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Summary 

 
Chemical genetic screens are a powerful tool for exploring how cancer cells' response to drugs is 
shaped by their mutations, yet they lack a molecular view of the contribution of individual genes 
to the response to exposure. Here, we present sci-Plex-Gene-by-Environment (sci-Plex-GxE), a 
platform for combined single-cell genetic and chemical screening at scale. We highlight the 
advantages of large-scale, unbiased screening by defining the contribution of each of 522 human 
kinases to the response of glioblastoma to different drugs designed to abrogate signaling from 
the receptor tyrosine kinase pathway. In total, we probed 14,121 gene-by-environment 
combinations across 1,052,205 single-cell transcriptomes. We identify an expression signature 
characteristic of compensatory adaptive signaling regulated in a MEK/MAPK-dependent manner. 
Further analyses aimed at preventing adaptation revealed promising combination therapies, 
including dual MEK and CDC7/CDK9 or NF-kB inhibitors, as potent means of preventing 
transcriptional adaptation of glioblastoma to targeted therapy. 
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Introduction 

  
The response of individual cancer cells to therapy depends on myriad factors, including location 
within a tumor, proximity to vessels, epigenetic history, and genotype. Defining the contribution of 
individual genes to how a tumor responds to a given drug regimen is critically important to 
personalized therapy and cancer pathobiology. However, dissecting the mechanisms by which 
each gene confers drug resistance is extremely challenging because the space of gene-drug 
interactions is enormous. Addressing this requires a scalable, systematic approach to quantify a 
drug’s effect on a cell of a given genotype. Chemical genetics, the study of how exogenous 
exposures interact with cells and alter gene-product function and phenotype1, is a powerful means 
to define the genetic dependencies on treatment response across genetically distinct samples. 
The induction of genetic heterogeneity via targeted genetic perturbation2–4 (e.g., CRISPR/Cas9) 
has drastically increased the power of such screens, allowing for the systematic determination of 
how perturbed gene activity alters response. However, these screens are largely limited to 
determining the effect of the genetic perturbation on gross phenotypic outcomes (viability, cell 
growth) or very specific molecular readouts (reporter expression, enzymatic activity). Moreover, 
CRISPR-based chemical genetic screens with simple phenotypic readouts are largely applied at 
the population level. Therefore, they cannot link genotype to cellular response in a precise, 
mechanistic manner, and a need remains for novel methods to systematically interrogate the 
genetic requirements of effective drug treatment. 
 
Single-cell CRISPR screens5–8 allow in-depth molecular insight into the effects of genetic 
perturbation of genes associated with diverse biological processes, including those prioritized by 
bulk CRISPR screens9,10. Recently, single-cell CRISPR screens have been performed at 
genome-scale, providing a rich map of the effect of perturbation11. To further probe genetic 
dependencies to treatment using a single-cell genomic readout necessitates incorporating 
additional strategies to multiplex at the level of exposure (drugs, doses) within an experiment. 
This multiplexing allows the assay to scale to large combinatorial spaces and minimizes batch 
effects. Recently, we developed sci-Plex, a nuclear hashing approach that couples high-
throughput chemical screens to combinatorial indexing RNA-seq (sci-RNA-seq3)12, allowing for 
the analysis of the molecular effect of thousands of chemical perturbations in parallel13. Here, we 
present sci-Plex gene-by-environment or sci-Plex-GxE, which extends sci-Plex to pooled single-
cell CRISPR screens, markedly increasing the number of unique gene-exposure interactions 
tested within one experiment and providing the opportunity to define how large cohorts of genes 
affect the response of cells to many exposures.  
  
As proof-of-principle, we apply our approach to probe the relationship between exposure to the 
standard-of-care alkylating agent temozolomide (TMZ)14 and genetic perturbation of the mismatch 
repair (MMR) pathway, a known genetic dependency to SN1 alkylating agent-induced damage15,16. 
Using this system, we develop computational methods for determining the extent to which a 
genetic perturbation interferes with or enhances the expected effects of a drug on the 
transcriptome. We then apply sci-Plex-GxE to determine the molecular consequence of genetic 
perturbation of 522 kinases in the human protein kinome17 on the response of 3 glioblastoma 
(GBM) cell lines to 4 small molecules inhibitors targeting the receptor tyrosine kinase pathway, 

https://paperpile.com/c/Ig6d4d/UyUkZ
https://paperpile.com/c/Ig6d4d/apjh+qFSD+uFBo
https://paperpile.com/c/Ig6d4d/P0HF+10I5+72XWu+W1Hxs
https://paperpile.com/c/Ig6d4d/AjAtg+NPWJz
https://paperpile.com/c/Ig6d4d/8nbXH
https://paperpile.com/c/Ig6d4d/OFyz
https://paperpile.com/c/Ig6d4d/wn51
https://paperpile.com/c/Ig6d4d/fUJMI
https://paperpile.com/c/Ig6d4d/fI9zh+esKb2
https://paperpile.com/c/Ig6d4d/4Ehky
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the most frequently over-activated pathway in GBM18 and a driver for glioma initiation19 and 
maintenance20. We find that drug exposure leads to the induction of a transcriptional program 
characterized by the upregulation of genes capable of eliciting an adaptive (drug-induced) 
resistance phenotype21,22. Our single-cell genetic screen prioritized kinases involved with the 
regulation of MAPK, replication, cell division, and stress signaling that modulate the expression 
of this adaptive compensatory program. Combinatorial chemical exposure targeting a subset of 
these kinases confirmed their involvement in regulating this transcriptional response and co-
treatments that limit the ability of a cell to mount an adaptive response to kinase therapy. 
 
 
Results 

sci-Plex-GxE combines nuclear hashing and CRISPR-based single-cell genetic screens. 

  
To determine the contribution of individual genes to the response to chemical exposure at scale, 
we combined our single-cell chemical transcriptomics platform13 with the CROP-seq system for 
single-cell CRISPR/Cas9 genetic screen8. We developed and optimized a method for the 
enrichment of sgRNA containing transcripts5,6,23 from within the context of sci-RNA-seq3. Our 
enrichment strategy relies on targeted capture of the CROP-seq derived sgRNA containing 
puromycin transcript in combination with standard poly-A mRNA capture during RT and amplifying 
sgRNA containing transcripts from the final sci-RNA-seq3 mRNA library (Figure 1A & Methods).  
 
To determine the specificity and sensitivity of our assay, we performed a sgRNA cell mixing 
experiment. We transduced A172 GBM cells expressing either dCas9-KRAB for gene knockdown 
(CRISPRi) or dCas9-SunTag for gene overexpression (CRISPRa)24 with CROP-seq-OPTI 
libraries containing either optimized CRISPRi or CRISPRa sgRNAs25 targeting the HPRT1 locus, 
a modulator of cell sensitivity to the chemotherapeutic agent 6-thioguanine (6-TG), and non-
targeting controls (NTCs, Supplementary Table 1). We arrayed CRISPRi and CRISPRa 
perturbed cell pools across columns of a 96-well plate and exposed cells to increasing 
concentrations of the purine analog 6-TG or DMSO control. After 96 hours, cells in individual wells 
were harvested and subjected to our sci-Plex GxE protocol (Figure 1A and Methods). We 
captured 18,585 single-cell transcriptomes and used our sci-Plex hash labels to remove doublets 
and to confidently assign one well/treatment condition to 17,549 cells (94.4%). We identified one 
or more sgRNAs in 15,589 of these treatment-assigned singlet cells (88.8%) (Supplementary 
Figure 1A), of which 94.4% expressed 1 sgRNA at a high proportion (Supplementary Figure 
1B-C, Supplementary Table 2), consistent with the low multiplicity of infection of our 
transduction. We next compared cell assignment according to captured sgRNAs or sci-Plex 
hashes. As expected, cells containing hashes denoting CRISPRi wells were largely assigned a 
CRISPRi sgRNA and vice-versa (Figure 1B). Cells expressing CRISPRi and CRISPRa sgRNAs 
against HPRT1 displayed a decrease and increase in HPRT1 expression, respectively (Figure 
1C, 1D). Loss of HPRT1 activity leads to resistance to the nucleic acid analog 6-thioguanine (6-
TG)26 by decreasing its incorporation into DNA (Figure 1E). As expected, HPRT1 knockdown 
cells had a high expression of genes associated with proliferation in the presence of increasing 
doses of 6-TG compared to NTC controls (Figure 1F). This experiment confirms that sci-Plex-

https://paperpile.com/c/Ig6d4d/SEwo4
https://paperpile.com/c/Ig6d4d/8BwG
https://paperpile.com/c/Ig6d4d/ScPf
https://paperpile.com/c/Ig6d4d/lnshV+u0Wi6
https://paperpile.com/c/Ig6d4d/wn51
https://paperpile.com/c/Ig6d4d/W1Hxs
https://paperpile.com/c/Ig6d4d/P0HF+10I5+yo9P
https://paperpile.com/c/Ig6d4d/Bx1Dd
https://paperpile.com/c/Ig6d4d/71bv7
https://paperpile.com/c/Ig6d4d/O8Sd3
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GxE can detect a genetic requirement for individual cells’ response to a drug exposure via global 
transcriptome analysis.  

A chemical genomics approach to prioritize genotypes with strong effects on the response of cells 
to exposure. 

  
The scalability and multiplexing ability of sci-Plex-GxE at the level of genotypes and exposures 
allows profiling of the effects of gene-exposure interactions at scale. However, there are additional 
considerations for its application in chemical genomic screening, namely a need for analysis 
workflows that allow prioritization of genotypes within large-scale perturbation screens and a way 
to summarize complex transcriptional effects compactly. To arrive at analytical solutions to these 
challenges, we first applied our approach to a known genetic dependency to alkylation damage. 
 
Temozolomide (TMZ) is an oral alkylating agent and the standard-of-care for glioblastoma brain 
cancer chemotherapy14, whose toxicity is mediated by the formation of O6-meG lesions in the 
DNA. A cytotoxic response to TMZ primarily depends on the expression of methyl guanine 
methyltransferase (MGMT) and functional DNA mismatch repair (MMR) (Figure 2A), with the 
activity of these pathways mediating resistance and sensitivity, respectively27. We profiled the 
transcriptional consequence of exposing MMR-perturbed A172 CRISPRi cells to increasing doses 
of TMZ for 96 hours. We targeted MMR pathway components that comprise the O6-meG 
recognition complex (MutSɑ: MSH2 and MSH6), the MMR processing complex downstream of 
lesion recognition (MutLɑ: MLH1 and PMS2) (Figure 2A), and controls including targeting of an 
MMR component not involved in the processing of O6-meG (MSH3), MGMT, which is 
epigenetically silenced in A17228 and non-targeting controls (Supplementary Figure 2A-B).  
 
Cells expressing sgRNAs against MGMT, MSH3, or NTC controls displayed a robust, dose-
dependent increase in the expression of the cell cycle inhibitor and p53 target CDKN1A (Figure 
2B) that was accompanied by decreases in the expression of genes associated with proliferation 
(Figure 2C).  Analysis of differentially expressed genes (DEGs) as a function of genotype and 
temozolomide exposure (FDR < 10%, Supplementary File 1) revealed a strong correlation 
(average Kendall’s tau of 0.7) across genotypes expected to alter sensitivity to TMZ at the highest 
doses of drug (Supplementary Figure 2C-F, Supplementary Table 3). The magnitude of these 
changes was decreased in cells expressing sgRNAs against MLH1 and PMS2 and largely 
abrogated in cells expressing sgRNAs against MSH2 and MSH6 (Figure 2B-C). Defining gene 
modules across the union of DEGs (Supplementary Table 4) recovered signatures that define 
genotypes sensitive to TMZ exposure (NTC, MGMT, and MSH3) and further subdivided 
genotypes associated with mismatch recognition (MSH2 and MSH6) and downstream processing 
(MLH1 and PMS2)  (Figure 2D). Of note, gene modules associated with p53 signaling (module 
2) varied depending on the perturbed MMR complex consistent with activation of DNA damage 
signaling by lesion recognition before MutLɑ processing29.  
 
We next sought to summarize differential responses to exposure. Dimensionality reduction did 
not identify unique cellular states induced by the interaction of genotypes and TMZ 
(Supplementary Figure 3A-D), likely due to the fact that phenotypes perturbed by modulation of 

https://paperpile.com/c/Ig6d4d/fUJMI
https://paperpile.com/c/Ig6d4d/U1oJ
https://paperpile.com/c/Ig6d4d/4uFPB
https://paperpile.com/c/Ig6d4d/JM9Q
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MMR activity (e.g., proliferation, cell cycle arrest) are available to non-perturbed cells. However, 
MMR perturbations did alter the distribution of cells across these shared phenotypes 
(Supplementary Figure 3E), which could be summarized by dimensionality reduction techniques 
(Figure 2E-F). Although this approach can prioritize genotypes within the context of a screen, its 
reliance on defining cell states a priori is limiting when summarizing large-scale genetic screens 
where the phenotypic space is large. Therefore, we sought an approach tailored to prioritizing 
genotypes in the context of the response to drug exposure. 
  
We devised a strategy to describe how close a given cell is to the expected response to a given 
drug, identifying gene-by-environment interactions in a given condition. We first identified a set of 
genes that are dynamically regulated as a function of drug exposure in “wild-type” NTC cells 
(Supplementary Figure 3F). Second, for every dose, we calculated the pairwise transcriptome 
distance for every cell relative to the averaged expression profile of NTC cells exposed to the 
highest dose of drug based on this set of drug-responsive genes (Supplementary Figure 3G). 
We then quantify the extent to which a perturbation deviates from the change in pairwise 
transcriptome distance of unperturbed cells as they converge on a drug-induced phenotype, in 
this case, a TMZ-induced cell cycle arrest (Figure 2G). TMZ exposure led to a decrease in 
pairwise transcriptome distance across unperturbed NTC cells and our negative control 
knockdowns (MGMT and MSH3). Whereas knockdown of PMS2, MLH1, MSH6, and MSH2 
altered the dose-response relationship in pairwise transcriptome distance to NTC (Figure 2H & 
Supplementary Figure 3H-J).  
 
We used this framework to define a transcriptional effective concentration 50 or “TC50”13 to 
determine, for each genotype, the concentration of drug necessary to arrive at 50% of the 
transcriptional response observed in NTC cells We repeated this calculation across 1,000 
bootstraps of 75% of our dataset finding that TC50s were similar for NTC, MGMT and MSH3 
knockdowns, whereas loss of MLH1, PMS2, MSH6 or MSH2 renders cells largely less sensitive 
to drug (Figure 2I & Supplementary Figure 3K) with knockdown of MSH6 or MSH2 conferring 
the strongest drug-resistant phenotype consistent with previous reports30. We find our 
transcriptome distance approach to be robust to the number of cells per genotype 
(Supplementary Figure 3L), able to detect a graded dose-dependent response to a drug, and 
able to quantify the progression of a given cell along that response, characteristics necessary for 
identifying gene-by-environment interactions within the context of large-scale single-cell chemical 
genomic screens. 
 

Defining the contribution of the human protein kinome to the transcriptional response induced by 
kinase inhibition. 

 
Having demonstrated the ability of sci-Plex-GxE to detect the genetic requirements for exposure 
to drugs, we sought to systematically characterize the genes that determine a tumor's response 
to standard-of-care therapy at scale. Glioblastoma brain cancer is characterized by overactive 
receptor tyrosine kinase (RTK) signaling, with ~90% of tumors presenting with an activating 
mutation in the RTK pathway18,31. Paradoxically, GBM patients display low response rates to RTK-

https://paperpile.com/c/Ig6d4d/wn51
https://paperpile.com/c/Ig6d4d/Higeg
https://paperpile.com/c/Ig6d4d/SEwo4+2YwqG
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targeted therapy despite these prominent alterations in RTK signaling. Adaptive32 (i.e., 
pharmacologically-induced) activation of pathways that rescue RTK signaling and/or induce 
similar downstream effectors is suspected to be amongst the most common mechanisms by 
which tumors evade therapy21,22,33,34, including GBM35,36. Mapping out how tumors shift their gene 
expression programs to evade the detrimental effects of drug exposure could identify new 
opportunities to improve therapy. 
 
To determine the contribution of an entire class of genes to drug-induced transcriptional 
adaptation37,38 in GBM, we perturbed all members of the human protein kinome17 in 3 GBM cell 
lines expressing the dCas9-KRAB CRISPRi system. Our screen comprised 3,165 sgRNAs 
targeting 522 kinases, with five sgRNAs targeting each transcription start site (of which there may 
be more than one per kinase gene) or non-targeting and random targeting controls 
(Supplementary Table 1). Heterogeneous cell pools were then exposed to one of four 
compounds targeting the receptor tyrosine kinases EGFR (lapatinib) and PDGFRɑ (nintedanib), 
and the MAPK and PI3K signaling pathway components MEK (trametinib) and PI3K (zstk474) at 
two doses (1 and 10 µM) or vehicle control for 72 hours and subjected to sci-Plex-GxE. Our screen 
contained 14,121 gene-by-environment combinations across two independent transductions for 
28,242 unique conditions across 1,052,205 single-cell transcriptomes (Figure 3A, 
Supplementary Figure 4A, Supplementary Table 2). After excluding putative doublets, we 
assigned a condition to 991,940 single-cell transcriptomes (94.3% of cells) and observed good 
agreement in expression across replicates in our experiment (Supplementary Figure 4B). We 
identified a sgRNA in 988,276 cells and a median target knockdown of ~70% across our panel of 
targeted kinases (Figure 3B). The addition of multiple rounds of sgRNA enrichment PCR 
increased our assignment rate suggesting the low assignment from 1 or a few enrichment cycles 
is due to a bottleneck when amplifying from large, complex libraries. 
 
Examining the proportion of genotypes in vehicle-exposed cells to the starting plasmid proportion 
revealed a depletion of gRNAs targeting kinases that are likely required by all three cancer cell 
lines. We observed the strongest depletion for 16 kinases across one or more cell lines (|z-score| 
> 2, Supplementary Figure 5A). These included kinases involved in mitosis (AURKA, AURKB, 
BUB1B, PLK1)39 and ribosome maturation (RIOK1 and RIOK2)40,41. We did not identify kinases 
that conferred a similarly strong growth advantage across the cell lines in our study when knocked 
down.  
 

sci-Plex-GxE reveals kinases required for the transcriptional response to inhibiting the RTK 
pathway. 

 
We next sought to define the transcriptional changes induced in NTC cells by targeting the RTK 
pathway with small molecules. Exposure to compounds targeting the RTK pathway decreased 
cell viability, with the strongest effect observed for cells exposed to trametinib and the weakest 
effect for lapatinib (Supplementary Figure 5B). This decrease in cell viability was accompanied 
by a decrease in the expression of genes associated with proliferation (NTC unperturbed 
genotype, Figure 3C-F).  

https://paperpile.com/c/Ig6d4d/orH1T
https://paperpile.com/c/Ig6d4d/WeXLm+tySxu+lnshV+u0Wi6
https://paperpile.com/c/Ig6d4d/vPrh+XOm8
https://paperpile.com/c/Ig6d4d/23Pz+IsKq
https://paperpile.com/c/Ig6d4d/4Ehky
https://paperpile.com/c/Ig6d4d/6CPmX
https://paperpile.com/c/Ig6d4d/F37qI+EPmYs
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To identify kinases required for maintaining expression of the proliferation gene program, we next 
modeled proliferation gene expression as a function of drug, dose, genotype, and their interaction 
using linear regression. These models included kinase-by-drug “interaction terms”, which capture 
effects observed in drug-treated, genetically perturbed cells that are not observed in vehicle-
treated, genetically perturbed cells or NTC cells exposed to a drug. We identified 60 kinases 
involved in a significant interaction term for at least one exposure (Figure 3C-D, Wald test, FDR 
< 5%). We observed concordance for interaction terms across treatments within each cell line 
(Figure 3C) and high similarity in proliferative expression profiles across our controls (Figure 3D).  
 
Our analysis identified kinases that led to a significant decrease in proliferative gene expression 
across multiple treatments. For example, in A172 cells, knockdown of the genotoxic stress 
response PI3K-like kinase SMG142 or the positive regulator of hedgehog signaling STK3643 led 
to a significant decrease in proliferation in response to both nintedanib and trametinib (Figure 
3E), suggesting these kinases are required for proliferation in cells treated with these drugs. We 
also identified kinases whose knockdown led to increased proliferative gene expression. These 
included the ACVR1B44, ACVR2A45, STK11 (LKB1)46, and MAP2K447 tumor suppressors (Figure 
3F). Knockdown of CDK18, recently described as a co-factor for ATR-driven homologous 
recombination repair in GBM48, led to a significant increase in proliferation in response to the PI3K 
inhibitor zstk474 (Figure 3F). Zstk474, like other PI3K inhibitors, targets other DNA damage 
response kinases such as DNA-PKc and ATM49,50 and was shown to generate strand breaks in 
GBM cells50. Therefore, the effect of CDK18 loss on the proliferative response to zstk474 
exposure may result from an additive increase in genotoxic stress. Our analysis demonstrates 
that our multiplex chemical genomic screen identifies significant interactions between genotype 
and exposure, including kinase perturbations that sensitize or resist the effect of RTK pathway 
targeting inhibitors on proliferative gene expression. However, because sci-Plex-GxE profiles the 
entire transcriptome, it is not limited to viability or proliferation phenotypes and in principle could 
characterize the genetic requirements of other gene programs, including transcriptional 
adaptation to targeted therapy. 
 

Single-cell RNA-seq identifies shared transcriptional responses to inhibition of receptor tyrosine 
kinase signaling in glioblastoma cell lines. 

 
Targeting over-activated oncogenic kinases induces drastic remodeling of gene expression 
networks21,22,33,34, enabling tumors to substitute an alternative pathway to restore signaling, a 
process termed adaptive resistance51. To quantify transcriptional adaptation in our GBM lines, we 
performed regression analysis of the effects of each drug on each gene’s expression using quasi-
poisson regression12. We identified robust dose-dependent changes in expression with 4,553, 
3,112, and 3,149 genes differentially expressed after exposure to 1 or more inhibitors in A172, 
T98G, and U87MG cells, respectively (Figure 4A-C & Supplementary Figure 6A-C, 
Supplementary Table 5). We observed strong transcriptional effects upon trametinib exposure 
and modest changes in cells exposed to lapatinib, consistent with their effects on cell viability 
(Supplementary Figure 4A). Comparing drug-induced transcriptional responses revealed a 

https://paperpile.com/c/Ig6d4d/iZbQ
https://paperpile.com/c/Ig6d4d/sNSL
https://paperpile.com/c/Ig6d4d/qtF9
https://paperpile.com/c/Ig6d4d/ARkt
https://paperpile.com/c/Ig6d4d/k1rN
https://paperpile.com/c/Ig6d4d/yJOj
https://paperpile.com/c/Ig6d4d/7DckX
https://paperpile.com/c/Ig6d4d/rJTJ+bIV8
https://paperpile.com/c/Ig6d4d/bIV8
https://paperpile.com/c/Ig6d4d/WeXLm+tySxu+lnshV+u0Wi6
https://paperpile.com/c/Ig6d4d/Nj5U
https://paperpile.com/c/Ig6d4d/OFyz
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large overlap in the genes altered in the three lines when exposed to the FGFR/VEGFR/PDGFR 
family inhibitor nintedanib and trametinib or zstk474 (Supplementary Figure 6D-F), suggesting 
that RTKs of the FGFR/VEGFR/PDGFR families, are largely responsible for driving MEK and 
PI3K activity in these cell lines.  
 
We next sought kinases that were themselves altered at the RNA level in response to drug 
exposure, as these might potentiate regulation of the broader adaptive response. Hierarchical 
clustering of all differentially expressed genes identified modules of genes with similar dose-
dependent changes across our treatments (Figure 4A-C), including 156, 121, and 126 kinases 
whose expression was significantly altered in response to exposure in a cell line- and drug-
specific manner. Exposure of A172 and U87MG cells to nintedanib led to a pronounced increase 
in ERBB4 expression, whereas trametinib exposure led to a significant increase in ERBB4 in 
A172 (Supplementary Figure 6G). T98G did not display a significant increase in ERBB4 
expression upon exposure to trametinib, but we did observe a strong increase in EPHA5 
(Supplementary Figure 6G). Other kinases displayed similar responses to a given treatment 
across all cell lines. For example, exposure of GBM cell lines to trametinib resulted in a significant 
decrease in the expression of WEE1, a kinase that negatively regulates the mitotic kinase 
CDK1/CDC252 (Supplementary Figure 6G).  
 
To identify genes with a response to each drug shared across cell lines, we calculated the Jaccard 
index to investigate the number of genes shared between each drug-induced gene module across 
every pairwise set of cell lines (Supplementary Figure 6H-K). We identified two sets of genes 
with similar dynamics as a function of drug exposure across the 3 cell lines, one of which broadly 
increases with dose (“S1”), and another that decreases (“S2”) (Figure 4A-C, Figure 4D and 
Supplementary Figure 6L). The genes in these shared drug-induced modules also had largely 
concordant responses to RTK pathway inhibition in a panel of 4 patient-derived GBM lines, 
indicating they may constitute a core program of GBM transcriptional response to RTK pathway 
targeting53–55 (Supplementary Figure 6M-N, Supplementary Table 6).  
 
To assess the extent to which genes in the core adaptive program are known targets of cancer-
associated signaling pathways, we performed gene set enrichment analysis (GSA) (Figure 4E-
F). The downregulated S2 gene module was enriched for genes associated with the regulation of 
the cell cycle (Figure 4F), consistent with a decrease in pro-proliferative signaling downstream of 
RTK pathway inhibition. However, S1 and S2 genes did not neatly map onto gene sets known to 
be upregulated or downregulated in response to inhibiting the RTK pathway, respectively. For 
example, the down-regulated S2 module was enriched for genes that report on active KRAS and 
PI3K-AKT-MTOR signaling, with their decrease in expression suggesting a block of these 
pathways. In contrast, the up-regulated S1 module was enriched for genes associated with active 
mTORC1 signaling, which may report on the activation of a distinct subset of the mTORC1 
program (Figure 4D-E). Similarly, mixed results were obtained using the MSigDB oncogenic 
signatures gene set collection56,57, where modules displayed enrichment for gene sets that 
suggest activation and inactivation of different subsets of the RTK signaling pathway (Figure 4D-
E, right panels). To identify genes that may mediate an escape to RTK pathway inhibition, we 
further examined the list of genes that make up the S1 upregulated drug-induced module. This 

https://paperpile.com/c/Ig6d4d/PzYEy
https://paperpile.com/c/Ig6d4d/ZBycB+Y4rB3+uR3gF
https://paperpile.com/c/Ig6d4d/7Pz9n+dp818
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revealed inhibitor-induced increases in the expression of kinases central to activation of the RTK 
pathway, including the receptor tyrosine kinase EGFR, the cytoplasmic tyrosine kinase ABL1, the 
dual specificity kinase MAP2K1, which encodes the ERK activator MEK1, and the PI3K catalytic 
subunits PIK3C2A and PIK3C2B. Together, these observations are consistent with the induction 
of a complex drug and cell-line-specific adaptive, compensatory program with a shared core 
component that may mediate survival in response to RTK pathway inhibition. 
 
In order to identify kinases that are required for transcriptional adaptation in each cell line, we 
quantified how perturbation of each kinase alters the expression of the core adaptive gene 
modules. We used our pairwise transcriptome distance framework to identify kinases whose loss 
leads to a deviation in the drug-induced expression of S1 and S2, finding a significant effect due 
to perturbation of 55, 97, and 84 kinases in A172, T98G, and U87MG cells, respectively. We 
identified a high overlap between kinases that regulate the S1 and S2 gene modules in the 
absence of an interaction with drug (gene effects) or with a significant interaction between 
genotype and drug (gene x environment effects). In all, we identified 156 kinases whose 
perturbation altered compensatory program expression at the level of gene effect (Figure 5A, 
FDR < 5%, Supplementary Table 7) and 97 kinases that altered compensatory program 
expression with evidence of a gene x environment effect (Figure 5B, FDR < 5%, Supplementary 
Table 7). In contrast, comparing the list of kinase modulators within a given gene module revealed 
low overlap between kinases with significant gene and gene x environment effects (Figure 5C-
D).  
 
Across our set of kinase hits, we identified 42 kinases with a significant gene effect (Figure 5E) 
and 23 with a significant gene x environment effect (Figure 5F) in 2 or more GBM cell lines. 
Amongst hits, only CDK2 and TIE1 significantly affected the compensatory program across all 3 
GBM lines. CDK2 activity is critical for progression along the late-G1 and early-S phase of the cell 
cycle, is frequently overactivated in various cancers due to the upregulation of its binding partner 
cyclin E58, and contributes to adaptation to CDK4/6 inhibition59. TIE1 encodes an orphan receptor 
tyrosine kinase most frequently associated with endothelial cells and the regulation of 
angiogenesis by modulating the activity of the TIE2 RTK60. In cancer, TIE2 protein expression 
has been identified outside of the endothelial compartment and is positively correlated with 
increased tumor grade in glioma61. Moreover, TIE1 expression has been shown to induce 
resistance to chemotherapy in ovarian cancer by modulation the expression of DNA damage 
repair proteins through activation of the transcription factor KLF562. 
 
Amongst kinases with a significant interaction effect is BRD4 (Figure 5A), an epigenetic reader 
of histone acetylation and atypical kinase that phosphorylates the c-terminal domain of RNA 
polymerase II and serves as a master regulator of eukaryotic transcription63. Previous studies 
have shown that BRD4 activity mediates adaptive transcriptional resistance to MEK inhibition in 
triple-negative breast cancer21. Our results suggest that BRD4 serves a similar role in response 
to RTK pathway targeting in GBM cells.  
 
In all, the kinases required for compensation are involved in diverse cellular processes, including 
cell cycle progression (AURKA, AURKB, BUB1, PLK3, PLK4, VRK1, VRK2), ribosome maturation 

https://paperpile.com/c/Ig6d4d/Ha1I
https://paperpile.com/c/Ig6d4d/HVix
https://paperpile.com/c/Ig6d4d/gDbg
https://paperpile.com/c/Ig6d4d/p0f8
https://paperpile.com/c/Ig6d4d/fCxf
https://paperpile.com/c/Ig6d4d/0WAQz
https://paperpile.com/c/Ig6d4d/lnshV
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(RIOK2), cytoskeletal reorganization (CDC42BPA, CDC42BPB) and proliferative MAPK signaling 
(ALK, AKT2, BRAF, ERBB2, ERBB3, ERBB4, FGFR1, MAP4K1, MAPK3, SRC). Given the 
enrichment for cell cycle processes, we explored whether transcriptional changes upon targeting 
the RTK pathway are a consequence of accumulation at a particular cell cycle stage as opposed 
to a response to cellular stress. We observed a correlation between proliferation, G1/S, and G2/M 
scores in untreated cells and our signatures (Supplementary Figure 7A-B). However, exposing 
cells to RTK pathway inhibitors led to altered expression of these genes regardless of proliferation 
or inferred cell cycle stage (Supplementary Figure 7C-D), suggesting that the cell cycle stage, 
baseline RTK pathway activity, and possibly their interaction, can affect this adaptive 
compensatory program.   
 

sci-Plex-GxE identifies kinases required for transcriptional adaptation to targeted therapy. 

 
A major goal of our workflow is to define the genes required for escaping a therapy, which might 
then suggest targets for new combinatorial therapies with better efficacy. Therefore, we sought to 
recapitulate the effects of CRISPR-based knockdown on individual kinases using small 
molecules. We exposed cells to one of 23 compounds (Supplementary Table 8) targeting the 
activity of 16 kinase hits from our screen (AKT, ALK, ATM, RAF, CDK, CHEK, DDR, EIF2AK, 
FGFR, IKK [CHUK], MEK, PDGFR, PLK, RIPK, RPS6K families) prioritized from those that are 
hits in more than one cell line or for which related kinases are hits in one cell line (CHEK1, CHEK2) 
as well as those that are directly involved in RTK signaling (AKT). We also exposed cells to 3 
compounds targeting kinases in closely related pathways (ATR, CDC7, CDK4/6, MTOR) and 
small molecules that produce or are involved in response to genotoxic cell stress (temozolomide, 
doxorubicin, p53 activator) alone or in combination with the MEK inhibitor and potent inducer of 
the compensatory program trametinib (Figure 5B). After 72 hours, cells were harvested and 
unique conditions multiplexed using sci-Plex and subjected to sci3-RNA-seq capturing 213,404 
nuclei across single- and combinatorial- drug exposures (Supplementary Table 6).  
 
We first investigated the ability of each chemical in isolation to phenocopy the response to 
trametinib exposure. We performed a correlation analysis of the expression of genes in the 
adaptive program between cells treated with trametinib, the strongest inducer of these signatures, 
and compounds that had a measurable effect on trametinib-regulated transcription as 
monotherapy (defined as compounds with > 100 DEGs in two or more cell lines, FDR < 5%). 
Exposure to the CDK4/6 inhibitor palbociclib elicited the strongest “trametinib-like” response 
across all cell lines (Figure 6A, p < 0.05 and Pearson's rho > +/-0.2 and Supplementary Figure 
8A). The next highest trametinib-like responses were elicited by inhibition of the RTKs PDGFR 
(nintedanib) and FGFR (infigratinib) and the inhibition of its upstream regulator RAF (AZ628), 
although this varied by cell line (Figure 6A, Supplementary Figure 8B-D). Exposure to the dual 
CDC7/CDK9 inhibitor PHA767491 was strongly anti-correlated to the effects of trametinib 
exposure (Figure 6A). CDC7, or DBF4-dependent kinase (DDK), promotes replication initiation 
by phosphorylating the minichromosome maintenance (MCM) helicase complex65. CDK9 
complexes with cyclin T to form the positive transcriptional factor elongator (pTEFb) complex, a 
regulator of RNA polymerase II66. The role of CDK9 suggests the possibility that altered regulation 

https://paperpile.com/c/Ig6d4d/ucHh
https://paperpile.com/c/Ig6d4d/lpxZ
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of at least the subset of the program upregulated by exposure is a result of a non-specific effect 
on global transcription. However, the concomitant increase in the downregulated signature 
(Figure 6B) suggests that the observed effect of PHA767491 on drug-induced transcription is not 
due to a non-specific effect and may be due to additional roles for CDK9 in progression across 
the S phase of the cell cycle67,68. Although CDK9 is a hit in our screen, we cannot rule out that 
additional loss of CDC7 activity and its effect on the cell cycle do not contribute to this drug-
induced phenotype.  
 
We next sought to identify combinatorial exposures of drugs that could block the adaptive program 
induced by trametinib alone. We used quasi-poisson regression to model the effects of co-
exposure on each gene in the adaptive program. We then calculated the correlation of gene-level 
effects across all co-exposures, grouped combinatorial treatments by the similarity of 
transcriptional effects summarized across this correlation space, and visualized the results with 
UMAP (Figure 6C). We identified 4 groupings of combinatorial exposures, including those that 
differed by the extent of induction of the trametinib induced signature as defined as the correlation 
to trametinib exposure alone (Figure 6D-E).  
 
Response group 2 had the largest anti-correlated effect to trametinib exposure alone. Response 
group 2 was composed of co-exposures with AZD7762 (CHKi), BMS345541 (NF-kBi), doxorubicin 
(topoisomerase IIi), PHA767491 (CDC7/CDK9i), and volasertib (PLK1i) across all 3 cell lines and 
infigratinib (FGFRi) for 2 of the 3 cell lines and the group significantly attenuated induction of the 
compensatory program (Figure 6F, FDR < 1%). Response group 3, made up of co-exposures 
with GSK690693 (AKTi), MK2206 (AKTi), temsirolimus (MTORi), nintedanib (PDGFRi) in all 3 cell 
lines, and Nutlin3A (MDM2i) in 2 of 3 cell lines was also anti-correlated to trametinib exposure 
alone. However, the average effect of the response group on the aggregated expression of 
compensatory modules was not significantly different from trametinib alone. AKT and mTOR have 
previously been identified to enact compensatory signaling69, and this group may reflect modest 
blocks to the compensatory program that are not evident across the full signature. In A172 cells, 
we also found evidence that co-exposure with the RAF inhibitor AZ628 and the CDK4/6i 
palbociclib exacerbated the compensatory program (Figure 6G). This may have implications for 
the emergence of resistance to BRAF-mutated tumors treated with combinatorial MEK and RAF 
inhibition70–72.  
 
Interestingly, these differential responses to combinatorial inhibition could not be readily explained 
based on differential effects on viability. For example, trametinib co-exposure with palbociclib and 
PHA767491 had similar dose-dependent effects on viability despite opposing effects on 
compensatory program expression (Supplementary Figure 9). Our combined chemical and 
genetic perturbation screen defined a compensatory transcriptional response to MEK inhibition 
and identified kinases that significantly regulate the two gene modules that compose this program. 
Our chemical genomics approach validated the dependence of this program on CDK4/6 activity 
and demonstrated that the inhibition of several kinases, including CHK, CDC7/CDK9, FGFR, IKK, 
AKT, and mTOR interfered with the ability of GBM cells to mount this compensatory program 
(Figure 6H).  
 

https://paperpile.com/c/Ig6d4d/eBdX+xEBk
https://paperpile.com/c/Ig6d4d/ZYe8
https://paperpile.com/c/Ig6d4d/6Aeg+Up6t+nazu
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Discussion 

 
Defining the molecular basis by which individual genes alter the response to therapy has 
important implications for cancer treatment. The multiplexing ability afforded by single-cell 
screens is particularly well-suited to probe the large combinatorial space of genetic perturbations 
and drug treatments. Here, we introduce sci-Plex-GxE, a workflow for high throughput chemical 
genomic screens at single-cell resolution and demonstrate its capability to identify the genetic 
architecture that drives response to exposure by investigating the effect of the human protein 
kinome on the response of glioblastoma tumor cells to RTK pathway inhibition.  
 
The rapid advance of cancer genomics has identified genetic variants and mutations that provide 
cells with the capacity for malignant transformation and the acquisition of key phenotypes that 
define a tumorigenic cell state73. Genetic screens have arisen as a powerful means to identify 
cancer dependencies3,4,74 as well as regulators of toxicity in response to therapeutic exposure75. 
However, most of these screens report on a limited set of phenotypes (proliferation, viability) and 
cannot discern, for example, whether dependencies that similarly alter viability differentially 
induce unwanted secondary effects that result in the development of resistance.  
 
Perturb-seq approaches that combine CRISPR-based gene editing with a single-cell 
transcriptomic readout have been applied at genome-scale, defining the effect of perturbation of 
all genes on transcriptional networks11. Our recent development of multiplexing approaches that 
allow single-cell technologies to be used in high-throughput chemical transcriptomics screens and 
its combination with Perturb-seq provide an opportunity to understand how cancer cells respond 
to therapy at scale. Our sci-Plex-GxE platform for multiplex single-cell genetic and chemical 
perturbation screens remains sensitive to capturing both cell-expressing and exogenous tags that 
report on genetic perturbation (gRNA-containing transcripts) and chemical exposure (cell 
hashing). Coupled with our computational workflow, we efficiently prioritize genotypes that 
significantly shift drug-induced gene expression changes. 
 
To demonstrate the ability of our approach to identify the genetic requirements of the response to 
exposure, we applied sci-Plex-GxE to define the contribution of all kinases in the human protein 
kinome to the dynamic response of glioblastoma to the inhibition of 4 nodes in the RTK pathway, 
frequently overactivated in the disease. We identified diverse molecular changes in response to 
RTK pathway inhibition revealing many kinases whose loss significantly alters proliferative gene 
expression, suggesting an increased sensitivity to detect growth changes compared to bulk 
CRISPR screening. We identified two transcriptional modules whose expression changes are 
conserved across cell lines screened, which we posit are part of one conserved transcriptional 
program. This program is associated with changes in the expression of components of the RTK 
pathway, including evidence of adaptive resistance characterized by increased expression of 
genes that can activate or bypass RTK signaling. Our genetic screen identified kinases whose 
loss altered the induction of this resistance program. We used a chemical genomic approach to 
validate the contribution of a subset of these kinases to the regulation of this adaptive program. 
We identified compounds targeting cellular activities that can positively (CDK4/6i, FGFRi, 

https://paperpile.com/c/Ig6d4d/x3tf
https://paperpile.com/c/Ig6d4d/qFSD+uFBo+CwK5
https://paperpile.com/c/Ig6d4d/u0nF
https://paperpile.com/c/Ig6d4d/8nbXH
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PDGFRi, RAFi) and negatively (AKTi, IKKi, CDK2, CDC7/CDK9i) modulate this transcriptional 
adaptation in isolation (Figure 6H, top panel). In addition, we identified compounds that 
significantly modulate the induction of this adaptive program after its activation via trametinib 
exposure. In particular, we find that combinatorial inhibition of MEK kinase and either of AKT, 
CDK2, CDC7/CDK9, FGFR, MTOR, MDM2, NF-kB, and PLK signaling can block the induction of 
the core adaptive transcriptional program in GBM cells (Figure 6H, bottom panel). These 
combinations may be promising combinatorial therapies that minimize unwanted resistance-
associated changes in response to MEKi monotherapy. However, our study is limited to the 
prioritization of inhibitor combinations based on a desired transcriptional effect. In-depth 
biochemical and in vivo functional characterization are necessary to confirm the ability of 
combinatorial exposures to increase efficacy.  
 
Interestingly, our validation experiment targeting FGFR activity had opposing effects as mono or 
combination therapy, which may highlight context dependence of transcriptional adaptation in 
GBM. We also observe a confounding response to the targeting of CHK and MDM2 activity. CHK 
kinases are master regulators of the response to DNA damage and activate the p53 transcription 
factor to enact cell cycle arrest or apoptotic cell fates. MDM2 is a negative regulator of p53 protein 
levels, and its inhibition stabilizes p53 in the cell. Despite CHK and MDM2 inhibition having 
opposing effects on p53 activity, both exposures led to a block in the induction of trametinib-
induced compensatory transcription. p53 is known to negatively regulate CHK1 expression76; 
therefore, our results may be explained by both exposures leading to a decrease in CHK activity 
in the cell.         
 
The work presented here constitutes a new approach to prioritize combinatorial therapies based 
on their induction of gene expression programs of interest. sci-Plex-GxE has the potential to 
complement existing drug discovery pipelines, prioritizing anti-tumor therapies that not only lead 
to desired anti-proliferative or pro-apoptotic effects but also minimize the possibility of therapeutic 
resistance. Scrutiny of transcriptional adaptation and its context-dependent genetic requirements 
could also reveal modules of important genes (e.g., immune checkpoint, antigen processing and 
presentation machinery) that are modified by anti-cancer therapy and, therefore, highlight 
opportunities for combinatorial treatment.  
 
The sci-Plex-GxE platform is highly flexible to user needs and sequencing budgets. It can be 
applied to probe the effect of a limited number of genotypes on the response to many chemical 
exposures or scaled genome-wide with only moderate increases in the costs of generating single-
cell mRNA libraries (less than 1 cent per cell). Moreover, our approach has significantly lower 
multiplet (doublet) rates (less than 1%) compared to most commercial approaches and has the 
capacity for highly efficient multiplexing of genetic perturbations and applied exposures. 
Combined with recent developments and decreases in the cost of library generation for single-
cell combinatorial indexing RNA-seq77,78, our sci-Plex-GxE approach dramatically increases the 
ability of researchers to profile large combinatorial spaces. 

https://paperpile.com/c/Ig6d4d/NDJa
https://paperpile.com/c/Ig6d4d/Sxf8+qzjX


15 

Limitations of our study 

Our kinome-wide single-cell genetic screen aims to define the genetic dependence of the 
transcriptional response to kinase-directed therapy. However, our approach cannot fully account 
for nodes that mediate response to therapy where redundancy in kinase signaling exists. 
Incorporation of multiplex editing techniques such as those used for paralog screens79 and genetic 
interaction screens80 could reveal such instances of redundancy. Extending our platform to 
patient-derived models could identify additional transcriptional programs of physiological 
importance. Even with an expanded compendium of genotypes probed and responses profiled, 
our RNA readout does not capture all changes that occur as cells respond to inhibition. However, 
our approach could be used to identify general genotype/response relationships prioritized for in-
depth analysis and integration with additional -omic modalities81,82. Although the majority of 
inhibitors tested are in direct clinical use, we acknowledge that our results are dependent on the 
exact chemical means of inhibition, and a drug’s precise polypharmacology83,84 could alter the 
induction of drug-induced programs. Lastly, our approach to annotating transcriptional differences 
may not be sensitive enough to identify subtle drug-induced programs. However, future 
endeavors can leverage the scale of our dataset for the training of deep learning models85–87 that 
could extract additional biological insight.  

https://paperpile.com/c/Ig6d4d/90ld
https://paperpile.com/c/Ig6d4d/uUg0
https://paperpile.com/c/Ig6d4d/axfu+Q5eI
https://paperpile.com/c/Ig6d4d/aAR6+mtrp
https://paperpile.com/c/Ig6d4d/mad8+ZGmr+Eq55
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Main Figure Titles and Legends 

Figure 1: sci-Plex-GxE couples genetic and perturbation screens with high sensitivity and 
specificity. A) sci-Plex-GxE workflow including targeted enrichment of CROP-seq derived gRNA 
containing transcripts. B) Concordance between CRISPRi and CRISPRa gRNA assignments 
derived from hashes added to individually labeled CRIPSRi and CRIPSRa pools (hash CRISPR 
assignment) and the sequence of captured gRNAs (gRNA CRISPR assignment). C/D) Percent of 
cells expressing HPRT1 and CRISPRi (knockdown) (C) or CRISPRa (overexpression) (D) 
systems and gRNAs targeting HPRT1 or NTC controls. E) Relationship between 6-thioguanine 
exposure, HPRT1 activity and cell death. F) Aggregate expression of genes associated with 
proliferation in NTC and HPRT1 knockdown cells after exposure to 6-thioguanine. 
 
Figure 2: Defining the relationship between genotypes and summarizing the magnitude of 
the perturbation after combined genetic and chemical perturbation. A) Mechanism of TMZ-
induced mismatch repair dependent O6-methyguanine toxicity. B-C) Heatmaps depicting 
CDKN1A expression levels (B) or the aggregate expression of genes associated with proliferation 
(C) as a function of perturbation via CRISPRi-mediated knockdown and exposure to TMZ. D) Left: 
Heatmap depicting the aggregate expression of gene modules derived from genes that are 
differentially expressed as a function of genotype in high dose (10, 50, and 100 µM) TMZ-exposed 
and genetically perturbed cells. Right: Enriched MSigDB Hallmarks gene sets for gene modules 
in the experiment.  E/F) UMAP embedding of the proportions of cells expressing individual gRNAs 
(E) or gRNAs against the labeled target (F) across clusters in our experiment. G) Expected 
decrease in pairwise transcriptome distance as cells enact a transcriptional response and cell 
cycle arrest after TMZ exposure. H) Violin plots depicting the pairwise transcriptome distance of 
every cell to the mean expression of NTC cells exposed to 100 µM TMZ for all genotypes exposed 
to increasing doses of TMZ (**** p < 0.0001, *** p < 0.001, ns - not significant, one-way Anova). 
I) Inferred transcriptional effective concentration (TC50) defined as the concentration of drug 
necessary to reach 50% of the change in pairwise transcriptome distance exhibited by TMZ-
exposed NTC cells. Dashed line: maximum molarity of an aqueous solution as a threshold for 
genotypes where the drug cannot induce the effect observed in NTC. Insert excludes MSH2 and 
MSH6. Error bars: 95% confidence intervals across 1,000 bootstraps. 
 
Figure 3: A single-cell kinome targeting genetic screen identifies subtle effects of 
perturbation on proliferation-associated gene expression. A) sci-Plex-GxE screen to 
determine the contribution of the kinome to the transcriptional response of glioblastoma cells to 
RTK pathway targeted therapies. B) Median knockdown level across the cell lines in our screen 
as a function of sgRNA assignment (real) or a random permutation of sgRNA assignment labels 
(random) (Wilcoxon rank sum test). C) Hierarchical clustering of β coefficients for the term from a 
quasi-poisson regression model describing the interaction between drug treatment and kinase 
perturbation on the aggregate expression of proliferation-associated genes. Includes kinase 
perturbations with a significant interaction term in response to at least one treatment in one cell 
line (Wald test, FDR < 5%). D) Heatmap depicting the mean aggregate expression of proliferation-
associated genes for proliferation perturbing and controls genotypes from C. For each genotype, 
values were centered on the mean value of untreated cells. Genotypes with more than 5 cells at 
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top doses are shown. Red annotation bar highlights non-targeting and random targeting control 
genotypes. E/F) Violin plots depicting the aggregate expression of proliferation-associated genes 
for select drugs and proliferation perturbing genotypes from C/D.   
 
Figure 4: Exposure to small molecules targeting the RTK pathway drives changes in gene 
expression, including dynamic alterations in kinase expression. A-C) Heatmaps depicting 
the average expression of genes that are dynamic as a function of exposure to at least 1 of 4 
small molecules targeting the RTK pathway in A172 (A), T98G (B) and U87MG (C) cells (FDR < 
5%). Right panels: Aggregate gene expression across clusters for gene clusters to the left for 
A172 (A), T98G (B), and U87MG (C) cells. Colors: individual drug treatments. D) UMAP 
embeddings of unperturbed A172 (top), T98G (middle), and U87MG (bottom) cells colored by 
treatment, dose, proliferation index, or aggregate scores for the conserved upregulated S1 or 
downregulated S2 signatures. Arrows denote the dynamics of S1 and S2 signature expression 
as a function of RTK pathway inhibition. E-F) Gene set enrichment analysis using the MSigDB 
hallmark, and oncogenic signatures gene set collections of signatures that increase (E. S1) or 
decrease (F. S2) as a function of drug exposure with RTK targeted therapy. 
 
Figure 5: Perturbation of individual kinases alters the global transcriptional response to 
RTK pathway targeting small molecules. A-B) Venn diagram of the overlap between kinases 
whose knockdown leads to a significant shift in the S1 or S2 signatures of the putative adaptive 
program without (A) or with (B) a significant interaction effect. C-D) Venn diagram of the overlap 
between kinases whose knockdown leads to a significant shift in the expression of the S1 (C) or 
S2 (D) signatures without or with a significant interaction effect. E-F) Human protein kinome tree, 
adapted from CORAL64, highlighting kinases whose knockdown leads to a significant shift in the 
expression of a putative adaptive program without (E) or with (F) a significant interaction effect 
with drug exposure. The size and color of each circle denote whether we identified a significant 
effect in 1, 2, or all GBM cell lines (FDR < 5%). 
 
Figure 6: Single and combinatorial kinase inhibition identifies chemical regulators of MEK 
inhibition-dependent dynamic expression changes. A) Circos heatmap of the correlation of 
the response to single drug exposures to the compensatory program enacted by MEK inhibition 
with trametinib. Pearson’s correlation coefficient between vectors of normalized effect estimates 
(βcoefficients) for the effect of drug on genes in the adaptive program. Significant correlations (FDR 
< 5%) with a Pearson’s ⍴ ±0.2 are shown. B) Density plots of upregulated and downregulated 
signatures for T98G cells treated with the MEK inhibitor trametinib (MEKi), the CDK4/6 inhibitor 
palbociclib (CDK4/6i) or the CDC7 inhibitor PHA-767491 (CDC7i). Red vertical lines: mean 
signature expression of vehicle-exposed cells. *FDR < 5%. C) UMAP embeddings of the pair-
wise correlation of combinatorial trametinib exposures across genes that compose the 
compensatory program enacted by RTK pathway inhibition. Shapes refer to individual cell lines. 
Pearson’s ⍴trametinib relates to the Pearson’s correlation coefficient across aggregated expression 
scores for the specified drug treatment and trametinib exposure. D) UMAP as in C, colored by the 
correlation of each combinatorial exposure to exposure with trametinib alone. E) UMAP as in C 
colored by response group clusters identified by Leiden-based community detection. F) Boxplots 
of the expression of signatures that make up the compensatory program. Values for each 

https://paperpile.com/c/Ig6d4d/SLNJA
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combinatorial exposure are centered on the response of cells to trametinib alone, such that 
combinations that increase signature expression relative to trametinib are positive and vice-versa 
for those that decrease signature expression relative to trametinib. G) Density plots of upregulated 
signature scores of GBM cells treated with the MEK inhibitor trametinib (MEKi) alone or in 
combination with the RAF inhibitor AZ628, the AKT inhibitor GSK690693, the NF-kB inhibitor 
BMS345541, and the dual CDC7/CDK9 inhibitor PHA767491. Plots ordered by the effect of 
treatment on the signature. H) Pathway summary of proteins whose targeting alone (top) or in 
combination with MEK inhibition (bottom) blocks (blue) or exacerbates (red) the compensatory 
program enacted by MEK kinase inhibition.  
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Star Methods 

RESOURCE AVAILABILITY 
 
Further information and requests for resources and reagents should be directed to and will be 
fulfilled by the lead contact, José L. McFaline-Figueroa (jm5200@columbia.edu). 

MATERIALS AVAILABILITY 
 
This study did not generate new unique reagents.  

DATA AND CODE AVAILABILITY 
 

• All processed and raw data are available for download from the National Center for 
Biotechnology Information (NCBI) Gene expression omnibus (GEO) under series number 
GSE225775.  

• All code used to reproduce the presented analyses is available on github at 
https://github.com/cole-trapnell-lab/sci-Plex-GxE and released in Zenodo as v1.0.0 at 
http://doi.org/10.5281/zenodo.10293222.  

• Additional information required to analyze the data in this paper are available from the 
lead contact upon request. 

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS 

Cell lines and cell culture 
 
A172, T98G, and U87MG glioblastoma cell lines were purchased from ATCC. Cells were cultured 
in DMEM media (ThermoScientific) supplemented with 10% fetal bovine serum and 1% 
penicillin/streptomycin (P/S, ThermoScientific). GBM4, GBM8, GSC0131, and GSC0827 glioma 
stem cell (GSC) cultures have been previously described53,88,89 and were provided by Drs. Robert 
Rostomily and Andrei Mikheev, University of Washington and Houston Methodist Hospital (GBM4 
and GBM8) and Dr. Patrick Paddison, Fred Hutchinson Cancer Research Center (GSC0131 and 
GSC0827). GSC cultures were maintained in a defined serum-free medium at 37C and 5% O2 to 
mimic in vivo conditions. GBM4 and GBM8 were cultured in Neurobasal medium 
(ThermoScientific) supplemented with B-27 and N2 (ThermoScientific), 20 ng/mL EGF 
(PeproTech), 20 ng/mL FGF (PeproTech) and 5 µg/mL heparin (Sigma).  GSC0131 and 
GSC0827 were cultured in Neurocult medium (StemCell Technologies) supplemented with 20 
ng/mL EGF (PeproTech), 20 ng/mL FGF (PeproTech), and 0.8 µg/mL heparin (Sigma). All 
cultures were negative for Mycoplasma contamination. 

METHOD DETAILS 

Expression of CRISPRi/a systems 

mailto:jm5200@columbia.edu
https://github.com/cole-trapnell-lab/sci-Plex-GxE
https://doi.org/10.5281/zenodo.10293222
https://paperpile.com/c/Ig6d4d/ZBycB+MRVX+B1Ae
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For the generation of CRISPRi-mediated knockdown cells, lentiviral particles encoding dCas9-
BFP-KRAB were generated by transfecting HEK293T cells with plasmids encoding dCas9-BFP-
KRAB (pHR-SFFV-dCas9-BFP-KRAB, Addgene 46911) and the ViraPower lentiviral packaging 
mix (ThermoScientific). Transfection was performed using lipofectamine 2000 (ThermoScientific) 
in OptiMEM (ThermoScientific) following the forward transfection protocol provided by the 
manufacturer scaled up to 15 cm dishes. 72 hours post-transfection, media was collected and 
filtered using a 50 mL 0.22 µm steriflip filtration system. A172, T98G, and U87MG cells were then 
transduced by culturing for 48 hours with different amounts of the filtered lentiviral supernatant. 
Cells were then expanded, analyzed and sorted using fluorescent activated cell sorting (FACS) 
for cells with the highest amount of BFP fluorescence starting from transductions with an MOI 
~0.3. To arrive at pure populations of cells with similar levels of dCas9-KRAB cells were expanded 
and sorted 4 times. For the generation of CRISPRa-mediated overexpression cells we used the 
2-component dCas9-SunTag system [citation], a filtered lentiviral supernatant carrying a payload 
of dCas9-GCN4-BFP (pHRdSV40-dCas9-10xGCN4_v4-P2A-BFP, Addgene 60903) or scFV-
GCN4-GFP-VP64 (pHRdSV40-scFv-GCN4-sfGFP-VP64-GB1-NLS, Addgene 60904) were 
generated as described above. Glioblastoma cells were simultaneously transduced with dCas9-
GCN4-BFP at an MOI ~0.3 and with scFV-GCN4-GFP-VP64 at an MOI ~1. Cells were expanded, 
and FACS sorted a total of 4 times based on BFP and GFP fluorescence to ensure maximal and 
similar expression across cells. 

Generation of CROP-seq-OPTI gRNA libraries 
 
Protospacer sequences targeting all of the perturbed genes in this study were obtained from the 
genome-wide human CRISPRi and CRISPRa version 2 libraries designed by Horlbeck and 
colleagues25.  Oligonucleotides containing these sequences and flanked with adapters with  
homology to a CROP-seq vector that we have previously altered23 to contain a CRIPSRi optimized 
guide RNA backbone90 (CROP-seq-OPTI, Addgene 106280) were synthesized individually for 
experiments related to Fig. 1-2 (IDT) and pooled or as a  pooled oligo array (CustomArray Inc. 
Bothell, WA) for our kinome screen. Specifically, 3,165 sgRNAs targeting 522 kinases, with five 
sgRNAs targeting each transcription start site (of which there may be more than one per kinase 
gene) or non-targeting and random targeting controls. 
  
5‘ homology sequence: 
5’-ATCTTGTGGAAAGGACGAAACACC-3’ 
  
3’ homology sequence: 
5’-GGGTTTAAGAGCTATGCTGGAAACAGCATAGCAAGT-3’ 
  
Prior to Gibson assembly, pooled oligonucleotides were amplified via PCR using NEBNext 2X Hi-
Fi PCR Master Mix (NEB) and primers: 
  
Forward primer: 
5’-ATCTTGTGGAAAGGACGAAACACCG’3’ 
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Reverse primer: 
5’-GCTATGCTGTTTCCAGCATAGCTCTTAAAC-3’ 
  
Amplification was followed on a MiniOpticon real-time PCR system (BioRad) with the addition of 
SYBR green (Invitrogen), and reactions stopped prior to saturation. Amplified oligonucleotides 
were purified using the NucleoSpin PCR clean-up and gel extraction kit (Takara Bio). CROP-seq-
opti was linearized via digestion with BsmBI and alkaline phosphatase (NEB) with PCR clean up 
in between both digestions, purified via gel extraction from a 1% agarose gel followed by cleanup 
using the NucleoSpin PCR clean up and gel extraction kit (Takara Bio). Linearized CROP-seq-
optiI and amplified oligonucleotides were assembled using the NEBuilder HiFi DNA assembly 
cloning kit (NEB) with the inserts at 2-fold molar excess followed by multiple transformations into 
NEB stable competent E. Coli (NEB) to ensure at least 20x coverage of colonies for every sgRNA, 
transformations combined and cultured in 50 mL of Luria broth containing ampicillin at 30°C for 
24 hours. Plasmid libraries were recovered using a Midi prep kit (Qiagen). Lentiviral libraries were 
generated in HEK293T by transfection of plasmid libraries using lipofectamine 2000 
(ThermoScientific) in OptiMEM (ThermoScientific) following the forward transfection protocol 
provided by the manufacturer scaled up to 15 cm dishes. 72 hours post-transfection, media was 
collected and filtered using a 50 mL 0.22 µm steriflip filtration system. Viral supernatant was titered 
for each cell line (A172, T98G, and U87MG) by transduction with varying amounts of lentiviral 
supernatant for 72 hours in 6-well plates.  After this, cells were split 1:4 into media with and without 
1 µg/mL of puromycin, cultured for 96 hours, and the approximate MOI calculated. For our 
screens, 3 x 106 cells in 10 cm tissue culture dishes were transduced with lentiviral libraries at an 
approximate MOI of 0.1 to ensure single integrations. 72 hours post-transduction cells were 
transferred to two 15 cm tissue culture dishes containing 1 µg/mL of puromycin and continuously 
cultured in puromycin. Cells were seeded for chemical exposure between 10 to 14 days after 
transduction. 

Chemical exposure of genetically perturbed cell pools 
 
Temozolomide (cat no. T2577) and 6-thioguanine (cat no. A4882) were purchased from Sigma 
and resuspended in DMSO (VWR scientific) to a concentration of 100 mM. Lapatinib (cat no. 
S2111), nintedanib (cat no. S1010), trametinib (cat no. S2673), and zstk474 (cat no. S1072) were 
purchased from Selleck Chemicals at a concentration of 10 mM in DMSO. Genetically perturbed 
pools of glioblastoma cells were seeded in 96-well plates at 2.5 x104 cells per well in 100 µL of 
DMEM containing 10% FBS, 1% P/S, and 1 µg/mL puromycin and allowed to attach for 24 hours. 
Small molecules were diluted to 1000-fold the exposure concentration in DMSO, followed by a 
10-fold dilution into Dubelcco’s Phosphate buffered saline (DPBS, Life Technologies) and 1 µL 
added of the appropriate drug and dose to wells of seeded cells and a final concentration of 0.1% 
v/v DMSO. For temozolomide and 6-thioguanine exposure experiments, cells were exposed for 
96 hours. For lapatinib, nintedanib, trametinib and zstk474 experiments, cells were exposed for 
72 hours. 

sci-Plex cell harvest and hash labeling 
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Cell harvest and sci-Plex labeling were performed as previously described13. Briefly, drug-
containing media was removed from wells, wells were washed with 100 µL of DBPS, and 50 µL 
of TrypLE (Invitrogen) was added to every well. Cells were detached by incubation with TrypLE 
at 37°C. Once cells were detached, 100 µL of ice-cold DMEM was added to every well, cells 
resuspended, cells transferred to v-bottom 96 well plates, cells pelleted by centrifugation and 
washed with ice-cold DPBS. Cells were lysed to nuclei by the addition of 50 µL of cold lysis buffer 
(CLB: 10 mM Tris HCl ph 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGE-PAL) containing 1% v/v 
Superase-In and 100 nM (final concentration) hashing oligos (each unique to each well) of the 
form: 
  
5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-[10bp-barcode]- 
BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’ 
  
Where B is G, C or T (IDT), lysis was carried out on ice for 3 minutes, followed by the addition of 
200 µM of 5% paraformaldehyde (EM solutions) in 1.25x PBS and incubated on ice for 15 minutes. 
Nuclei were then pooled, pelleted by centrifugation, and washed twice with 2 mL of CLB 
containing Superase-In and 1% v/v of 20 mg/mL molecular grade BSA (NEB). After the final wash, 
nuclei were resuspended in 1 mL of CLB containing Superase-In and 1% v/v of 20 mg/mL 
molecular grade BSA and snap-frozen in liquid nitrogen. Labeled nuclei were stored at -80°C until 
the preparation of sequencing libraries. 

Preparation and sequencing of single-cell RNA-seq and CROP-seq-OPTI sgRNA enrichment 
libraries 
 
Flash-frozen nuclei were thawed at room temperature, nuclei pelleted by centrifugation at 500 x 
g for 5 minutes, the supernatant removed, nuclei re-suspended in 1 mL of CLB containing 1% v/v 
Superase-In and 1% v/v of 20 mg/mL molecular grade BSA (NSB) and nuclei from uniquely 
hashed samples were pooled. Pooled nuclei were then pelleted by centrifugation at 500 x g for 5 
minutes. For a subset of experiments, the same hashes were used for different replicates and/or 
cell lines. As such, these were not combined and distributed across unique wells of the plate in 
which reverse transcription (RT) was performed (e.g. for cells exposed to inhibitors and damaging 
agents that alter cell stress pathways each line was hashed separately, and each cell line arrayed 
across 4 columns of the 96-well RT plate). Prior to RT, nuclei were further permeabilized by 
incubation in 0.2% tryton-X100 (Sigma) in NSB. Nuclei were pelleted, resuspended in 400 µL of 
NSB, and sonicated for 12 seconds using the low setting on a Bioruptor sonicator (Diagenode). 
Nuclei were then pelleted, resuspended in 500 µL NSB, stained with trypan blue (Life 
Technologies), and counted on a hemocytometer. Nuclei distributed into skirted lo-bind 96 well 
plates (Eppendorf) at 20,000 (related to figures 1 & 2) or 40,000 nuclei per well in 22 µL of NSB 
and 2 µL of 10 mM dNTP mix (NEB).  
 
To increase our rate of sgRNA assignment, we devised a sgRNA enrichment strategy specific to 
combinatorial indexing sci-RNA-seq that relies on (1) the addition of a custom RT primer targeting 
the sgRNA-containing puromycin transcript delivered by CROP-seq, (2) performing combinatorial 

https://paperpile.com/c/Ig6d4d/wn51
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indexing solely on the i5 end of the mRNA molecule, and (3) addition of a sgRNA enrichment 
PCR from the final mRNA library which targets the sgRNA-containing puromycin transcript while 
maintaining the combinatorial i5 cell barcode on every molecule (Fig. 1A). We designed the 
targeted RT primer to capture transcripts derived from CROP-seq-OPTI 23, a modified version of 
CROP-seq incorporating an optimized single-guide RNA backbone 90 that increases the stability 
of sgRNA association with dCas9.  
 
For our sci-Plex-GxE protocol, RT was performed as previously described13 with the addition of 2 
µL of 100 µM ligation-compatible indexed oligo-dT primer of the form: 
  
5′-/5Phos/CAGAGCNNNNNNNN-[10bp-barcode]-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-3′, 
  
Where N is any base (IDT) and 1 µL of 100 µM ligation compatible indexed CROP-seq-OPTI 
targeting primer of the form 
  
5’-/5Phos/CAGAGCNNNNNNNN-[10bp-barcode]-
ACTTTTTCAAGTTGATAACGGACTAGCCTTATTT-3’ 
  
Where N is any base (IDT) that were added to every well. The use of the OPTI-modified backbone 
necessitated additional considerations for the design of the targeted RT primer to ensure that the 
hairpin that mediates strong binding to dCas9 does not interfere with the efficiency of reverse 
transcription. Primers were annealed by incubation at 55°C for 5 minutes, followed quickly by 
incubation on ice. 14 µL of RT mix (8 µL of Superscript IV buffer, 2 µL of Superscript IV enzyme, 
2 µL of 100 mM DTT and 2 µL of RNAseOut rnase inhibitor, Invitrogen) were added to each well, 
and RT performed as follows: 4°C - 2 min, 10°C - 2 min, 20°C for 2 minutes, 30°C for 2 minutes, 
40°C for 2 minutes, 50°C for 2 minutes and 55°C for 15 minutes. After RT, 60 µL of CLB containing 
1% v/v of 20 mg/mL molecular grade BSA (NBB) were added to every well, wells pooled, nuclei 
pelleted, resuspended in NSB and 10 µL of nuclei were redistributed into each well of a 96 well 
Lo-bind skirted plates. All experiments were done using a single RT and ligation plate with the 
exception of the kinome screen where 4 RT and 4 ligation plates were used. For the second round 
of combinatorial indexing, 8 µL of indexed ligation primer of the form 
  
5’-GCTCTG[9bp-or-10bp-barcode-A]/ideoxyU/ACGACGCTCTTCCGATCT[reverse-
complement-of barcode-A]-3’ 
  
(IDT) were added to each well, followed by the addition of 22 µL of ligation mix (20 µL quick ligase 
buffer and 2 µL of quick ligase, NEB) and incubation at 25°C for 10 minutes. After ligation 60 µL 
of NBB were added to each well, wells pooled, nuclei pelleted by centrifugation at 700 x g for 10 
minutes, washed twice with NBB, nuclei counted, and redistributed into 96 well Lo-bind skirted 
plates. The number of cells distributed was determined by the number of RT and ligation barcodes 
in the experiment so as to minimize the number of total doublets in the experiment to between 1-
10% and the rate of doublets that cannot be filtered from sci-Plex hashes to 1% or less according 
to birthday problem statistics91. Plates were stored at -80°C until further processing. Second 
strand synthesis was performed after thawing by the addition of 5 µL of second strand synthesis 
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mix (3 µL of elution buffer [Qiagen], 1.33 µL mRNA second strand synthesis buffer and 0.66 µL 
of second strand synthesis enzyme mix [NEB]) and incubated at 16°C for 3 hours. After second 
strand synthesis, DNA was tagmented by the addition of 10 µL of tagmentation mix (0.01 µL of a 
custom TDE1 enzyme in 9.99 µL of 2x Nexterda TD buffer, Illumina) and plates incubated at 55°C 
for 5 minutes. After tagmentation, 20 µL of DNA binding buffer (Zymo) was added to each well 
and incubated at room temperature for 20 minutes, 40 µL of Ampure XP beads (Beckman Coulter) 
was added to every well, and a cleanup was performed according to manufacturer’s instructions 
with changes to the elution step. Prior to elution, beads were incubated with 10 µL of USER mix 
(1 µL of 10X USER buffer and 1 µL of USER enzyme in 8 µL of nuclease-free water, NEB) and 
incubated at 37°C for 15 minutes. After incubation, 7 µL of elution buffer was added to each well, 
beads were resuspended, plates were placed on a magnetic stand and 16 µL of solution was 
transferred to 96 well Lo-bind skirted plates. For PCR, 20 µL of 2X NEBNext master mix, 2 µL of 
10 µM indexed P5 primer of the form: 
  
5′-AATGATACGGCGACCACCGAGATCTACAC-[index5]-
ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3′ 
  
and 2 µL of 10 µM indexed P7 primer of the form: 
  
5′-CAAGCAGAAGACGGCATACGAGAT-[index7]-GTCTCGTGGGCTCGG-3′ 
  
were added to each well. To account for the loss of the P7 index during sgRNA enrichment PCR, 
each PCR plate was labeled with 96 unique P5 indices, and the P7 index was used as a plate 
identifier. Libraries were generated using the following PCR program: 72°C for 5 min, 98°C for 30 
sec, 15 cycles of (98°C for 10 sec, 66°C for 30 sec, 72°C for 30 sec), and a final extension at 72C 
for 5 minutes. After PCR, uniquely labeled wells were pooled, and 1 mL of PCR product was 
subjected to a 0.7X Ampure cleanup. After the initial incubation, the supernatant was transferred 
to a new tube, and additional beads were added to arrive at a 1X Ampure cleanup which will be 
the hash-containing fraction. Both fractions were further processed following the standard Ampure 
XP protocol and eluted in 100 µL of elution buffer.  
 
For the enrichment of sgRNA containing library fragments, a separate sgRNA enrichment PCR 
was performed via nested PCR using the final sci-RNA-seq3 libraries as starting material. For 
each library, 10-20 unique reactions were performed each using 1:100th of the mRNA library in a 
reaction containing 25 µL of 2X NEBNext master mix an up-stream U6 targeting forward primer 
of the form 5′-CTTGTGGAAAGGACGAAACACCG-3′, a reverse primer targeting the P5 flow cell 
binding sequence (5′-AATGATACGGCGACCACCGA-3′), 0.5 µL of SYBR green (Life 
Technologies) and nuclease-free water. Amplification was monitored by real-time PCR (BioRad), 
PCR terminated during the extension phase just prior to saturation, PCR was purified using a 1X 
Ampure XP cleanup, and eluted into 50 µL. A second PCR reaction was performed as described 
above with the following forward primer targeting the sgRNA proximal U6 promoter and containing 
an Illumina read 2 primers binding sequence (5′- 
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTTGTGGAAAGGACGAAACACCG-3′) 
and reverse primer targeting the P5 flow cell binding sequence followed by a 1X Ampure cleanup. 
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Finally, a third PCR was performed using a P7 index as above that could be used to link an mRNA 
library to its corresponding sgRNA enrichment library and the reverse primer targeting the P5 flow 
cell binding sequence followed by a 1X Ampure cleanup. 
  
Library fragment sizes were determined using an Agilent TapeStation high sensitivity screen tape 
(Agilent) and library concentration determined using a Qubit fluorometer (Life Technologies). 
Libraries were sequenced on the NextSeq 550 (R1: 34 bp, R2: 100 bp, I1: 10 bp, I2: 10 bp), 
Nextseq 2000 (R1: 34 bp, R2: 70 bp, I1: 10 bp, I2: 10 bp) and Novaseq (R1: 34 bp, R2: 100 bp, 
I1: 10 bp, I2: 10 bp) platforms. 

Data processing and generation of count data matrix 
 
Sequences were demultiplexed using bcl2fastq (Illumina) filtering for reads with RT and ligation 
barcodes within an edit distance of 2 bp. PolyA tails were trimmed using trim-galore 
(https://github.com/FelixKrueger/TrimGalore) and reads were mapped to the human hg-38 
transcriptome using STAR92. After alignment, reads were filtered by alignment quality and 
duplicates were removed if they mapped to the same gene, the same barcode and the same 
unique molecular identifier (UMI) or if they met the first 2 criteria and the UMI was within an edit 
distance of 1 bp. Reads were assigned to genes using bedtools93. 3’ UTRs were extended by 100 
bp in the gene model to account for short 3’ UTR annotations to minimize genic reads labeled as 
intergenic. A knee plot was used to set a threshold above which a combinatorial cell barcode 
confidently corresponded to a cell. UMI counts for cell barcodes that pass this threshold were 
aggregated into a sparse matrix format, followed by the creation of a cell data set object using 
Monocle3. Mitochrondrially encoded genes were excluded in downstream analyses.        

Hash and sgRNA assignment  
sci-Plex hashes and sgRNA containing puromycin transcripts derived from CROP-seq were 
isolated from demultiplexed reads. Hashes were assigned as previously described 13. Briefly, 
reads were considered hashes if (1) the first 10 bp of read 2 matched a hash in a hash whitelist 
within a hamming distance of 2 and (2) contained a poly A stratched spanning the 12-16 base 
pair region of read 2. For sgRNA assignment, read were considered CROP-seq derived if the 
bases spanning position 24-42 matched a sgRNA in a sgRNA whitelist within a hamming distance 
of 2 and (2) a TGTGG sequence at position 3-7 of read 2. Duplicated reads were collapsed by 
their UMIs arriving at hash and sgRNA UMI counts for each nucleus in our experiment. Finally, 
we tested whether a particular nucleus was enriched for one or more hash or sgRNA as described 
in 13 for sci-Plex hashes.  

Data pre-processing 
 
For our kinome screen, multiplets were removed from our experiments using 3 orthogonal 
approaches. First, doublets were inferred using scrublet94 specifying an expected doublet rate of 
0.05 as calculated using a formulation of the birthday problem. Cells with a doublet score of larger 
or equal to 0.25 were removed from our dataset (0.88% of cells). Next cells where the ratio 
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between the UMI counts of the most abundant and next most abundant hash (i.e., the top to 
second best ratio) was less than 2.5 or cells with less than 5 totals hash UMIs were removed from 
our analysis (4.9% of cells). Data were pre-processed by performing an initial dimensionality 
reduction using principal component analysis (PCA) using genes expressed in at least 5% of the 
cells from each cell line as feature genes and the top 25 dimensions were used to build our UMAP. 
We specified 20 nearest neighbors and a minimum distance of 0.1 as UMAP hyperparameters. 
We next clustered cells in this co-embedding using Leiden community detection95 specifying a 
resolution parameter of 1e-6. This resulted in 5 UMAP partitions that could be readily assigned to 
the 3 cell lines in our experiment by visual inspection. This approach identified a small proportion 
of cells where there was a mismatch between hash and transcriptome identity. For our GSC and 
chemical exposure experiments, multiplets were described as above without scrublet pre-filtering. 
For our proof-of-concept experiments in A172 cells, multiplets were removed using the hash filters 
described above. 

Estimation of the cell cycle stage of single-cells 
 
Estimates for the cell cycle stage of individual cells was inferred as in13. Briefly, the expression of 
genes associated with the G1/S and G2/M cell cycle stages was size-factor normalized 90, and 
their expressions aggregated and log-transformed. We define a proliferation index as the sum of 
the logged G1/S and G2/M scores.   

Differential gene expression analysis 
 
Differential gene expression analysis was performed using the fit_models function in Monocle3. 
To define the effect of drug exposure on the gene expression profiles of unperturbed cells, we 
created subsets of our dataset for every exposure and set of NTC cells. We first log transformed 
gene expression values after the addition of a pseudocount of 1. For every gene expressed in at 
least 5% of cells, we fit a generalized linear model with a quasi-poisson random component of 
the form expression ~ log(dose + pseudocount) specifying “~log(dose + 0.001)” for the 
model_formula_str parameter in fit_models. The Wald test was applied to determine whether the 
coefficients from our model are significantly non-zero We then combined all tests for all genotypes 
and doses and p-values from the Wald tests were corrected for multiple hypothesis testing using 
the Benjamini-Hochberg false discovery rate method. We chose a pseudocount of 0.001 to 
preserve the relationship to a dose with minimal effect on cells based on preliminary experiments 
(data not shown). 
  
For experiments where we exposed perturbed A172 cells to temozolomide, we created subsets 
of our dataset for every dose of temozolomide and every pairwise combination of a target and 
NTC cells. Gene expression values were log-transformed after the addition of a pseudocount of 
1.  For all expressed genes in at least 5% of cells, we fit a generalized linear model with a quasi-
poisson random component of the form expression ~ genotype specifying “~ gene_id” for the 
model_formula_str parameter in fit_models. The Wald test was applied to determine whether the 
coefficients from our model are significantly non-zero. We then combined all tests for all 
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genotypes and doses and corrected for multiple hypothesis testing using the Benjamini-Hochberg 
false discovery rate method.  
 
To identify significant interaction effects of proliferative gene expression between a drug and 
specific kinase perturbations, we modeled our proliferation index score as a function of drug, 
dose, genotype, and their interaction using generalized linear models with a Gaussian random 
component of the form proliferation index ~ log(dose) + genotype + genotype:log(dose) + 
replicate) using the speedglm function of the speedglm package in R. For all coefficients, p-values 
from a Wald test were subject to multiple hypothesis testing using the Benjamini Hochberg false 
discovery rate method. 

Gene set analysis 
 
Gene set enrichment analysis was performed using the piano R package96. The hallmarks and 
oncogenic signatures57,97 gene sets were obtained from the Broad Institute’s Molecular Signatures 
Database56. Hypergeometric testing was performed using feature genes as the foreground and 
all genes as the background. 

UMAP embedding of knockdown proportions 
 
We used UMAP to visualize the relationship between genotypes and the proportion of 
temozolomide and perturbation-induced cellular states. We performed an initial dimensionality 
reduction using PCA returning the top 25 principal components using the union of all differentially 
expressed genes as a function of genotype as feature genes. Genes that were differentially 
expressed between negative controls and NTC cells were removed from the analysis. We then 
performed dimensionality reduction using UMAP, specifying 20 nearest neighbors and a minimum 
distance of 0.1 as hyper-parameters. We clustered cells within the UMAP embedding using 
Leiden community detection95. We next calculated the frequency of cells for each gRNA or 
genotype across clusters and used these matrices to initialize a UMAP embedding. 

Median kinase knockdown 
 
We assessed the quality of our gRNA assignments in our kinome screen by examining the median 
knockdown level across all perturbed kinases in our experiment. We calculated the mean 
expression levels for each kinase in NTC cells and their respective perturbed target cells at 
varying gRNA read cutoffs (i.e. 1-10 gRNA reads per cell). We ensured that our knockdown 
estimates were not biased due to the zero inflation of sc-RNA-seq data and the larger proportion 
of NTC cells in our experiment by permuting the gRNA-defined target labels and re-calculating 
mean kinase knockdown. We then compared the distribution of knockdown levels between our 
gRNA assigned and permuted data using the non-parametric two-sample Wilcoxon test. 

Enrichment and depletion of knockdowns 
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We assessed the relative enrichment and depletion of kinases in our experiment by comparing 
the frequency of gRNAs targeting a particular kinase in our final dataset to its frequency in the 
plasmid library used to create gRNA-delivering lentiviral particles. We defined the relative 
proportion of gRNA against a kinase target as the mean-centered log of the ratio of the two 
frequencies. 

Identifying conserved responses to RTK pathway inhibition 
 
We determined conservation in response to RTK pathway inhibition by comparing the dynamics 
of differential gene expression of unperturbed A172, T98G, and U87MG cells. The mean 
expression in NTC cells of differentially expressed genes as a function of lapatinib, nintedanib, 
trametinib, and zstk474 exposure was clustered for each cell line individually by hierarchical 
clustering. We chose k = 6 as the number of clusters for each cell line by visual inspection of 
dendrograms across all cell lines. We then calculated the Jaccard coefficient for every pairwise 
comparison of clusters across all 3 cell lines. Clusters with a Jaccard coefficient over 0.1 were 
collapsed into conserved super-clusters by taking the union of the genes across similar clusters. 

Chemical genomic validation of kinases whose loss leads to changes in the induction of the 
compensatory adaptive program 

 
To validate the contribution of kinase hits to the induction of the compensatory adaptive program, 
we exposed A172, T98G and U87MG to one of 23 compounds (alectinib, AZ628, AZD7762, BI-
D1870, BMS-345541, DDR1IN, doxorubicin, GSK690693, infigratinib, KU-55933, MK-2206, 
nintedanib, palbociclib, PHA-767491, RIPA-56, roscovitine, salubrinal, temozolomide, 
temsirolimus, trametinib, VE-821, volasertib) in the absence or presence of trametinib, the 
strongest inducer of the adaptive compensatory program. Cells were exposed to 0.01, 0.1, 1, and 
10 µM doses of each compound, the absence or presence of 0.01, 0.1, 1 and 10 µM of trametinib 
or DMSO vehicle control. For trametinib co-exposure conditions, the concentrations were 
matched for each compound and trametinib (e.g, 1 µM of compound + 1 µM trametinib). The 
concentration of DMSO control was set to 0.2% v/v across all single and combinatorial exposures. 
Cells were exposed to compounds for 72 hours, harvested, multiplexed using our previous sci-
Plex protocol13, and nuclear mRNA libraries were generated and sequenced as described above. 

Correlation of single and combinatorial chemical targeting to the effect induced by trametinib 
exposure 

 
For our validation chemical genomic experiment, we performed differential expression analysis 
using quasipoisson regression for the effect of each compound alone or in combination with 
trametinib on the set of genes that compose the compensatory adaptive program. For each cell 
line, we fit a generalized linear model with a quasi-poisson random component of the form 
expression ~ log(dose + 0.001) + replicate.  
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For single chemical exposures, we focused on treatments that led to significant changes in the 
expression of at least 100 genes of the program (FDR < 5% and a normalized beta coefficient for 
the dose term of |βcoef| > 0.05) across two or more cell lines. We calculated the pairwise Pearson’s 
correlation across all exposures on a matrix of the normalized β coefficients for the dose term 
across all feature genes. We defined compound exposures with a significant correlation to the 
effect induced by trametinib exposure as those with a Pearson’s ⍴ > ± 0.2 at an FDR < 5%.  
 
For both single and combinatorial exposures, we also broadly examined the correlation structure 
across exposures. We regressed the effect of cell line background for each correlation matrix 
using the monocle3 function align_cds specifying a residual_model_formula_str of “cell_line”. We 
used Leiden-based community detection as implemented in the cluster_cells function of monocle3 
on this corrected correlation matrix to identify groups of exposures that lead to similar 
transcriptional changes across genes that make up the compensatory adaptive transcriptional 
program. To visualize our results, we used this corrected correlation matrix to initialize a UMAP 
embedding using the reduce_dimension function of monocle3 specifying umap.n_neighbors of 5 
and a umap.min_dist of 0.15.  

QUANTIFICATION AND STATISTICAL ANALYSIS  

Calculation of pairwise angular distance 
  
To detect the effect of a genetic perturbation on a drug-induced transcriptional program we 
calculated the pairwise angular distance of every cell to the average profile of non-targethe ting 
cells exposed to the highest dose of each drug. The angular distance between two cells was 
calculated as the arc cosine transcriptome distance between the norm of the expression vector 
for each cell over a set of feature genes such that 
if 𝑉 is the expression vector of a cell across 𝑥 gene expression values, then the norm of the vector 
is defined as, 
 

||𝑉|| 	= '𝛴𝑥! 
 
and the angular distance between the vector norms for two cells is, 
 

𝑎𝑛𝑔𝑢𝑙𝑎𝑟	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	 = 	2/𝜋	 ∗ 	𝑎𝑟𝑐𝑐𝑜𝑠𝑖𝑛𝑒[(𝑉𝑐𝑒𝑙𝑙1	 × 	𝑉𝑐𝑒𝑙𝑙2) 	÷ (||𝑉𝑐𝑒𝑙𝑙1|| 	× 	 ||𝑉𝑐𝑒𝑙𝑙2||)]	  
 
For all angular distance calculations in perturbed cells the comparisons were made between every 
cell (perturbed and unperturbed) vs. the mean profile of NTC cells exposed to the highest dose 
of each drug. We compared this approach to the use of the more common Jensen-Shannon 
distance metric, observing good agreement between both distance metrics (Supp Fig. 3G). 
Therefore, we chose to continue with angular distance, which is a less expensive calculation, for 
our measure of similarity to unperturbed cells.  

Inference of the relative transcriptional effective concentration 50 (TC50) 
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First, we fit a 4-parameter log-logistic dose-response model to the relationship between the 
pairwise angular distance for all cells and at a dose of temozolomide for NTC control cells using 
the drc R package98. We specified a formula of angular distance ~ dose and the function as LL.4 
in the drm function. We then estimated the effective dose 50, which we term our transcriptional 
effective concentration 50 (TC50) using the ED function of the drc package. To infer the TC50 for 
all other genotypes, we performed the following across 1,000 bootstraps of 75% of our dataset. 
For each genotype, we fit a linear model to the relationship between the log of the angular distance 
to NTC across bootstrapped subsets of cells vs the log of the dose of temozolomide. We then 
extracted the coefficients of those fits to determine the concentration at which cells reached the 
pairwise angular distance to NTC that NTC cells achieved at their TC50. To determine the 
robustness of our approach to the number of cells per genotype, we repeated this procedure using 
subsamples of 10, 20 and 50% of our dataset. 
  

https://paperpile.com/c/Ig6d4d/iUm22
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SUPPLEMENTARY FILES 
 
Table S1: Contains the sgRNA protospacer sequences used in this study. Related to Figures 1-
3. 
 
Table S3: Contains the results of differential gene expression testing as a function of genotypes 
across TMZ exposed A172 cells. Related to Figure 2. 
 
Table S4: Contains the results of gene module analysis of the results from differential gene 
expression testing as a function of genotypes across TMZ exposed A172 cells (Supplementary 
Table 3), the results from differential gene expression testing as a function of TMZ dose in NTC 
cells and inferred TC50 calculations. Related to Figure 2. 
 
Table S5: Contains the results of differential gene expression testing as a function of RTK 
pathway inhibitor dose in unperturbed cells. Related to Figure 4. 
 
Table S7: Contains the top kinase perturbations that modulate the adaptive program across the 
3 GBM lines used in this study. Related to Figure 5. 
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Supplementary Materials 
 
Supplementary Figures 

 
Supplementary Figure 1. Sensitivity and specificity of sgRNA capture in the context of 
combinatorial indexing RNA-seq with sci-Plex-GxE, related to Figure 1. (A) Plot of the log10 
of the total number of sgRNA reads for a given sgRNA in a given cell as a function of the ratio of 
that sgRNA to all other sgRNAs in a cell (ratio). (B) Plot of the relationship between the proportions 
of the sgRNA with the highest number of reads in a cell (ratio1) vs the second most prevalent 
sgRNA (ratio2). (C) Density plot of the log10 of the top to second best ratio, the ratio between the 
proportion of the top most prevalent sgRNA to the second most prevalent.  
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Supplementary Figure 2. Effects of mismatch repair perturbation of gene expression 
changes induced by exposure of glioblastoma cells to the chemotherapeutic agent 
temozolomide, related to Figure 2. (A) Bar plots of the expression level of the mismatch repair 
components MSH2, MSH3, MSH6, MLH1, PMS2 and the direct repair enzyme MGMT in A172 
dCas9-KRAB cells expressing individual sgRNAs against each gene or non targeting controls 
sgRNAs (NTC). Note that MGMT is not expressed in A172 cells due to epigenetically silencing of 
the MGMT locus by promoter methylation (citation). (B) Bar plots as in (A) across cells binned by 
their respective target. (C) Volcano plots of the relationship between statistical significance and 
effect size for the results of differential gene expression analysis of the effect of genetic 
perturbation of MSH2, MSH3, MSH6, MLH1, PMS2, and MGMT on gene expression after 
exposure to various doses of temozolomide. For each genotype, genetically perturbed and NTC 
cells were subsetted by dose, expression was log-transformed and differentially expressed genes 
were identified by fitting a generalized linear model of the form expression ~ genotype. All tests 
were then combined and p-values corrected for multiple hypothesis testing using Benjamini-
Hochberg. Red indicates genes whose temozolomide-induced gene expression is significantly 
affected by genetic perturbation at FDR < 0.05. (D-E) Upset plots of the overlap of differentially 
expressed genes in the presence (D) or absence (E) of temozolomide exposure. (F) Correlation 
heatmap (Kendall’s rank correlation) of the normalized effect sizes across all perturbation-
dependent differentially expressed genes upon exposure to temozolomide. Rows and columns 
are labeled as “genotype_dose of temozolomide”.   
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Supplementary Figure 3. Summarizing state-level effects of temozolomide exposure as a 
function of genetic perturbation, related to Figure 2. A-D) UMAP embedding of vehicle and 
temozolomide exposed and genetically perturbed A172 dCas9-KRAB cells. Cells are colored as 
a function of PCA cluster (A), dose of temozolomide (B), aggregate expression of genes 
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associated with proliferation (C, proliferation index), or genotype (D). E) Density of cells across 
the UMAP embedding from (A-D). F) Volcano plot the relationship between statistical significance 
and effect size for the results of differential gene expression analysis of the exposure of NTC cells 
to temozolomide using a model of expression ~ log(dose of temozolomide + 0.01). G) Correlation 
of the pairwise distances calculated using cosine angular distance or Jensen-Shannon distance 
between every cell and the mean expression of NTC cells exposed to 100 µM TMZ. Red line: 
Linear regression fit. Bottom: Pearson’s rho and p-value (two-sided t-test). H) Heatmap depicting 
the log of the mean angular distance between every cell and the mean expression of NTC cells 
exposed to 100 µM TMZ for every genotype dose combination. I) Distribution of pairwise angular 
distance to the mean expression of NTC cells exposed to 100 µM TMZ for genetically perturbed 
cells exposed to vehicle (left panel) or exposed to 10 µM (middle panel) or 100 µM (right panel) 
temozolomide. Grey vertical lines refer to the median angular distance of unperturbed NTC control 
cells for each dose of temozolomide. J) Violin plots of the pairwise Jensen-Shannon distance 
between every cell and the mean expression of NTC cells exposed to 100 µM TMZ as a function 
of dose of temozolomide to which cells for every genotype were exposed to (**** p < 0.0001, ** p 
< 0.01, one-way Anova). K) Linear regression fits and models between dose and pairwise angular 
distance for all cells across the genotypes in our experiment. EC50 denotes the concentration at 
which we observed half of the shift in pairwise angular distance of temozolomide exposed NTC 
cells obtained from a four-parameter log-logistic regression. L) Inferred transcriptional effective 
concentration (TC50) defined as the concentration of drug necessary to reach 50% of the change 
in angular distance exhibited by TMZ-exposed NTC cells recalculated across 10, 20, and 50% 
subsets of our dataset or our full dataset as in Figure 2I. Notches in the boxplots denote the lower 
and upper limits of the 95% confidence intervals of TC50 values calculated across 1,000 
bootstraps of 75% of our data. Dashed line: maximum molarity of an aqueous solution as a 
threshold for genotypes where the drug cannot induce 50% of the effect observed in NTC. Insert: 
excludes MSH2 and MSH6 genotypes. 
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Supplementary Figure 4. Experimental design and QC, related to Figure 3. A) Schematic 
depicting the replicate structure of our single-cell kinome screen. B) Correlation between replicate 
screens across the three glioblastoma cell lines in our experiment. Top: Linear regression model 
and goodness of fit.  
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Supplementary Figure 5: Effect of kinase perturbation and RTK pathway inhibition on GBM 
cell bulk viability, related to Figure 3. A. Proportion of cells expressing sgRNAs targeting 
individual kinases in our screen relative to the starting proportion of sgRNAs in our CROP-seq 
kinome plasmid library. Labels correspond to depleted kinases over a z-score of 1. B. Heatmap 
depicting viability estimates derived from sci-Plex cell counts for unperturbed cells expressing 
non-targeting or random targeting control sgRNAs.  
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Supplementary Figure 6. Exposure to small molecule inhibitors targeting the RTK pathway 
leads to dynamic rewiring of transcriptional networks in glioblastoma cells, related to 
Figure 4. A-C) Volcano plots of the relationship between statistical significance and effect size of 
exposure to small molecules targeting the RTK pathway (lapatinib, nintedanib, trametinib, 
zstk474) on gene expression for A172 (A), T98G (B), and U87MG (C) cells. A generalized linear 
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model with a quasi-poisson random component of the form expression ~ log(dose) + replicate 
was fitted across log normalized expressions for every subset containing cells exposed to one of 
the 4 agents and vehicle control. Red dots correspond to genes whose expression is significantly 
altered by kinase perturbation at an FDR < 0.01. D-F) UpsetR plots depicting the overlap in 
differentially expressed genes as a function of exposure to RTK pathway targeting agents in A172 
(D), T98G (E), and U87MG (F) GBM cells. G) Bar plots depicting the percent of cells positive for 
the specified kinase transcripts differentially expressed in at least 1 of 4 drug exposures across 
the 3 GBM lines in our study. H-J) Heatmaps depicting the top overlap of genes between cell 
clusters for each pair-wise combination of the 3 GBM cell lines. Significant overlap is defined as 
having a Jaccard coefficient larger than 0.1 (details in K).  K) Distribution of Jaccard indices for 
the overlap between drug-responsive gene clusters from Fig. 4A-C. Real vs. permuted refers to 
the Jaccard indices calculated between clusters without and with perturbation of gene ids. Based 
on this test, we used a Jaccard index of 0.1 or larger to collapse signature genes across cell 
types. L) Aggregate expression of conserved upregulated (S1) and downregulated (S2) gene 
signatures as a function of each dose, exposure, and cell type. M-N) Violin plots depicting the 
expression of conserved S1 (M) and S2 (N) signatures in trametinib exposed glioma stem cell 
cultures.   
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Supplementary Figure 7. Conserved drug-dependent signatures are correlated with the cell 
cycle stage of a cell and by MEK kinase activity across all stages of the cell cycle, related 
to Figure 4. A-B) Expression of conserved S1 (A) and S2 (B) signatures across NTC cells as a 
function of the aggregate expression of genes associated with proliferation (top panels), G1/S 
(middle panels), and G2/M (lower panels) phases of the cell cycle. Red line: Linear regression fit. 
Bottom: Pearson’s rho and p-value (two-sided t-test). C) Violin plots depicting the expression of 
S1 (C) and S2 (D) signatures as a function of treatment across cells of varying proliferation index 
quantiles (i.e., the x-axes of the top panel of A and B were divided into 4 equal-sized bins). Note 
that trametinib exposed cells have higher S1 expression and lower S2 expression across all bins 
compared to vehicle control. 
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Supplementary Figure 8. Effect and similarity of CDK4/6, CDC7/CDK9 and additional kinase 
inhibition on the trametinib induced compensatory program, related to Figure 6. A) Density 
plots of upregulated and downregulated signature scores of cells treated with the MEK inhibitor 
trametinib (MEKi), the CDK4/6 inhibitor palbociclib (CDK4/6i) or the CDC7 inhibitor PHA767491 
(CDC7i) for the three glioblastoma cell lines. The 10 µM dose for PHA767491 exposed A172 and 
U87MG cells have been removed due to low recovery of cells for those exposures. Red vertical 
lines denote the mean signature expression of vehicle exposed cells. *FDR < 0.05. Pearson’s ⍴ 
relates to the Pearson’s correlation coefficient between aggregated expression scores for the 
specified drug treatment and trametinib exposure. B) UMAP embeddings summarizing the pair-
wise correlation of all specified single exposures across genes that compose the compensatory 
program enacted by RTK pathway inhibition. Shapes refer to individual cell lines. C) UMAP as in 
B, colored by the correlation of each single exposure to cells exposed to trametinib alone across 
genes that compose the compensatory program enacted by RTK pathway inhibition. D) UMAP 
as in B colored by response group clusters identified by Leiden-based community detection.  



59 

 
 
Supplementary Figure 9. Summaries of the effect of single and combinatorial chemical 
exposure on the expression of conserved S1 and S2 signature genes and cellular viability, 
related to Figure 6. A-C) Cell count viability estimates derived from sci-Plex hash labels for each 
treatment and dose across A172 (B), T98G (C), and U87MG (D) GBM cells. D-F) Cell count 
viability estimates as in A-C for combinatorial trametinib exposure across A172 (D), T98G (E), 
and U87MG (F) GBM cells.  
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Supplementary Tables 

Experiment Screen id Total 
cells 

Cells 
with 1 
hash 

Cells 
with 
sgRNA 

Cells 
with 1 
sgRNA 

Median 
UMIs per 
cell 

Duplication 
rate 

A172 
CRISPRi 
HPRT1/MMR  

sciPlexGxE_1 18,585 17,599 15,589 14,716 6,120 20.4% 

GBM 
CRISPRi 
Kinome 
screen 

sciPlexGxE_2 1,052,205 991,940 988,276 687,879 3140 (A172), 
3065 (T98), 
1833 (U87) 

58.5% 

 
Supplementary Table 2: Summary of sci-Plex-GxE experiments in this study, related to 
Figures 1 and 3. Screen id refers to the experiment identifier in the NCBI GEO submission of our 
dataset. 
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Experiment Screen id Total 

cells 
Median UMIs 
per cell 

Duplication 
rate 

GSC RTK 
inhibitor 

sciPlex_3 135,710 531 (GBM4), 363 
(GBM8), 281 

(GSC0131), 341 
(GSC0827) 

21.3% 

Combinatorial 
chemical 
genomics 

sciPlex_4 213,404 851 (A172), 
1044 (T98), 622 

(U87) 

28.9% 

 
Supplementary Table 6:  Summary of sci-Plex chemical transcriptomics experiments in 
this study, related to Figure 6 and Supplementary Figure 6. Screen id refers to the experiment 
identifier in the NCBI GEO submission of our dataset.  



62 

 
Compound Target(s) Known Off-Target(s) Selleckchem Cat. No. 

Alectinib ALK  S2762 

AZ628 ARAF,BRAF,RAF1  S2746 

AZD7762 CHK1,CHK2  S1532 

BI-D1870 RSK1,RSK2,RSK3,RSK4  S2843 

BMS345541 IKK1,IKK2  S8044 

DDR1-IN-1 DDR1,DDR2  S7498 

Doxorubicin TOP2A  E2516 

GSK690693 AKT1,AKT2,AKT3 ULK1,AMPK,STING S1113 

Infigratinib FGFR1,FGFR2,FGFR3,FGFR4  S2183 

KU-55933 ATM ULK1 S1092 

MK-2206 AKT1,AKT2,AKT3  S1078 

Nintedanib FGFR1,FGFFr2,FGFR3,PDGFRA,PDGFRB,
VEGFR1,VEGFR2,VEGFR3 

 S1010 

Nutlin-3A MDM2  S8059 

Palbociclib CDK4,CDK6  S4482 

PHA-767491 CDC7,CDK9 CDK1,CDK2,GSK3B S2742 

RIPA-56 RIPK1  S6511 

Roscovitine CDK1,CDK2,CDK5  S1153 

Salubrinal EIF2AK1,EIF2AK2,EIF2AK3,EIF2AK4  S2923 

Temozolomide SN-1 alkylating agent  S1237 

Temsirolimus MTOR FKBP12 S1044 

VE-821 ATR  S8007 

Volasertib PLK1,PLK2 PLK3 S2235 

 
Supplementary Table 8:  Compounds used in our validation chemical genomics screen, 
related to Figure 6. 
 


