the maximal subset of supp(M) such that for any distinct pairs
(x1,11), (x2,y2) € S, 1 # x2 and y; # yo. Let r = |S|, and note that
if r < 2%, then from the maximality of S it follows that deleting all the

rows and columns involved in S from M will remove all the 1 entries from M.

submatrices. As a result, M has an all-one submatrix of size at least

So the resulting submatrix of M will be all-zero and will have size at least
1

(n —2%) x (n—2%) > i n?, where the inequality holds for any constant ¢ that
satisfies the initial assumption of n > 27*!. Thus, we may assume 7 > 27.

Denote k = 2. By Example 2.11, the identity matrix is hard for one-
sided randomized communication, more precisely R'(I) > 7logk for some
constant 7 > 0. Fixing t = 7, we get R* (1) > c.

This means that M cannot contain a copy of the k£ x k identity matrix as a sub-
matrix. Thus, every k x k submatrix of M that contains k entries from S must
also have at least one 1l-entry outside of S—call such entries off-diagonal 1’s.
Let m be the number of such off-diagonal 1’s in M. The number of k£ x k subma-
trices of M that have k entries from S is (2), and each of these submatrices has
at least one off-diagonal 1. In this process, each off-diagonal 1 in M is counted

r—2

in at most ( ) many submatrices. Hence,

k—2
W)
R T

Now, if r > 2,/2k - n, then m > en?, hence
|supp(M)| > en?,

which is a contradiction to our assumption of [supp(M)| < en?. So, r < 2\/ek-n.
In this case, by deleting all the rows and columns of S from M, we obtain an
all-zero rectangle of size at least (n —2y/zk-n)? = (1 —2,/zk)?-n?. To sum up,
by taking

0 =1— 2/ -2,

we get that there is an all-zero rectangle of size at least §2n?. |

3.4. IDEMPOTENT SCHUR MULTIPLIERS. AN INFINITE VERSION OF CONJEC-
TURE III. Let & and Y be two countable sets. Recall that a matrix Mxyxy
is a Schur multiplier, if A — M o A defines a map B(H1,Hsa) — B(H1, Hs).
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In Theorem 2.6, we saw that M is a contractive idempotent of the algebra of
Schur multipliers if and only if M € Blocky.

Consequently, if a Boolean matrix My xy can be written as a linear combi-
nation of finitely many contractive idempotent Schur multipliers, then by the
triangle inequality it is a Schur multiplier. More precisely, if M = Zle AilM;
is Boolean valued and each M; is contractive, then M is an idempotent Schur
multiplier as M o M = M, and || M|, < >¢_, |Ai|. This leads to the following

conjecture.

CONJECTURE 3.9: An (infinite) matrix M is an idempotent Schur multiplier if
and only if M is Boolean and can be written as a linear combination of finitely
many contractive idempotent Schur multipliers.

A simple compactness argument shows that Conjecture 3.9 is equivalent to
Conjecture III.

THEOREM 3.10: Conjecture 3.9 and Conjecture III are equivalent.

Proof. By the equivalence of the norms || - ||, and || - ||;», Conjecture III can be
rephrased as follows:

For every constant ¢, there exists a constant k. such that if a finite Boolean
matrix M satisfies ||M||,, < ¢, then there exists k. blocky matrices B; and

signs o; € {—1,1} such that

ke

i=1

Conjecture 3.9=—=-Conjecture III: If Conjecture III is not true, then there must
exist an infinite sequence of finite Boolean matrices {M; }ien with || M|, < k
for all ¢, such that M,; cannot be expressed as a +1-linear combination of at
ien Mi would
be an idempotent Schur multiplier, but for every ¢ € N it cannot be expressed

most 7 contractive idempotent Schur multipliers. Then M = €

as a £1-linear combination of ¢ idempotent contractions. Since M is Boolean,
it follows from Remark 1 that M cannot be expressed as a linear combination
of at most a finite number of idempotent contractions.

Conjecture III=-Conjecture 3.9: Let M be an idempotent Schur multiplier
on B(l2(X),2())), and consider a nested sequence X7 C Xo C X3 C -+ of
finite subsets of X', and a nested sequence Y7 C Yo C Y3 C --- of finite subsets
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of Y such that X x Y =J&; x V;. Let
M;i =1x,xy, o M,

which can be interpreted as a Schur multiplier on B(¢2(X;), ¢2(Y;)). Since our
sequences are nested, for every i < j, we have

(21) ]-Xi><YioMj:Mi-

Furthermore, |[|[M;|lm < |1x;xvillm - |M|lm < ||M||m, and thus by Conjec-

ture III, there is a constant ¢, depending only on || M|, such that

t
M; = E ik Ni i
k=1

for idempotent contractions N; . Furthermore by (21) for every j > i,

t
M; =0 k(1x,xv, © Njg)-
k=1
For a fixed 7 and k, since N; i, and 1x,«y; o N; , for all j, are supported on the
finite set X; x Y;, by restricting to a sub-sequence i1 < is < i3 < ---, we can
assume without loss of generality that for every j > i we have

1Xi><Y¢ e] N‘,k == Ni,k-

By restricting to further sub-sequences we can assume this is true for all 7, and
furthermore for every k, there exists a o, € {—1,1} such that o;; = oy, for
all j. To summarize: for all k, and j > 1,

(22) 1x,xv; © Njr = Nik,

and moreover o = o, for all j, k.
For k € {1,...,t}, define the matrix Ny = [Ni(z, y)|wex yey as

Nk(xay) = Ni,k(‘may)v

where 7 is any index such that (z,y) € X; x Y;. This is well-defined
since X x Y = X; x Y;, and (22).

Note that N is an idempotent contractive Schur multiplier, since, for exam-
ple, it obviously does not contain any 2 x 2 submatrix with exactly three 1’s.
Moreover M = 22:1 01 Ny, which finishes the proof. |
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3.5. GROUP LIFTS. In this section we focus on the matrices of the form

F(z,y) = f(y o),

where [ : G — C, and G is a finite group. We start by showing that for any
finite group G, the Fourier algebra norm of f coincides with the normalized
trace norm of its lift F(z,y) = f(y~'x).

ProprosiTION 3.11: Let G be a finite group, and f : G — C. Let the matrix
F:G x G — C be defined as F(z,y) = f(y~'z). We have

1
= e
|G|
Proof. Note that the Fourier algebra norm is defined through its dual. The
proof will rely on the fact that the dual of the trace norm is the operator

[f1la = [1F ot =

norm | - ||L2(G)—>L2(G)-

Let h : G — C, and the matrix H be its lift H(z,y) = h(y~'z). Recall
that the convolution operator for h is defined as Ly : v — v *x h, where the
convolution is defined by Equation (10). Thus, for v: G — C,

1
= a7 2 = fa 22 e vly) = g Hvo)

yeG yeG

th/

Hence,
ILwvllz@) _ vl _ [HVlla@/IG)
||V||L2(G) HVHéz(G) HVHéz(G)

)

which shows )
ILrll2@y—r2 @) = @”H”Zz(G)—%g(G)-
Next, recall that for matrices F' and H,

(F, H) Z FyjHy; = tr(FHT)
]

with transpose as conjugation. Now note that

1 1
<f7 h’>L2(G) = W<fa h>52(G) |G|2 <F H>
(23) 1
< W”FHU”H||22(G)—>£2(G) = | Fllatell Lol L2(ay— L2 (6

which shows that

[flla = sap{{f, k) : [ Lnllz2 (o)~ r2() < 1} < [ Flntr-
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On the other hand, let H : G x G — C be such that
[Hle2G)—st26) =1 and  |[F|l¢ = (F, H),

and let H : G x G — C be the following symmetrization of H:

H(xz,y) =E,wq H(zx, 2y).
By convexity

1 H ey ()= t26) < 1H ooy —ea(a) = 1.
Define h : G — C by

hz) = H(z,1),
and note that for every y and z,
hy 'z) = Hiy ',1) = H(x,y).
Since F(zx,zy) = F(z,y) = f(y~'z) for all z, we have
(F,H) = (F,H) = |G*(f,h) 12(c)
<GP fllallLallz2)—z2@)
= Gl Hlleaie)-ta()
< |Gl f]] a3

this shows || F|lntr < ||f||4 and completes the proof. |

Davidson and Donsig [DD07], by applying a theorem of Mathias [Mat93],
showed that || M ||ner = || M ||m if the entries of M are invariant under a transitive
group action.

THEOREM 3.12 ([DDO07]): Let X' be a finite set with a transitive group action
G on X. Suppose that the matrix Mxy«x belongs to the commutant of the
action G, or equivalently M (z,y) = M(gx,gy) for all g € G. Then

M [nte = [[M || = [|M]]5,-

Combining Proposition 3.11 and Theorem 3.12, we obtain the following corol-
lary.

COROLLARY 3.13: Let G be a finite group, f : G — C, and F : G x G — C be
its lift defined as F(z,y) = f(y~‘x). We have

[Ellm = 1Fllys = [[Ellote = [ ]l a-
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This corollary combined with the non-Abelian version of Cohen’s idempo-
tent theorem settles Conjecture IT and Conjecture III for matrices of the form
F(z,y) = f(y~'a).

THEOREM 3.14: Conjecture IT and Conjecture III are true for the class of func-
tions F : G x G — {0,1} of the form F(x,y) = f(y~‘x), where G is a finite
group, and f : G — {0,1}.

Proof. By Corollary 3.13,

[Ellm = 1Flys = [[Ellote = [ ] a-

Suppose that || f||a < ¢. By the general version of Cohen’s idempotent theorem
[Sanll, Theorem 1.2], there is some constant k = k., subgroups Hy, ..., Hi C G,
elements aq,...,a; € G, and signs o1,...,0; € {—1,1} such that

k
f = ZailHiai'
i=1

Then

be H;\G

ﬁ: (X a0 ,00),
)=

and note that each B;(x,
desired. n

> veriG 1oa, (2)1om, (y) is a blocky matrix as

4. XOR-functions

Recall that the XOR-lift of a function f : {0,1}" — {0,1} is defined as
Fs :{0,1}" x {0,1}" — {0,1} with
Fg : (z,y) = f(zDy).
Since XOR-lift is a special case of the group lift for G = Z%, by Theorem 3.14,
both Conjecture II, and Conjecture III are true for XOR functions.
4.1. STRUCTURE FOR BOUNDED QUERY COMPLEXITY. Let f: {0,1}" — {0,1},
and consider the complexity measures

rdt®(f) < rdt®'(f) < 3rdtd (£),

and dt®(f). We shall study the structure of the function if we assume a uniform
bound on each of these measures.
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DETERMINISTIC AND ZERO-ERROR RANDOMIZED CASE. The Fourier spectrum
of a Boolean function plays an important role in understanding these param-
eters. The Fourier rank of f, denoted rkg(f), is simply the number of non-
zero Fourier coefficients of f. The Fourier rank is also commonly referred to
as Fourier sparsity in the literature. Note that denoting G = Z7, using the

notation of Definition 2.2, we have

rke (f) = 1k(G, f).

PROPOSITION 4.1 (Equivalence between zero-error and deterministic complex-
ities): For f : {0,1}" — {0,1}, D(Fy), rk(Fs), Ro(Fg), dt®(f), rke(f),
and rdtd (f) are qualitatively equivalent. More precisely, we have

1
(24) 5 logrks (f) < dt%(f) < rke(f),
and there are constants cy, co, c3 > 0 such that

D(Fz) <2dt¥(f) < c1 - D(Fg)® < cp - tk(F3)°
(25)

923 rde® (f)

2¢3-Ro(Fg) g2ez av® (1)

<2 <2 <2

Proof. Equation (24): Each parity query €, g ; corresponds to querying the
value of the corresponding character xg(z). In particular, if the Fourier spec-
trum of f is supported on at most ¢ characters, then the value of f(z) will be
determined from the value of these characters, and thus dt®(f) < rke(f).

For the other direction, the indicator function of every leaf of a depth d
parity decision tree is determined by the value of d characters and thus has
Fourier rank at most 2¢. Since the number of leaves is bounded by 2%, we
obtain rke (f) < 224,

Equation (25): The first inequality is the straightforward simulation of a
parity decision tree by a communication protocol as discussed in Section 2.4,
namely the fact that Alice and Bob can simulate an XOR-query ®gs(z @ y)
by two bits of communication @g(z) and Pg(y). The second inequality is
the parity lifting theorem of [HHL18], and the third inequality is a property of
deterministic communication complexity Proposition 2.7. The fourth inequality
is Theorem 3.7. The fifth inequality is again the simulation of parity decision
trees by communication protocols. The final inequality is trivial since

rdtd (f) < dt®(f). ]
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Remark: To prove the equivalences stated in Proposition 4.1, instead of
dt?(f) < e1 - D(Fs)®,
it would have sufficed to use the weaker but trivial inequality
dt®(f) < rke(f) = rk(Fs) < 2°0F%).

However, the lifting theorem of [HHL18] provides stronger bounds.

ONE-SIDED RANDOMIZED CASE. In Lemma 2.13 we saw that for a fixed inte-
ger k, the threshold function thry satisfies

rdt®! (thry) < ¢

for some constant ¢;, depending on parameter k, while dt® (thry) = Q(n). This
shows that for the XOR-query model the one-sided error case is not qualitatively
equivalent to the zero-error and the deterministic case.

PROPOSITION 4.2: For every Boolean function f : {0,1}" — {0, 1}, there exists
an affine subspace V' of co-dimension rdt®! (f) such that f is constant on V.

Proof. Consider a one-sided randomized parity decision tree Az with random-
ness R that could only make errors when f(x) = 1. Suppose that f # 0, as
otherwise we can take V = {0,1}". Pickz € f~!(1). Since Prg[Ag(z) = 1] > 0,
there is a fixing of randomness R = r, such that A, is a deterministic parity de-
cision tree satisfying A,(z) = 1. That is, x leads to a leaf of A, labeled with 1,
and the leaf corresponds to an affine subspace V' of codimension < rdt®1( 1)
Moreover, since A, does not make errors on f~1(0), then

VA io)=10

or, equivalently, f|y = 1. |

TWO-SIDED ERROR CASE. Next we turn to two-sided error. We saw in Corol-
lary 2.10 that the randomized parity decision tree complexity and the approxi-
mate Fourier algebra norm of f are qualitatively equivalent. These parameters
are also qualitatively equivalent to the randomized communication complexity
of the parity lift.
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PROPOSITION 4.3: For f : {0,1}" — {0,1} and € € (0,1), Re(Fy), rdtZ(f),
and || f]|a.. are qualitatively equivalent. More precisely,

(26) log || flla,e < 1dtZ (f) < Oleell flI%.0):
1

(27) 3108 |fllae < Re(Fo) < O(cell f11%.0);

where ¢, = l(cig_gé)i), and

(28) R:(Fyp) < 20dt2(f) < O(ce2* (7o),

1

Proof. Observe that a parity lift is a y~ a-group lift for G = Z3, and thus by

Corollary 3.13, we have
1Fellyse = [1f]l e

Hence Equation (26) and Equation (27) have already been proven in Corol-
lary 2.10.

The first inequality in Equation (28) is the standard simulation of a parity
decision tree by a communication protocol. The second inequality in Equa-
tion (28) is a direct consequence of the upper-bound in Equation (26) and the
lower bound in Equation (27). |

Remark: Note that Equation (26) provides an exponential lifting theorem for
the randomized parity decision tree model. It is conjectured in [HHL18] that
this can be improved to rdt®(f) < R(Fg)?™M), which remains an intriguing
open problem.

Next, we observe that for the class of XOR-functions, Conjecture IV would
imply Conjecture I.

PROPOSITION 4.4: For the class of XOR functions,

Conjecture IV = Conjecture I.

Proof. Suppose that R(Fg) < c. It follows then from Equation (27) that

I £]lae < 2%

Now if Conjecture IV is true, then f would be constant on a large subspace
V CZ5. Then V x V would be a large monochromatic rectangle in Fg. |
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5. AND-functions

In this section we focus on AND-functions Fa(z,y) == f(x A y). As we saw
in Section 4, investigating the Fourier expansion of f : {0,1}" — {0,1} was
extremely useful for understanding the properties of their XOR-lifts. This is
chiefly because Fourier characters are multiplicative with respect to the XOR
operation, and thus the Fourier transform naturally translates to an expansion
of the matrix Fg as a linear combination of rank-one matrices. When studying
the AND-lifts, the representation of f as a multilinear polynomial over the reals
plays a similar role since monomials are multiplicative with respect to the AND
operation. More precisely, using the notation z° = Hie g T;, the polynomial
representation

flo) =Y Aga®
SCln]

translates to
Fp(w,y) = flwAy) = D Asay®.
SCln]

Equivalently,
Fn = Z )\Smsmts,
SC[n]
where mg € {0,1}%", mY is the transpose of mg, and (mg), = 5. Since for
each S, mgml is a rank-1 matrix, and mg for S C [n] are linearly independent,
then rk(F,) is equal to the number of non-zero coefficients \g, which by the
notation of Section 2.1 is denoted by rk(Mon, f). In other words,

(29) tk(Fn) = rk(Mon, f).

We obtain the following simple proposition, which establishes the equivalence
of several parameters related to the AND-lift.

PRrROPOSITION 5.1 (Equivalence between zero-error and deterministic complex-
ities): For f : {0,1}" — {0,1}, the parameters dt"(f), rdt(f), rk(Mon, f),
I |ans TK(FA), D(FA), and Ro(Fn) are all qualitatively equivalent. More pre-
cisely, there exists a constant ¢ > 0 such that

logrk(Mon, f) < D(Fp) < 2dt"(f) < 2rk(Mon, f)

(30) R N
cRo(FA) 2¢-rdt)) (f) 2c-rk(9on, f)
= ark(F,) < 2270 < 92O < 92

and
rk(Mon, £) < || fllan < 39",
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Proof. Recall tk(Fn) = rk(Mon, f). Thus the inequality log rk(Mon, f) < D(Fx)
is the well-known rank lower bound of Proposition 2.7, and the inequality
D(Fr) < 2dt"(f) is the straightforward simulation of an AND-decision tree
by a communication protocol, discussed in Section 2.4.

The inequality dt"(f) < rk(Mon, f) follows from the fact that the value of a
monomial can be determined by making one AND-query.

By Theorem 3.7, there exists a constant ¢ > 0 such that

rk(F/\) < 22cR,0(F/\) < 222crdt6\(f)

and the last inequality in the first equation follows from

Ro(Fy) < 21dt) (f) < 2dt"(f) < 2rk(Mon, f).

The inequality rk(Mon, f) < || f|law: follows from the easy and well-known
fact that the coefficients in the polynomial representation of f are all integers.

It remains to prove || f|lap, < 39" (). We use induction on d = dt”(f). The
base case for d = 0 is trivial, as || f||awn 1S at most 1 for every constant Boolean
function f. For the induction step, consider an AND-decision tree of depth d
computing f, and suppose that the top node of the tree queries 2°, and branches
accordingly to compute f; and f3. Now

fla)=a% fi(@) + (1 —2%) - fo(@),
and since dt"(f1), dt"(f2) < d — 1, we have
1 3o < 112 frllaton + 12° follaon + || follaen < 3-37 1 =3% &

We conjecture that the exponential equivalence between D(F,) and dt"(f)
in Proposition 5.1 can be improved to a polynomial equivalency. Recently,
[KLMY20] proved

dt"(f) = O(D(fr) logn),
but due to the log(n) factor, their statement comes short of establishing this
conjecture.

Now, let us turn to randomized communication complexity and its related
matrix parameters such as the trace and the v norm. Unlike Fourier charac-
ters, the monomials in the polynomial representation are not orthogonal, and
thus the coefficients in the polynomial representation of f do not correspond
to the eigenvalues of F. This makes relating the spectral properties of F to
similar properties of f difficult. For example, unlike the Fg case, we do not



608 L. HAMBARDZUMYAN, H. HATAMI AND P. HATAMI  Isr. J. Math.

know how to verify Conjecture II or Conjecture III for matrices of the form F.
Similarly, we do not know how to relate the randomized communication com-
plexity assumption of Conjecture I to an assumption about rdt”. Contrast this
with the XOR case where we have established that R(Fg), ||Fg||ys,e, || flla,e, and
rdtg (f) are all qualitatively equivalent. We conjecture however that a similar
statement is true for the AND-functions.

CONJECTURE 5.2: There exists an increasing function x : RT™ — R™T such that
for every f:{0,1}" — {0,1},

rdt” (f) < k(R(Fn)).

Interestingly in the case of the AND-functions, we know how to establish the
analogue of Conjecture IV.

THEOREM 5.3: Suppose f : {0,1}" — {0, 1} satisfies rdt"(f) < d. Then, there
exists a set J C [n] of size at most 391, such that f is constant on {x : z; = 0}.

We will prove Theorem 5.3 in Section 5.1, but first, let us state the following
corollary.

COROLLARY 5.4: Conjecture 5.2, if true, would imply that Conjecture I is true
for F matrices.

Proof. It would follow from Conjecture 5.2 that if R(F) < ¢, then
rdt™ (f) < k(e).

Then by Theorem 5.3, f is constant on V = {x : 2; = 0}, where |J| < 3%(c)+1,
Consequently, F is constant on V' x V., which is a §2" x §2" combinatorial
rectangle with

5 _ 2_“]‘ > 2_3N(C)+1

To summarize, in the case of F)y, the missing step for establishing Conjecture I
is a dimension-free lifting theorem for randomized communication complexity
(i.e., Conjecture 5.2), since we know how to deduce structure from a uniform
bound on randomized query complexity. In contrast, in the case of Fgg such a
lifting theorem is known, but we do not know how to establish structure from
a uniform bound on randomized query complexity (i.e., Conjecture IV).
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5.1. PROOF OF THEOREM 5.3. By Corollary 2.10,
log(1/¢) )

(31) togs | fllne < 2t2(F) < (I ne (7 —g03):

Theorem 5.3 now follows from the first inequality and the following lemma.

LEMMA 5.5: For every f :{0,1}" — {0,1}, there exists a set J C [n] of size at
most 3|| fllagn,1/3, such that f is constant on {x : x; = 0}.

Proof. Let p=>_ SCin] Asz® be a multilinear polynomial satisfying

1
=Sl <5 and Pl = d.

Consider the partial ordering on the Boolean cube where x < vy if for every 1,
x; < y;. Under this ordering, pick a minimal w € {0, 1}" such that f(0) # f(w).
This means that for every v < w, f(v) = f(0). Pick an arbitrary j such
that w; = 1, and let v = w — e;, where e; denotes the jth standard vector.
Note that | f(w)—f(v)]=1, and as a result |p(w) —p(v)| >1/3, which means that

> sl = %,

SCw:S53j
where S Cw means S C {i:w;=1}. Consequently, ||p|s,~ol|an < |[p||aen—3. Thus
1
I|flz;=0llaon,1 /3 < I fllaton,1/3 — 3
We include j in .J and repeat the above process, replacing f with f[,,—o. Since
| - laon,1/3 > 0, this process can be repeated for at most 3| f||aps,1/3 times, after
which we will end up with a constant function. |

5.2. RANDOMIZED AND-DECISION TREES: ONE-SIDED AND TWO-SIDED ERROR.
Let us briefly discuss rdt"! and rdt". The example of the threshold function,
as discussed in Lemma 2.14, shows that the one-sided and the two-sided error
cases are not qualitatively equivalent to the deterministic case. In particular,
for f = thr,_, Lemma 2.14 shows that
R(F,) < 2rdt"(f) < 2rdt™ (f) = 0(1),
while dt"(f) = dt"(f) = Q(log(n)).

On the other hand, in Theorem 5.3, we showed that if rdt"(f) < d, then there
exists a set J C [n] of size at most 3971, such that f is constant on {x : z; = 0}.
Thus for AND-functions we know how to prove the analogue of Proposition 4.2,
even for two-sided error.
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6. Forbidden substructures: A proof-barrier for Conjectures I, I1, ITI

In this section, we discuss a proof barrier, which shows that the techniques used
for proving Cohen’s idempotent theorem, as well as many similar structural
results cannot establish Conjectures I, II, and III. Such proofs are based on
forbidding substructures. For instance, to prove Cohen’s idempotent theorem
for f:Z% — {0,1}, one uses the fact that the function g, : Z5 — {0, 1}, defined
as

gr(x) =1 iff |z| =1,

satisfies ||g-|la = Q(y/r). Consequently, if || f]la < ¢, then no restriction of f to
any affine subspace of dimension k = k. = O(c?) can be isomorphic to gx. One
then uses the fact that f does not have a copy of this forbidden substructure to
obtain general structural results about f. The proof of Cohen’s theorem, even
for more general groups, follows the same approach.

Similarly, in Lemma 3.6, we showed that every Boolean matrix of high rank
must contain as a submatrix one of the four matrices Iy, Iy, GT}, or GTj, each
with large zero-error randomized communication complexity. In other words, we
used these four matrices as forbidden substructures for matrices that have small
zero-error randomized communication complexity. For one-sided error, in The-
orem 3.8 we used the forbidden matrix I;. Note that even Sherstov’s pattern-
matrix method [Shell], which has been used successfully to lower-bound several
complexity measures of various important matrices, is based on finding certain
highly symmetric patterns in them.

One may suspect that a similar approach could also be used to establish
Conjectures I, II and III. Namely, one needs to find a suitable list of matrices
with high randomized communication complexity, high trace norm, or high
norm, and show that if a Boolean matrix M does not contain any of them as a
submatrix, then it must have the desired structure. We prove that this approach
fails as there are matrices that cannot be handled by this proof technique.

THEOREM 6.1: For every sufficiently large n, there exists an n x n Boolean
matrix M with the following properties:

(i) Every n'/* x n!/* submatrix F of M satisfies

[Ellner < |F[ly, <4 and  R(F) = O(1).

0.99 0.99

(ii) M does not contain any monochromatic rectangles of size n°%? x n
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One interesting related proof that does not follow the forbidden substructure
approach is the purely spectral proof of Shpilka, Tal and Volk [STV17] for the
fact that every f : Z5 — {0,1} with || f||4 < ¢ is constant on an affine subspace
of co-dimension k.. This obviously follows from Cohen’s theorem, but [STV17]
obtained stronger bounds on k..

Before stating the proof of Theorem 6.1, we will set up and prove an auxiliary
lemma on the blocky-rank of matrices that correspond to forests. A matrix
M : X x Y — {0,1} naturally corresponds to a bipartite graph Gjp; with
bipartition X U ), where there is an edge between vertices x € X and y € Y
if and only if M(z,y) = 1. Note that the bipartite graph corresponding to a
blocky matrix M is an edge-disjoint union of vertex-disjoint complete bipartite
graphs.

Recall that a graph is called a forest if it does not contain any cycles. A
connected forest is called a tree.

LEMMA 6.2: Let M be a finite Boolean matrix corresponding to a forest.
Then M is a sum of two blocky matrices.

Proof. As mentioned above, a blocky matrix corresponds to an edge-disjoint
union of vertex-disjoint complete bipartite graphs. Hence it suffices to show
that the edges of every forest can be partitioned into two sets, each forming
a disjoint union of complete bipartite graphs. Obviously, it suffices to prove
this for a tree as a forest is a disjoint union of trees. Let v be an arbitrary
vertex of the tree, and for ¢ = 0,1,..., let L; be the set of the vertices that are
at distance ¢ from v. To complete the proof note that the edges between L;
and L;y1 for even values of i form one blocky matrix, and similarly the edges
between L; and L;1 for odd values of i form the other blocky matrix. n

Proof of Theorem 6.1. Set
n0-05

b= )
n

and select a random n x n matrix M = [m,;] by setting each entry to 1 with

probability p and independently of other entries. It suffices to show that with
probability 1 — o(1) both (i) and (ii) hold.

(i) Let & = n'/%. We will show that every k x k submatrix F' of M can
be written as a sum of four blocky matrices. Then R(F) = O(1) immediately
follows from Equation (17), and [|F|lntr < || F |4, < 4 follows from the fact that
the v9-norm of a blocky matrix is at most 1.
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We first prove that with probability 1 — o(1), for every r,t < k, every r x t
submatrix of M contains a row or a column with at most two 1’s. Note that
the statement is trivial when min(r,¢) < 2. Fix r,¢ > 2, and assume without
loss of generality that » < ¢. The probability that there is an r x ¢ submatrix
such that each of its ¢ € [3, /4] columns contains at least three 1’s is bounded
by

@ () (G)) <oty <oy <o

Thus by a union bound over all choices of r,t < k, the probability that there
is r,t € [k] and an r x t submatrix where every column contains at least three 1’s
is bounded by o(k?n~'/2) which is o(1) as desired.

Now suppose that every r x t submatrix F' of M contains a row or a column
with at most two 1’s. We will show that in this case, every such F' is a disjoint
union of two forests, and by Lemma 6.2 M is a sum of four blocky matrices.
Consider a row (or a column) with at most two 1’s, and let e; and ez be the
edges corresponding to these (at most) two entries. Removing this row from F’
will result in a smaller submatrix which, by induction hypothesis, can be written
as the union of two forests 1 and F». Now F' can be decomposed into the union
of two forests F; U {e1} and F> U {ea}. Note that in the base case, i.e., r =1
or t =1, we get a star, which itself is a tree.

(i) Let K = n%9. The expected number of monochromatic rectangles of
size K x K is at most

2" % 2 x (pK” +(1—p)K") <22n(2e7PK7)
(33)

2 0.984-0.05
§21+2n—pK :21+2n—n :0(1) ]

Lastly, observe that the matrix M from Theorem 6.1 is not a counterex-
ample for Conjecture I as M in fact has a high randomized communication
complexity—this can be derived by upper bounding M’s discrepancy.
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