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ABSTRACT

The purpose of this article is to initiate a systematic study of dimension-

free relations between basic communication and query complexity mea-

sures and various matrix norms. In other words, our goal is to obtain

inequalities that bound a parameter solely as a function of another pa-

rameter. This is in contrast to perhaps the more common framework in

communication complexity where poly-logarithmic dependencies on the

number of input bits are tolerated.

Dimension-free bounds are also closely related to structural results,

where one seeks to describe the structure of Boolean matrices and func-

tions that have low complexity. We prove such theorems for several com-

munication and query complexity measures as well as various matrix and

operator norms. In several other cases we show that such bounds do not

exist.

We propose several conjectures, and establish that, in addition to ap-

plications in complexity theory, these problems are central to characteriza-

tion of the idempotents of the algebra of Schur multipliers, and could lead

to new extensions of Cohen’s celebrated idempotent theorem regarding

the Fourier algebra.
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1. Introduction

A matrix is called Boolean if its entries are either 0 or 1, and similarly, a

function is calledBoolean if it takes only 0 and 1 values. Our goal in this article

is to study whether dimension-free relations exist between basic communication

and query complexity measures and various matrix norms for Boolean matrices

and functions.

The field of communication complexity, formally defined in 1979 in a paper by

Yao [Yao77], studies the communication costs of computing Boolean functions

whose input is split between two or more parties. Developed by complexity

theorists, this field has been naturally influenced by the more classical areas

of complexity theory such as computational complexity where the main chal-

lenges lie in separation of complexity classes. The communication complexity

classes are defined in [BFS86] as the set of problems that can be solved using

protocols with communication costs logc(n) in the corresponding model, where

n is the number of input bits and c is some positive constant. As a result, a

major part of the literature of communication complexity is focused on find-

ing explicit instances (e.g. set-disjointness [She14], Hadamard matrix [For02],

gap Hamming distance [CR12]) that require communication cost logc(n) in one

model (e.g., non-deterministic), whereas they require a much higher commu-

nication cost in a different model (e.g., randomized), ideally Ω(n). However,

a O(log(n)) versus Ω(n) separation unfortunately does not overrule the existence

of dimension-free relations, as for instance, it is possible that one parameter is

upper-bounded by an exponential function in the other parameter.



Vol. 253, 2023 COMMUNICATION COMPLEXITY 557

Thus, we call a relation between two measures a dimension-free relation

or bound if it provides a bound on one of the measures solely as a function of

another one. Dimension-free bounds are also often closely related to structural

results. For instance, it is well-known that if the deterministic communication

complexity of a Boolean matrix is bounded by a constant c, then the matrix

is highly structured. Namely, its rank is upper-bounded by 2c, and it can be

partitioned into a constant number of all-zero or all-one submatrices. In other

words, its partition number is upper-bounded by 2c.

The simple example of the identity matrix, often called the equality func-

tion in the context of communication complexity, shows that having small ran-

domized communication complexity does not imply a small partition number,

or equivalently a small rank. While this and a handful of other known exam-

ples show that the rank of a matrix with bounded randomized communication

complexity can be arbitrarily high, they do not overrule the possibility that

such matrices might be structured in a different way, or at least contain highly

structured parts. Investigating such structures is another focus of this article.

All the known examples of matrices with small randomized communication

complexity contain a large all-zero or all-one submatrix. The following conjec-

ture in [CLV19] speculates that this structure holds in general.

Conjecture I: If the randomized communication complexity of an n × n

Boolean matrix M is bounded by c, then it contains an all-zero or all-one

δcn× δcn submatrix, where δc > 0 is a constant that only depends on c.

In fact[CLV19] conjectures that one can take δc=2−O(c) in the above statement.

It is well-known that the normalized approximate trace norm ∥M∥tr,ε,
which is the smallest ∥M ′∥tr for a real matrix M ′ such that

|M(i, j)−M ′(i, j)| ≤ 1/3 for every i, j,

provides the lower bound of Ω(log ∥M∥tr,ε

n ) for the randomized communication

complexity (see Lemma 2.9). Hence, one way to establish Conjecture I would

be to show that every Boolean matrix with small normalized approximate trace

norm contains a large constant submatrix. This motivates us to ask the follow-

ing tantalizing question about the trace norm itself.

Conjecture II: If an n × n Boolean matrix M satisfies ∥M∥tr

n ≤ c, then it

contains an all-zero or all-one δcn× δcn submatrix, where δc > 0 is a constant

that only depends on c.
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This conjecture is interesting also from the point of view of graph theory.

The trace norm of the adjacency matrix of a graph is considered an important

graph parameter, and is often called graph energy [LSG12] in that context.

Furthermore, there is an extensive body of research that investigates graph

theoretic [Chu14] or spectral conditions [GN08, BN07, Nik06, LLT07, Nik09]

that guarantee the existence of large complete bipartite subgraphs in a graph

or its complement. Conjecture II, if true, provides a very natural condition

based on graph energy.

The motivation behind the subject of this article goes beyond communication

complexity and combinatorics. Several of the problems considered in this article

are basic questions about Boolean matrices, and unsurprisingly, they also arise

naturally in other areas of mathematics such as operator theory, and Harmonic

analysis.

Let X and Y be fixed countable sets, finite or infinite, and consider the set

of X × Y Boolean matrices M : X × Y → {0, 1}. We shall think of rank-one

Boolean matrices as the most structured of those. Every such matrix is of the

form 1X0⊗1Y0 for some X0 ⊆ X and Y0 ⊆ Y. These matrices, which correspond

to combinatorial rectangles X0 × Y0 ⊆ X × Y, are the building blocks of

communication complexity. We denote by

Rect = {M : X × Y → {0, 1} | rk(M) = 1}
the set of all rank-one Boolean matrices.

The next important class of structured Boolean matrices for the purposes

of this article is defined as follows. We call a matrix M : X × Y → {0, 1}
blocky if there exist, possibly infinitely many, disjoint sets Xi ⊆ X and disjoint

sets Yi ⊆ Y such that the support of M is⋃

i

Xi × Yi.

A simple example of a blocky matrix is the identity matrix. We denote by Blocky
the set of all blocky matrices. Figure 1 demonstrates examples of a combinatorial

rectangle, and blocky matrices.

These basic matrices appear naturally in different contexts, including those

related to the topic of this article, and have been given different names. In graph

theory, blocky matrices correspond to equivalence relations on the vertex set of

a graph, and thus they have been called equivalence graphs [Duc79, Fra82,

Alo86, BK95]. In complexity theory, blocky matrices have found applications

in proving bounds against circuits and branching programs [PR94, Juk06].
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Figure 1. A combinatorial rectangle, and two blocky matrices.

A blocky matrix is essentially a blow-up of the identity matrix, obtained

by duplicating rows and columns, adding all-zero rows and columns, and then

permuting them. Hence, similar to the identity matrix, the randomized commu-

nication complexity of every finite blocky matrix is bounded by a fixed constant.

Blocky matrices also arise in the context of Schur multipliers. Recall that the

Schur product (also called the Hadamard product) of two X ×Y matrices M1

and M2, denoted by M1 ◦M2, is their entry-wise product. Let B(X ,Y) denote
the space of bounded linear operators A : ℓ2(X ) → ℓ2(Y) endowed with the
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operator norm. A matrix MX×Y is called a Schur multiplier if for every

A ∈ B(X ,Y), we have M ◦ A ∈ B(X ,Y). Every Schur multiplier M defines a

map B(X ,Y) → B(X ,Y) via A *→ M ◦A, which assigns an operator norm to it:

(1)
∥M∥m :=∥M∥B(X ,Y)→B(X ,Y)

=sup{∥M ◦A∥ℓ2(X )→ℓ2(Y) : ∥A∥ℓ2(X )→ℓ2(Y) ≤ 1}.

Note that Schur multipliers form a Banach algebra via the Schur product:

∥M1 ◦M2∥m ≤ ∥M1∥m∥M2∥m.

An element a of an algebra is said to be idempotent if a2 = a. The following

question arises naturally:

What are the idempotents of the algebra of Schur multipliers?

Every idempotent of this algebra must satisfyM = M◦M , and thus is a Boolean

matrix. However, not every (infinite) Boolean matrix is a bounded Schur multi-

plier, as it is possible to have ∥M∥m = ∞ for a Boolean matrix M . It is shown

in [Liv95] that blocky matrices are exactly the set of all contractive idempotents.

In other words, an idempotent Schur multiplier satisfies ∥M∥m ≤ 1 if and only if

it is a blocky matrix. Livshits’s characterization of idempotent Schur multipliers

has been extended to other related settings [BH04, Neu06, KP05, Lev14, MP16].

An important question in this area (see, e.g., [ELT16]) is whether idempotent

Schur multipliers are exactly those Boolean matrices that can be written as

a linear combination of finitely many contractive idempotents, or equivalently

blocky matrices. A simple compactness argument, as outlined in Theorem 3.10,

shows that this problem is equivalent to the following basic question about

Boolean matrices.

Conjecture III: For every c > 0, there exists kc ∈ N such that the following

holds. If a finite Boolean matrix M is a linear combination of rank-one Boolean

matrices with coefficients λi satisfying
∑

i |λi| ≤ c, then M is a ±1-linear com-

bination of at most kc blocky matrices.

On the other hand, it is not difficult to see that if M is a ±1-linear combina-

tion of at most kc blocky matrices, then M can be written as a linear combina-

tion of rank-one Boolean matrices with coefficients whose absolute values sum

to at most O(kc).
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Remark 1: Conjecture III is equivalent to asking whether M is a linear combi-

nation of at most kc blocky matrices (given the assumption of Conjecture III).

Indeed, assume that M =
∑k

i=1 λiMi is an m× n Boolean matrix, and Mi are

blocky matrices. Identify M and each Mi with their supports. Note these are

subsets of [m]× [n]. For k′ ≤ 2k, let S1, . . . , Sk′ be the atoms of the σ-algebra

generated by Mi’s. Since M is measurable with respect to this σ-algebra, we

have

M =
⋃

i∈I

Si for some I ⊆ {1, . . . , k′}.

Note that for j ∈ {1, . . . , k′}, Sj is an intersection of Mi’s and complements

of Mi’s. The intersection of two blocky matrices is a blocky matrix, and the

complement of a blocky matrix B is J−B, where J is the all-one (blocky) matrix.

We conclude that each Sj can be written as a ±1-linear combination of at

most 2k blocky matrices, and thus M can be written as a ±1-linear combination

of at most 22k blocky matrices.

By Grothendieck’s inequality, the assumption in Conjecture III can be equiv-

alently replaced with the bound ∥M∥γ2 = O(1), where

∥M∥γ2
:= min{∥B∥2→∞∥C∥1→2 : M = BC}.

The connection to Schur multipliers is due to the fact, stated in Theorem 2.3,

that γ2 norm coincides with the norm of M as a Schur multiplier.

Next, let us state the connection to Harmonic analysis. Let G be a locally

compact Abelian group with dual group Ĝ. Let M(G) denote the measure

algebra of G, that is to say the algebra of bounded, regular, complex-valued

measures on G with the convolution operator as multiplication. Note that

every idempotent µ of this algebra satisfies µ ∗ µ = µ, and this is equivalent

to the statement that the Fourier transform µ̂ satisfies µ̂2 = µ̂, and thus is

Boolean. Paul Cohen, in a celebrated article [Coh60], proved that µ is an

idempotent if and only if µ̂ can be expressed as a ±1-linear combination of

the indicator functions of a finite number of cosets of Ĝ. More recently, Green

and Sanders [GS08], and Sanders [San20] have proven effective bounds on the

required number of cosets as a function of ∥µ∥ when G is finite.

As we will explain below, Cohen’s idempotent theorem is closely related to

Conjecture III. Consider a finite Abelian group G. In this case, since G ∼= Ĝ,

and M(G) = L1(G), by switching the roles of G and Ĝ, one can state Cohen’s
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idempotent theorem as follows. For every c > 0, there exists kc > 0 such that

the following holds. If f : G → {0, 1} satisfies

(2) ∥f∥A :=
∑

χ∈Ĝ

|f̂(χ)| ≤ c,

then

(3) f =
kc∑

i=1

±1Hi+ai ,

where each Hi ≤ G is a subgroup, and each ai ∈ G. The norm ∥ · ∥A is called

the Fourier algebra norm, and for finite Abelian groups, it is equal to the sum

of absolute values of Fourier coefficients of the function.

Note that

∥1Hi+ai∥A = 1,

and furthermore it is not difficult to prove that the indicator functions of cosets

1H+a are the only non-zero contractive idempotents of the Fourier algebra. This

is called the Kawada–Itô theorem [KI40, Theorem 3] and dates back to 1940.

In other words, if f : G → {0, 1} satisfies ∥f∥A = 1, then f = 1H+a for some

coset H + a. Hence, Cohen’s idempotent theorem says that every idempotent

of the Fourier algebra of G can be expressed as a linear combination of κ(∥f∥A)
many contractive idempotents for some function κ(·). This is precisely what

Conjecture III is trying to establish regarding the idempotents of the algebra

of Schur multipliers. As we explain below, this connection is more than just a

verbal analogy.

Let G be a finite Abelian group. Consider a Boolean f : G → {0, 1} sat-

isfying (2), and let the Boolean matrix F : G × G → {0, 1} be defined as

F (x, y) = f(x− y). It is well-known [LS09, Lemma 36] that

(4) ∥F∥γ2 =
∥F∥tr
|G| =

∑

χ∈Ĝ

|f̂(χ)| = ∥f∥A.

Hence if ∥f∥A ≤ c, then the assumption of Conjecture III holds, and if the

conjecture is true, one should be able to express F as a linear combination

of a bounded number (as a function of c) of blocky matrices. Indeed in this

case, Conjecture III follows from Green and Sander’s quantitative versions of

Cohen’s idempotent theorem, since a coset 1Hi+ai in (3) corresponds to the
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blocky matrix supported on the entries in
⋃

b∈G/H

(Hi + b)× (Hi + b− ai).

Thus Green and Sander’s idempotent theorem implies that both Conjecture II

and Conjecture III are true for matrices of the form F (x, y) = f(x− y). In this

regard, Conjecture III can be thought of as an extension, or more accurately, an

analogue of Cohen’s idempotent theorem for the algebra of Schur multipliers.

Obviously due to lack of group structure, one cannot hope to find cosets—

instead Conjecture III promises blocky matrices.

Finally, let us discuss the approximate version of Cohen’s idempotent the-

orem, significant to us due to connections to randomized query and commu-

nication complexity. Let G be an Abelian group, and let f : G → {0, 1}
be a Boolean function. Now, instead of assuming that ∥f∥A is small, let us

assume a weaker condition that f has an approximator with small algebra

norm. More precisely, there exists a function g : G → R, not necessarily

Boolean, such that ∥f − g∥∞ ≤ ϵ and ∥g∥A ≤ c. Such functions have been

studied by Méla [M8́2] and Host, Méla and Parreau [HMP86] under the name

ϵ-quasi-idempotent. In [M8́2] Méla shows that in general, a structure similar

to Cohen’s idempotent theorem does not necessarily hold for such functions.

However, in the spirit of Conjecture I, we conjecture that for G = Zn
2 , every

ϵ-quasi-idempotent contains a highly structured part.

Conjecture IV: Let f, g :Zn
2 →R be such that f is Boolean, ∥f−g∥∞≤ 1

3 , and

∥g∥A≤c. There exists a coset V=H + a⊆Zn
2 such thatf is constant on V , and

|V |
|Zn

2 |
≥ δc > 0,

where δc > 0 is a constant that only depends on c.

The constant 1
3 in the statement is not important and can be replaced by any

fixed constant ϵ ∈ (0, 1/2), as it is not difficult to see that all such statements

will be equivalent.

Conjecture IV, if true, would imply Conjecture I for matrices of the form

F (x, y) = f(x − y) where f : Zn
2 → {0, 1}. Indeed, this follows from the

fact that randomized communication complexity upper-bounds the approximate

trace norm, and Proposition 3.11 (a generalization of Equation (4)) applied to

the following symmetrization of the function G(x, y) approximating F (x, y)

G̃(x, y) := Ez[G(z + x, z + y)].
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Public-coin versus private-coin randomness. We caution the reader

that in this article, randomized communication complexity always refers to the

public-coin model where randomness is shared between the players. We also

reserve the notation R(M) to denote the public-coin randomized communication

complexity of a Boolean matrix M . See Section 2.2.2 for formal definitions.

Qualitative versus quantitative and dimension-free-ness. In this ar-

ticle we are interested in dimension-free results. In other words, we call two

parameters qualitatively equivalent if each can be bounded as a function

of solely the other one. Furthermore, since the main purpose of this article is

establishing dimension-free dependencies, we will not be concerned with quan-

titative effectiveness of these bounds.

For example, the well-known relations

log rk(M) ≤ D(M) ≤ rk(M),

between rank and deterministic communication complexity, show that insofar as

this article is concerned, they are qualitatively equivalent. In contrast, despite

Newman’s theorem [New91], which states that for n× n matrices,

R(M) ≤ Rprivate(M) ≤ O(R(M) + log log(n)),

due to the log log(n) term (which is necessary), public and private randomized

communication complexities are not qualitatively equivalent.

In fact, the private-coin model is not interesting from our standpoint: For

every Boolean matrix M ,

Ω(log D(M)) = Rprivate(M) ≤ D(M),

and thus, as far as this article is concerned, the private-coin randomized com-

munication complexity is qualitatively equivalent to the deterministic commu-

nication complexity [KN97, Lemma 3.8].

1.1. Our contributions. In this section, we summarize some of the results

proven in this article.

• In Section 3.1 we prove that the deterministic communication complex-

ity with access to an equality oracle is qualitatively equivalent to the

smallest k such that the matrix can be written as a linear combination

of k blocky matrices.
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• In Section 3.2, we show that zero-error randomized communication com-

plexity and rank are qualitatively equivalent. Consequently, combining

this with a recent result of Gál and Syed [GS19] establishes qualitative

equivalence between approximate rank, zero-error randomized commu-

nication complexity, deterministic communication complexity, and rank.

• In Section 3.3, we establish Conjecture I for one-sided error randomized

communication complexity.

• In Section 3.4, in Theorem 3.10 we use a compactness argument to show

that Conjecture III is equivalent to the statement that every idempotent

of the algebra of Schur multipliers is a linear combination of finitely

many contractive idempotents.

• In Section 3.5, we consider matrices that are constructed from functions

on finite groups. Cohen’s idempotent theorem has been generalized to

hold for non-Abelian groups as well by Lefranc [Lef72], and effective

bounds were given by Sanders [San11]. We use these results, in con-

junction with a theorem of Davidson and Donsig [DD07] to verify Con-

jecture II and Conjecture III for matrices of the form F (x, y) = f(y−1x),

where f : G → {0, 1} and G is any finite group.

• In Section 4, we consider xor-lifts F⊕(x, y) = f(x1 ⊕ y1, . . . , xn ⊕ yn),

where f : {0, 1}n → {0, 1}. Note that xor-lift is a special case of

F (x, y) = f(y−1x), where G = Zn
2 , and thus, as we mentioned above,

Conjecture II and Conjecture III are true for these matrices. We fur-

ther discuss the analogue of Conjecture I for the ⊕-query model, i.e.,

for parity decision trees. In other words, we consider Conjecture IV in

relation to randomized ⊕-query complexity. Furthermore, we show that

the zero-error randomized ⊕-query complexity is qualitatively equiva-

lent to both the deterministic ⊕-query complexity and the number of

non-zero Fourier coefficients.

• In Section 5, we consider and-lifts F∧(x, y) = f(x1 ∧ y1, . . . , xn ∧ yn)

for f : {0, 1}n → {0, 1}. We prove that the analogue of Conjecture IV

is true in the ∧-query model. Namely, in Theorem 5.3, we prove that

if the randomized and-decision tree of f : {0, 1}n → {0, 1} is small,

then there is a small set J of coordinates such that f is constant on

{x : xj = 0 ∀j ∈ J}.
We remark that Conjecture I, Conjecture II and Conjecture III all

remain unresolved for and-lifts.
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• In Section 6, we explain our failure in proving Conjecture I, Conjec-

ture II and Conjecture III by providing an example which shows that

the common technique used in proving Cohen’s idempotent theorem,

and several similar theorems, including some of our results in this arti-

cle, are inherently inadequate for establishing these conjectures.

2. Preliminaries

Let D denote the complex unit disk {z ∈ C | |z| ≤ 1}. For a positive integer

n, we use [n] to denote {1, . . . , n}. For a set S we denote by 1S the indicator

function of S. For a vector x ∈ {0, 1}n, and S ⊆ [n], we denote by xS ∈ {0, 1}S

the restriction of x to the coordinates in S. The Hamming weight of x is defined

as |x| :=
∑

xi. For a matrix M its (i, j)-th entry is denoted by Mij or M(i, j).

All logarithms in this article are in base 2.

For two functions f : N → R and g : N → R, we use the following asymptotic

notations:

• f(n) = O(g(n)), if lim
n→∞

sup |f(n)|
|g(n)| < ∞.

• f(n) = Ω(g(n)), if and only if g(n) = O(f(n)).

• f(n) = Θ(g(n)), if f(n) = O(g(n)) and f(n) = Ω(g(n)).

• f(n) = o(g(n)), if lim
n→∞

|f(n)|
|g(n)| = 0.

• f(n) = ω(g(n)), if lim
n→∞

|f(n)|
|g(n)| = ∞.

We sometimes identify {0, 1}n or Zn
2 with the vector space Fn

2 over F2. In

this context, we refer to cosets H + a ⊆ Zn
2 as affine subspaces, which naturally

assign a dimension and a codimension to them.

For sets X and Y, we will often identify a function f : X × Y → C with its

corresponding matrix [f(x, y)]x∈X ,y∈Y.

For a measure space (Ω, µ), and p ∈ [1,∞), we denote by Lp(µ) the normed

space of functions f : Ω → C with
∫
|f |pdµ < ∞, together with the norm

∥f∥Lp(µ) :=

(∫
|f |pdµ

)1/p

,

and ∥f∥L∞(µ) is defined as the essential supremum of |f |.
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For a finite set Ω, we write µΩ to denote the uniform probability measure

on Ω, and we shorthand ∥f∥Lp(µΩ) to ∥f∥Lp(Ω). When Ω is a countable set, we

define the normed space ℓp(Ω) according to the counting measure:

∥f∥ℓp(Ω) =

(∑

x∈Ω

|f(x)|p
)1/p

.

There are several natural norms on the space of m×n matrices. Considering

an m× n matrix M as a linear operator M : Cn → Cm endows the space with

operator norms: For p, q ∈ [1,∞], we use the notation ∥M∥p→q to denote its

operator norm from ℓp to ℓq, that is

∥M∥p→q = sup
x∈Cn,∥x∥ℓp≤1

∥Mx∥ℓq .

It is easy to see that

∥M∥2→2 = σmax,

where σmax is the largest singular value of M .

We shall need the following well-known inequality.

Lemma 2.1 (Hoeffding’s inequality): For i = 1, . . . , n, let Xi be independent

random variables taking values from range [ai, bi] and let X =
∑n

i=1 Xi. Then,

for all t > 0,

Pr[|X − E[X ]| ≥ t] < 2 exp

(
− 2t2∑

i(bi − ai)2

)
.

2.1. Matrix norms and ranks. In this section we describe some well-known

as well as some new matrix parameters which arise from representations of

general matrices in terms of more structured matrices. Allowing S to be various

sets of structured matrices (for example, S = Rect or S = Blocky) we define, in

a generic way, the matrix parameters that come up in this article. This also

makes it easier to see how some of these parameters relate to each other. For

a fixed set S of structured matrices, we introduce a notion of matrix rank in

terms of S , which we call S-rank, and a matrix norm in terms of S , which we

call S-norm analogously.
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Definition 2.2: Let Z be a finite set, and let S be a spanning subset of the vector

space {f : Z → C}.
• Define the S-rank of a function f , denoted by rk(S , f), to be the small-

est k such that f can be expressed as a linear combination of at most k

functions in S over C.
• Define ∥f∥S as

∥f∥S = inf

{ r∑

i=1

|λi| : f =
r∑

i=1

λigi, for gi ∈ S ,λi ∈ C, r ∈ N
}
.

It is easy to verify that ∥ ·∥S is always a semi-norm. By considering different S
we can recover many of the norms and parameters related to this article.

• (Normalized trace norm) The trace norm of an m×n matrix M is de-

fined as the sum of its singular values σmax := σ1 ≥ · · · ≥ σmin(m,n) ≥ 0,

namely

∥M∥tr =
min(m,n)∑

i=1

σi.

In this article, it is more convenient to work with the following normal-

ized version of this norm, which we call the normalized trace norm:

∥M∥ntr =
∥M∥tr√

mn
.

When S is the set of all m×n matrices of the form a⊗b, where a ∈ Rm

and b ∈ Rn satisfy

∥a∥L2(m) :=

( m∑

i=1

|ai|2

m

)1/2

≤ 1

and

∥b∥L2(n) :=

( n∑

i=1

|bi|2

n

)1/2

≤ 1,

then rk(S ,M) coincides with rk(M) over C, and it follows from the

singular value decomposition theorem that

∥M∥S = ∥M∥ntr.

• (µ-norm) If S = Rect , that is the set of rank-one Boolean matrices a⊗b,

where a ∈ {0, 1}m and b ∈ {0, 1}n, then ∥ · ∥Rect is commonly known

as the ∥ · ∥µ norm. Note that to define ∥ · ∥µ one could equivalently

take a⊗ b, where a ∈ [0, 1]m and b ∈ [0, 1]n.



Vol. 253, 2023 COMMUNICATION COMPLEXITY 569

• (ν-norm) If S is the set of all m× n matrices of the form a⊗ b, where

a ∈ {−1, 1}m and b ∈ {−1, 1}n, then ∥ · ∥S is commonly known as

the ∥ ·∥ν norm. Again to define ∥ ·∥ν one could equivalently take a⊗b,

where a ∈ [−1, 1]m and b ∈ [−1, 1]n.

It immediately follows that ∥ · ∥ν ≤ ∥ · ∥µ, but in fact the two norms

are equivalent, since every {−1, 1}-valued vector can be written as the

difference of two Boolean vectors:

(5) ∥ · ∥ν ≤ ∥ · ∥µ ≤ 4∥ · ∥ν .

Note that for the n× n identity matrix In, we have

In(x, y) =
1

2n

∑

S⊆[n]

(−1)1x∈S(−1)1y∈S ,

and thus ∥In∥ν = 1.

• (γ2-norm) We can relax the ν-norm further. Let S be the set of all m×n

matrices with ij-entries ⟨ai,bj⟩, where ai and bj are unit vectors in any

Hilbert space H.

Taking H to be R, we have only two unit vectors ±1 and thus we

recover ν norm. Hence ∥ · ∥γ2 ≤ ∥ · ∥ν . It turns out that γ2-norm is also

equivalent to the ν norm. This is in fact the well-known Grothendieck

inequality (see Theorem 2.3):

∥ · ∥γ2 ≤ ∥ · ∥ν ≤ π

2 ln(1 +
√
2)

∥ · ∥γ2 .

The constant π
2 ln(1+

√
2)

is due to Krivine [Kri79], and it holds for both

real and complex Hilbert spaces. Note also that the unit ball of ∥ · ∥γ2

is the set of m× n matrices with ij-entries ⟨ai,bj⟩, where

∥ai∥ ≤ 1 and ∥bj∥ ≤ 1

in some Hilbert space H.

• (Blocky-rank and norm) For S = Blocky, we study rk(Blocky , f), which
we prove is qualitatively equivalent to the deterministic communication

complexity with access to equality oracle (see Proposition 3.1). We refer

to ∥ · ∥Blocky as blocky-norm. Blocky matrices are the blow-ups of the

identity matrix, and thus every non-zero blocky matrix B satisfies

∥B∥γ2 = ∥B∥ν = 1.



570 L. HAMBARDZUMYAN, H. HATAMI AND P. HATAMI Isr. J. Math.

On the other hand, every a⊗b, where a ∈ {−1, 1}m and b ∈ {−1, 1}n,
can be written as the difference of two blocky matrices, and thus satisfies

∥a⊗ b∥Blocky ≤ 2. We conclude

(6) ∥ · ∥ν ≤ ∥ · ∥Blocky ≤ 2∥ · ∥ν .

Combining this with Equation (5) and with the fact that a rank-one

Boolean matrix is also a blocky matrix, we deduce

(7)
1

4
∥ · ∥µ ≤ ∥ · ∥Blocky ≤ ∥ · ∥µ.

• (Fourier rank and algebra norm) Let G be a finite Abelian group with

dual Ĝ. Then for f : G → C,

rk(Ĝ, f)

corresponds to the so-called Fourier rank of f , which is the number of

non-zero Fourier coefficients of f . In this case, the corresponding norm

coincides with Fourier algebra norm

∥f∥Ĝ = ∥f∥A.

• (Monomial rank and norm) Consider the space of functions

f : {0, 1}n → C, and let

M on :=

{
x *→

∏

i∈S

xi | S ⊆ [n]

}

be the set of all monomials where every variable appears with degree

at most 1. Then, for a function f : {0, 1}n → C,

rk(M on, f)

corresponds to the number of non-zero coefficients in the (unique) poly-

nomial representation of f . This is often called the sparsity of f in the

literature of computer science. Note also that ∥f∥Mon is the sum of ab-

solute values of the coefficients in the unique polynomial representation

of f in the ring

C[x1, . . . , xn]/(x
2
1 = x1, . . . , x

2
n = xn).
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Schur Multipliers. Let X and Y be two countable sets. The Schur prod-

uct (also called the Hdamard product) of two X × Y matrices A = [axy] and

B = [bxy], denoted by A ◦B, is their entry-wise product [axybxy].

Consider the two Hilbert spacesH1=ℓ2(Y) andH2=ℓ2(X ), and letB(H1,H2)

be the space of all bounded linear operators A : H1 → H2 together with the

operator norm ∥A∥H1→H2 . A matrix MX×Y is called a Schur multiplier if for

every A ∈ B(H1,H2), the matrix M ◦ A ∈ B(H1,H2). Every Schur multiplier

defines a map B(H1,H2) → B(H1,H2) via

A *→ M ◦A.

To distinguish from the norm on bounded operators, we will write ∥M∥m for

the norm of a Schur multiplier:

∥M∥m = sup{∥M ◦A∥H1→H2 : ∥A∥H1→H2 ≤ 1}.

It turns out that ∥ · ∥m coincides with γ2 norm defined above. The following

relations are essentially due to Grothendieck (see also [LS07, Pis12]).

Theorem 2.3 (Grothendieck [Gro52]): For every matrix M ,

∥M∥m = ∥M∥γ2 ≤ ∥M∥ν ≤ π

2 ln(1 +
√
2)

∥M∥γ2.

For a proof of the first equality, we refer the reader to [Pis12, Proposition 3.3].

In other words, ∥ · ∥m, ∥ · ∥µ, ∥ · ∥ν , and ∥ · ∥γ2 are all within constant factors

of each other. Let us also mention the following common property of ∥ · ∥m
and ∥ · ∥γ2 norm.

Proposition 2.4: Let Mi be a sequence of matrices. Then the following holds

for their direct sum:
∥∥∥∥

∞⊕

i=1

Mi

∥∥∥∥
m

= sup
i

∥Mi∥m.

In particular, the equality also holds for ∥ · ∥γ2 .

Proof. First note that ∥
⊕∞

i=1 Mi∥m ≥ supi ∥Mi∥m as the operator norm does

not increase under restriction.

For the other direction, denote M =
⊕∞

i=1 Mi, and let M ′
i be the extension

of Mi such that it has the dimensions of M and is all-zero outside of Mi.

From the definition of ∥ · ∥m there is a matrix A such that ∥A∥H1→H2 = 1
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and ∥M∥m = ∥M ◦A∥H1→H2 . Given A, we can deduce

(8)

∥M∥m = ∥M ◦A∥H1→H2 = sup
i

∥M ′
i ◦A∥H1→H2

≤ sup
i

∥M ′
i∥m = sup

i
∥Mi∥m.

Here the second equality is a property of operator norm, which is straightforward

to verify.

Idempotents and Boolean matrices. Schur multipliers on B(H1,H2) form

a Banach algebra via the Schur product, since

∥M1 ◦M2∥m ≤ ∥M1∥m∥M2∥m.

When H1 and H2 are finite dimensional, Boolean matrices and idempotents

of this algebra coincide: M ◦ M = M if and only if M is a Boolean matrix.

However, in the infinite dimensions, not every Boolean matrix is a bounded

Schur multiplier.

We will be interested in characterizing the idempotents of the algebra of Schur

multipliers. As we shall see in Theorem 3.10, this reduces to characterizing the

structure of finite Boolean matrices M with a uniform bound on ∥M∥m.

First let us consider the contractive idempotents. Note that every rank-one

Boolean matrix is a contraction. As a result, by Proposition 2.4, the identity

matrix and, more generally, all blocky matrices are contractions.

Note that the Schur multiplier norm is monotone in the sense that the norm

of a submatrix cannot be larger than the original matrix. Since ∥1∥m = 1, it

follows that every non-zero Boolean matrix satisfies ∥M∥m ≥ 1. Livshits [Liv95]

showed that the 2× 2 matrix with three 1’s is not contractive.

Lemma 2.5 ([Liv95]): We have
∥∥∥∥∥

[
1 1

0 1

]∥∥∥∥∥
m

=
2√
3
> 1.

Since ∥ · ∥m norm is invariant under row and column permutations, it fol-

lows that a contractive idempotent M cannot have any 2× 2 submatrices with

exactly 3 ones. In this context, the property is often called the 3-of-4 prop-

erty, which fully characterizes such matrices as being the same as the set of

blocky-matrices.
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Theorem 2.6 ([Liv95]): M is a contractive idempotent of the algebra of Schur

multipliers if and only ifM ∈ Blocky . More generally, this is true for idempotents

that satisfy ∥M∥m < 2√
3
.

Relation to the normalized trace norm. As we saw above ∥·∥γ2 = ∥·∥m,

∥ · ∥µ, and ∥ · ∥ν , are all equivalent. Furthermore, it is easy to see [LS07,

Section 2.3.2] that

(9) ∥ · ∥ntr ≤ ∥ · ∥γ2 .

However, ∥ · ∥ntr could be much smaller than the above norms since adding

all-zero rows or columns would decrease the normalized trace norm, while other

norms would remain intact.

2.1.1. The Fourier algebra norm. Let f : {0, 1}n → {0, 1} be a Boolean func-

tion. Identifying {0, 1}n with the finite Abelian group G = Zn
2 allows us to

consider the Fourier expansion of f =
∑

χ∈Ĝ f̂(χ)χ, where Ĝ is the dual of G.

It is common in theoretical computer science to represent this expansion as

f =
∑

S⊆[n]

f̂(S)χS ,

by representing the characters of Zn
2 as

χS : x *→
∏

i∈S

(−1)xi .

The Fourier algebra norm of f , denoted by ∥f∥A, is the sum of absolute values

of Fourier coefficients:

∥f∥A =
∑

S

|f̂(S)|.

The name comes from the fact that it satisfies ∥f1f2∥A ≤ ∥f1∥A∥f2∥A for

any f1, f2 : G → C. In the literature of theoretical computer science, this

norm is sometimes called the spectral norm of f , but in order to avoid con-

fusion with spectral norm of matrices, we will use the harmonic analysis term,

Fourier algebra norm.

The above definition immediately generalizes to every finite Abelian group G,

namely the Fourier algebra norm of f : G → C is the sum of absolute values of

Fourier coefficients. This can be further generalized to every locally compact

Abelian group, and in fact Eymard in [Eym64] generalized the definition of

the Fourier algebra to every locally compact group. In this article, we are only
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concerned with finite groups. Suppose that G is a finite group and f, g : G → C.
The convolution f ∗ g of f and g is then defined point-wise by

(10) f ∗ g(x) := Ey∈G[f(y)g(y
−1x)].

This can be used to introduce the convolution operator: given h : G → C,
define Lh : L2(G) → L2(G) via Lh : ν *→ ν ∗ h. The Fourier algebra norm of f

is then defined as

∥f∥A := sup{⟨f, h⟩ : ∥Lh∥L2(G)→L2(G) ≤ 1}.

When G is an Abelian group, it is not difficult to see that this coincides with

the sum of absolute values of Fourier coefficients of f :

∥f∥A =
∑

χ∈Ĝ

|f̂(χ)|.

2.2. Communication complexity.

2.2.1. Deterministic communication complexity. The field of communication

complexity studies the amount of communication required to solve a problem

of computing discrete functions when the input is split between two parties.

Every Boolean function f : X × Y → {0, 1} defines a communication problem.

An input x ∈ X is given to Alice, and an input y ∈ Y is given to Bob. Together,

they should both compute the entry f(x, y) by exchanging bits of information

in turn, according to a previously agreed-on protocol. There is no restriction on

their computational power; the only measure we care to minimize is the number

of exchanged bits.

A deterministic protocol π specifies, for each of the two players, the bit to

send next, as a function of their input and history of the communication so far.

A protocol naturally corresponds to a binary tree as follows. Every internal

node is associated with either Alice or Bob. If an internal node v is associated

with Alice, then it is labeled with a function av : X → {0, 1}, which prescribes

the bit sent by Alice at this node as a function of her input. Similarly, Bob’s

nodes are labeled with Boolean functions on Y. Each leaf is labeled by 0 or 1

which corresponds to the output of the protocol. We denote the number of bits

exchanged on the input (x, y) by costπ(x, y). This is exactly the length of the

path from the root to the corresponding leaf. The communication cost of
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the protocol is simply the depth of the protocol tree, which is the maximum of

costπ(x, y) over all inputs (x, y).

CC(π) := max
x,y

costπ(x, y).

Every such protocol π computes a function X × Y → {0, 1}, which we also

denote by π. Namely π(x, y) is the label of the leaf reached by the path cor-

responding to the players’ communication on the input (x, y). We say that π

computes f if π(x, y) = f(x, y) for all x, y. The deterministic communica-

tion complexity of f , denoted by D(f), is the smallest communication cost of

a protocol that computes f .

A useful insight is that a bit sent by Alice at a node v corresponds to a par-

tition of the rows into two parts a−1
v (0) and a−1

v (1), and every bit sent by Bob

corresponds to a partition of the columns. Every time Alice sends a bit, we re-

strict to a subset of the rows, and proceed with the created submatrix. Similarly

Bob’s communicated bits restrict the columns. As this process continues, we

see that every c-bit protocol induces a partition of the matrix f into at most 2c

submatrices. In the context of the communication complexity, submatrices are

often called combinatorial rectangles or simply rectangles. If the proto-

col computes f , then all submatrices in this partition are monochromatic,

namely, labeled by a unique element 0 or 1.

Note that every rank-one Boolean matrix is of the form 1X0 · 1T
Y0

for sub-

sets X0 ⊆ X and Y0 ⊆ Y. Thus rank-one Boolean matrices are essentially the

same as 1-monochromatic rectangles. We conclude the following proposition.

Proposition 2.7 ([KN97]): For every Boolean matrix f , we have

log rk(f) ≤ D(f) ≤ rk(f) ≤ rk(Rect , f) ≤ c ≤ 2rk(f),

where c is the partition number of f , which is the smallest c > 0 such that f

can be partitioned into c constant submatrices. In particular, all the above

parameters are qualitatively equivalent.

To the extent that we are concerned with qualitative results, Proposition 2.7

provides a satisfactory description of the structure of Boolean matrices whose

deterministic communication complexities are uniformly bounded. However,

quantitatively, closing the exponential gap between D(f) and log rk(f) into a

polynomial dependency is called the log-rank conjecture, and is perhaps the

most famous open problem in communication complexity [Lov14].
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2.2.2. Randomized communication complexity. In this article, we use the public

coin model, where a probabilistic protocol πR is simply a distribution over

deterministic protocols. In this notation R is a random variable, and every

fixation of R to a particular value r leads to a deterministic protocol πr. We

define the communication cost of a probabilistic protocol πR as the maximum

cost of any deterministic protocol πr in the support of this distribution:

CC(πR) = max
r

CC(πr) = max
r

max
x,y

costπr(x, y).

We also define the average cost of such a protocol as the expected number of

exchanged bits over the worst input (x, y):

CCavg(πR) = max
x,y

ER[costπR(x, y)].

In the probabilistic models of computation, three types of error are often con-

sidered.

• Two-sided error: This is the most important notion of randomized com-

munication complexity. For every x, y, we require

Pr
R
[πR(x, y) ̸= f(x, y)] ≤ ϵ,

where ϵ is a fixed constant that is strictly less than 1/2. Note that ϵ=1/2

can be easily achieved by outputting a random bit; hence it is cru-

cial that ϵ in the definition is strictly less than 1/2. It is common to

take ϵ = 1
3 . Indeed, the choice of ϵ is not important so long as ϵ∈(0, 1/2),

since the probability of error can be reduced to any constant ϵ′ > 0 by

repeating the same protocol independently for some O(1) times, and

outputting the most frequent output.

The two-sided error communication complexity is simply called the

randomized communication complexity. It is denoted by Rϵ(f)

and is defined as the smallest communication cost CC(πR) of a prob-

abilistic protocol that computes f with two-sided error at most ϵ. We

set ϵ = 1/3 as the standard error, and denote

R(f) = R 1
3
(f).

• One-sided error: In this setting the protocol is only allowed to make an

error if f(x, y) = 1. In other words, for every x, y with f(x, y) = 0, we

have

Pr
R
[πR(x, y) = 0] = 1,
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and for every x, y with with f(x, y) = 1, we have

Pr
R
[πR(x, y) ̸= f(x, y)] ≤ ϵ.

Again the choice of ϵ is not important so long as ϵ ∈ (0, 1) because the

probability of error can be reduced from ϵ to ϵk by repeating the same

protocol independently k times and outputting 1 only when at least one

of the repetitions outputs 1. We denote by R1
ϵ(f) the smallest CC(πR)

over all protocols πR with one-sided error of at most ϵ. We set ϵ = 1/3

as the standard error, and denote

R1(f) = R1
1
3
(f).

• Zero error: In this case the protocol is not allowed to make any errors.

For every x, y, we must have PrR[πR(x, y) ̸= f(x, y)] = 0. In this

setting, CCavg(·) is considered, as CC(·) leads to the same notion of

complexity as the deterministic communication complexity. We denote

R0(f) = inf CCavg(πR),

over all such protocols.

Note that one can convert a zero-error protocol π with average cost c to a

one-sided error protocol π′ with cost 3c, by terminating the protocol after at

most 3c steps, and outputting 0 in the case where the protocol is terminated

prematurely. The protocol π′ clearly does not make any errors on 0-inputs. Fur-

thermore, since the average cost of π is c, by Markov’s inequality, the probability

that the protocol π′ is terminated prematurely is at most 1
3 . We conclude

R(f) ≤ R1(f) ≤ 3R0(f).

Obviously, R(f),R1(f),R0(f) are all upper-bounded by D(f).

2.3. Query complexity. In Section 2.2, we introduced various models of com-

munication complexity. In this section we discuss query complexity. Let X be a

finite set, often endowed with a product structure, most commonly X = {0, 1}n.
In query complexity, a function f : X → {0, 1} is fixed, and a player, who does

not know the input x, wants to find out the value of f(x) by making queries

about x. The goal is to minimize the number of queries. Depending on what

type of queries are allowed, we arrive at different models of query complexity.
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The most natural setting is to have f : {0, 1}n → {0, 1}. Denoting the in-

put x = (x1, . . . , xn) ∈ {0, 1}n, we consider three important types of queries,

each leading to a different model of query complexity:

• The coordinate queries xi for i ∈ {1, . . . , n}.
• The parity queries

⊕
i∈S xi, which are the xor of the coordinates

in S, for S ⊆ [n].

• The and queries
∏

i∈S xi, for S ⊆ [n].

Note that, similar to communication complexity, a protocol in each of these

models corresponds to a binary tree where each internal node is labeled with a

query, and the computation branches according to the output of these queries.

The leaves are labeled with the output of the protocol. When only coordinate

queries are allowed, these trees are simply called decision trees. The parity

decision trees, and and-decision trees, respectively correspond to parity

queries and and queries.

The cost of such a protocol is the maximum number of queries made on an

input, which is equal to the depth of the tree. Such trees naturally correspond

to Boolean functions, and the decision tree complexity dt(f), the parity

decision tree complexity dt⊕(f), and the and-decision tree complex-

ity dt∧(f) are defined as the smallest depth required for the function f .

A randomized protocol is simply a distribution over deterministic protocols,

and the notions of cost, average cost, zero-error, one-sided error, and two-sided

error are defined analogous to communication complexity. The complexity mea-

sures corresponding to zero-error, one-sided error, and two-sided error are de-

noted respectively by rdt0, rdt
1, rdt.

In the and-query model, we denote these by rdt∧0 , rdt
∧1, rdt∧, and in the

parity query model by rdt⊕0 , rdt
⊕1, rdt⊕.

In the simple decision tree model of coordinate queries, a theorem of Nisan

[Nis91] shows that all these parameters are qualitatively equivalent, in fact with

polynomial dependencies.

Proposition 2.8 (Coordinate Query Equivalencies [Nis91]): For every Boolean

function f : {0, 1}n → {0, 1}, we have

rdt(f) ≤ rdt1(f) ≤ 3 rdt0(f) ≤ 3 dt(f) ≤ 81 rdt(f)2.
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In light of Proposition 2.8, from the point of view of this article, the case of the

coordinate query has been completely resolved. However, as we shall see later,

in both the xor and and models, there are examples for which the randomized

query complexity is O(1), while the deterministic query complexity is Ω(n). We

discuss the xor-model in Section 4, and the and-model in Section 5.

2.4. Lifting theorems. Let G be a finite group. Every function f : G → C
defines a matrix

(11) F : G×G → C, F : (x, y) *→ f(y−1x).

These constructions sometimes allow us to lift lower-bounds on the query

complexity to lower-bounds on the communication complexity. Similarly, one

can relate results regarding the function spaces on G to the setting of the matrix

spaces on G×G.

The study of lifting theorems has been a very active and successful area

of theoretical computer science, particularly in the past two decades [RM97,

CKLM19, HHL18, GPW18, GLM+16, GPW17, GKPW17]. Not all these lift-

ing theorems follow the above f(y−1x) framework , nevertheless they gener-

ally fit the theme of translating a query complexity result regarding functions

f : X → {0, 1} to the communication complexity bounds on the matrices F that

are constructed from f .

The xor lift. The case of G = Zn
2 in (11) is closely related to the parity

query complexity. The group operation on Zn
2 corresponds to the point-wise

xor operation on {0, 1}n, and hence for a given function f : {0, 1}n → {0, 1},
Equation (11) translates to

F⊕(x, y) = f(x⊕ y).

The Fourier transform of f carries important information about the matrix F⊕.

Indeed Fourier characters are the eigenvectors of F⊕, Fourier coefficients of f

(scaled by the factor of 2n) are their corresponding eigenvalues, and as a result

(12) rk(F⊕) = rk⊕(f),

where rk⊕(f) denotes the number of non-zero Fourier coefficients of f .
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The relation between parity query complexity parameters of f and their cor-

responding communication complexity parameters of F⊕ has been studied ex-

tensively [HHL18, TWXZ13, Zha14, ZS10, MS20, MO09].

Note that for x, y ∈ {0, 1}n,
⊕

i∈S

(x⊕ y)i =

(⊕

i∈S

xi

)
⊕
(⊕

i∈S

yi

)
,

which in particular allows one to translate every party decision tree to a commu-

nication protocol. Namely, every time that a query
⊕

i∈S has been made in the

parity decision tree, in the communication setting, the players can individually

compute the two bits
⊕

i∈S xi and
⊕

i∈S yi and exchange them to find out the

answer to the query on x ⊕ y. It follows that D(F⊕),R0(F⊕),R
1(F⊕), R(F⊕)

are upper-bounded respectively by 2 dt⊕(f), 2 rdt⊕0 (f), 2 rdt
⊕1(f), 2 rdt⊕(f).

The difficult part of establishing a lifting theorem is indeed upper-bounding

the query complexity in terms of the communication complexity. We will discuss

these in Section 4.

The and lift. In this case, we will work with the semigroup ({0, 1}n,∧)
where ∧ corresponds to the pointwise product. Namely,

x ∧ y = (x1y1, . . . , xnyn),

and the lifted function is defined as

F∧(x, y) = f(x ∧ y).

Similar to the xor setting, one easily shows that D(F∧),R0(F∧),R
1(F∧), R(F∧)

are upper-bounded respectively by 2 dt∧(f), 2 rdt∧0 (f), 2 rdt
∧1(f), 2 rdt∧(f). We

will discuss the and-lift in detail in Section 5.

2.5. Approximate norms and randomized complexity, a general ap-

proach. The study of randomized complexity classes is often naturally linked

to approximate norms. For every matrix norm ∥ · ∥ and every ϵ > 0, we define

a corresponding ϵ-approximate norm for real matrices M as

∥M∥ϵ = inf{∥N∥ : |M(x, y)−N(x, y)| ≤ ϵ ∀x, y},

where in the infimum N is a real matrix of the same dimensions as M .
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Similarly, for every norm ∥ ·∥ on the space of real-valued functions f : X → R,
we define the ϵ-approximate version of the norm as

∥f∥ϵ = inf{∥g∥ : ∥f − g∥∞ ≤ ϵ, g : X → R}.

We also define the notion of the approximate S-rank similarly:

rkϵ(S , f) = min{rk(S , g) : ∥f − g∥∞ ≤ ϵ, g : X → R},

where we are using the notation of Definition 2.2.

We use rkϵ(M) to denote the ϵ-rank of a real matrixM , which is the minimum

rank over real matrices that approximate every entry of M to within an addi-

tive ϵ. Similar to randomized complexity measures, the choice of ϵ is not very

important, as changing ϵ could only affect the value of the approximate-rank of

a Boolean matrix polynomially [KS07].

Approximate norms and randomized protocols, a general approach.

Suppose we are given a function f : Z → {0, 1}, and we are interested in

complexity of f in a randomized model of computation M . Here M could be

the communication complexity model, in which case we think of Z = X ×Y, or
any of the query complexity models discussed above, in which case Z = {0, 1}n.

Consider also the set of all the deterministic (query or communication) proto-

cols π, each computing a corresponding function π : Z → {0, 1}. Furthermore,

the cost of every deterministic protocol π, denoted by cost(π) ∈ N, is the worst-
case number of queries or communicated bits used by the protocol over the set

of all inputs. This defines the deterministic complexity of a function f as

DM (f) := inf{cost(π) : π(z) = f(z) ∀z ∈ Z}.

A randomized protocol πR is a probability distribution over deterministic pro-

tocols πr, and the cost of a randomized protocol is defined to be the maximum

cost of a deterministic protocol in its support. This leads to the notion of the

randomized complexity of a function f :

RM
ϵ (f) := inf{cost(πR) : Pr

R
[πR(z) ̸= f(z)] ≤ ϵ ∀z ∈ Z}.

The following lemma provides a connection between the randomized complexity

and a suitable notion of approximate norm.
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Lemma 2.9 (Equivalence of RM
ϵ (f) and ∥f∥S ,ϵ): Consider the setting described

above. Let S be a spanning subset of functions Z → D, and ϵ ∈ (0, 1
2 ) be a

parameter.

(i) If there exists an increasing function κ : R+ → R+ such that for every

function f : Z → {0, 1},

∥f∥S ≤ κ(DM (f)),

then

∥f∥S ,ϵ ≤ κ(RM
ϵ (f)).

(ii) If every h ∈ S satisfies

DM (h) ≤ c,

then

RM
ϵ (f) ≤ 32c log(2/ϵ)

(1− 2ϵ)2
∥f∥2S ,ϵ.

Proof. (i) Consider a randomized protocol πR of cost at most c that computes f

with two-sided error at most ϵ. Then

∥ER[πR]− f∥∞ ≤ ϵ,

while by convexity

(13)
∥f∥S ,ε ≤ ∥ER[πR]∥S ≤ ER[∥πR∥S ] ≤ max

r
∥πr∥S

≤ max
r

κ(DM (πr)) ≤ max
r

κ(cost(πr)) = κ(RM
ϵ (f)),

as desired.

(ii) Let δ = 1−2ϵ
4 . Recall that the approximate norm ∥f∥S ,ϵ is defined as the

infimum of ∥f ′∥S such that ∥f − f ′∥∞ ≤ ϵ, however, there might not exist a

function f ′ witnessing the infimum. Hence, instead let λi ∈ C and hi ∈ S be

such that f ′ =
∑k

i=1 λihi satisfies ∥f − f ′∥∞ ≤ ϵ+ δ, and

L :=
k∑

i=1

|λi| ≤ ∥f∥S ,ϵ.

We will convert this to a randomized protocol.

For every i, define

λ′
i :=

λi

|λi|
,
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so that |λ′
i| = 1. Pick g randomly from {λ′

1h1, . . . ,λ′
khk} according to the

probability distribution

Pr[g = λ′
ihi] =

|λi|∑k
i=1 |λi|

.

Note that E[g]=f ′/L, and furthermore ∥g∥∞≤1 by our assumption about S . Let

N = 2δ−2L2 log(2/ϵ) =
32L2 log(2/ϵ)

(1− 2ϵ)2
,

and g1, . . . , gN be i.i.d. copies of g, and define G̃ = L
N

∑N
i=1 gi. For every z ∈ Z,

by applying Hoeffding’s inequality (Lemma 2.1) to the real part of G̃, we have

Pr[| re(G̃(z))− re(f ′(z))| ≥ δ] < 2 exp
(
− 2δ2

4N · (L/N)2

)
≤ ϵ,

where the last inequality is by the choice of N . Next, let G be the Boolean

rounding of G̃, that is G(z) = 1 if and only if re(G̃(z)) ≥ 1/2. Noting

that | re(f ′(z))− f(z)| ≤ ϵ+ δ, we have

(14)
Pr[G(z) ̸= f(z)] ≤ Pr

[
| re(G̃(z))− re(f ′(z))| ≥ 1

2
− ϵ− δ

]

≤ Pr[| re(G̃(z))− re(f ′(z))| ≥ δ] ≤ ϵ.

Note that by our assumption each hi can be computed at cost at most c.

Since G̃(z) can be computed by rounding a linear combination of N such hi’s,

it can be computed at cost cN . This concludes the statement.

Next we apply Lemma 2.9 to specific models of query and communication

complexity.

Corollary 2.10: For ϵ > 0, let cϵ =
log(1/ε)
(1−2ϵ)2 . We have

(a) and-query model:

log3 ∥f∥Mon,ε ≤ rdt∧ε (f) ≤ O(cϵ · ∥f∥2Mon,ε).

(b) xor-query model:

log2 ∥f∥A,ε ≤ rdt⊕ϵ (f) ≤ O(cϵ · ∥f∥2A,ε).

(c) Randomized communication complexity:

log2 ∥F∥µ,ε ≤ Rϵ(F ) ≤ O(cϵ · ∥F∥2µ,ε),

which, in particular, implies

log2 ∥F∥γ2,ε ≤ Rϵ(F ) ≤ O(cϵ · ∥F∥2γ2,ε).
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Proof. (a) and-query model: Z = {0, 1}n, and S = M on.

Later in Proposition 5.1, we will prove that ∥f∥Mon ≤ 3dt
∧(f). Hence

the lower bound follows from Lemma 2.9 (i).

The upper bound follows directly from Lemma 2.9 (ii), as for ev-

ery hS :=
∏

i∈S xi ∈ M on, dt∧(hS) = 1.

(b) xor-query model: Z = {0, 1}n, and S = {χS}S⊆[n], the set of characters

of Zn
2 .

By Cauchy-Schwarz inequality

∥f∥A ≤
√
rk⊕(f) · ∥f∥L2(Z) ≤

√
rk⊕(f),

which, combined with Proposition 4.1 below, gives ∥f∥A ≤ 2dt
⊕(f). Now

Lemma 2.9 (i) yields the lower bound.

The upper bound follows from Lemma 2.9 (ii), noting that dt⊕(χS)=1

for all S ⊆ [n].

(c) Randomized Communication Complexity: Z = X × Y, S = Rect .
A communication protocol of cost c provides a partition of F into at

most 2c monochromatic rectangles, and thus ∥F∥µ ≤ 2D(F ). Now the

lower bound follows from Lemma 2.9 (i).

The upper bound follows from Lemma 2.9 (ii) by noting that

D(h) = O(1)

for every h ∈ Rect .

2.6. Important examples: Equality, Greater-Than, Threshold

Functions. In this section, we review the properties of some specific examples

of matrices and functions. These will be used in later sections.

As usual denote by Jn the n × n all-one matrix. We start from the identity

matrix.

Example 2.11 (Identity Matrix, Equality Function): The n × n identity ma-

trix In and its complement In := Jn − In satisfy the following:

(i) See [KN97, Example 3.9]:

R0(In) = R0(In) = Θ(log(n)).

(ii) See [KN97, Example 3.9]:

R1(In) = Θ(log(n)) and R1(In) = O(1).

In particular, R(In) = O(1).
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Next, we consider the greater-than matrix, where all the entries on the diag-

onal and below it are 0, and all the entries above the diagonal are 1.

Example 2.12 (Greater-than): The n× n greater-than matrix GTn, defined

as GTn(i, j) = 1 if and only if i < j, and its complement GTn := Jn − GTn

satisfy the following:

(i) See [KN97, Exercise 3.10]:

R1(GTn) = Θ(log(n)) and R1(GTn) = Θ(log(n)).

In particular,

R0(GTn) = R0(GTn) = Θ(log(n)).

(ii) See [Vio15, RS15] and [KN97, Exercise 3.18]:

R(GTn) = Θ(log log(n)).

Finally, we turn to threshold functions. For an integer k ≥ 0, define the

threshold function thrk : {0, 1}n → {0, 1} as thrk(x) = 1 if and only

if
∑n

i=1 xi ≥ k. We will also write

thrk = 1− thrk .

Denote the xor and and-lifts of thrk as Thr⊕k (x, y) = thrk(x ⊕ y)

and Thr∧k (x, y) = thrk(x ∧ y), respectively. Recall that rk⊕(f) denotes the

number of non-zero Fourier coefficients of a function f : {0, 1}n → {0, 1}, which
is also equal to the rank of

F⊕(x, y) := f(x⊕ y).

Lemma 2.13 (Threshold function in the xor-model): For every constant k ≥ 0,

and n ≥ k, we have:

(i) rdt⊕(thrk) ≤ rdt⊕1(thrk) = 2O(k). In particular, R(Thr⊕k ) = 2O(k).

(ii) We have rk⊕(thrk) = rk(Thr⊕k ) ≥ 2n/2, and consequently

dt⊕(thrk) = Ω(n).

Proof. (i) The randomized protocol will first randomly partition {1, . . . , n} into

sets S1, . . . , Sk, where each element j ∈ [n] is uniformly and independently

assigned to one of the k sets. Next, for each i ∈ [k], pick a subset Ti ⊆ Si

uniformly at random, and query
⊕

j∈Ti
xj . Output 1 if all the queries are 1,

and output 0 otherwise.
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If thrk(x) = 0, then we will always correctly output 0, as in this case there

always exists i such that x|Si is all zeros. On the other hand, if thrk(x) = 1,

with probability at least k!
kk ≥ e−k, every Si will contain at least one 1. Con-

ditioned on the prior event, with probability at least 2−k every query satis-

fies
⊕

j∈Ti
xj = 1, in which case the protocol correctly outputs 1. Thus, the

probability of error is at most 1− (2e)−k. Finally, by standard error-reduction,

repeating this procedure 2O(k) times can reduce the error to at most 1/3. We

conclude that there is a constant ck = 2O(k) such that rdt⊕1(thrk) = ck.

(ii) First note that fixing the values of variables can only decrease the size of

the support of the Fourier transform. Now if k ≤ n/2, then setting k− 1 of the

variables to 1 will result in the function that is 1 everywhere except on 0. This

restricted function has a full Fourier support, which is of size 2n−k+1 ≥ 2n/2.

Similarly, if k ≥ n/2, then setting n− k of the variables to 0 yields a function

which is 0 everywhere except on 1. Hence this function has a full Fourier

support, which is of size 2k ≥ 2n/2.

Next, Proposition 4.1 from below implies

dt⊕(thrk) ≥
1

2
log rk⊕(thrk) ≥

n

4
.

The threshold functions are also important instances for the and-query model.

Lemma 2.14 (Threshold functions in and-model [KLMY20, Example 6.3]): For

every constant k ≥ 0, and n ≥ k, we have:

(i) dt∧(thrk) ≥ log
(n
k

)
∼ n · H( kn ), where H is the binary entropy function

defined as H(x) = −x log2 x− (1− x) log2(1 − x).

(ii) rdt∧(thrn−k) = rdt∧(thrn−k) ≤ rdt∧1(thrn−k) = 2O(k).

In particular,

R(Thr∧n−k) = 2O(k).

Proof. (i) Consider an and-decision tree T computing thrk. It suffices to show

that T has at least
(
n
k

)
leaves. Let

(
[n]
k

)
denote the set of all elements of Hamming

weight exactly k. Note that if the output of a query ∧i∈S is the same for two

elements x, y ∈ {0, 1}n, then the query will also return the same value for x∧y.

This shows that the computation in T for two distinct x, y ∈
([n]

k

)
cannot lead

to the same leaf, as then x ∧ y must also lead to the same leaf, but

1 = thrk(x) ̸= thrk(x ∧ y) = 0.
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(ii) Note that thrn−k(x) = 1 if and only if x ∈ {0, 1}n contains at

least k+1 0’s. We partition [n] uniformly at random into k+1 sets S1, . . . , Sk+1,

and query ∧j∈Sixj for i ∈ [k + 1]. If all of the queries return 0, we out-

put 1, and otherwise we output 0. This protocol is always correct on inputs x

with thrn−k(x) = 0, and furthermore for inputs with thrn−k(x) = 1, the prob-

ability of error is at most 1− (k+1)!
(k+1)k+1 ≤ 1− ek+1. The claim now follows from

standard error reduction.

Finally, we prove a lower bound on the Fourier algebra norm of threshold

functions.

Lemma 2.15 (Fourier algebra norm of threshold functions): For k ≤ n/2, we

have

e−(k−1)

√√√√
k−1∑

i=0

(
n

i

)
≤ ∥thrk∥A ≤

√√√√
k−1∑

i=0

(
n

i

)
.

In particular, by Corollary 3.13, the same bounds hold for

∥Thr⊕k ∥ntr = ∥Thr⊕k ∥γ2 .

Proof. Define p : {−1, 1}n → R as

p(y) =
∑

S⊆[n]
|S|≤k−1

∏

i∈S

yi,

and note that

p(y) =
∑

x∈{0,1}n

thrk(x)χTy
(x) = 2nt̂hrk(Ty),

where Ty = {i : yi = −1}. Hence,

∥thrk∥A =
1

2n

∑

y

|p(y)| = ∥p∥L1({−1,1}n).

By Parseval

∥p∥L2({−1,1}n) =

√√√√
k−1∑

i=0

(
n

i

)
,

and furthermore, since deg(p) ≤ k − 1, by generalization of Khintchine’s in-

equality to degree k − 1 polynomials ([O’D14, Theorem 9.22]), we have

e−(k−1)∥p∥L2({−1,1}n) ≤ ∥p∥L1({−1,1}n) ≤ ∥p∥L2({−1,1}n).



588 L. HAMBARDZUMYAN, H. HATAMI AND P. HATAMI Isr. J. Math.

3. Main results: General matrices

We start by proving the results that apply to general Boolean matrices. Later,

in Section 4 and Section 5, we study special classes of xor and and-matrices.

3.1. Blocky matrices and blocky-rank. As we have discussed earlier, EQ

provides a separation between deterministic communication complexity and ran-

domized communication complexity, in both one-sided and two-sided error mod-

els. Now suppose that we equip the players, Alice and Bob, with an equality

oracle. To be more precise, we allow these protocols to have query nodes v, on

which the players map their inputs to strings αv(x) and βv(y), respectively, and

the oracle will broadcast the value of EQ(αv(x),βv(y)) to both players. This

will contribute only one to the communication cost which is measured in bits.

Note that the usual communicated bits can also be simulated by oracle queries.

For example, if it is Alice’s turn to send a bit av(x), then they can use the query

EQ(av(x), 1) to transmit this bit to Bob. Hence, in this model, we can assume

that all the communication is done through oracle queries.

Obviously, having access to an equality oracle, Alice and Bob can solve EQ

deterministically at cost O(1), namely by querying the oracle for EQ(x, y).

Let DEQ(M) denote the smallest cost of a deterministic protocol with equality

oracle for the matrix M .

Proposition 3.1: Let M : X × Y → {0, 1} be a matrix. Then

1

2
log rk(Blocky ,M) ≤ DEQ(M) ≤ rk(Blocky ,M),

and
1

2
log ∥M∥Blocky ≤ DEQ(M).

Proof. We first prove DEQ(M) ≤ rk(Blocky ,M). Let k = rk(Blocky ,M). We con-

struct an EQ-oracle protocol for f . In advance, Alice and Bob agree on a decom-

position M =
∑k

i=1 λiMi, where Mi is a blocky matrix and λi ∈ R for i ∈ [k].

Since each blocky matrix Mi corresponds to an EQ query, for an input (x, y)

Alice and Bob make k queries to the oracle to determine M1(x, y), . . . ,Mk(x, y).

At this point both Alice and Bob can compute

M(x, y) =
k∑

i=1

λiMi(x, y).
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For the lower bounds, let d = DEQ(M). Consider a leaf ℓ in the EQ-oracle

protocol tree computing M and let Pℓ denote the path of length kℓ ≤ d from

the root to ℓ. Note that each non-leaf node v in the tree corresponds to a query

to the equality oracle, and each such query corresponds to a blocky matrix Bv.

For the matrix Mv, define B1
v = Bv and B0

v = Bv = JX×Y −Bv.

Suppose Pℓ = v1, v2, . . . , vkℓ , ℓ, and consider the matrix

MPℓ
:= B

σv1
v1 ◦Bσv2

v2 ◦ · · · ◦B
σvkℓ
vkℓ

,

where σvi ∈ {0, 1} and σvi = 1 if and only if the edge (vi−1, vi) is labeled

by 1. Hence, after simplification, MPℓ can be written as a sum of at most 2d

summands with ±1 coefficients, where each summand is a Schur product of at

most kl blocky matrices. Observe that the Schur product of two blocky matrices

is a blocky matrix. Thus, MPℓ can be written as a sum of at most 2d blocky

matrices with ±1 coefficients.

Summing over all the leaves that are labeled by 1, we get

M =
∑

ℓ is a 1-leaf

MPℓ .

As the number of leaves is bounded by 2d, and each MPℓ is a ±1 linear com-

bination of at most 2d blocky matrices, it follows that rk(Blocky ,M) ≤ 22d

and ∥M∥Blocky ≤ 22d.

Combining the two inequalities, we have the following useful relation:

(15)
1

2
log ∥M∥Blocky ≤ rk(Blocky ,M).

The opposite direction turns out to be equivalent to Conjecture III.

Conjecture 3.2: There exists κ : R+ → R+ such that for every Boolean

matrix M ,

rk(Blocky ,M) ≤ κ(∥M∥Blocky).

Proposition 3.3: Conjecture 3.2 and Conjecture III are equivalent.

Proof. Conjecture III =⇒ Conjecture 3.2: Conjecture III implies that there is a

function τ : R+ → R+ such that M can be written as a sum of τ(∥M∥µ) blocky
matrices with ±1 coefficients. Hence, by Equation (7),

rk(Blocky ,M) ≤ τ(4 · ∥M∥Blocky).
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Conjecture 3.2 =⇒ Conjecture III: By the proof of Proposition 3.1, M can

be written as a sum of 22DEQ(M) blocky matrices with ±1 coefficients. If Con-

jecture 3.2 is true, then for some κ : R+ → R+,

(16) DEQ(M) ≤ rk(Blocky ,M) ≤ κ(∥M∥Blocky).

Now, by the assumption of Conjecture III, ∥M∥µ ≤ c for some constant c. Recall

from Equation (7) that ∥M∥Blocky ≤ ∥M∥µ, so ∥M∥Blocky ≤ c. Combining this

with Equation (16), we conclude that M can be written as a sum of kc := 22κ(c)

blocky matrices with ±1 coefficients.

3.1.1. Relation to randomized communication complexity and Conjecture I.

Proposition 3.4: For a function f : X × Y → {0, 1},

R(f) ≤ O(DEQ(f) · logDEQ(f)).

Proof. Suppose d := DEQ(f). An EQ oracle protocol tree of depth d can be

used to design a randomized protocol for f : The parties simply simulate the

tree, where at each node the equality oracles are simulated (up to some error

probability) via an efficient randomized communication protocol for EQ. By a

simple union bound, to ensure that the final error is bounded by 1/3, it suffices

to use randomized equality protocols with error at most 1
3d . Recall that by

Example 2.11, R(EQ) = O(1), and thus R 1
2c
(EQ) ≤ O(c). As a result,

R 1
3d
(EQ) ≤ O(log d) and R(f) ≤ O(d log d).

It follows from this and Proposition 3.1 that

(17) R(f) ≤ O(rk(Blocky , f) · log rk(Blocky , f)).

The function Thr
⊕
2 from Lemma 2.13 demonstrates that the opposite rela-

tion is not true—small randomized communication does not imply having a

small rk(Blocky , ·). Indeed, by Lemma 2.13 (i), R(Thr
⊕
2 ) = R(Thr⊕2 ) = O(1).

On the other hand, since the γ2 norm of every blocky matrix is at most 1, by

Equation (15), we have

rk(Blocky ,Thr
⊕
2 ) ≥

1

2
log ∥Thr⊕2 ∥Blocky ≥

1

2
log ∥Thr⊕2 ∥γ2 ,

and by Lemma 2.15, we have

log ∥Thr⊕2 ∥γ2 ≥ Ω(log n).
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Remark: By the above discussion,

DEQ(Thr
⊕
2 ) ≥ Ω(log ∥Thr⊕2 ∥Blocky) ≥ Ω(log ∥Thr⊕2 ∥γ2) ≥ Ω(logn).

Thus, the function Thr
⊕
2 on n input bits witnesses a gap of O(1) vs. Ω(log(n))

between randomized communication complexity and deterministic communica-

tion complexity with access to equality oracle. The difference between these

two parameters had also been studied in [CLV19], where a function on n bits

with R(f)=O(logn) and DEQ(f)=Ω(n) is exhibited. However, the separation

of [CLV19] was not ruling out a dimension-free relation between these parame-

ters.

As Equation (17) shows, randomized communication complexity can be

upper-bounded by a function of blocky-rank, and thus it is natural to wonder

whether a relaxation of Conjecture I holds for matrices with bounded blocky-

rank, or equivalently DEQ(·) = O(1). It is not hard to see that this is indeed

true.

Lemma 3.5: If an n × n matrix M satisfies rk(Blocky ,M) ≤ c, then M has a

monochromatic rectangle of size δcn× δcn, where δc > 0 only depends on c.

Proof. We prove by induction on c that the statement is true with δc ≥ 3−c.

As the base case we first show that every n×n blocky matrix has an n/3× n/3

monochromatic rectangle. Suppose B is a blocky matrix with blocks

X1 × Y1, . . . , Xt × Yt.

We assume without loss of generality that
∣∣∣∣
⋃

i

Xi

∣∣∣∣ ≥ 2n/3,

as otherwise ([n]\
⋃

iXi)×[n] contains an n/3×n/3 all-zero rectangle. Moreover,

note that if for some i ∈ [t], |Xi| ≥ n/3, then one of Xi × Yi or Xi × [n]\Yi

contains an n/3× n/3 monochromatic rectangle. Now, suppose that for all i,

|Xi| < n/3.

This implies that there is k such that

k∑

i=1

|Xi| ∈ (n/3, 2n/3).



592 L. HAMBARDZUMYAN, H. HATAMI AND P. HATAMI Isr. J. Math.

Note that both (
⋃

i≤k Xi) × ([n]\
⋃

i≤k Yi) and ([n]\
⋃

i≤k Xi) × (
⋃

i≤k Yi) are

monochromatic rectangles, and furthermore one of them contains an n/3×n/3

monochromatic rectangle.

Now suppose that M is an n×n matrix such that M =
∑m

i=1 λiBi, where Bi

are blocky matrices. By the base case, Bm has an n/3 × n/3 monochromatic

rectangle X × Y . Then

M ′ := (M − λmBm)|X×Y =
m−1∑

i=1

λiBi|X×Y ,

which shows rk(Blocky ,M ′) ≤ c − 1. Consequently, M ′ has an |X|
3c−1 × |Y |

3c−1

monochromatic rectangle, which translates to an n
3c × n

3c monochromatic rec-

tangle in M .

Lemma 3.5 combined with the lower bound from Proposition 3.1 implies that

a weaker version of Conjecture I holds where instead of assuming bounded

randomized communication complexity, one makes the stronger assumption

that DEQ(·) = O(1).

3.2. Zero-error complexity and approximate-rank are qualitatively

equivalent to rank. In this section, we prove that both approximate-rank,

and zero-error randomized communication complexity are qualitatively equiva-

lent to the rank, and deterministic communicating complexity.

It is known that, allowing a loss of O(log log(n)), the gap between the zero-

error randomized communication complexity, and the deterministic communi-

cation complexity of an n × n matrix M can be at most quadratic [KN97,

Exercise 3.15]:

Ω(
√

D(M)− log log(n)) ≤ R0(M) ≤ D(M).

The above bound does not provide a dimension-free equivalence between D(M)

and R0(M) due to the O(log log(n)) term which is from applying Newman’s

lemma to convert zero-error private randomness to zero-error public random-

ness. To obtain a dimension-free equivalence, we use a different method.

Our approach is to find copies of submatrices that have large zero-error ran-

domized communication complexity in every high-rank Boolean matrix. The

following key lemma states that if the rank of a Boolean matrix is sufficiently

large, then it must contain, as a submatrix, a large copy of at least one of the

four matrices: the identity matrix Ik, its complement Ik, greater-than func-

tion GTk, or its complement GTk.
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Lemma 3.6 (Key lemma for zero-error and approximate-rank): Let M be a

Boolean matrix of rank r, and let k = log5(r)/4. Then M contains a copy of at

least one of Ik, Ik, GTk, or GTk as a submatrix.

Proof. The proof is similar to the proof of the existence of Ramsey numbers.

Let R(k1, k2, k3, k4) be the smallest r such that every Boolean matrix of rank r

contains a copy of at least one of Ik1 , Ik2 , GTk3 , or GTk4 . We will show by

induction that

(18) R(k1, k2, k3, k4) ≤ 5k1+k2+k3+k4 .

The base cases are when ki = 1 for some i ∈ {1, . . . , 4}, in which case

R(k1, k2, k3, k4) ≤ 2,

as any matrix of rank 2 must contain both 0 and 1 entries, and thus must

contain, as a submatrix, a copy of each of I1, I1,GT1,GT1.

To prove the induction step, assume ki ≥ 2 for all i ∈ [4], and consider a

Boolean matrix M = [aij ]m×n of rank at least 5k1+k2+k3+k4 . Since rk(M) ≥ 2,

M contains both 0’s and 1’s, we may assume without loss of generality that the

n-th column contains both 0’s and 1’s. This partitions the rows of the matrix

into two non-empty sets:

R0 = {i ∈ [m] : ain = 0} and R1 = {i ∈ [m] : ain = 1}.

Let a ∈ {0, 1} be chosen such that Ra × [n] corresponds to the submatrix with

the larger rank, that is

rk(M |Ra×[n]) ≥ rk(M)/2,

where we used the subadditivity of rank. By permuting the rows if necessary,

we can assume that m ̸∈ Ra, or equivalently amn ̸= a. Define

C0 = {j ∈ [n] : amj = 0} and C1 = {j ∈ [n] : amj = 1}.

Let M00 be the submatrix of M on

(R0 ∩ [m− 1])× (C0 ∩ [n− 1]),

and define M01,M10,M11 similarly (see Figure 2).
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Figure 2. The matrixM with the row partitionsR0 and R1, the

column partitions C0 and C1, and the respective submatrices

M00,M01,M10 and M11. When amn = 1, as shown in the top

figure, a copy of Ik in M00 can be extended to Ik+1, and a copy

of GTk in M01 to GTk+1. When amn = 0, as in the bottom

figure, a copy of Ik in M11 can be extended to Ik+1, and a copy

of GTk in M10 to GTk+1.

For a matrix N , let mI(N) denote the largest k such that N contains a copy

of Ik. Define mI(N), mGT(N), and mGT(N) similarly.
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If amn = 1, then

mI(M) ≥ mI(M00) + 1 and mGT(M) ≥ mGT(M01) + 1,

since one can use the last row and the last column to extend those submatrices

in M00 and M01 to larger ones in M . Note also that in this case, since a = 0,

rk(M00) + rk(M01) ≥ rk(M |R0×[n]) ≥ rk(M)/2,

which implies that either

rk(M00) ≥ 5k1+k2+k3+k4−1 ≥ R(k1 − 1, k2, k3, k4)

or

rk(M01) ≥ 5k1+k2+k3+k4−1 ≥ R(k1, k2, k3, k4 − 1).

In both cases, the induction hypothesis yields the desired bound Equation (18).

Similarly if amn = 0, then

mI(M) ≥ mI(M11) + 1, and mGT(M) ≥ mGT(M10) + 1,

and in this case, since a = 1, we obtain

rk(M10) + rk(M11) + 1 ≥ rk(M |R1×[n]) ≥ rk(M)/2,

which implies

rk(M10) ≥ 5k1+k2+k3+k4−1 ≥ R(k1, k2, k3 − 1, k4)

or

rk(M11) ≥ 5k1+k2+k3+k4−1 ≥ R(k1, k2 − 1, k3, k4).

Again in both cases, the induction hypothesis implies (18) as desired.

It was proved in [GS19] that for every Boolean matrix M ,

rkε(M) = Ω(log(rk(M))).

This combined with Lemma 3.6 shows that zero-error randomized communica-

tion complexity, approximate rank, and rank are all qualitatively equivalent.

Theorem 3.7 (Equivalence between zero-error, rank, and approximate rank):

There exists a constant c > 0 such that for every Boolean matrix M we have

(19) c log log rk(M) ≤ R0(M) ≤ rk(M),
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and furthermore for every ϵ < 1/2 there exists a constant cϵ > 0 such that

(20) cϵ log rk(M) ≤ rkϵ(M) ≤ rk(M).

Proof. Equation (20) is due to [GS19].

The upper bound in (19) follows from R0(M) ≤ D(M). It remains to prove

the lower bound in (19). By Lemma 3.6, we are guaranteed to find a copy

of Ik, Ik, GTk, or GTk as a submatrix in M , where k = 1
4 log5 rk(M). By

Example 2.11 and Example 2.12, all the four matrices Ik, Ik, GTk, GTk have

zero-error randomized communication complexity Ω(log k), which yields the

lower bound of (19).

3.3. One-sided error complexity. In this section, we consider one-sided

error randomized protocols, and study the structure of matrices M that sat-

isfy R1(M) = O(1). As in the case of two-sided error randomized communi-

cation, the identity matrix (Example 2.11) shows that there is a gap between

rank and one-sided error randomized communication complexity. The xor lift

of the threshold function also witnesses such a gap; for a constant k, we have

R1(Thr⊕k ) = O(1) and rk(Thr⊕k ) ≥ 2Ω(n)

by Lemma 2.13. These examples demonstrate that even for matrices with uni-

formly bounded one-sided error randomized communication complexity we can-

not hope to obtain a full structure through bounded rank. Therefore, similar

to the theme of Conjecture I, we focus on finding a highly structured object in

such matrices.

Theorem 3.8 (Conjecture I for one-sided error): For every c > 0, there exists

a constant δc > 0 such that if the one-sided error randomized communication

complexity R1(M) of an n × n Boolean matrix M is bounded by c, then it

contains an all-zero or all-one δcn× δcn submatrix.

Proof. Let t be a constant to be determined later. Assume n > 2
c
t+1, as other-

wise the claim is trivial with δc = 2−
c
t−1. Fix a small constant 0 < ε < 2−

2c
t −4.

We will assume |supp(M)| < εn2, as otherwise we can find a large all-one

submatrix as follows: Given a one-sided error randomized protocol πR for M

with communication at most c, there is a fixing of the randomness r, so that

S = {(x, y) | πr(x, y) = 1} satisfies |S| ≥ ϵn2/3, where πr is a deterministic

protocol. As πR is a one-sided error protocol, we have S ⊆ supp(M). Since πr
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is deterministic, then it provides a partitioning of S into at most 2c all-one

submatrices. As a result, M has an all-one submatrix of size at least εn2

3·2c .

Let S be the maximal subset of supp(M) such that for any distinct pairs

(x1, y1), (x2, y2) ∈ S, x1 ̸= x2 and y1 ̸= y2. Let r = |S|, and note that

if r ≤ 2
c
t , then from the maximality of S it follows that deleting all the

rows and columns involved in S from M will remove all the 1 entries from M .

So the resulting submatrix of M will be all-zero and will have size at least

(n− 2
c
t )× (n− 2

c
t ) ≥ 1

4 · n2, where the inequality holds for any constant t that

satisfies the initial assumption of n > 2
c
t+1. Thus, we may assume r > 2

c
t .

Denote k = 2
c
t . By Example 2.11, the identity matrix is hard for one-

sided randomized communication, more precisely R1(Ik) > τ log k for some

constant τ > 0. Fixing t = τ , we get R1(Ik) > c.

This means thatM cannot contain a copy of the k×k identity matrix as a sub-

matrix. Thus, every k× k submatrix of M that contains k entries from S must

also have at least one 1-entry outside of S—call such entries off-diagonal 1’s.

Let m be the number of such off-diagonal 1’s in M . The number of k×k subma-

trices of M that have k entries from S is
(r
k

)
, and each of these submatrices has

at least one off-diagonal 1. In this process, each off-diagonal 1 in M is counted

in at most
(
r−2
k−2

)
many submatrices. Hence,

m ≥
(r
k

)
(
r−2
k−2

) ≥ r2

4k2
.

Now, if r ≥ 2
√
εk · n, then m ≥ εn2, hence

|supp(M)| ≥ εn2,

which is a contradiction to our assumption of |supp(M)| < εn2. So, r < 2
√
εk·n.

In this case, by deleting all the rows and columns of S from M , we obtain an

all-zero rectangle of size at least (n− 2
√
εk ·n)2 = (1− 2

√
εk)2 ·n2. To sum up,

by taking

δc = 1− 2
√
ε · 2c/t,

we get that there is an all-zero rectangle of size at least δ2cn
2.

3.4. Idempotent Schur multipliers. An infinite version of Conjec-

ture III. Let X and Y be two countable sets. Recall that a matrix MX×Y

is a Schur multiplier, if A *→ M ◦ A defines a map B(H1,H2) → B(H1,H2).
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In Theorem 2.6, we saw that M is a contractive idempotent of the algebra of

Schur multipliers if and only if M ∈ Blocky.
Consequently, if a Boolean matrix MX×Y can be written as a linear combi-

nation of finitely many contractive idempotent Schur multipliers, then by the

triangle inequality it is a Schur multiplier. More precisely, if M =
∑t

i=1 λiMi

is Boolean valued and each Mi is contractive, then M is an idempotent Schur

multiplier as M ◦M = M , and ∥M∥m ≤
∑t

i=1 |λi|. This leads to the following

conjecture.

Conjecture 3.9: An (infinite) matrix M is an idempotent Schur multiplier if

and only if M is Boolean and can be written as a linear combination of finitely

many contractive idempotent Schur multipliers.

A simple compactness argument shows that Conjecture 3.9 is equivalent to

Conjecture III.

Theorem 3.10: Conjecture 3.9 and Conjecture III are equivalent.

Proof. By the equivalence of the norms ∥ · ∥µ and ∥ · ∥m, Conjecture III can be

rephrased as follows:

For every constant c, there exists a constant kc such that if a finite Boolean

matrix M satisfies ∥M∥m ≤ c, then there exists kc blocky matrices Bi and

signs σi ∈ {−1, 1} such that

M =
kc∑

i=1

σiBi.

Conjecture 3.9=⇒Conjecture III: If Conjecture III is not true, then there must

exist an infinite sequence of finite Boolean matrices {Mi}i∈N with ∥Mi∥m ≤ k

for all i, such that Mi cannot be expressed as a ±1-linear combination of at

most i contractive idempotent Schur multipliers. Then M =
⊕

i∈N Mi would

be an idempotent Schur multiplier, but for every i ∈ N it cannot be expressed

as a ±1-linear combination of i idempotent contractions. Since M is Boolean,

it follows from Remark 1 that M cannot be expressed as a linear combination

of at most a finite number of idempotent contractions.

Conjecture III=⇒Conjecture 3.9: Let M be an idempotent Schur multiplier

on B(ℓ2(X ), ℓ2(Y)), and consider a nested sequence X1 ⊆ X2 ⊆ X3 ⊆ · · · of

finite subsets of X , and a nested sequence Y1 ⊆ Y2 ⊆ Y3 ⊆ · · · of finite subsets
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of Y such that X × Y =
⋃
Xi × Yi. Let

Mi = 1Xi×Yi ◦M,

which can be interpreted as a Schur multiplier on B(ℓ2(Xi), ℓ2(Yi)). Since our

sequences are nested, for every i < j, we have

(21) 1Xi×Yi ◦Mj = Mi.

Furthermore, ∥Mi∥m ≤ ∥1Xi×Yi∥m · ∥M∥m ≤ ∥M∥m, and thus by Conjec-

ture III, there is a constant t, depending only on ∥M∥m, such that

Mi =
t∑

k=1

σi,kNi,k

for idempotent contractions Ni,k. Furthermore by (21) for every j > i,

Mi =
t∑

k=1

σj,k(1Xi×Yi ◦Nj,k).

For a fixed i and k, since Ni,k, and 1Xi×Yi ◦Nj,k for all j, are supported on the

finite set Xi × Yi, by restricting to a sub-sequence i1 < i2 < i3 < · · · , we can

assume without loss of generality that for every j ≥ i we have

1Xi×Yi ◦Nj,k = Ni,k.

By restricting to further sub-sequences we can assume this is true for all i, and

furthermore for every k, there exists a σk ∈ {−1, 1} such that σj,k = σk for

all j. To summarize: for all k, and j > i,

(22) 1Xi×Yi ◦Nj,k = Ni,k,

and moreover σj,k = σk for all j, k.

For k ∈ {1, . . . , t}, define the matrix Nk = [Nk(x, y)]x∈X ,y∈Y as

Nk(x, y) = Ni,k(x, y),

where i is any index such that (x, y) ∈ Xi × Yi. This is well-defined

since X × Y =
⋃
Xi × Yi, and (22).

Note that Nk is an idempotent contractive Schur multiplier, since, for exam-

ple, it obviously does not contain any 2 × 2 submatrix with exactly three 1’s.

Moreover M =
∑t

k=1 σkNk, which finishes the proof.
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3.5. Group lifts. In this section we focus on the matrices of the form

F (x, y) = f(y−1x),

where f : G → C, and G is a finite group. We start by showing that for any

finite group G, the Fourier algebra norm of f coincides with the normalized

trace norm of its lift F (x, y) = f(y−1x).

Proposition 3.11: Let G be a finite group, and f : G → C. Let the matrix

F : G×G → C be defined as F (x, y) = f(y−1x). We have

∥f∥A = ∥F∥ntr :=
1

|G|∥F∥tr.

Proof. Note that the Fourier algebra norm is defined through its dual. The

proof will rely on the fact that the dual of the trace norm is the operator

norm ∥ · ∥L2(G)→L2(G).

Let h : G → C, and the matrix H be its lift H(x, y) = h(y−1x). Recall

that the convolution operator for h is defined as Lh : ν *→ ν ∗ h, where the

convolution is defined by Equation (10). Thus, for ν : G → C,

Lhν(x) =
1

|G|
∑

y∈G

h(y−1x)ν(y) =
1

|G|
∑

y∈G

H(x, y)ν(y) =
1

|G|Hν(x).

Hence,
∥Lhν∥L2(G)

∥ν∥L2(G)
=

∥Lhν∥ℓ2(G)

∥ν∥ℓ2(G)
=

∥Hν∥ℓ2(G)/|G|
∥ν∥ℓ2(G)

,

which shows

∥Lh∥L2(G)→L2(G) =
1

|G|∥H∥ℓ2(G)→ℓ2(G).

Next, recall that for matrices F and H ,

⟨F,H⟩ :=
∑

i,j

FijHij = tr(FHT )

with transpose as conjugation. Now note that

(23)

⟨f, h⟩L2(G) =
1

|G|2 ⟨f, h⟩ℓ2(G) =
1

|G|2 ⟨F,H⟩

≤ 1

|G|2 ∥F∥tr∥H∥ℓ2(G)→ℓ2(G) = ∥F∥ntr∥Lh∥L2(G)→L2(G),

which shows that

∥f∥A = sup{⟨f, h⟩ : ∥Lh∥L2(G)→L2(G) ≤ 1} ≤ ∥F∥ntr.



Vol. 253, 2023 COMMUNICATION COMPLEXITY 601

On the other hand, let H : G×G → C be such that

∥H∥ℓ2(G)→ℓ2(G) = 1 and ∥F∥tr = ⟨F,H⟩,

and let H̃ : G×G → C be the following symmetrization of H :

H̃(x, y) = Ez∼GH(zx, zy).

By convexity

∥H̃∥ℓ2(G)→ℓ2(G) ≤ ∥H∥ℓ2(G)→ℓ2(G) = 1.

Define h : G → C by

h(x) = H̃(x, 1),

and note that for every y and x,

h(y−1x) = H̃(y−1x, 1) = H̃(x, y).

Since F (zx, zy) = F (x, y) = f(y−1x) for all z, we have

⟨F,H⟩ = ⟨F, H̃⟩ = |G|2⟨f, h⟩L2(G)

≤ |G|2∥f∥A∥Lh∥L2(G)→L2(G)

= |G|∥f∥A∥H̃∥ℓ2(G)→ℓ2(G)

≤ |G|∥f∥A;

this shows ∥F∥ntr ≤ ∥f∥A and completes the proof.

Davidson and Donsig [DD07], by applying a theorem of Mathias [Mat93],

showed that ∥M∥ntr = ∥M∥m if the entries ofM are invariant under a transitive

group action.

Theorem 3.12 ([DD07]): Let X be a finite set with a transitive group action

G on X . Suppose that the matrix MX×X belongs to the commutant of the

action G, or equivalently M(x, y) = M(gx, gy) for all g ∈ G. Then

∥M∥ntr = ∥M∥m = ∥M∥γ2.

Combining Proposition 3.11 and Theorem 3.12, we obtain the following corol-

lary.

Corollary 3.13: Let G be a finite group, f : G → C, and F : G×G → C be

its lift defined as F (x, y) = f(y−1x). We have

∥F∥m = ∥F∥γ2 = ∥F∥ntr = ∥f∥A.
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This corollary combined with the non-Abelian version of Cohen’s idempo-

tent theorem settles Conjecture II and Conjecture III for matrices of the form

F (x, y) = f(y−1x).

Theorem 3.14: Conjecture II and Conjecture III are true for the class of func-

tions F : G × G → {0, 1} of the form F (x, y) = f(y−1x), where G is a finite

group, and f : G → {0, 1}.

Proof. By Corollary 3.13,

∥F∥m = ∥F∥γ2 = ∥F∥ntr = ∥f∥A.

Suppose that ∥f∥A < c. By the general version of Cohen’s idempotent theorem

[San11, Theorem 1.2], there is some constant k = kc, subgroupsH1, . . . , Hk ⊆ G,

elements a1, . . . , ak ∈ G, and signs σ1, . . . ,σk ∈ {−1, 1} such that

f =
k∑

i=1

σi1Hiai .

Then

F (x, y) =
k∑

i=1

σi ×
( ∑

b∈Hi\G

1Hib(x)1a−1
i Hib

(y)

)
,

and note that each Bi(x, y) :=
∑

b∈Hi\G 1bHiai(x)1bHi (y) is a blocky matrix as

desired.

4. xor-functions

Recall that the xor-lift of a function f : {0, 1}n → {0, 1} is defined as

F⊕ : {0, 1}n × {0, 1}n → {0, 1} with

F⊕ : (x, y) *→ f(x⊕ y).

Since xor-lift is a special case of the group lift for G = Zn
2 , by Theorem 3.14,

both Conjecture II, and Conjecture III are true for xor functions.

4.1. Structure for bounded query complexity. Let f : {0, 1}n → {0, 1},
and consider the complexity measures

rdt⊕(f) ≤ rdt⊕1(f) ≤ 3 rdt⊕0 (f),

and dt⊕(f). We shall study the structure of the function if we assume a uniform

bound on each of these measures.
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Deterministic and zero-error randomized case. The Fourier spectrum

of a Boolean function plays an important role in understanding these param-

eters. The Fourier rank of f , denoted rk⊕(f), is simply the number of non-

zero Fourier coefficients of f . The Fourier rank is also commonly referred to

as Fourier sparsity in the literature. Note that denoting G = Zn
2 , using the

notation of Definition 2.2, we have

rk⊕(f) = rk(Ĝ, f).

Proposition 4.1 (Equivalence between zero-error and deterministic complex-

ities): For f : {0, 1}n → {0, 1}, D(F⊕), rk(F⊕), R0(F⊕), dt⊕(f), rk⊕(f),

and rdt⊕0 (f) are qualitatively equivalent. More precisely, we have

(24)
1

2
log rk⊕(f) ≤ dt⊕(f) ≤ rk⊕(f),

and there are constants c1, c2, c3 > 0 such that

(25)
D(F⊕) ≤ 2 dt⊕(f) ≤ c1 · D(F⊕)

6 ≤ c2 · rk(F⊕)
6

≤ 22
c3·R0(F⊕)

≤ 22
2c3 rdt⊕0 (f)

≤ 22
2c3 dt⊕(f)

.

Proof. Equation (24): Each parity query
⊕

i∈S xi corresponds to querying the

value of the corresponding character χS(x). In particular, if the Fourier spec-

trum of f is supported on at most c characters, then the value of f(x) will be

determined from the value of these characters, and thus dt⊕(f) ≤ rk⊕(f).

For the other direction, the indicator function of every leaf of a depth d

parity decision tree is determined by the value of d characters and thus has

Fourier rank at most 2d. Since the number of leaves is bounded by 2d, we

obtain rk⊕(f) ≤ 22d.

Equation (25): The first inequality is the straightforward simulation of a

parity decision tree by a communication protocol as discussed in Section 2.4,

namely the fact that Alice and Bob can simulate an xor-query ⊕S(x ⊕ y)

by two bits of communication ⊕S(x) and ⊕S(y). The second inequality is

the parity lifting theorem of [HHL18], and the third inequality is a property of

deterministic communication complexity Proposition 2.7. The fourth inequality

is Theorem 3.7. The fifth inequality is again the simulation of parity decision

trees by communication protocols. The final inequality is trivial since

rdt⊕0 (f) ≤ dt⊕(f).
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Remark: To prove the equivalences stated in Proposition 4.1, instead of

dt⊕(f) ≤ c1 · D(F⊕)
6,

it would have sufficed to use the weaker but trivial inequality

dt⊕(f) ≤ rk⊕(f) = rk(F⊕) ≤ 2D(F⊕).

However, the lifting theorem of [HHL18] provides stronger bounds.

One-sided randomized case. In Lemma 2.13 we saw that for a fixed inte-

ger k, the threshold function thrk satisfies

rdt⊕1(thrk) ≤ ck

for some constant ck depending on parameter k, while dt⊕(thrk) = Ω(n). This

shows that for the xor-query model the one-sided error case is not qualitatively

equivalent to the zero-error and the deterministic case.

Proposition 4.2: For every Boolean function f : {0, 1}n → {0, 1}, there exists
an affine subspace V of co-dimension rdt⊕1(f) such that f is constant on V .

Proof. Consider a one-sided randomized parity decision tree AR with random-

ness R that could only make errors when f(x) = 1. Suppose that f ̸≡ 0, as

otherwise we can take V = {0, 1}n. Pick x ∈ f−1(1). Since PrR[AR(x) = 1] > 0,

there is a fixing of randomness R = r, such that Ar is a deterministic parity de-

cision tree satisfying Ar(x) = 1. That is, x leads to a leaf of Ar labeled with 1,

and the leaf corresponds to an affine subspace V of codimension ≤ rdt⊕1(f).

Moreover, since Ar does not make errors on f−1(0), then

V ∩ f−1(0) = ∅

or, equivalently, f |V ≡ 1.

Two-sided error case. Next we turn to two-sided error. We saw in Corol-

lary 2.10 that the randomized parity decision tree complexity and the approxi-

mate Fourier algebra norm of f are qualitatively equivalent. These parameters

are also qualitatively equivalent to the randomized communication complexity

of the parity lift.
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Proposition 4.3: For f : {0, 1}n → {0, 1} and ϵ ∈ (0, 1
2 ), Rε(F⊕), rdt

⊕
ϵ (f),

and ∥f∥A,ε are qualitatively equivalent. More precisely,

log ∥f∥A,ε ≤ rdt⊕ε (f) ≤ O(cϵ∥f∥2A,ε),(26)

1

2
log ∥f∥A,ε ≤ Rϵ(F⊕) ≤ O(cϵ∥f∥2A,ε),(27)

where cϵ =
log(1/ε)
(1−2ϵ)2 , and

(28) Rε(F⊕) ≤ 2 rdt⊕ε (f) ≤ O(cϵ2
4Rε(F⊕)).

Proof. Observe that a parity lift is a y−1x-group lift for G = Zn
2 , and thus by

Corollary 3.13, we have

∥F⊕∥γ2,ε = ∥f∥A,ε.

Hence Equation (26) and Equation (27) have already been proven in Corol-

lary 2.10.

The first inequality in Equation (28) is the standard simulation of a parity

decision tree by a communication protocol. The second inequality in Equa-

tion (28) is a direct consequence of the upper-bound in Equation (26) and the

lower bound in Equation (27).

Remark: Note that Equation (26) provides an exponential lifting theorem for

the randomized parity decision tree model. It is conjectured in [HHL18] that

this can be improved to rdt⊕(f) ≤ R(F⊕)O(1), which remains an intriguing

open problem.

Next, we observe that for the class of xor-functions, Conjecture IV would

imply Conjecture I.

Proposition 4.4: For the class of xor functions,

Conjecture IV ⇒ Conjecture I.

Proof. Suppose that R(F⊕) ≤ c. It follows then from Equation (27) that

∥f∥A,ϵ ≤ 22c.

Now if Conjecture IV is true, then f would be constant on a large subspace

V ⊆ Zn
2 . Then V × V would be a large monochromatic rectangle in F⊕.
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5. and-functions

In this section we focus on and-functions F∧(x, y) := f(x ∧ y). As we saw

in Section 4, investigating the Fourier expansion of f : {0, 1}n → {0, 1} was

extremely useful for understanding the properties of their xor-lifts. This is

chiefly because Fourier characters are multiplicative with respect to the xor

operation, and thus the Fourier transform naturally translates to an expansion

of the matrix F⊕ as a linear combination of rank-one matrices. When studying

the and-lifts, the representation of f as a multilinear polynomial over the reals

plays a similar role since monomials are multiplicative with respect to the and

operation. More precisely, using the notation xS =
∏

i∈S xi, the polynomial

representation

f(x) =
∑

S⊆[n]

λSx
S

translates to

F∧(x, y) = f(x ∧ y) =
∑

S⊆[n]

λSx
SyS .

Equivalently,

F∧ =
∑

S⊆[n]

λSmSm
t
S ,

where mS ∈ {0, 1}2n, mt
S is the transpose of mS , and (mS)x = xS . Since for

each S, mSmt
S is a rank-1 matrix, and mS for S ⊆ [n] are linearly independent,

then rk(F∧) is equal to the number of non-zero coefficients λS , which by the

notation of Section 2.1 is denoted by rk(M on, f). In other words,

(29) rk(F∧) = rk(Mon , f).

We obtain the following simple proposition, which establishes the equivalence

of several parameters related to the and-lift.

Proposition 5.1 (Equivalence between zero-error and deterministic complex-

ities): For f : {0, 1}n → {0, 1}, the parameters dt∧(f), rdt∧0 (f), rk(Mon, f),
∥f∥Mon , rk(F∧), D(F∧), and R0(F∧) are all qualitatively equivalent. More pre-

cisely, there exists a constant c > 0 such that

(30)
log rk(Mon, f) ≤ D(F∧) ≤ 2 dt∧(f) ≤ 2rk(Mon, f)

= 2rk(F∧) ≤ 22
cR0(F∧)

≤ 22
2c·rdt∧0 (f)

≤ 22
2c·rk(Mon,f)

,

and

rk(Mon , f) ≤ ∥f∥Mon ≤ 3dt
∧(f).
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Proof. Recall rk(F∧) = rk(Mon, f). Thus the inequality log rk(Mon , f) ≤ D(F∧)

is the well-known rank lower bound of Proposition 2.7, and the inequality

D(F∧) ≤ 2 dt∧(f) is the straightforward simulation of an and-decision tree

by a communication protocol, discussed in Section 2.4.

The inequality dt∧(f) ≤ rk(Mon , f) follows from the fact that the value of a

monomial can be determined by making one and-query.

By Theorem 3.7, there exists a constant c > 0 such that

rk(F∧) ≤ 22
cR0(F∧)

≤ 22
2c rdt∧0 (f)

,

and the last inequality in the first equation follows from

R0(F∧) ≤ 2 rdt∧0 (f) ≤ 2 dt∧(f) ≤ 2rk(Mon, f).

The inequality rk(Mon, f) ≤ ∥f∥Mon follows from the easy and well-known

fact that the coefficients in the polynomial representation of f are all integers.

It remains to prove ∥f∥Mon ≤ 3dt
∧(f). We use induction on d = dt∧(f). The

base case for d = 0 is trivial, as ∥f∥Mon is at most 1 for every constant Boolean

function f . For the induction step, consider an and-decision tree of depth d

computing f , and suppose that the top node of the tree queries xS , and branches

accordingly to compute f1 and f2. Now

f(x) = xS · f1(x) + (1− xS) · f2(x),

and since dt∧(f1), dt∧(f2) ≤ d− 1, we have

∥f∥Mon ≤ ∥xSf1∥Mon + ∥xSf2∥Mon + ∥f2∥Mon ≤ 3 · 3d−1 = 3d.

We conjecture that the exponential equivalence between D(F∧) and dt∧(f)

in Proposition 5.1 can be improved to a polynomial equivalency. Recently,

[KLMY20] proved

dt∧(f) = O(D(f∧)
3 logn),

but due to the log(n) factor, their statement comes short of establishing this

conjecture.

Now, let us turn to randomized communication complexity and its related

matrix parameters such as the trace and the γ2 norm. Unlike Fourier charac-

ters, the monomials in the polynomial representation are not orthogonal, and

thus the coefficients in the polynomial representation of f do not correspond

to the eigenvalues of F∧. This makes relating the spectral properties of F∧ to

similar properties of f difficult. For example, unlike the F⊕ case, we do not
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know how to verify Conjecture II or Conjecture III for matrices of the form F∧.

Similarly, we do not know how to relate the randomized communication com-

plexity assumption of Conjecture I to an assumption about rdt∧. Contrast this

with the xor case where we have established that R(F⊕), ∥F⊕∥γ2,ϵ, ∥f∥A,ϵ, and

rdt⊕(f) are all qualitatively equivalent. We conjecture however that a similar

statement is true for the and-functions.

Conjecture 5.2: There exists an increasing function κ : R+ → R+ such that

for every f : {0, 1}n → {0, 1},

rdt∧(f) ≤ κ(R(F∧)).

Interestingly in the case of the and-functions, we know how to establish the

analogue of Conjecture IV.

Theorem 5.3: Suppose f : {0, 1}n → {0, 1} satisfies rdt∧(f) ≤ d. Then, there

exists a set J ⊆ [n] of size at most 3d+1, such that f is constant on {x : xJ = 0}.

We will prove Theorem 5.3 in Section 5.1, but first, let us state the following

corollary.

Corollary 5.4: Conjecture 5.2, if true, would imply that Conjecture I is true

for F∧ matrices.

Proof. It would follow from Conjecture 5.2 that if R(F∧) ≤ c, then

rdt∧(f) ≤ κ(c).

Then by Theorem 5.3, f is constant on V = {x : xJ = 0}, where |J | ≤ 3κ(c)+1.

Consequently, F∧ is constant on V × V , which is a δ2n × δ2n combinatorial

rectangle with

δ = 2−|J| ≥ 2−3κ(c)+1

.

To summarize, in the case of F∧, the missing step for establishing Conjecture I

is a dimension-free lifting theorem for randomized communication complexity

(i.e., Conjecture 5.2), since we know how to deduce structure from a uniform

bound on randomized query complexity. In contrast, in the case of F⊕ such a

lifting theorem is known, but we do not know how to establish structure from

a uniform bound on randomized query complexity (i.e., Conjecture IV).
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5.1. Proof of Theorem 5.3. By Corollary 2.10,

(31) log3 ∥f∥Mon,ε ≤ rdt∧ε (f) ≤ O
(
∥f∥2Mon,ε ·

log(1/ε)

(1− 2ϵ)2

)
.

Theorem 5.3 now follows from the first inequality and the following lemma.

Lemma 5.5: For every f : {0, 1}n → {0, 1}, there exists a set J ⊆ [n] of size at

most 3∥f∥Mon,1/3, such that f is constant on {x : xJ = 0}.

Proof. Let p =
∑

S⊆[n] λSxS be a multilinear polynomial satisfying

∥p− f∥∞ ≤ 1

3
and ∥p∥Mon = d.

Consider the partial ordering on the Boolean cube where x ≼ y if for every i,

xi ≤ yi. Under this ordering, pick a minimal w ∈ {0, 1}n such that f(0) ̸= f(w).

This means that for every v ≺ w, f(v) = f(0). Pick an arbitrary j such

that wj = 1, and let v = w − ej , where ej denotes the jth standard vector.

Note that |f(w)−f(v)|=1, and as a result |p(w)−p(v)|≥1/3, which means that

∑

S⊆w:S∋j

|λS | ≥
1

3
,

where S⊆w means S⊆{i :wi=1}. Consequently, ∥p|xj=0∥Mon ≤∥p∥Mon−1
3 . Thus

∥f |xj=0∥Mon,1/3 ≤ ∥f∥Mon,1/3 −
1

3
.

We include j in J and repeat the above process, replacing f with f |xj=0. Since

∥ ·∥Mon,1/3 ≥ 0, this process can be repeated for at most 3∥f∥Mon,1/3 times, after

which we will end up with a constant function.

5.2. Randomized and-decision trees: One-sided and two-sided error.

Let us briefly discuss rdt∧1 and rdt∧. The example of the threshold function,

as discussed in Lemma 2.14, shows that the one-sided and the two-sided error

cases are not qualitatively equivalent to the deterministic case. In particular,

for f = thrn−1, Lemma 2.14 shows that

R(F∧) ≤ 2 rdt∧(f) ≤ 2 rdt∧1(f) = O(1),

while dt∧(f) = dt∧(f) = Ω(log(n)).

On the other hand, in Theorem 5.3, we showed that if rdt∧(f) ≤ d, then there

exists a set J ⊆ [n] of size at most 3d+1, such that f is constant on {x : xJ = 0}.
Thus for and-functions we know how to prove the analogue of Proposition 4.2,

even for two-sided error.
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6. Forbidden substructures: A proof-barrier for Conjectures I, II, III

In this section, we discuss a proof barrier, which shows that the techniques used

for proving Cohen’s idempotent theorem, as well as many similar structural

results cannot establish Conjectures I, II, and III. Such proofs are based on

forbidding substructures. For instance, to prove Cohen’s idempotent theorem

for f : Zn
2 → {0, 1}, one uses the fact that the function gr : Zr

2 → {0, 1}, defined
as

gr(x) = 1 iff |x| = 1,

satisfies ∥gr∥A = Ω(
√
r). Consequently, if ∥f∥A ≤ c, then no restriction of f to

any affine subspace of dimension k = kc = O(c2) can be isomorphic to gk. One

then uses the fact that f does not have a copy of this forbidden substructure to

obtain general structural results about f . The proof of Cohen’s theorem, even

for more general groups, follows the same approach.

Similarly, in Lemma 3.6, we showed that every Boolean matrix of high rank

must contain as a submatrix one of the four matrices Ik, Ik, GTk, or GTk, each

with large zero-error randomized communication complexity. In other words, we

used these four matrices as forbidden substructures for matrices that have small

zero-error randomized communication complexity. For one-sided error, in The-

orem 3.8 we used the forbidden matrix Ik. Note that even Sherstov’s pattern-

matrix method [She11], which has been used successfully to lower-bound several

complexity measures of various important matrices, is based on finding certain

highly symmetric patterns in them.

One may suspect that a similar approach could also be used to establish

Conjectures I, II and III. Namely, one needs to find a suitable list of matrices

with high randomized communication complexity, high trace norm, or high γ2
norm, and show that if a Boolean matrix M does not contain any of them as a

submatrix, then it must have the desired structure. We prove that this approach

fails as there are matrices that cannot be handled by this proof technique.

Theorem 6.1: For every sufficiently large n, there exists an n × n Boolean

matrix M with the following properties:

(i) Every n1/4 × n1/4 submatrix F of M satisfies

∥F∥ntr ≤ ∥F∥γ2 ≤ 4 and R(F ) = O(1).

(ii) M does not contain any monochromatic rectangles of size n0.99 ×n0.99.
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One interesting related proof that does not follow the forbidden substructure

approach is the purely spectral proof of Shpilka, Tal and Volk [STV17] for the

fact that every f : Zn
2 → {0, 1} with ∥f∥A ≤ c is constant on an affine subspace

of co-dimension kc. This obviously follows from Cohen’s theorem, but [STV17]

obtained stronger bounds on kc.

Before stating the proof of Theorem 6.1, we will set up and prove an auxiliary

lemma on the blocky-rank of matrices that correspond to forests. A matrix

M : X × Y → {0, 1} naturally corresponds to a bipartite graph GM with

bipartition X ∪ Y, where there is an edge between vertices x ∈ X and y ∈ Y
if and only if M(x, y) = 1. Note that the bipartite graph corresponding to a

blocky matrix M is an edge-disjoint union of vertex-disjoint complete bipartite

graphs.

Recall that a graph is called a forest if it does not contain any cycles. A

connected forest is called a tree.

Lemma 6.2: Let M be a finite Boolean matrix corresponding to a forest.

Then M is a sum of two blocky matrices.

Proof. As mentioned above, a blocky matrix corresponds to an edge-disjoint

union of vertex-disjoint complete bipartite graphs. Hence it suffices to show

that the edges of every forest can be partitioned into two sets, each forming

a disjoint union of complete bipartite graphs. Obviously, it suffices to prove

this for a tree as a forest is a disjoint union of trees. Let v be an arbitrary

vertex of the tree, and for i = 0, 1, . . ., let Li be the set of the vertices that are

at distance i from v. To complete the proof note that the edges between Li

and Li+1 for even values of i form one blocky matrix, and similarly the edges

between Li and Li+1 for odd values of i form the other blocky matrix.

Proof of Theorem 6.1. Set

p =
n0.05

n
,

and select a random n × n matrix M = [mij ] by setting each entry to 1 with

probability p and independently of other entries. It suffices to show that with

probability 1− o(1) both (i) and (ii) hold.

(i) Let k = n1/4. We will show that every k × k submatrix F of M can

be written as a sum of four blocky matrices. Then R(F ) = O(1) immediately

follows from Equation (17), and ∥F∥ntr ≤ ∥F∥γ2 ≤ 4 follows from the fact that

the γ2-norm of a blocky matrix is at most 1.
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We first prove that with probability 1 − o(1), for every r, t ≤ k, every r × t

submatrix of M contains a row or a column with at most two 1’s. Note that

the statement is trivial when min(r, t) ≤ 2. Fix r, t > 2, and assume without

loss of generality that r ≤ t. The probability that there is an r × t submatrix

such that each of its t ∈ [3, n1/4] columns contains at least three 1’s is bounded

by

(32)

(
n

r

)(
n

t

)((
r

3

)
p3
)t

≤ nrnt(r3p3)t ≤ (n2p3t3)t ≤ o(n−1/2).

Thus by a union bound over all choices of r, t ≤ k, the probability that there

is r, t ∈ [k] and an r×t submatrix where every column contains at least three 1’s

is bounded by o(k2n−1/2) which is o(1) as desired.

Now suppose that every r× t submatrix F of M contains a row or a column

with at most two 1’s. We will show that in this case, every such F is a disjoint

union of two forests, and by Lemma 6.2 M is a sum of four blocky matrices.

Consider a row (or a column) with at most two 1’s, and let e1 and e2 be the

edges corresponding to these (at most) two entries. Removing this row from F

will result in a smaller submatrix which, by induction hypothesis, can be written

as the union of two forests F1 and F2. Now F can be decomposed into the union

of two forests F1 ∪ {e1} and F2 ∪ {e2}. Note that in the base case, i.e., r = 1

or t = 1, we get a star, which itself is a tree.

(ii) Let K = n0.99. The expected number of monochromatic rectangles of

size K ×K is at most

(33)
2n×2n×(pK

2

+(1−p)K
2

) ≤22n(2e−pK2

)

≤21+2n−pK2

=21+2n−n0.98+0.05

=o(1).

Lastly, observe that the matrix M from Theorem 6.1 is not a counterex-

ample for Conjecture I as M in fact has a high randomized communication

complexity—this can be derived by upper bounding M ’s discrepancy.
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[GPW18] M. Göös, T. Pitassi and T. Watson, Deterministic communication vs. partition

number, SIAM Journal on Computing 47 (2018), 2435–2450.
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[Lef72] M. Lefranc, Sur certaines algèbres de fonctions sur un groupe, C. R. Comptes
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[PR94] P. Pudlák and V. Rödl, Some combinatorial-algebraic problems from complexity

theory, Discrete Mathematics 1 (1994), 253–279.

[RM97] R. Raz and P. McKenzie, Separation of the monotone NC hierarchy, in Pro-

ceedings 38th Annual Symposium on Foundations of Computer Science, IEEE

Computer Society, Los Alamitos, CA, 1997, pp. 234–243.

[RS15] S. N. Ramamoorthy and M. Sinha, On the communication complexity of greater-

than, in 2015 53rd Annual Allerton Conference on Communication, Control, and

Computing (Allerton), IEEE Computer Society, Los Alamitos, CA, 2015, pp. 442–

444.

[San11] T. Sanders, A quantitative version of the non-abelian idempotent theorem, Geo-

metric and Functional Analysis 21 (2011), 141–221.

[San20] T. Sanders, Bounds in Cohen’s idempotent theorem, Journal of Fourier Analysis

and Applications 26 (2020), Article no. 25.

https://arxiv.org/abs/0909.3392


616 L. HAMBARDZUMYAN, H. HATAMI AND P. HATAMI Isr. J. Math.

[She11] A. A. Sherstov, The pattern matrix method, SIAM Journal on Computing 40

(2011), 1969–2000.

[She14] A. A. Sherstov, Communication complexity theory: thirty-five years of set dis-

jointness, inMathematical Foundations of Computer Science 2014. Part I, Lecture

Notes in Computer Science, Vol. 8634, Springer, Heidelberg, 2014, pp. 24–43.

[STV17] A. Shpilka, A. Tal and B. L. Volk, On the structure of Boolean functions with

small spectral norm, Computational Complexity 26 (2017), 229–273.

[TWXZ13] H. Y. Tsang, C. H. Wong, N. Xie and S. Zhang, Fourier sparsity, spectral norm,

and the log-rank conjecture, in Proceedings of the 2013 IEEE 54th Annual Sym-

posium on Foundations of Computer Science, IEEE Computer Society, Los Alami-

tos, CA, 2013, pp. 658–667.

[Vio15] E. Viola, The communication complexity of addition, Combinatorica 35 (2015),

703–747.

[Yao77] A. C. C. Yao, Probabilistic computations: toward a unified measure of complexity

(extended abstract), in 18th Annual Symposium on Foundations of Computer

Science, IEEE Computer Society, Los Alamitos, CA, 1977, pp. 222–227.

[Zha14] S. Zhang, Efficient quantum protocols for XOR-functions, in Proceedings of the

Twenty-fifth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New

York, 2014, pp. 1878–1885.

[ZS10] Z. Zhang and Y. Shi, On the parity complexity measures of Boolean functions,

Theoretical Computer Science 411 (2010), 2612–2618.


	1. Introduction
	2. Preliminaries
	3. Main results: General matrices
	4. xor-functions
	5. and-functions
	6. Forbidden substructures: A proof-barrier for Conjectures I, II,  III
	References

