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1. Introduction in nature. Therefore, understanding the uncertainty in the out-
put of machining simulations is important for careful decision-
making [3].

Modeling of RS requires several input parameters includ-
ing material properties and process parameters to represent the
physical behavior of the process. For example, modeling of RS
typically requires a model or data of thermo-mechanical loads
imposed on the workpiece material’s subsurface during machin-
ing. Measurement of these loads is experimentally challenging,
and numerical methods are likewise limited in their ability to
accurately predict the magnitude and scale of thermal and me-
chanical loads. With respect to material properties, there are in-
herent variations exhibited by any commercially available ma-
terial due to minor variations in chemistry and pre-processing
history, as well as due to the inherent microstructural anisotropy
of common metallic alloys. For example, Ti-6Al4V alloy con-
sists of both alpha and beta grains, which may furthermore vary
in size and texture/orientation, as well as their degree of strain
hardening. Even carefully measured material properties, such as
Young’s modulus and yield strength, will vary for a given ma-
terial depending on the pedigree (pre-processing methods and
history), as well as the inherent uncertainty of materials char-
acterization techniques (e.g., stress and strain uncertainties in
tensile testing).

Machining-induced residual stress (RS) is known to be a key
influence on t he f atigue l ife o r c rack p ropagation w ithin ma-
chined structures [1]. In general, tensile RS is undesirable be-
cause it can increase the fatigue crack growth, whereas com-
pressive RS is desirable because it can reduce it. Therefore, it is
very important to accurately quantify RS in machining of life-
limited components such as turbine blades and biomedical im-
plants.

The mechanism of machining-induced RS has been inves-
tigated experimentally since 1950s [2]. Often, analytical and
computational modeling approaches have been employed to
predict the machining-induced RS which requires a physics-
based understanding of the relationships between RS and influ-
ential factors such as cutting conditions, operation, tool geom-
etry, material properties, etc. Although computational models
and simulations are very promising to understand the physics
of machining-induced RS, the lack of quantitative representa-
tion of their prediction accuracy deters further application in
process control and optimization [3]. Furthermore, due to the
numerous sources of uncertainty and variability, measuring and
predicting machining-induced RS often appears to be random
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With respect to process parameters, cutting speed and feed
rate (i.e., the cross section of the uncut chip), as well as tool ge-
ometry (rake and flank angles) are typically well-defined during
cutting with geometrically-defined tools (e.g., single-point ma-
chining rather than grinding). However, the key process variable
that changes with time is the wear condition of the cutting tool,
i.e., flank/rake wear and cutting edge radius. While the effects
of tool condition, and associated uncertainties with respect to
the machining-induced residual stress can be quite large, the
present study is primarily concerned with the effects of un-
certainties in the workpiece material properties. Additionally,
physics-based models make several assumptions and simplifi-
cations regarding the physical phenomena which causes model
error. Solving the model numerically also causes numerical ap-
proximation error [4]. In general, based on the sources of un-
certainty, it can be classified into two categories: aleatory and
epistemic [5]. Aleatory uncertainty originates from sources that
are inherently random and cannot be eliminated through mod-
eling. Epistemic uncertainty arises from the incomplete or lack
of knowledge of modeling of a physical system. In this paper,
the case of epistemic uncertainty in the context of RS modeling
is considered.

In recent years, UQ in machining has became a popular topic
of many researchers because of the need to optimizing the pro-
cess for improving the product’s service performance and life
cycle. With an aim to quantify the uncertainty in peak tangen-
tial force, Gul et al. [6] implemented in-situ simulator models
inside the local regions of interest defined by the uncertain pa-
rameters of two solid end-milling processes. Using Bayesian
inference, Schmitz et al. [7] explored input parameter uncer-
tainties such as depth of cut, tool geometry, spindle speed, and
force model coefficients in the milling process. Sánchez et al.
[8] employed uncertainty methods to investigate the variability
of locators in machining. Ren et al.[9] modeled the uncertainty
of acoustic emission (AE) signal to filter the raw AE signals
directly from sensors in a turning process. Rao et al. [10] pro-
posed a coupled uncertainty model to determine optimal ma-
chining conditions. However, systematic UQ through experi-
ments is typically time consuming, expensive, and an inefficient
use of material and computational resources. As a result, cur-
rent UQ analysis in the field of machining simulation is still in
its infancy. Most UQ research in the machining field has been
applied for stability and tool-wear predictions, such as cutting
force and modal parameter estimations [11] and chatter predic-
tion in milling [12]. To the best of the authors’ knowledge, UQ
in machining due to the uncertainty in material properties has
yet to be undertaken. It is crucial to assess and quantify sources
of uncertainty to achieve quality control in surface finishing.
The present work seeks to address this gap by providing initial
insights into the effects of calibration parameters with respect to
machining-induced RS, specifically for nickel-based superalloy
Inconel 718. In this study, inputs previously characterized with
an in-situ RS model for Inconel 718 [1] were leveraged to study
the effect of experimental model input parameter uncertainty.

This work focuses on uncertainty due to model input pa-
rameters and bulk material properties at the macro scale. Rel-
evant model parameters include the peak normal pressure (P0)

Fig. 1. Schematic illustration of (a) mechanical and thermal effects on RS for-
mation; (b) relative depth of magnitude of mechanical and thermal domain RS
contributions.

and the effective friction coefficient (µe f f ) were considered as
uncertainty sources. The latter of which is a ratio of the feed
forces to the cutting forces, rather than a purely tribological
phenomenon. The overall source of uncertainty considered here
are (i) the inherent variability of material properties and (ii) the
statistical nature of µe f f .

2. Methods

The starting point of UQ in machining-induced RS simula-
tion is based on several steps which are demonstrated below:

2.1. Physics-Informed Model of Machining-induced RS

Based on modified tractional sliding contact Hertz theory
and experimental observations, a semi-analytical model of the
machining process was established to predict the residual stress
directly caused by mechanical load. A multi-domain model-
ing framework, which is based on coupled (thermomechani-
cal) calculations in the elastic, plastic, thermal, and thermo-
dynamic domains was employed to generate the RS distribu-
tion [13]. As can be seen in Fig. 1, there are four major do-
mains associated with thermomechanical finishing processes.
This semi-analytical method consists of calibrating the contact
width (2a) through pattern-matching with model generated von
Mises plots which demonstrated in Fig. 2. The state of stress
beneath a sliding cylinder can be calculated using Hertz theory
which can be defined with parameters such as contact width (a),
contact pressure (P0), tractional pressure (q0) and friction coef-
ficient (µe f f ) [13]. Following Merwin and Johnson′s [14] ap-
proach, the Prandtl-Reuss incremental relations were employed
to model the RS distribution along the depth of the sample. Fur-
ther details on the theoretical background and experimental cal-
ibration may be found in Ref. [1].

The main input parameters of this semi-analytical model are
the equivalent elastic contact width (a), cutting speed (vc), the
effective friction coefficient (µe f f ), and peak normal pressure
(P0) from experimental calibration, as well as material proper-
ties.
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Fig. 2. Displacement field from DIC analysis (left) and illustration of sub-surface stress model calibration (right).

2.2. Sources of Uncertainty

While there are several sources of uncertainty in machining-
induced RS, this paper focuses on uncertainty based on varia-
tion of (i) material properties and (ii) model input parameters.

2.2.1. Variation of Material Properties
Theoretically, materials exhibit deterministic behavior, but

in practice they are inherently random. By invoking Informa-
tion Theory and Maximum Entropy Principle, Guilleminot and
Soize [15] suggested that the Young’s modulus (E) and Pois-
son ratio (ν) are not independent, and they are more likely sta-
tistically dependent Gamma-distributed random variables. De-
tailed theoretical derivation of statistical dependency between
E and ν are given in Ref. [16]. In order to address the UQ
due to variations in material properties, the statistical nature of
E and ν was employed. Additionally, materials yield strength
(YS) were also considered uncertainty due to the material’s tex-
ture, i.e., preferential crystallographic orientation induced dur-
ing pre-processing (e.g., rolling, forging, additive, etc.).

2.2.2. Variation of Model Input Parameters
In this physics-based model, the peak normal pressure (P0),

which is a function of the cutting forces (F f and Fc) and effec-
tive half-width of contact (a), were calibrated experimentally,
and thus carry experimental uncertainties that compound for
both the effective friction coefficient (µe f f ) and the peak normal
pressure (P0). It is noted that µe f f might change or be uncertain
with tool coatings, coolants/lubricants, or due to measurement
uncertainties. Cutting forces differ due to the varying strength of
individual grains being cut and cyclical/serrated chip formation,
as well as progressive (minor) tool-wear. Likewise, the effective
half-width of contact (a) varies slightly at different points dur-
ing steady-state chip formation due to cyclical chip formation
and inherently uncertain grain-scale displacements, which form
the basis for experimental measurement of a [1]. Based on typi-
cal experimental standard deviations (95% confidence intervals

for dozens of measurements) for force and contact width mea-
surements of approximately 10%, both µe f f and P0 carry exper-
imental uncertainties of approximately 20%. µe f f varies signifi-
cantly with uncut chip thickness, which is demonstrated in Ref.
[1]. It is important to note that a varies approximately 10−15%
and P0 varies 10 − 20% around its mean value. Therefore, it is
important to choose the proper distribution of µe f f .

2.3. Modeling Based on Uncertainty in Material Properties

According to Ahmed and Kopsaftopoulo [17], the random
Young modulus (E) and Poisson ratio (ν) associated with the
isotropic random elasticity tensor can be defined as

E =
9C1C2

(3C1 +C2)
, ν =

(3C1 − 2C2)
(6C1 + 2C2)

(1)

where C1 and C2 are the random bulk and shear moduli, re-
spectively, that are statistically dependent Gamma-distributed
random variables, with parameters (1 − λ, c1/(1 − λ)) and
(1 − 5λ, c2/(1 − 5λ)). Here, c1 and c2 are the mean values of
bulk moduli C1 and shear moduli C2, and λ ∈ [−∞, 1/5] is a
model parameter controlling the level of statistical fluctuation
[15]. The mean value of the bulk modulus c1 and shear modu-
lus c2 can be calculated using the following equations:

c1 =
E

3(1 − 2ν)
, c2 =

E
2(1 + ν)

(2)

where E is the mean value of the Young’s modulus and
ν is the mean value of the Poisson’s ratio. Although the
Young’s modulus and Poisson’s ratio are statistically depen-
dent Gamma-distributed random variables, they can be realized
through two independent Gamma-distributed random variables:
namely, the bulk modulus and shear modulus [15]. The mathe-
matical details can be found in Ref. [17].

There are several methods to randomize YS like the log-
normal distribution, the Weibull distribution. However, a log-
normal distribution is considered to be a preferred distribution
to randomize the yield strength [18].
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Lognormal Distribution: If a random variable X is a log-
normal distribution, then a normal distribution would be Y =

ln(X). Similarly, X = exp(Y) is a log-normal distribution of
a normal distribution Y . The general formula of a log-normal
distribution of a random variable (RV) X with mean µX and
standard deviation σX is defined as:

fX(x) =
e−

1
2 (

ln(x)−µY
σY

)2

σY
√
2π

, 0 < x < ∞ (3)

where fX(x) is the probability density function (PDF) of a RV
X, and

σ =

√
ln
(
(
σX

µX
)2 + 1

)
(4)

and

µY = ln(µX) −
1
2
σ2
Y (5)

are the standard deviation and expected value, respectively,
for the normal distribution variable y = ln(x).

2.4. Modeling Based on Uncertainty in Model Input Parame-
ters

There are several model input parameters which were de-
scribed in Section 2.2.2. Most of them were calibrated from
experiments, and those are a function of µe f f . Therefore, only
µe f f was randomized to model the input parameters. Joo et. al
[19] proposed an algorithm to model the distribution of fric-
tion factor where it can be modeled using Gamma, log-normal,
Weibull, and normal distribution. Various attempts have been
taken to fit the data points with different distributions, however,
in this model, µe f f can be randomized properly using the log-
normal distribution. Steele [20] also proposed that coefficients
of friction can be treated as having a log-normal distribution
instead of a normal or uniform distribution since µe f f only in-
cludes positive real numbers. The log-normal distribution is a
popular choice for characterizing the coefficient of friction be-
cause it is a probability distribution of logarithmic values from
a related normally distribution. Schoop et al. [1] mentioned that
µe f f varies between 0.7 to 0.85 for an uncut thickness 75 µm. It
is important to note that the uncertainty caused by µe f f results
in uncertainty on the macroscale.

2.5. Uncertainty Quantification

Once the model input probability distributions are available,
it is necessary to pass those input parameters into the model to
estimate the output probability distributions. The goal of this
study is to compute the statistical properties of input variables
such as mean, standard deviation, and confidence interval for
each model prediction. This can be done by using the Monte
Carlo method, which entails drawing samples from the input
random distributions and evaluating the deterministic model
with the selected inputs.

3. Results and Discussion

Four model input parameters: Elastic Modulus (E), Pois-
son’s ratio (ν), Yield strength (YS) and effective friction µe f f
are considered the main uncertain parameters. Along with
these, the half-width of contact (a), the peak normal pressure
(P0), and cutting forces (Fc and F f ) are considered to be uncer-
tain only to their respective degrees of experimental measure-
ment uncertainty of 10% for each, and 20% for coupled metrics
such as µe f f and P0. At the first step, this paper investigates
the uncertainty propagation considering material properties E,
ν, YS driving random parameters. In the next step, the effective
friction µe f f is considered as a random parameter. It is noted
that RS is normalized with the yield limit (k) and only cutting
direction (xx) was considered.

3.1. UQ Due to the Variation of Material Properties

In order to investigate the effects of variation in material
properties on the propagation of RS, E, ν, and YS were consid-
ered as random variables. From a theoretical perspective, it was
deduced that E and ν are dependent random variables and they
jointly follow Gamma distribution. Considering statistical de-
pendency between E and ν, 1000 samples were generated using
the Gamma probability distribution. From Ref. [17], the mean
value of E was taken as 205 GPa with a standard deviation of
1.332 GPa. The mean and standard deviation of ν was taken to
be 0.284 and 0.007, respectively. The modeling parameter that
controls the statistical fluctuation, λ, was taken as -450 from
Ref. [17].

Fig. 3 shows the distribution of material properties for 1000
samples using statistically dependent Gamma distribution. Fig.
4 shows the results of RS distribution and their 95% confidence
interval. It can be seen that the material properties have a negli-
gible effect of uncertainty propagation. Since E and ν has neg-
ligible effect of RS distribution, therefore, variation of yield
stress (YS) needs to be properly investigated in various scale
to determine the effect of material properties in RS profile. In
order to investigate uncertainty propagation due to the variation
of YS, YS was randomized using log normal distribution. 1000
samples were generation based on the mean value of 1035MPa
and 10% standard deviation. Fig. 5a shows the distribution of P0

k
for 1000 samples. It is important to note that YS was normal-
ized with the peak normal pressure (P0). RS distribution due to
the variation of YS is shown is fig. 5b. YS has significant impact
on residual stress distribution in machining.

3.2. UQ due to the variation of calibration parameters

Due to the lack of experimental data, it is a challenging task
to model the uncertainty of µe f f . Using mean value and approx-
imate standard deviation, Fig. 6(a) shows the distribution of
µe f f where 1000 samples were drawn from the log-normal dis-
tribution with shape and scale parameters of 11.776 and 4.532,
respectively. The next step was to obtain the distribution of RS
with the Monte Carlo simulation. Fig. 6(b) demonstrated the RS
profile for randomly distributed µe f f . It can be seen from the
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Fig. 3. Distribution of material properties used in the simulation.

Fig. 4. Uncertainty quantification due to the variation of E and ν.

Figure 6(b) that µe f f has significant impact on the machining-
induced RS profile.

4. Conclusion

In this study, a preliminary investigation on machining-
induced RS on the variability of material properties and effec-
tive friction coefficient (µe f f ) was presented. A physics-based,
computationally efficient method was constructed to generate
the RS profile. High-fidelity Monte Carlo simulations were per-
formed for the variation of E, ν, YS and µe f f . This study rep-
resents an introductory study aiming to tackle the significant
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Fig. 5. Uncertainty quantification due to the variation of YS.

challenges of uncertainty in RSmeasurement. Based on the pre-
liminary results, the following conclusions can be drawn:

• The effect of material properties, particularly the vari-
ation of Young’s modulus and Poisson’s ratio, carry a
smaller impact on machining-induced RS, with resulting
uncertainties of around ±1% in the model-predicted RS.
Thus, the macro-scale anisotropy in these elastic proper-
ties may be negligible for a given workpiece material.

• The effect of uncertainty in the effective friction coef-
ficient (µe f f ), which was estimated to be uncertain on
the order of ±20% due to experimental uncertainties in
process force measurements, led to an uncertainty of
±5% for the model-predicted RS profile. Therefore, the
physics-informed model can be considered somewhat
sensitive to experimental uncertainties in µe f f .

• Analysis showed that uncertainty in YS due to mi-
crostructural anisotropy and bulk crystallographic texture
plays a vital role for RS distribution, with resulting uncer-
tainties in RS that may exceed ±100% of the predicted
value.

The present study should be considered preliminary and
will require detailed experimental validation. Future studies
of uncertainty in RS measurements and model-based predic-
tion should expand this preliminary analysis to better under-
stand the degree to which various sources of uncertainty com-
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Fig. 6. Uncertainty quantification due to the variation of µe f f .

pound. Moreover, future work should focus on further elucidat-
ing the importance of microstructural anisotropy on machining-
induced RS, including the potential for major deviations be-
tween average a local RS, which may have profound implica-
tions for the fatigue performance of machined surface layers.
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