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Summary

Chemical genetic screens are a powerful tool for exploring how cancer cells' response to drugs is
shaped by their mutations, yet they lack a molecular view of the contribution of individual genes
to the response to exposure. Here, we present sci-Plex-Gene-by-Environment (sci-Plex-GxE), a
platform for combined single-cell genetic and chemical screening at scale. We highlight the
advantages of large-scale, unbiased screening by defining the contribution of each of 522 human
kinases to the response of glioblastoma to different drugs designed to abrogate signaling from
the receptor tyrosine kinase pathway. In total, we probed 14,121 gene-by-environment
combinations across 1,052,205 single-cell transcriptomes. We identify an expression signature
characteristic of compensatory adaptive signaling regulated in a MEK/MAPK-dependent manner.
Further analyses aimed at preventing adaptation revealed promising combination therapies,
including dual MEK and CDC7/CDK9 or NF-kB inhibitors, as potent means of preventing
transcriptional adaptation of glioblastoma to targeted therapy.



Introduction

The response of individual cancer cells to therapy depends on myriad factors, including location
within a tumor, proximity to vessels, epigenetic history, and genotype. Defining the contribution of
individual genes to how a tumor responds to a given drug regimen is critically important to
personalized therapy and cancer pathobiology. However, dissecting the mechanisms by which
each gene confers drug resistance is extremely challenging because the space of gene-drug
interactions is enormous. Addressing this requires a scalable, systematic approach to quantify a
drug’s effect on a cell of a given genotype. Chemical genetics, the study of how exogenous
exposures interact with cells and alter gene-product function and phenotype’, is a powerful means
to define the genetic dependencies on treatment response across genetically distinct samples.
The induction of genetic heterogeneity via targeted genetic perturbation’* (e.g., CRISPR/Cas9)
has drastically increased the power of such screens, allowing for the systematic determination of
how perturbed gene activity alters response. However, these screens are largely limited to
determining the effect of the genetic perturbation on gross phenotypic outcomes (viability, cell
growth) or very specific molecular readouts (reporter expression, enzymatic activity). Moreover,
CRISPR-based chemical genetic screens with simple phenotypic readouts are largely applied at
the population level. Therefore, they cannot link genotype to cellular response in a precise,
mechanistic manner, and a need remains for novel methods to systematically interrogate the
genetic requirements of effective drug treatment.

Single-cell CRISPR screens®?® allow in-depth molecular insight into the effects of genetic
perturbation of genes associated with diverse biological processes, including those prioritized by
bulk CRISPR screens®'. Recently, single-cell CRISPR screens have been performed at
genome-scale, providing a rich map of the effect of perturbation''. To further probe genetic
dependencies to treatment using a single-cell genomic readout necessitates incorporating
additional strategies to multiplex at the level of exposure (drugs, doses) within an experiment.
This multiplexing allows the assay to scale to large combinatorial spaces and minimizes batch
effects. Recently, we developed sci-Plex, a nuclear hashing approach that couples high-
throughput chemical screens to combinatorial indexing RNA-seq (sci-RNA-seq3)'?, allowing for
the analysis of the molecular effect of thousands of chemical perturbations in parallel'®. Here, we
present sci-Plex gene-by-environment or sci-Plex-GxE, which extends sci-Plex to pooled single-
cell CRISPR screens, markedly increasing the number of unique gene-exposure interactions
tested within one experiment and providing the opportunity to define how large cohorts of genes
affect the response of cells to many exposures.

As proof-of-principle, we apply our approach to probe the relationship between exposure to the
standard-of-care alkylating agent temozolomide (TMZ)'* and genetic perturbation of the mismatch
repair (MMR) pathway, a known genetic dependency to Sn1 alkylating agent-induced damage'"®.
Using this system, we develop computational methods for determining the extent to which a
genetic perturbation interferes with or enhances the expected effects of a drug on the
transcriptome. We then apply sci-Plex-GxE to determine the molecular consequence of genetic
perturbation of 522 kinases in the human protein kinome'” on the response of 3 glioblastoma
(GBM) cell lines to 4 small molecules inhibitors targeting the receptor tyrosine kinase pathway,
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the most frequently over-activated pathway in GBM'® and a driver for glioma initiation' and
maintenance®. We find that drug exposure leads to the induction of a transcriptional program
characterized by the upregulation of genes capable of eliciting an adaptive (drug-induced)
resistance phenotype?'?2. Our single-cell genetic screen prioritized kinases involved with the
regulation of MAPK, replication, cell division, and stress signaling that modulate the expression
of this adaptive compensatory program. Combinatorial chemical exposure targeting a subset of
these kinases confirmed their involvement in regulating this transcriptional response and co-
treatments that limit the ability of a cell to mount an adaptive response to kinase therapy.

Results

sci-Plex-GxE combines nuclear hashing and CRISPR-based single-cell genetic screens.

To determine the contribution of individual genes to the response to chemical exposure at scale,
we combined our single-cell chemical transcriptomics platform' with the CROP-seq system for
single-cell CRISPR/Cas9 genetic screen®. We developed and optimized a method for the
enrichment of sgRNA containing transcripts®®%® from within the context of sci-RNA-seq3. Our
enrichment strategy relies on targeted capture of the CROP-seq derived sgRNA containing
puromycin transcript in combination with standard poly-A mRNA capture during RT and amplifying
sgRNA containing transcripts from the final sci-RNA-seq3 mRNA library (Figure 1A & Methods).

To determine the specificity and sensitivity of our assay, we performed a sgRNA cell mixing
experiment. We transduced A172 GBM cells expressing either dCas9-KRAB for gene knockdown
(CRISPRI) or dCas9-SunTag for gene overexpression (CRISPRa)* with CROP-seq-OPTI
libraries containing either optimized CRISPRi or CRISPRa sgRNAs? targeting the HPRT1 locus,
a modulator of cell sensitivity to the chemotherapeutic agent 6-thioguanine (6-TG), and non-
targeting controls (NTCs, Supplementary Table 1). We arrayed CRISPRi and CRISPRa
perturbed cell pools across columns of a 96-well plate and exposed cells to increasing
concentrations of the purine analog 6-TG or DMSO control. After 96 hours, cells in individual wells
were harvested and subjected to our sci-Plex GxE protocol (Figure 1A and Methods). We
captured 18,585 single-cell transcriptomes and used our sci-Plex hash labels to remove doublets
and to confidently assign one well/treatment condition to 17,549 cells (94.4%). We identified one
or more sgRNAs in 15,589 of these treatment-assigned singlet cells (88.8%) (Supplementary
Figure 1A), of which 94.4% expressed 1 sgRNA at a high proportion (Supplementary Figure
1B-C, Supplementary Table 2), consistent with the low multiplicity of infection of our
transduction. We next compared cell assignment according to captured sgRNAs or sci-Plex
hashes. As expected, cells containing hashes denoting CRISPRi wells were largely assigned a
CRISPRIi sgRNA and vice-versa (Figure 1B). Cells expressing CRISPRi and CRISPRa sgRNAs
against HPRT1 displayed a decrease and increase in HPRT1 expression, respectively (Figure
1C, 1D). Loss of HPRT1 activity leads to resistance to the nucleic acid analog 6-thioguanine (6-
TG)* by decreasing its incorporation into DNA (Figure 1E). As expected, HPRT1 knockdown
cells had a high expression of genes associated with proliferation in the presence of increasing
doses of 6-TG compared to NTC controls (Figure 1F). This experiment confirms that sci-Plex-
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GxE can detect a genetic requirement for individual cells’ response to a drug exposure via global
transcriptome analysis.

A chemical genomics approach to prioritize genotypes with strong effects on the response of cells
fo exposure.

The scalability and multiplexing ability of sci-Plex-GxE at the level of genotypes and exposures
allows profiling of the effects of gene-exposure interactions at scale. However, there are additional
considerations for its application in chemical genomic screening, namely a need for analysis
workflows that allow prioritization of genotypes within large-scale perturbation screens and a way
to summarize complex transcriptional effects compactly. To arrive at analytical solutions to these
challenges, we first applied our approach to a known genetic dependency to alkylation damage.

Temozolomide (TMZ) is an oral alkylating agent and the standard-of-care for glioblastoma brain
cancer chemotherapy', whose toxicity is mediated by the formation of O°-meG lesions in the
DNA. A cytotoxic response to TMZ primarily depends on the expression of methyl guanine
methyltransferase (MGMT) and functional DNA mismatch repair (MMR) (Figure 2A), with the
activity of these pathways mediating resistance and sensitivity, respectively?’. We profiled the
transcriptional consequence of exposing MMR-perturbed A172 CRISPRI cells to increasing doses
of TMZ for 96 hours. We targeted MMR pathway components that comprise the O°-meG
recognition complex (MutSa: MSH2 and MSH6), the MMR processing complex downstream of
lesion recognition (MutLa: MLH1 and PMS2) (Figure 2A), and controls including targeting of an
MMR component not involved in the processing of O%-meG (MSH3), MGMT, which is
epigenetically silenced in A1722?% and non-targeting controls (Supplementary Figure 2A-B).

Cells expressing sgRNAs against MGMT, MSH3, or NTC controls displayed a robust, dose-
dependent increase in the expression of the cell cycle inhibitor and p53 target CDKN1A (Figure
2B) that was accompanied by decreases in the expression of genes associated with proliferation
(Figure 2C). Analysis of differentially expressed genes (DEGs) as a function of genotype and
temozolomide exposure (FDR < 10%, Supplementary File 1) revealed a strong correlation
(average Kendall's tau of 0.7) across genotypes expected to alter sensitivity to TMZ at the highest
doses of drug (Supplementary Figure 2C-F, Supplementary Table 3). The magnitude of these
changes was decreased in cells expressing sgRNAs against MLH1 and PMS2 and largely
abrogated in cells expressing sgRNAs against MSH2 and MSH6 (Figure 2B-C). Defining gene
modules across the union of DEGs (Supplementary Table 4) recovered signatures that define
genotypes sensitive to TMZ exposure (NTC, MGMT, and MSH3) and further subdivided
genotypes associated with mismatch recognition (MSH2 and MSH6) and downstream processing
(MLH1 and PMS2) (Figure 2D). Of note, gene modules associated with p53 signaling (module
2) varied depending on the perturbed MMR complex consistent with activation of DNA damage
signaling by lesion recognition before MutLa processing®.

We next sought to summarize differential responses to exposure. Dimensionality reduction did
not identify unique cellular states induced by the interaction of genotypes and TMZ
(Supplementary Figure 3A-D), likely due to the fact that phenotypes perturbed by modulation of
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MMR activity (e.g., proliferation, cell cycle arrest) are available to non-perturbed cells. However,
MMR perturbations did alter the distribution of cells across these shared phenotypes
(Supplementary Figure 3E), which could be summarized by dimensionality reduction techniques
(Figure 2E-F). Although this approach can prioritize genotypes within the context of a screen, its
reliance on defining cell states a priori is limiting when summarizing large-scale genetic screens
where the phenotypic space is large. Therefore, we sought an approach tailored to prioritizing
genotypes in the context of the response to drug exposure.

We devised a strategy to describe how close a given cell is to the expected response to a given
drug, identifying gene-by-environment interactions in a given condition. We first identified a set of
genes that are dynamically regulated as a function of drug exposure in “wild-type” NTC cells
(Supplementary Figure 3F). Second, for every dose, we calculated the pairwise transcriptome
distance for every cell relative to the averaged expression profile of NTC cells exposed to the
highest dose of drug based on this set of drug-responsive genes (Supplementary Figure 3G).
We then quantify the extent to which a perturbation deviates from the change in pairwise
transcriptome distance of unperturbed cells as they converge on a drug-induced phenotype, in
this case, a TMZ-induced cell cycle arrest (Figure 2G). TMZ exposure led to a decrease in
pairwise transcriptome distance across unperturbed NTC cells and our negative control
knockdowns (MGMT and MSH3). Whereas knockdown of PMS2, MLH1, MSH6, and MSH2
altered the dose-response relationship in pairwise transcriptome distance to NTC (Figure 2H &
Supplementary Figure 3H-J).

We used this framework to define a transcriptional effective concentration 50 or “TC50”"® to
determine, for each genotype, the concentration of drug necessary to arrive at 50% of the
transcriptional response observed in NTC cells We repeated this calculation across 1,000
bootstraps of 75% of our dataset finding that TC50s were similar for NTC, MGMT and MSH3
knockdowns, whereas loss of MLH1, PMS2, MSH6 or MSH2 renders cells largely less sensitive
to drug (Figure 21 & Supplementary Figure 3K) with knockdown of MSH6 or MSH2 conferring
the strongest drug-resistant phenotype consistent with previous reports®®. We find our
transcriptome distance approach to be robust to the number of cells per genotype
(Supplementary Figure 3L), able to detect a graded dose-dependent response to a drug, and
able to quantify the progression of a given cell along that response, characteristics necessary for
identifying gene-by-environment interactions within the context of large-scale single-cell chemical
genomic screens.

Defining the contribution of the human protein kinome to the transcriptional response induced by
kinase inhibition.

Having demonstrated the ability of sci-Plex-GxE to detect the genetic requirements for exposure
to drugs, we sought to systematically characterize the genes that determine a tumor's response
to standard-of-care therapy at scale. Glioblastoma brain cancer is characterized by overactive
receptor tyrosine kinase (RTK) signaling, with ~90% of tumors presenting with an activating
mutation in the RTK pathway'®3'. Paradoxically, GBM patients display low response rates to RTK-
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targeted therapy despite these prominent alterations in RTK signaling. Adaptive® (i.e.,
pharmacologically-induced) activation of pathways that rescue RTK signaling and/or induce
similar downstream effectors is suspected to be amongst the most common mechanisms by
which tumors evade therapy?'#3*3** including GBM>**¢. Mapping out how tumors shift their gene
expression programs to evade the detrimental effects of drug exposure could identify new
opportunities to improve therapy.

To determine the contribution of an entire class of genes to drug-induced transcriptional
adaptation®® in GBM, we perturbed all members of the human protein kinome'” in 3 GBM cell
lines expressing the dCas9-KRAB CRISPRi system. Our screen comprised 3,165 sgRNAs
targeting 522 kinases, with five sgRNAs targeting each transcription start site (of which there may
be more than one per kinase gene) or non-targeting and random targeting controls
(Supplementary Table 1). Heterogeneous cell pools were then exposed to one of four
compounds targeting the receptor tyrosine kinases EGFR (lapatinib) and PDGFRa (nintedanib),
and the MAPK and PI3K signaling pathway components MEK (trametinib) and PI3K (zstk474) at
two doses (1 and 10 uM) or vehicle control for 72 hours and subjected to sci-Plex-GxE. Our screen
contained 14,121 gene-by-environment combinations across two independent transductions for
28,242 unique conditions across 1,052,205 single-cell transcriptomes (Figure 3A,
Supplementary Figure 4A, Supplementary Table 2). After excluding putative doublets, we
assigned a condition to 991,940 single-cell transcriptomes (94.3% of cells) and observed good
agreement in expression across replicates in our experiment (Supplementary Figure 4B). We
identified a sgRNA in 988,276 cells and a median target knockdown of ~70% across our panel of
targeted kinases (Figure 3B). The addition of multiple rounds of sgRNA enrichment PCR
increased our assignment rate suggesting the low assignment from 1 or a few enrichment cycles
is due to a bottleneck when amplifying from large, complex libraries.

Examining the proportion of genotypes in vehicle-exposed cells to the starting plasmid proportion
revealed a depletion of gRNAs targeting kinases that are likely required by all three cancer cell
lines. We observed the strongest depletion for 16 kinases across one or more cell lines (|z-score|
> 2, Supplementary Figure 5A). These included kinases involved in mitosis (AURKA, AURKB,
BUB1B, PLK1)* and ribosome maturation (RIOK7 and RIOK2)***'. We did not identify kinases
that conferred a similarly strong growth advantage across the cell lines in our study when knocked
down.

sci-Plex-GXxE reveals kinases required for the transcriptional response to inhibiting the RTK
pathway.

We next sought to define the transcriptional changes induced in NTC cells by targeting the RTK
pathway with small molecules. Exposure to compounds targeting the RTK pathway decreased
cell viability, with the strongest effect observed for cells exposed to trametinib and the weakest
effect for lapatinib (Supplementary Figure 5B). This decrease in cell viability was accompanied
by a decrease in the expression of genes associated with proliferation (NTC unperturbed
genotype, Figure 3C-F).
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To identify kinases required for maintaining expression of the proliferation gene program, we next
modeled proliferation gene expression as a function of drug, dose, genotype, and their interaction
using linear regression. These models included kinase-by-drug “interaction terms”, which capture
effects observed in drug-treated, genetically perturbed cells that are not observed in vehicle-
treated, genetically perturbed cells or NTC cells exposed to a drug. We identified 60 kinases
involved in a significant interaction term for at least one exposure (Figure 3C-D, Wald test, FDR
< 5%). We observed concordance for interaction terms across treatments within each cell line
(Figure 3C) and high similarity in proliferative expression profiles across our controls (Figure 3D).

Our analysis identified kinases that led to a significant decrease in proliferative gene expression
across multiple treatments. For example, in A172 cells, knockdown of the genotoxic stress
response PI3K-like kinase SMG1% or the positive regulator of hedgehog signaling STK36* led
to a significant decrease in proliferation in response to both nintedanib and trametinib (Figure
3E), suggesting these kinases are required for proliferation in cells treated with these drugs. We
also identified kinases whose knockdown led to increased proliferative gene expression. These
included the ACVR1B*, ACVR2A*, STK11 (LKB1)*, and MAP2K4*” tumor suppressors (Figure
3F). Knockdown of CDK18, recently described as a co-factor for ATR-driven homologous
recombination repair in GBM*, led to a significant increase in proliferation in response to the PI3K
inhibitor zstk474 (Figure 3F). Zstk474, like other PI3K inhibitors, targets other DNA damage
response kinases such as DNA-PKc and ATM*®*° and was shown to generate strand breaks in
GBM cells®. Therefore, the effect of CDK18 loss on the proliferative response to zstk474
exposure may result from an additive increase in genotoxic stress. Our analysis demonstrates
that our multiplex chemical genomic screen identifies significant interactions between genotype
and exposure, including kinase perturbations that sensitize or resist the effect of RTK pathway
targeting inhibitors on proliferative gene expression. However, because sci-Plex-GxE profiles the
entire transcriptome, it is not limited to viability or proliferation phenotypes and in principle could
characterize the genetic requirements of other gene programs, including transcriptional
adaptation to targeted therapy.

Single-cell RNA-seq identifies shared transcriptional responses to inhibition of receptor tyrosine
kinase signaling in glioblastoma cell lines.

Targeting over-activated oncogenic kinases induces drastic remodeling of gene expression
networks?"#23334 enabling tumors to substitute an alternative pathway to restore signaling, a
process termed adaptive resistance®'. To quantify transcriptional adaptation in our GBM lines, we
performed regression analysis of the effects of each drug on each gene’s expression using quasi-
poisson regression'?. We identified robust dose-dependent changes in expression with 4,553,
3,112, and 3,149 genes differentially expressed after exposure to 1 or more inhibitors in A172,
T98G, and U87MG cells, respectively (Figure 4A-C & Supplementary Figure 6A-C,
Supplementary Table 5). We observed strong transcriptional effects upon trametinib exposure
and modest changes in cells exposed to lapatinib, consistent with their effects on cell viability
(Supplementary Figure 4A). Comparing drug-induced transcriptional responses revealed a
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large overlap in the genes altered in the three lines when exposed to the FGFR/VEGFR/PDGFR
family inhibitor nintedanib and trametinib or zstk474 (Supplementary Figure 6D-F), suggesting
that RTKs of the FGFR/VEGFR/PDGFR families, are largely responsible for driving MEK and
PI3K activity in these cell lines.

We next sought kinases that were themselves altered at the RNA level in response to drug
exposure, as these might potentiate regulation of the broader adaptive response. Hierarchical
clustering of all differentially expressed genes identified modules of genes with similar dose-
dependent changes across our treatments (Figure 4A-C), including 156, 121, and 126 kinases
whose expression was significantly altered in response to exposure in a cell line- and drug-
specific manner. Exposure of A172 and U87MG cells to nintedanib led to a pronounced increase
in ERBB4 expression, whereas trametinib exposure led to a significant increase in ERBB4 in
A172 (Supplementary Figure 6G). T98G did not display a significant increase in ERBB4
expression upon exposure to trametinib, but we did observe a strong increase in EPHAS
(Supplementary Figure 6G). Other kinases displayed similar responses to a given treatment
across all cell lines. For example, exposure of GBM cell lines to trametinib resulted in a significant
decrease in the expression of WEE1, a kinase that negatively regulates the mitotic kinase
CDK1/CDC2°% (Supplementary Figure 6G).

To identify genes with a response to each drug shared across cell lines, we calculated the Jaccard
index to investigate the number of genes shared between each drug-induced gene module across
every pairwise set of cell lines (Supplementary Figure 6H-K). We identified two sets of genes
with similar dynamics as a function of drug exposure across the 3 cell lines, one of which broadly
increases with dose (“S1”), and another that decreases (“S2”) (Figure 4A-C, Figure 4D and
Supplementary Figure 6L). The genes in these shared drug-induced modules also had largely
concordant responses to RTK pathway inhibition in a panel of 4 patient-derived GBM lines,
indicating they may constitute a core program of GBM transcriptional response to RTK pathway
targeting®*~>° (Supplementary Figure 6M-N, Supplementary Table 6).

To assess the extent to which genes in the core adaptive program are known targets of cancer-
associated signaling pathways, we performed gene set enrichment analysis (GSA) (Figure 4E-
F). The downregulated S2 gene module was enriched for genes associated with the regulation of
the cell cycle (Figure 4F), consistent with a decrease in pro-proliferative signaling downstream of
RTK pathway inhibition. However, S1 and S2 genes did not neatly map onto gene sets known to
be upregulated or downregulated in response to inhibiting the RTK pathway, respectively. For
example, the down-regulated S2 module was enriched for genes that report on active KRAS and
PIBK-AKT-MTOR signaling, with their decrease in expression suggesting a block of these
pathways. In contrast, the up-regulated S1 module was enriched for genes associated with active
mTORC1 signaling, which may report on the activation of a distinct subset of the mTORC1
program (Figure 4D-E). Similarly, mixed results were obtained using the MSigDB oncogenic
signatures gene set collection®®*®”, where modules displayed enrichment for gene sets that
suggest activation and inactivation of different subsets of the RTK signaling pathway (Figure 4D-
E, right panels). To identify genes that may mediate an escape to RTK pathway inhibition, we
further examined the list of genes that make up the S1 upregulated drug-induced module. This
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revealed inhibitor-induced increases in the expression of kinases central to activation of the RTK
pathway, including the receptor tyrosine kinase EGFR, the cytoplasmic tyrosine kinase ABL1, the
dual specificity kinase MAP2K1, which encodes the ERK activator MEK1, and the PI3K catalytic
subunits PIK3C2A and PIK3C2B. Together, these observations are consistent with the induction
of a complex drug and cell-line-specific adaptive, compensatory program with a shared core
component that may mediate survival in response to RTK pathway inhibition.

In order to identify kinases that are required for transcriptional adaptation in each cell line, we
quantified how perturbation of each kinase alters the expression of the core adaptive gene
modules. We used our pairwise transcriptome distance framework to identify kinases whose loss
leads to a deviation in the drug-induced expression of S1 and S2, finding a significant effect due
to perturbation of 55, 97, and 84 kinases in A172, T98G, and U87MG cells, respectively. We
identified a high overlap between kinases that regulate the S1 and S2 gene modules in the
absence of an interaction with drug (gene effects) or with a significant interaction between
genotype and drug (gene x environment effects). In all, we identified 156 kinases whose
perturbation altered compensatory program expression at the level of gene effect (Figure 5A,
FDR < 5%, Supplementary Table 7) and 97 kinases that altered compensatory program
expression with evidence of a gene x environment effect (Figure 5B, FDR < 5%, Supplementary
Table 7). In contrast, comparing the list of kinase modulators within a given gene module revealed
low overlap between kinases with significant gene and gene x environment effects (Figure 5C-
D).

Across our set of kinase hits, we identified 42 kinases with a significant gene effect (Figure 5E)
and 23 with a significant gene x environment effect (Figure 5F) in 2 or more GBM cell lines.
Amongst hits, only CDK2 and TIE1 significantly affected the compensatory program across all 3
GBM lines. CDK2 activity is critical for progression along the late-G1 and early-S phase of the cell
cycle, is frequently overactivated in various cancers due to the upregulation of its binding partner
cyclin E%®, and contributes to adaptation to CDK4/6 inhibition®®. TIE1 encodes an orphan receptor
tyrosine kinase most frequently associated with endothelial cells and the regulation of
angiogenesis by modulating the activity of the TIE2 RTK®. In cancer, TIE2 protein expression
has been identified outside of the endothelial compartment and is positively correlated with
increased tumor grade in glioma®'. Moreover, TIE1 expression has been shown to induce
resistance to chemotherapy in ovarian cancer by modulation the expression of DNA damage
repair proteins through activation of the transcription factor KLF52.

Amongst kinases with a significant interaction effect is BRD4 (Figure 5A), an epigenetic reader
of histone acetylation and atypical kinase that phosphorylates the c-terminal domain of RNA
polymerase |l and serves as a master regulator of eukaryotic transcription®®. Previous studies
have shown that BRD4 activity mediates adaptive transcriptional resistance to MEK inhibition in
triple-negative breast cancer?'. Our results suggest that BRD4 serves a similar role in response
to RTK pathway targeting in GBM cells.

In all, the kinases required for compensation are involved in diverse cellular processes, including
cell cycle progression (AURKA, AURKB, BUB1, PLK3, PLK4, VRK1, VRK2), ribosome maturation
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(RIOK2), cytoskeletal reorganization (CDC42BPA, CDC42BPB) and proliferative MAPK signaling
(ALK, AKT2, BRAF, ERBB2, ERBB3, ERBB4, FGFR1, MAP4K1, MAPK3, SRC). Given the
enrichment for cell cycle processes, we explored whether transcriptional changes upon targeting
the RTK pathway are a consequence of accumulation at a particular cell cycle stage as opposed
to a response to cellular stress. We observed a correlation between proliferation, G1/S, and G2/M
scores in untreated cells and our signatures (Supplementary Figure 7A-B). However, exposing
cells to RTK pathway inhibitors led to altered expression of these genes regardless of proliferation
or inferred cell cycle stage (Supplementary Figure 7C-D), suggesting that the cell cycle stage,
baseline RTK pathway activity, and possibly their interaction, can affect this adaptive
compensatory program.

sci-Plex-GXxE identifies kinases required for transcriptional adaptation to targeted therapy.

A major goal of our workflow is to define the genes required for escaping a therapy, which might
then suggest targets for new combinatorial therapies with better efficacy. Therefore, we sought to
recapitulate the effects of CRISPR-based knockdown on individual kinases using small
molecules. We exposed cells to one of 23 compounds (Supplementary Table 8) targeting the
activity of 16 kinase hits from our screen (AKT, ALK, ATM, RAF, CDK, CHEK, DDR, EIF2AK,
FGFR, IKK [CHUK], MEK, PDGFR, PLK, RIPK, RPS6K families) prioritized from those that are
hits in more than one cell line or for which related kinases are hits in one cell line (CHEK1, CHEK2)
as well as those that are directly involved in RTK signaling (AKT). We also exposed cells to 3
compounds targeting kinases in closely related pathways (ATR, CDC7, CDK4/6, MTOR) and
small molecules that produce or are involved in response to genotoxic cell stress (temozolomide,
doxorubicin, p53 activator) alone or in combination with the MEK inhibitor and potent inducer of
the compensatory program trametinib (Figure 5B). After 72 hours, cells were harvested and
unique conditions multiplexed using sci-Plex and subjected to sci3-RNA-seq capturing 213,404
nuclei across single- and combinatorial- drug exposures (Supplementary Table 6).

We first investigated the ability of each chemical in isolation to phenocopy the response to
trametinib exposure. We performed a correlation analysis of the expression of genes in the
adaptive program between cells treated with trametinib, the strongest inducer of these signatures,
and compounds that had a measurable effect on trametinib-regulated transcription as
monotherapy (defined as compounds with > 100 DEGs in two or more cell lines, FDR < 5%).
Exposure to the CDK4/6 inhibitor palbociclib elicited the strongest “trametinib-like” response
across all cell lines (Figure 6A, p < 0.05 and Pearson's rho > +/-0.2 and Supplementary Figure
8A). The next highest trametinib-like responses were elicited by inhibition of the RTKs PDGFR
(nintedanib) and FGFR (infigratinib) and the inhibition of its upstream regulator RAF (AZ628),
although this varied by cell line (Figure 6A, Supplementary Figure 8B-D). Exposure to the dual
CDC7/CDK9 inhibitor PHA767491 was strongly anti-correlated to the effects of trametinib
exposure (Figure 6A). CDC7, or DBF4-dependent kinase (DDK), promotes replication initiation
by phosphorylating the minichromosome maintenance (MCM) helicase complex®®. CDK9
complexes with cyclin T to form the positive transcriptional factor elongator (pTEFb) complex, a
regulator of RNA polymerase I1°¢. The role of CDK9 suggests the possibility that altered regulation
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of at least the subset of the program upregulated by exposure is a result of a non-specific effect
on global transcription. However, the concomitant increase in the downregulated signature
(Figure 6B) suggests that the observed effect of PHA767491 on drug-induced transcription is not
due to a non-specific effect and may be due to additional roles for CDK9 in progression across
the S phase of the cell cycle®”®8. Although CDKJ is a hit in our screen, we cannot rule out that
additional loss of CDC7 activity and its effect on the cell cycle do not contribute to this drug-
induced phenotype.

We next sought to identify combinatorial exposures of drugs that could block the adaptive program
induced by trametinib alone. We used quasi-poisson regression to model the effects of co-
exposure on each gene in the adaptive program. We then calculated the correlation of gene-level
effects across all co-exposures, grouped combinatorial treatments by the similarity of
transcriptional effects summarized across this correlation space, and visualized the results with
UMAP (Figure 6C). We identified 4 groupings of combinatorial exposures, including those that
differed by the extent of induction of the trametinib induced signature as defined as the correlation
to trametinib exposure alone (Figure 6D-E).

Response group 2 had the largest anti-correlated effect to trametinib exposure alone. Response
group 2 was composed of co-exposures with AZD7762 (CHKi), BMS345541 (NF-kBi), doxorubicin
(topoisomerase lli), PHA767491 (CDC7/CDKJ9i), and volasertib (PLK1i) across all 3 cell lines and
infigratinib (FGFRI) for 2 of the 3 cell lines and the group significantly attenuated induction of the
compensatory program (Figure 6F, FDR < 1%). Response group 3, made up of co-exposures
with GSK690693 (AKTi), MK2206 (AKTi), temsirolimus (MTORI), nintedanib (PDGFRI) in all 3 cell
lines, and Nutlin3A (MDM2i) in 2 of 3 cell lines was also anti-correlated to trametinib exposure
alone. However, the average effect of the response group on the aggregated expression of
compensatory modules was not significantly different from trametinib alone. AKT and mTOR have
previously been identified to enact compensatory signaling®, and this group may reflect modest
blocks to the compensatory program that are not evident across the full signature. In A172 cells,
we also found evidence that co-exposure with the RAF inhibitor AZ628 and the CDKA4/6i
palbociclib exacerbated the compensatory program (Figure 6G). This may have implications for
the emergence of resistance to BRAF-mutated tumors treated with combinatorial MEK and RAF
inhibition”®7"2

Interestingly, these differential responses to combinatorial inhibition could not be readily explained
based on differential effects on viability. For example, trametinib co-exposure with palbociclib and
PHA767491 had similar dose-dependent effects on viability despite opposing effects on
compensatory program expression (Supplementary Figure 9). Our combined chemical and
genetic perturbation screen defined a compensatory transcriptional response to MEK inhibition
and identified kinases that significantly regulate the two gene modules that compose this program.
Our chemical genomics approach validated the dependence of this program on CDK4/6 activity
and demonstrated that the inhibition of several kinases, including CHK, CDC7/CDK9, FGFR, IKK,
AKT, and mTOR interfered with the ability of GBM cells to mount this compensatory program
(Figure 6H).
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Discussion

Defining the molecular basis by which individual genes alter the response to therapy has
important implications for cancer treatment. The multiplexing ability afforded by single-cell
screens is particularly well-suited to probe the large combinatorial space of genetic perturbations
and drug treatments. Here, we introduce sci-Plex-GxE, a workflow for high throughput chemical
genomic screens at single-cell resolution and demonstrate its capability to identify the genetic
architecture that drives response to exposure by investigating the effect of the human protein
kinome on the response of glioblastoma tumor cells to RTK pathway inhibition.

The rapid advance of cancer genomics has identified genetic variants and mutations that provide
cells with the capacity for malignant transformation and the acquisition of key phenotypes that
define a tumorigenic cell state’. Genetic screens have arisen as a powerful means to identify
cancer dependencies®*’* as well as regulators of toxicity in response to therapeutic exposure’.
However, most of these screens report on a limited set of phenotypes (proliferation, viability) and
cannot discern, for example, whether dependencies that similarly alter viability differentially
induce unwanted secondary effects that result in the development of resistance.

Perturb-seq approaches that combine CRISPR-based gene editing with a single-cell
transcriptomic readout have been applied at genome-scale, defining the effect of perturbation of
all genes on transcriptional networks''. Our recent development of multiplexing approaches that
allow single-cell technologies to be used in high-throughput chemical transcriptomics screens and
its combination with Perturb-seq provide an opportunity to understand how cancer cells respond
to therapy at scale. Our sci-Plex-GxE platform for multiplex single-cell genetic and chemical
perturbation screens remains sensitive to capturing both cell-expressing and exogenous tags that
report on genetic perturbation (gRNA-containing transcripts) and chemical exposure (cell
hashing). Coupled with our computational workflow, we efficiently prioritize genotypes that
significantly shift drug-induced gene expression changes.

To demonstrate the ability of our approach to identify the genetic requirements of the response to
exposure, we applied sci-Plex-GxE to define the contribution of all kinases in the human protein
kinome to the dynamic response of glioblastoma to the inhibition of 4 nodes in the RTK pathway,
frequently overactivated in the disease. We identified diverse molecular changes in response to
RTK pathway inhibition revealing many kinases whose loss significantly alters proliferative gene
expression, suggesting an increased sensitivity to detect growth changes compared to bulk
CRISPR screening. We identified two transcriptional modules whose expression changes are
conserved across cell lines screened, which we posit are part of one conserved transcriptional
program. This program is associated with changes in the expression of components of the RTK
pathway, including evidence of adaptive resistance characterized by increased expression of
genes that can activate or bypass RTK signaling. Our genetic screen identified kinases whose
loss altered the induction of this resistance program. We used a chemical genomic approach to
validate the contribution of a subset of these kinases to the regulation of this adaptive program.
We identified compounds targeting cellular activities that can positively (CDK4/6i, FGFRI,
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PDGFRI, RAFi) and negatively (AKTi, IKKi, CDK2, CDC7/CDK?9i) modulate this transcriptional
adaptation in isolation (Figure 6H, top panel). In addition, we identified compounds that
significantly modulate the induction of this adaptive program after its activation via trametinib
exposure. In particular, we find that combinatorial inhibition of MEK kinase and either of AKT,
CDK2, CDC7/CDK9, FGFR, MTOR, MDM2, NF-kB, and PLK signaling can block the induction of
the core adaptive transcriptional program in GBM cells (Figure 6H, bottom panel). These
combinations may be promising combinatorial therapies that minimize unwanted resistance-
associated changes in response to MEKi monotherapy. However, our study is limited to the
prioritization of inhibitor combinations based on a desired transcriptional effect. In-depth
biochemical and in vivo functional characterization are necessary to confirm the ability of
combinatorial exposures to increase efficacy.

Interestingly, our validation experiment targeting FGFR activity had opposing effects as mono or
combination therapy, which may highlight context dependence of transcriptional adaptation in
GBM. We also observe a confounding response to the targeting of CHK and MDM2 activity. CHK
kinases are master regulators of the response to DNA damage and activate the p53 transcription
factor to enact cell cycle arrest or apoptotic cell fates. MDM2 is a negative regulator of p53 protein
levels, and its inhibition stabilizes p53 in the cell. Despite CHK and MDM2 inhibition having
opposing effects on p53 activity, both exposures led to a block in the induction of trametinib-
induced compensatory transcription. p53 is known to negatively regulate CHK1 expression’®;
therefore, our results may be explained by both exposures leading to a decrease in CHK activity
in the cell.

The work presented here constitutes a new approach to prioritize combinatorial therapies based
on their induction of gene expression programs of interest. sci-Plex-GxE has the potential to
complement existing drug discovery pipelines, prioritizing anti-tumor therapies that not only lead
to desired anti-proliferative or pro-apoptotic effects but also minimize the possibility of therapeutic
resistance. Scrutiny of transcriptional adaptation and its context-dependent genetic requirements
could also reveal modules of important genes (e.g., immune checkpoint, antigen processing and
presentation machinery) that are modified by anti-cancer therapy and, therefore, highlight
opportunities for combinatorial treatment.

The sci-Plex-GxE platform is highly flexible to user needs and sequencing budgets. It can be
applied to probe the effect of a limited number of genotypes on the response to many chemical
exposures or scaled genome-wide with only moderate increases in the costs of generating single-
cell mRNA libraries (less than 1 cent per cell). Moreover, our approach has significantly lower
multiplet (doublet) rates (less than 1%) compared to most commercial approaches and has the
capacity for highly efficient multiplexing of genetic perturbations and applied exposures.
Combined with recent developments and decreases in the cost of library generation for single-
cell combinatorial indexing RNA-seq’”"®, our sci-Plex-GxE approach dramatically increases the
ability of researchers to profile large combinatorial spaces.
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Limitations of our study

Our kinome-wide single-cell genetic screen aims to define the genetic dependence of the
transcriptional response to kinase-directed therapy. However, our approach cannot fully account
for nodes that mediate response to therapy where redundancy in kinase signaling exists.
Incorporation of multiplex editing techniques such as those used for paralog screens’® and genetic
interaction screens® could reveal such instances of redundancy. Extending our platform to
patient-derived models could identify additional transcriptional programs of physiological
importance. Even with an expanded compendium of genotypes probed and responses profiled,
our RNA readout does not capture all changes that occur as cells respond to inhibition. However,
our approach could be used to identify general genotype/response relationships prioritized for in-
depth analysis and integration with additional -omic modalities®'®2. Although the majority of
inhibitors tested are in direct clinical use, we acknowledge that our results are dependent on the
exact chemical means of inhibition, and a drug’s precise polypharmacology®*®* could alter the
induction of drug-induced programs. Lastly, our approach to annotating transcriptional differences
may not be sensitive enough to identify subtle drug-induced programs. However, future
endeavors can leverage the scale of our dataset for the training of deep learning models®*®’ that
could extract additional biological insight.
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Main Figure Titles and Legends

Figure 1: sci-Plex-GxE couples genetic and perturbation screens with high sensitivity and
specificity. A) sci-Plex-GxE workflow including targeted enrichment of CROP-seq derived gRNA
containing transcripts. B) Concordance between CRISPRi and CRISPRa gRNA assignments
derived from hashes added to individually labeled CRIPSRi and CRIPSRa pools (hash CRISPR
assignment) and the sequence of captured gRNAs (gRNA CRISPR assignment). C/D) Percent of
cells expressing HPRT1 and CRISPRi (knockdown) (C) or CRISPRa (overexpression) (D)
systems and gRNAs targeting HPRT1 or NTC controls. E) Relationship between 6-thioguanine
exposure, HPRT1 activity and cell death. F) Aggregate expression of genes associated with
proliferation in NTC and HPRT1 knockdown cells after exposure to 6-thioguanine.

Figure 2: Defining the relationship between genotypes and summarizing the magnitude of
the perturbation after combined genetic and chemical perturbation. A) Mechanism of TMZ-
induced mismatch repair dependent O°f-methyguanine toxicity. B-C) Heatmaps depicting
CDKN1A expression levels (B) or the aggregate expression of genes associated with proliferation
(C) as a function of perturbation via CRISPRi-mediated knockdown and exposure to TMZ. D) Left:
Heatmap depicting the aggregate expression of gene modules derived from genes that are
differentially expressed as a function of genotype in high dose (10, 50, and 100 uM) TMZ-exposed
and genetically perturbed cells. Right: Enriched MSigDB Hallmarks gene sets for gene modules
in the experiment. E/F) UMAP embedding of the proportions of cells expressing individual gRNAs
(E) or gRNAs against the labeled target (F) across clusters in our experiment. G) Expected
decrease in pairwise transcriptome distance as cells enact a transcriptional response and cell
cycle arrest after TMZ exposure. H) Violin plots depicting the pairwise transcriptome distance of
every cell to the mean expression of NTC cells exposed to 100 uM TMZ for all genotypes exposed
to increasing doses of TMZ (**** p < 0.0001, *** p < 0.001, ns - not significant, one-way Anova).
I) Inferred transcriptional effective concentration (TC50) defined as the concentration of drug
necessary to reach 50% of the change in pairwise transcriptome distance exhibited by TMZ-
exposed NTC cells. Dashed line: maximum molarity of an aqueous solution as a threshold for
genotypes where the drug cannot induce the effect observed in NTC. Insert excludes MSH2 and
MSHEG6. Error bars: 95% confidence intervals across 1,000 bootstraps.

Figure 3: A single-cell kinome targeting genetic screen identifies subtle effects of
perturbation on proliferation-associated gene expression. A) sci-Plex-GxE screen to
determine the contribution of the kinome to the transcriptional response of glioblastoma cells to
RTK pathway targeted therapies. B) Median knockdown level across the cell lines in our screen
as a function of sgRNA assignment (real) or a random permutation of sgRNA assignment labels
(random) (Wilcoxon rank sum test). C) Hierarchical clustering of B coefficients for the term from a
quasi-poisson regression model describing the interaction between drug treatment and kinase
perturbation on the aggregate expression of proliferation-associated genes. Includes kinase
perturbations with a significant interaction term in response to at least one treatment in one cell
line (Wald test, FDR < 5%). D) Heatmap depicting the mean aggregate expression of proliferation-
associated genes for proliferation perturbing and controls genotypes from C. For each genotype,
values were centered on the mean value of untreated cells. Genotypes with more than 5 cells at
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top doses are shown. Red annotation bar highlights non-targeting and random targeting control
genotypes. E/F) Violin plots depicting the aggregate expression of proliferation-associated genes
for select drugs and proliferation perturbing genotypes from C/D.

Figure 4: Exposure to small molecules targeting the RTK pathway drives changes in gene
expression, including dynamic alterations in kinase expression. A-C) Heatmaps depicting
the average expression of genes that are dynamic as a function of exposure to at least 1 of 4
small molecules targeting the RTK pathway in A172 (A), T98G (B) and U87MG (C) cells (FDR <
5%). Right panels: Aggregate gene expression across clusters for gene clusters to the left for
A172 (A), T98G (B), and U87MG (C) cells. Colors: individual drug treatments. D) UMAP
embeddings of unperturbed A172 (top), T98G (middle), and U87MG (bottom) cells colored by
treatment, dose, proliferation index, or aggregate scores for the conserved upregulated S1 or
downregulated S2 signatures. Arrows denote the dynamics of S1 and S2 signature expression
as a function of RTK pathway inhibition. E-F) Gene set enrichment analysis using the MSigDB
hallmark, and oncogenic signatures gene set collections of signatures that increase (E. S1) or
decrease (F. S2) as a function of drug exposure with RTK targeted therapy.

Figure 5: Perturbation of individual kinases alters the global transcriptional response to
RTK pathway targeting small molecules. A-B) Venn diagram of the overlap between kinases
whose knockdown leads to a significant shift in the S1 or S2 signatures of the putative adaptive
program without (A) or with (B) a significant interaction effect. C-D) Venn diagram of the overlap
between kinases whose knockdown leads to a significant shift in the expression of the S1 (C) or
S2 (D) signatures without or with a significant interaction effect. E-F) Human protein kinome tree,
adapted from CORAL®*, highlighting kinases whose knockdown leads to a significant shift in the
expression of a putative adaptive program without (E) or with (F) a significant interaction effect
with drug exposure. The size and color of each circle denote whether we identified a significant
effectin 1, 2, or all GBM cell lines (FDR < 5%).

Figure 6: Single and combinatorial kinase inhibition identifies chemical regulators of MEK
inhibition-dependent dynamic expression changes. A) Circos heatmap of the correlation of
the response to single drug exposures to the compensatory program enacted by MEK inhibition
with trametinib. Pearson’s correlation coefficient between vectors of normalized effect estimates
(Beoetiicients) for the effect of drug on genes in the adaptive program. Significant correlations (FDR
< 5%) with a Pearson’s p £0.2 are shown. B) Density plots of upregulated and downregulated
signatures for T98G cells treated with the MEK inhibitor trametinib (MEKIi), the CDK4/6 inhibitor
palbociclib (CDK4/6i) or the CDC7 inhibitor PHA-767491 (CDC7i). Red vertical lines: mean
signature expression of vehicle-exposed cells. *FDR < 5%. C) UMAP embeddings of the pair-
wise correlation of combinatorial trametinib exposures across genes that compose the
compensatory program enacted by RTK pathway inhibition. Shapes refer to individual cell lines.
Pearson’s puametiniv relates to the Pearson’s correlation coefficient across aggregated expression
scores for the specified drug treatment and trametinib exposure. D) UMAP as in C, colored by the
correlation of each combinatorial exposure to exposure with trametinib alone. E) UMAP as in C
colored by response group clusters identified by Leiden-based community detection. F) Boxplots
of the expression of signatures that make up the compensatory program. Values for each
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combinatorial exposure are centered on the response of cells to trametinib alone, such that
combinations that increase signature expression relative to trametinib are positive and vice-versa
for those that decrease signature expression relative to trametinib. G) Density plots of upregulated
signature scores of GBM cells treated with the MEK inhibitor trametinib (MEKi) alone or in
combination with the RAF inhibitor AZ628, the AKT inhibitor GSK690693, the NF-kB inhibitor
BMS345541, and the dual CDC7/CDK9 inhibitor PHA767491. Plots ordered by the effect of
treatment on the signature. H) Pathway summary of proteins whose targeting alone (top) or in
combination with MEK inhibition (bottom) blocks (blue) or exacerbates (red) the compensatory
program enacted by MEK kinase inhibition.
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Star Methods

RESOURCE AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be
fulfilled by the lead contact, José L. McFaline-Figueroa (jm5200@columbia.edu).

MATERIALS AVAILABILITY

This study did not generate new unique reagents.

DATA AND CODE AVAILABILITY

e All processed and raw data are available for download from the National Center for
Biotechnology Information (NCBI) Gene expression omnibus (GEO) under series number
GSE225775.

e All code used to reproduce the presented analyses is available on github at
https://github.com/cole-trapnell-lab/sci-Plex-GxE and released in Zenodo as v1.0.0 at
http://doi.org/10.5281/zenodo.10293222.

¢ Additional information required to analyze the data in this paper are available from the
lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines and cell culture

A172, T98G, and U87MG glioblastoma cell lines were purchased from ATCC. Cells were cultured
in DMEM media (ThermoScientific) supplemented with 10% fetal bovine serum and 1%
penicillin/streptomycin (P/S, ThermoScientific). GBM4, GBM8, GSC0131, and GSC0827 glioma
stem cell (GSC) cultures have been previously described®>®2° and were provided by Drs. Robert
Rostomily and Andrei Mikheev, University of Washington and Houston Methodist Hospital (GBM4
and GBMS8) and Dr. Patrick Paddison, Fred Hutchinson Cancer Research Center (GSC0131 and
GSC0827). GSC cultures were maintained in a defined serum-free medium at 37C and 5% O to
mimic in vivo conditions. GBM4 and GBM8 were cultured in Neurobasal medium
(ThermoScientific) supplemented with B-27 and N2 (ThermoScientific), 20 ng/mL EGF
(PeproTech), 20 ng/mL FGF (PeproTech) and 5 pg/mL heparin (Sigma). GSC0131 and
GSC0827 were cultured in Neurocult medium (StemCell Technologies) supplemented with 20
ng/mL EGF (PeproTech), 20 ng/mL FGF (PeproTech), and 0.8 pg/mL heparin (Sigma). All
cultures were negative for Mycoplasma contamination.

METHOD DETAILS

Expression of CRISPRi/a systems
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For the generation of CRISPRi-mediated knockdown cells, lentiviral particles encoding dCas9-
BFP-KRAB were generated by transfecting HEK293T cells with plasmids encoding dCas9-BFP-
KRAB (pHR-SFFV-dCas9-BFP-KRAB, Addgene 46911) and the ViraPower lentiviral packaging
mix (ThermoScientific). Transfection was performed using lipofectamine 2000 (ThermoScientific)
in OptiMEM (ThermoScientific) following the forward transfection protocol provided by the
manufacturer scaled up to 15 cm dishes. 72 hours post-transfection, media was collected and
filtered using a 50 mL 0.22 pm steriflip filtration system. A172, T98G, and U87MG cells were then
transduced by culturing for 48 hours with different amounts of the filtered lentiviral supernatant.
Cells were then expanded, analyzed and sorted using fluorescent activated cell sorting (FACS)
for cells with the highest amount of BFP fluorescence starting from transductions with an MOI
~0.3. To arrive at pure populations of cells with similar levels of dCas9-KRAB cells were expanded
and sorted 4 times. For the generation of CRISPRa-mediated overexpression cells we used the
2-component dCas9-SunTag system [citation], a filtered lentiviral supernatant carrying a payload
of dCas9-GCN4-BFP (pHRdASV40-dCas9-10xGCN4_v4-P2A-BFP, Addgene 60903) or scFV-
GCN4-GFP-VP64 (pHRdASV40-scFv-GCN4-sfGFP-VP64-GB1-NLS, Addgene 60904) were
generated as described above. Glioblastoma cells were simultaneously transduced with dCas9-
GCN4-BFP at an MOI ~0.3 and with scFV-GCN4-GFP-VP64 at an MOI ~1. Cells were expanded,
and FACS sorted a total of 4 times based on BFP and GFP fluorescence to ensure maximal and
similar expression across cells.

Generation of CROP-seq-OPTI gRNA libraries

Protospacer sequences targeting all of the perturbed genes in this study were obtained from the
genome-wide human CRISPRi and CRISPRa version 2 libraries designed by Horlbeck and
colleagues®. Oligonucleotides containing these sequences and flanked with adapters with
homology to a CROP-seq vector that we have previously altered® to contain a CRIPSRi optimized
guide RNA backbone® (CROP-seq-OPTI, Addgene 106280) were synthesized individually for
experiments related to Fig. 1-2 (IDT) and pooled or as a pooled oligo array (CustomArray Inc.
Bothell, WA) for our kinome screen. Specifically, 3,165 sgRNAs targeting 522 kinases, with five
sgRNAs targeting each transcription start site (of which there may be more than one per kinase
gene) or non-targeting and random targeting controls.

5 homology sequence:
5-ATCTTGTGGAAAGGACGAAACACC-3

3’ homology sequence:
5-GGGTTTAAGAGCTATGCTGGAAACAGCATAGCAAGT-3’

Prior to Gibson assembly, pooled oligonucleotides were amplified via PCR using NEBNext 2X Hi-
Fi PCR Master Mix (NEB) and primers:

Forward primer:
5-ATCTTGTGGAAAGGACGAAACACCG’3’
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Reverse primer:
5-GCTATGCTGTTTCCAGCATAGCTCTTAAAC-3

Amplification was followed on a MiniOpticon real-time PCR system (BioRad) with the addition of
SYBR green (Invitrogen), and reactions stopped prior to saturation. Amplified oligonucleotides
were purified using the NucleoSpin PCR clean-up and gel extraction kit (Takara Bio). CROP-seq-
opti was linearized via digestion with BsmBI and alkaline phosphatase (NEB) with PCR clean up
in between both digestions, purified via gel extraction from a 1% agarose gel followed by cleanup
using the NucleoSpin PCR clean up and gel extraction kit (Takara Bio). Linearized CROP-seq-
optil and amplified oligonucleotides were assembled using the NEBuilder HiFi DNA assembly
cloning kit (NEB) with the inserts at 2-fold molar excess followed by multiple transformations into
NEB stable competent E. Coli (NEB) to ensure at least 20x coverage of colonies for every sgRNA,
transformations combined and cultured in 50 mL of Luria broth containing ampicillin at 30°C for
24 hours. Plasmid libraries were recovered using a Midi prep kit (Qiagen). Lentiviral libraries were
generated in HEK293T by transfection of plasmid libraries using lipofectamine 2000
(ThermoScientific) in OptiMEM (ThermoScientific) following the forward transfection protocol
provided by the manufacturer scaled up to 15 cm dishes. 72 hours post-transfection, media was
collected and filtered using a 50 mL 0.22 um steriflip filtration system. Viral supernatant was titered
for each cell line (A172, T98G, and U87MG) by transduction with varying amounts of lentiviral
supernatant for 72 hours in 6-well plates. After this, cells were split 1:4 into media with and without
1 pg/mL of puromycin, cultured for 96 hours, and the approximate MOI calculated. For our
screens, 3 x 10° cells in 10 cm tissue culture dishes were transduced with lentiviral libraries at an
approximate MOI of 0.1 to ensure single integrations. 72 hours post-transduction cells were
transferred to two 15 cm tissue culture dishes containing 1 ug/mL of puromycin and continuously
cultured in puromycin. Cells were seeded for chemical exposure between 10 to 14 days after
transduction.

Chemical exposure of genetically perturbed cell pools

Temozolomide (cat no. T2577) and 6-thioguanine (cat no. A4882) were purchased from Sigma
and resuspended in DMSO (VWR scientific) to a concentration of 100 mM. Lapatinib (cat no.
S2111), nintedanib (cat no. S1010), trametinib (cat no. S2673), and zstk474 (cat no. S1072) were
purchased from Selleck Chemicals at a concentration of 10 mM in DMSO. Genetically perturbed
pools of glioblastoma cells were seeded in 96-well plates at 2.5 x10* cells per well in 100 L of
DMEM containing 10% FBS, 1% P/S, and 1 yg/mL puromycin and allowed to attach for 24 hours.
Small molecules were diluted to 1000-fold the exposure concentration in DMSO, followed by a
10-fold dilution into Dubelcco’s Phosphate buffered saline (DPBS, Life Technologies) and 1 pL
added of the appropriate drug and dose to wells of seeded cells and a final concentration of 0.1%
v/v DMSO. For temozolomide and 6-thioguanine exposure experiments, cells were exposed for
96 hours. For lapatinib, nintedanib, trametinib and zstk474 experiments, cells were exposed for
72 hours.

sci-Plex cell harvest and hash labeling
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Cell harvest and sci-Plex labeling were performed as previously described’. Briefly, drug-
containing media was removed from wells, wells were washed with 100 pyL of DBPS, and 50 uL
of TrypLE (Invitrogen) was added to every well. Cells were detached by incubation with TrypLE
at 37°C. Once cells were detached, 100 yL of ice-cold DMEM was added to every well, cells
resuspended, cells transferred to v-bottom 96 well plates, cells pelleted by centrifugation and
washed with ice-cold DPBS. Cells were lysed to nuclei by the addition of 50 uL of cold lysis buffer
(CLB: 10 mM Tris HCI ph 7.4, 10 mM NaCl, 3 mM MgCI2, 0.1% IGE-PAL) containing 1% v/v
Superase-In and 100 nM (final concentration) hashing oligos (each unique to each well) of the
form:

5-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-[10bp-barcode]-
BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3

Where B is G, C or T (IDT), lysis was carried out on ice for 3 minutes, followed by the addition of
200 uM of 5% paraformaldehyde (EM solutions) in 1.25x PBS and incubated on ice for 15 minutes.
Nuclei were then pooled, pelleted by centrifugation, and washed twice with 2 mL of CLB
containing Superase-In and 1% v/v of 20 mg/mL molecular grade BSA (NEB). After the final wash,
nuclei were resuspended in 1 mL of CLB containing Superase-In and 1% v/v of 20 mg/mL
molecular grade BSA and snap-frozen in liquid nitrogen. Labeled nuclei were stored at -80°C until
the preparation of sequencing libraries.

}‘?é'eparation and sequencing of single-cell RNA-seq and CROP-seq-OPTI sgRNA enrichment
ibraries

Flash-frozen nuclei were thawed at room temperature, nuclei pelleted by centrifugation at 500 x
g for 5 minutes, the supernatant removed, nuclei re-suspended in 1 mL of CLB containing 1% v/v
Superase-In and 1% v/v of 20 mg/mL molecular grade BSA (NSB) and nuclei from uniquely
hashed samples were pooled. Pooled nuclei were then pelleted by centrifugation at 500 x g for 5
minutes. For a subset of experiments, the same hashes were used for different replicates and/or
cell lines. As such, these were not combined and distributed across unique wells of the plate in
which reverse transcription (RT) was performed (e.g. for cells exposed to inhibitors and damaging
agents that alter cell stress pathways each line was hashed separately, and each cell line arrayed
across 4 columns of the 96-well RT plate). Prior to RT, nuclei were further permeabilized by
incubation in 0.2% tryton-X100 (Sigma) in NSB. Nuclei were pelleted, resuspended in 400 uL of
NSB, and sonicated for 12 seconds using the low setting on a Bioruptor sonicator (Diagenode).
Nuclei were then pelleted, resuspended in 500 uL NSB, stained with trypan blue (Life
Technologies), and counted on a hemocytometer. Nuclei distributed into skirted lo-bind 96 well
plates (Eppendorf) at 20,000 (related to figures 1 & 2) or 40,000 nuclei per well in 22 uL of NSB
and 2 pL of 10 mM dNTP mix (NEB).

To increase our rate of sgRNA assignment, we devised a sgRNA enrichment strategy specific to

combinatorial indexing sci-RNA-seq that relies on (1) the addition of a custom RT primer targeting
the sgRNA-containing puromycin transcript delivered by CROP-seq, (2) performing combinatorial
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indexing solely on the i5 end of the mRNA molecule, and (3) addition of a sgRNA enrichment
PCR from the final MRNA library which targets the sgRNA-containing puromycin transcript while
maintaining the combinatorial i5 cell barcode on every molecule (Fig. 1A). We designed the
targeted RT primer to capture transcripts derived from CROP-seq-OPTI 2, a modified version of
CROP-seq incorporating an optimized single-guide RNA backbone *° that increases the stability
of sgRNA association with dCas9.

For our sci-Plex-GxE protocol, RT was performed as previously described'® with the addition of 2
uL of 100 pM ligation-compatible indexed oligo-dT primer of the form:

5'-/5Phos/CAGAGCNNNNNNNN-[10bp-barcode]-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-3,

Where N is any base (IDT) and 1 yL of 100 uM ligation compatible indexed CROP-seq-OPTI
targeting primer of the form

5’-/5Phos/CAGAGCNNNNNNNN-[10bp-barcode]-
ACTTTTTCAAGTTGATAACGGACTAGCCTTATTT-3

Where N is any base (IDT) that were added to every well. The use of the OPTI-modified backbone
necessitated additional considerations for the design of the targeted RT primer to ensure that the
hairpin that mediates strong binding to dCas9 does not interfere with the efficiency of reverse
transcription. Primers were annealed by incubation at 55°C for 5 minutes, followed quickly by
incubation on ice. 14 uL of RT mix (8 pL of Superscript IV buffer, 2 uL of Superscript IV enzyme,
2 uL of 100 mM DTT and 2 pL of RNAseOut rnase inhibitor, Invitrogen) were added to each well,
and RT performed as follows: 4°C - 2 min, 10°C - 2 min, 20°C for 2 minutes, 30°C for 2 minutes,
40°C for 2 minutes, 50°C for 2 minutes and 55°C for 15 minutes. After RT, 60 uL of CLB containing
1% vl/v of 20 mg/mL molecular grade BSA (NBB) were added to every well, wells pooled, nuclei
pelleted, resuspended in NSB and 10 uL of nuclei were redistributed into each well of a 96 well
Lo-bind skirted plates. All experiments were done using a single RT and ligation plate with the
exception of the kinome screen where 4 RT and 4 ligation plates were used. For the second round
of combinatorial indexing, 8 pL of indexed ligation primer of the form

5-GCTCTG[9bp-or-10bp-barcode-A]/ideoxyU/ACGACGCTCTTCCGATCT][reverse-
complement-of barcode-AJ-3’

(IDT) were added to each well, followed by the addition of 22 L of ligation mix (20 uL quick ligase
buffer and 2 uL of quick ligase, NEB) and incubation at 25°C for 10 minutes. After ligation 60 L
of NBB were added to each well, wells pooled, nuclei pelleted by centrifugation at 700 x g for 10
minutes, washed twice with NBB, nuclei counted, and redistributed into 96 well Lo-bind skirted
plates. The number of cells distributed was determined by the number of RT and ligation barcodes
in the experiment so as to minimize the number of total doublets in the experiment to between 1-
10% and the rate of doublets that cannot be filtered from sci-Plex hashes to 1% or less according
to birthday problem statistics®'. Plates were stored at -80°C until further processing. Second
strand synthesis was performed after thawing by the addition of 5 uL of second strand synthesis
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mix (3 pL of elution buffer [Qiagen], 1.33 uL mRNA second strand synthesis buffer and 0.66 pL
of second strand synthesis enzyme mix [NEB]) and incubated at 16°C for 3 hours. After second
strand synthesis, DNA was tagmented by the addition of 10 pL of tagmentation mix (0.01 pL of a
custom TDE1 enzyme in 9.99 uL of 2x Nexterda TD buffer, lllumina) and plates incubated at 55°C
for 5 minutes. After tagmentation, 20 puL of DNA binding buffer (Zymo) was added to each well
and incubated at room temperature for 20 minutes, 40 pyL of Ampure XP beads (Beckman Coulter)
was added to every well, and a cleanup was performed according to manufacturer’s instructions
with changes to the elution step. Prior to elution, beads were incubated with 10 pL of USER mix
(1 pL of 10X USER buffer and 1 uL of USER enzyme in 8 pL of nuclease-free water, NEB) and
incubated at 37°C for 15 minutes. After incubation, 7 uL of elution buffer was added to each well,
beads were resuspended, plates were placed on a magnetic stand and 16 pL of solution was
transferred to 96 well Lo-bind skirted plates. For PCR, 20 pL of 2X NEBNext master mix, 2 pL of
10 uM indexed P5 primer of the form:

5-AATGATACGGCGACCACCGAGATCTACAC-[index5]-
ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3'

and 2 uL of 10 uM indexed P7 primer of the form:
5'-CAAGCAGAAGACGGCATACGAGAT-[index7]-GTCTCGTGGGCTCGG-3'

were added to each well. To account for the loss of the P7 index during sgRNA enrichment PCR,
each PCR plate was labeled with 96 unique P5 indices, and the P7 index was used as a plate
identifier. Libraries were generated using the following PCR program: 72°C for 5 min, 98°C for 30
sec, 15 cycles of (98°C for 10 sec, 66°C for 30 sec, 72°C for 30 sec), and a final extension at 72C
for 5 minutes. After PCR, uniquely labeled wells were pooled, and 1 mL of PCR product was
subjected to a 0.7X Ampure cleanup. After the initial incubation, the supernatant was transferred
to a new tube, and additional beads were added to arrive at a 1X Ampure cleanup which will be
the hash-containing fraction. Both fractions were further processed following the standard Ampure
XP protocol and eluted in 100 yL of elution buffer.

For the enrichment of sgRNA containing library fragments, a separate sgRNA enrichment PCR
was performed via nested PCR using the final sci-RNA-seq3 libraries as starting material. For
each library, 10-20 unique reactions were performed each using 1:100" of the mRNA library in a
reaction containing 25 pL of 2X NEBNext master mix an up-stream U6 targeting forward primer
of the form 5-CTTGTGGAAAGGACGAAACACCG-3', a reverse primer targeting the P5 flow cell
binding sequence (5-AATGATACGGCGACCACCGA-3'), 0.5 pL of SYBR green (Life
Technologies) and nuclease-free water. Amplification was monitored by real-time PCR (BioRad),
PCR terminated during the extension phase just prior to saturation, PCR was purified using a 1X
Ampure XP cleanup, and eluted into 50 uL. A second PCR reaction was performed as described
above with the following forward primer targeting the sgRNA proximal U6 promoter and containing
an lllumina read 2 primers binding sequence (5-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTTGTGGAAAGGACGAAACACCG-3)

and reverse primer targeting the P5 flow cell binding sequence followed by a 1X Ampure cleanup.
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Finally, a third PCR was performed using a P7 index as above that could be used to link an mRNA
library to its corresponding sgRNA enrichment library and the reverse primer targeting the P5 flow
cell binding sequence followed by a 1X Ampure cleanup.

Library fragment sizes were determined using an Agilent TapeStation high sensitivity screen tape
(Agilent) and library concentration determined using a Qubit fluorometer (Life Technologies).
Libraries were sequenced on the NextSeq 550 (R1: 34 bp, R2: 100 bp, 11: 10 bp, 12: 10 bp),
Nextseq 2000 (R1: 34 bp, R2: 70 bp, 11: 10 bp, 12: 10 bp) and Novaseq (R1: 34 bp, R2: 100 bp,
[1: 10 bp, 12: 10 bp) platforms.

Data processing and generation of count data matrix

Sequences were demultiplexed using bcl2fastq (lllumina) filtering for reads with RT and ligation
barcodes within an edit distance of 2 bp. PolyA tails were trimmed using trim-galore
(https://github.com/FelixKrueger/TrimGalore) and reads were mapped to the human hg-38
transcriptome using STAR%. After alignment, reads were filtered by alignment quality and
duplicates were removed if they mapped to the same gene, the same barcode and the same
unique molecular identifier (UMI) or if they met the first 2 criteria and the UMI was within an edit
distance of 1 bp. Reads were assigned to genes using bedtools®. 3’ UTRs were extended by 100
bp in the gene model to account for short 3' UTR annotations to minimize genic reads labeled as
intergenic. A knee plot was used to set a threshold above which a combinatorial cell barcode
confidently corresponded to a cell. UMI counts for cell barcodes that pass this threshold were
aggregated into a sparse matrix format, followed by the creation of a cell data set object using
Monocle3. Mitochrondrially encoded genes were excluded in downstream analyses.

Hash and sgRNA assignment

sci-Plex hashes and sgRNA containing puromycin transcripts derived from CROP-seq were
isolated from demultiplexed reads. Hashes were assigned as previously described . Briefly,
reads were considered hashes if (1) the first 10 bp of read 2 matched a hash in a hash whitelist
within a hamming distance of 2 and (2) contained a poly A stratched spanning the 12-16 base
pair region of read 2. For sgRNA assignment, read were considered CROP-seq derived if the
bases spanning position 24-42 matched a sgRNA in a sgRNA whitelist within a hamming distance
of 2 and (2) a TGTGG sequence at position 3-7 of read 2. Duplicated reads were collapsed by
their UMlIs arriving at hash and sgRNA UMI counts for each nucleus in our experiment. Finally,
we tested whether a particular nucleus was enriched for one or more hash or sgRNA as described
in ' for sci-Plex hashes.

Data pre-processing

For our kinome screen, multiplets were removed from our experiments using 3 orthogonal
approaches. First, doublets were inferred using scrublet® specifying an expected doublet rate of
0.05 as calculated using a formulation of the birthday problem. Cells with a doublet score of larger
or equal to 0.25 were removed from our dataset (0.88% of cells). Next cells where the ratio
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between the UMI counts of the most abundant and next most abundant hash (i.e., the top to
second best ratio) was less than 2.5 or cells with less than 5 totals hash UMIs were removed from
our analysis (4.9% of cells). Data were pre-processed by performing an initial dimensionality
reduction using principal component analysis (PCA) using genes expressed in at least 5% of the
cells from each cell line as feature genes and the top 25 dimensions were used to build our UMAP.
We specified 20 nearest neighbors and a minimum distance of 0.1 as UMAP hyperparameters.
We next clustered cells in this co-embedding using Leiden community detection®® specifying a
resolution parameter of 1e-6. This resulted in 5 UMAP partitions that could be readily assigned to
the 3 cell lines in our experiment by visual inspection. This approach identified a small proportion
of cells where there was a mismatch between hash and transcriptome identity. For our GSC and
chemical exposure experiments, multiplets were described as above without scrublet pre-filtering.
For our proof-of-concept experiments in A172 cells, multiplets were removed using the hash filters
described above.

Estimation of the cell cycle stage of single-cells

Estimates for the cell cycle stage of individual cells was inferred as in'. Briefly, the expression of
genes associated with the G1/S and G2/M cell cycle stages was size-factor normalized *, and
their expressions aggregated and log-transformed. We define a proliferation index as the sum of
the logged G1/S and G2/M scores.

Differential gene expression analysis

Differential gene expression analysis was performed using the fit_models function in Monocle3.
To define the effect of drug exposure on the gene expression profiles of unperturbed cells, we
created subsets of our dataset for every exposure and set of NTC cells. We first log transformed
gene expression values after the addition of a pseudocount of 1. For every gene expressed in at
least 5% of cells, we fit a generalized linear model with a quasi-poisson random component of
the form expression ~ log(dose + pseudocount) specifying “~log(dose + 0.001)” for the
model_formula_str parameter in fit_models. The Wald test was applied to determine whether the
coefficients from our model are significantly non-zero We then combined all tests for all genotypes
and doses and p-values from the Wald tests were corrected for multiple hypothesis testing using
the Benjamini-Hochberg false discovery rate method. We chose a pseudocount of 0.001 to
preserve the relationship to a dose with minimal effect on cells based on preliminary experiments
(data not shown).

For experiments where we exposed perturbed A172 cells to temozolomide, we created subsets
of our dataset for every dose of temozolomide and every pairwise combination of a target and
NTC cells. Gene expression values were log-transformed after the addition of a pseudocount of
1. For all expressed genes in at least 5% of cells, we fit a generalized linear model with a quasi-
poisson random component of the form expression ~ genotype specifying “~ gene_id” for the
model_formula_str parameter in fit_models. The Wald test was applied to determine whether the
coefficients from our model are significantly non-zero. We then combined all tests for all
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genotypes and doses and corrected for multiple hypothesis testing using the Benjamini-Hochberg
false discovery rate method.

To identify significant interaction effects of proliferative gene expression between a drug and
specific kinase perturbations, we modeled our proliferation index score as a function of drug,
dose, genotype, and their interaction using generalized linear models with a Gaussian random
component of the form proliferation index ~ log(dose) + genotype + genotype:log(dose) +
replicate) using the speedglm function of the speedglm package in R. For all coefficients, p-values
from a Wald test were subject to multiple hypothesis testing using the Benjamini Hochberg false
discovery rate method.

Gene set analysis

Gene set enrichment analysis was performed using the piano R package®. The hallmarks and
oncogenic signatures®” ¥’ gene sets were obtained from the Broad Institute’s Molecular Signatures
Database®. Hypergeometric testing was performed using feature genes as the foreground and
all genes as the background.

UMAP embedding of knockdown proportions

We used UMAP to visualize the relationship between genotypes and the proportion of
temozolomide and perturbation-induced cellular states. We performed an initial dimensionality
reduction using PCA returning the top 25 principal components using the union of all differentially
expressed genes as a function of genotype as feature genes. Genes that were differentially
expressed between negative controls and NTC cells were removed from the analysis. We then
performed dimensionality reduction using UMAP, specifying 20 nearest neighbors and a minimum
distance of 0.1 as hyper-parameters. We clustered cells within the UMAP embedding using
Leiden community detection®®. We next calculated the frequency of cells for each gRNA or
genotype across clusters and used these matrices to initialize a UMAP embedding.

Median kinase knockdown

We assessed the quality of our gRNA assignments in our kinome screen by examining the median
knockdown level across all perturbed kinases in our experiment. We calculated the mean
expression levels for each kinase in NTC cells and their respective perturbed target cells at
varying gRNA read cutoffs (i.e. 1-10 gRNA reads per cell). We ensured that our knockdown
estimates were not biased due to the zero inflation of sc-RNA-seq data and the larger proportion
of NTC cells in our experiment by permuting the gRNA-defined target labels and re-calculating
mean kinase knockdown. We then compared the distribution of knockdown levels between our
gRNA assigned and permuted data using the non-parametric two-sample Wilcoxon test.

Enrichment and depletion of knockdowns
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We assessed the relative enrichment and depletion of kinases in our experiment by comparing
the frequency of gRNAs targeting a particular kinase in our final dataset to its frequency in the
plasmid library used to create gRNA-delivering lentiviral particles. We defined the relative
proportion of gRNA against a kinase target as the mean-centered log of the ratio of the two
frequencies.

Identifying conserved responses to RTK pathway inhibition

We determined conservation in response to RTK pathway inhibition by comparing the dynamics
of differential gene expression of unperturbed A172, T98G, and U87MG cells. The mean
expression in NTC cells of differentially expressed genes as a function of lapatinib, nintedanib,
trametinib, and zstk474 exposure was clustered for each cell line individually by hierarchical
clustering. We chose k = 6 as the number of clusters for each cell line by visual inspection of
dendrograms across all cell lines. We then calculated the Jaccard coefficient for every pairwise
comparison of clusters across all 3 cell lines. Clusters with a Jaccard coefficient over 0.1 were
collapsed into conserved super-clusters by taking the union of the genes across similar clusters.

Chemical genomic validation of kinases whose loss leads to changes in the induction of the
compensatory adaptive program

To validate the contribution of kinase hits to the induction of the compensatory adaptive program,
we exposed A172, T98G and U87MG to one of 23 compounds (alectinib, AZ628, AZD7762, BI-
D1870, BMS-345541, DDR1IN, doxorubicin, GSK690693, infigratinib, KU-55933, MK-2206,
nintedanib, palbociclib, PHA-767491, RIPA-56, roscovitine, salubrinal, temozolomide,
temsirolimus, trametinib, VE-821, volasertib) in the absence or presence of trametinib, the
strongest inducer of the adaptive compensatory program. Cells were exposed to 0.01, 0.1, 1, and
10 uM doses of each compound, the absence or presence of 0.01, 0.1, 1 and 10 uM of trametinib
or DMSO vehicle control. For trametinib co-exposure conditions, the concentrations were
matched for each compound and trametinib (e.g, 1 uM of compound + 1 uM trametinib). The
concentration of DMSO control was set to 0.2% v/v across all single and combinatorial exposures.
Cells were exposed to compounds for 72 hours, harvested, multiplexed using our previous sci-
Plex protocol', and nuclear mRNA libraries were generated and sequenced as described above.

Correlation of single and combinatorial chemical targeting to the effect induced by trametinib
exposure

For our validation chemical genomic experiment, we performed differential expression analysis
using quasipoisson regression for the effect of each compound alone or in combination with
trametinib on the set of genes that compose the compensatory adaptive program. For each cell
line, we fit a generalized linear model with a quasi-poisson random component of the form
expression ~ log(dose + 0.001) + replicate.
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For single chemical exposures, we focused on treatments that led to significant changes in the
expression of at least 100 genes of the program (FDR < 5% and a normalized beta coefficient for
the dose term of |Bcoer| > 0.05) across two or more cell lines. We calculated the pairwise Pearson’s
correlation across all exposures on a matrix of the normalized B coefficients for the dose term
across all feature genes. We defined compound exposures with a significant correlation to the
effect induced by trametinib exposure as those with a Pearson’s p > £ 0.2 at an FDR < 5%.

For both single and combinatorial exposures, we also broadly examined the correlation structure
across exposures. We regressed the effect of cell line background for each correlation matrix
using the monocle3 function align_cds specifying a residual_model_formula_str of “cell_line”. We
used Leiden-based community detection as implemented in the cluster_cells function of monocle3
on this corrected correlation matrix to identify groups of exposures that lead to similar
transcriptional changes across genes that make up the compensatory adaptive transcriptional
program. To visualize our results, we used this corrected correlation matrix to initialize a UMAP
embedding using the reduce_dimension function of monocle3 specifying umap.n_neighbors of 5
and a umap.min_dist of 0.15.

QUANTIFICATION AND STATISTICAL ANALYSIS
Calculation of pairwise angular distance

To detect the effect of a genetic perturbation on a drug-induced transcriptional program we
calculated the pairwise angular distance of every cell to the average profile of non-targethe ting
cells exposed to the highest dose of each drug. The angular distance between two cells was
calculated as the arc cosine transcriptome distance between the norm of the expression vector
for each cell over a set of feature genes such that

if V is the expression vector of a cell across x gene expression values, then the norm of the vector
is defined as,

VI =vZx?
and the angular distance between the vector norms for two cells is,
angular distance = 2/m * arccosine[(Vcelll X Vcell2) + (||Vcelll|| X [|Vcell2|])]
For all angular distance calculations in perturbed cells the comparisons were made between every
cell (perturbed and unperturbed) vs. the mean profile of NTC cells exposed to the highest dose
of each drug. We compared this approach to the use of the more common Jensen-Shannon
distance metric, observing good agreement between both distance metrics (Supp Fig. 3G).

Therefore, we chose to continue with angular distance, which is a less expensive calculation, for
our measure of similarity to unperturbed cells.

Inference of the relative transcriptional effective concentration 50 (TC50)
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First, we fit a 4-parameter log-logistic dose-response model to the relationship between the
pairwise angular distance for all cells and at a dose of temozolomide for NTC control cells using
the drc R package®. We specified a formula of angular distance ~ dose and the function as LL.4
in the drm function. We then estimated the effective dose 50, which we term our transcriptional
effective concentration 50 (TC50) using the ED function of the drc package. To infer the TC50 for
all other genotypes, we performed the following across 1,000 bootstraps of 75% of our dataset.
For each genotype, we fit a linear model to the relationship between the log of the angular distance
to NTC across bootstrapped subsets of cells vs the log of the dose of temozolomide. We then
extracted the coefficients of those fits to determine the concentration at which cells reached the
pairwise angular distance to NTC that NTC cells achieved at their TC50. To determine the
robustness of our approach to the number of cells per genotype, we repeated this procedure using
subsamples of 10, 20 and 50% of our dataset.
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SUPPLEMENTARY FILES

Table S1: Contains the sgRNA protospacer sequences used in this study. Related to Figures 1-
3.

Table S3: Contains the results of differential gene expression testing as a function of genotypes
across TMZ exposed A172 cells. Related to Figure 2.

Table S4: Contains the results of gene module analysis of the results from differential gene
expression testing as a function of genotypes across TMZ exposed A172 cells (Supplementary
Table 3), the results from differential gene expression testing as a function of TMZ dose in NTC
cells and inferred TC50 calculations. Related to Figure 2.

Table S5: Contains the results of differential gene expression testing as a function of RTK
pathway inhibitor dose in unperturbed cells. Related to Figure 4.

Table S7: Contains the top kinase perturbations that modulate the adaptive program across the
3 GBM lines used in this study. Related to Figure 5.
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Figure 4
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Figure 6
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Supplementary Materials

Supplementary Figures

A

log10(total)

Supplementary Figure 1. Sensitivity and specificity of sgRNA capture in the context of
combinatorial indexing RNA-seq with sci-Plex-GxE, related to Figure 1. (A) Plot of the log10
of the total number of sgRNA reads for a given sgRNA in a given cell as a function of the ratio of
that sgRNA to all other sgRNAs in a cell (ratio). (B) Plot of the relationship between the proportions
of the sgRNA with the highest number of reads in a cell (ratio1) vs the second most prevalent
sgRNA (ratio2). (C) Density plot of the log10 of the top to second best ratio, the ratio between the
proportion of the top most prevalent sgRNA to the second most prevalent.
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Supplementary Figure 2. Effects of mismatch repair perturbation of gene expression
changes induced by exposure of glioblastoma cells to the chemotherapeutic agent
temozolomide, related to Figure 2. (A) Bar plots of the expression level of the mismatch repair
components MSH2, MSH3, MSH6, MLH1, PMS2 and the direct repair enzyme MGMT in A172
dCas9-KRAB cells expressing individual sgRNAs against each gene or non targeting controls
sgRNAs (NTC). Note that MGMT is not expressed in A172 cells due to epigenetically silencing of
the MGMT locus by promoter methylation (citation). (B) Bar plots as in (A) across cells binned by
their respective target. (C) Volcano plots of the relationship between statistical significance and
effect size for the results of differential gene expression analysis of the effect of genetic
perturbation of MSH2, MSH3, MSH6, MLH1, PMS2, and MGMT on gene expression after
exposure to various doses of temozolomide. For each genotype, genetically perturbed and NTC
cells were subsetted by dose, expression was log-transformed and differentially expressed genes
were identified by fitting a generalized linear model of the form expression ~ genotype. All tests
were then combined and p-values corrected for multiple hypothesis testing using Benjamini-
Hochberg. Red indicates genes whose temozolomide-induced gene expression is significantly
affected by genetic perturbation at FDR < 0.05. (D-E) Upset plots of the overlap of differentially
expressed genes in the presence (D) or absence (E) of temozolomide exposure. (F) Correlation
heatmap (Kendall’s rank correlation) of the normalized effect sizes across all perturbation-
dependent differentially expressed genes upon exposure to temozolomide. Rows and columns
are labeled as “genotype_dose of temozolomide”.
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Supplementary Figure 3. Summarizing state-level effects of temozolomide exposure as a
function of genetic perturbation, related to Figure 2. A-D) UMAP embedding of vehicle and
temozolomide exposed and genetically perturbed A172 dCas9-KRAB cells. Cells are colored as
a function of PCA cluster (A), dose of temozolomide (B), aggregate expression of genes
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associated with proliferation (C, proliferation index), or genotype (D). E) Density of cells across
the UMAP embedding from (A-D). F) Volcano plot the relationship between statistical significance
and effect size for the results of differential gene expression analysis of the exposure of NTC cells
to temozolomide using a model of expression ~ log(dose of temozolomide + 0.01). G) Correlation
of the pairwise distances calculated using cosine angular distance or Jensen-Shannon distance
between every cell and the mean expression of NTC cells exposed to 100 uM TMZ. Red line:
Linear regression fit. Bottom: Pearson’s rho and p-value (two-sided t-test). H) Heatmap depicting
the log of the mean angular distance between every cell and the mean expression of NTC cells
exposed to 100 uM TMZ for every genotype dose combination. 1) Distribution of pairwise angular
distance to the mean expression of NTC cells exposed to 100 uM TMZ for genetically perturbed
cells exposed to vehicle (left panel) or exposed to 10 uM (middle panel) or 100 uM (right panel)
temozolomide. Grey vertical lines refer to the median angular distance of unperturbed NTC control
cells for each dose of temozolomide. J) Violin plots of the pairwise Jensen-Shannon distance
between every cell and the mean expression of NTC cells exposed to 100 uM TMZ as a function
of dose of temozolomide to which cells for every genotype were exposed to (**** p < 0.0001, ** p
< 0.01, one-way Anova). K) Linear regression fits and models between dose and pairwise angular
distance for all cells across the genotypes in our experiment. EC50 denotes the concentration at
which we observed half of the shift in pairwise angular distance of temozolomide exposed NTC
cells obtained from a four-parameter log-logistic regression. L) Inferred transcriptional effective
concentration (TC50) defined as the concentration of drug necessary to reach 50% of the change
in angular distance exhibited by TMZ-exposed NTC cells recalculated across 10, 20, and 50%
subsets of our dataset or our full dataset as in Figure 2I. Notches in the boxplots denote the lower
and upper limits of the 95% confidence intervals of TC50 values calculated across 1,000
bootstraps of 75% of our data. Dashed line: maximum molarity of an aqueous solution as a
threshold for genotypes where the drug cannot induce 50% of the effect observed in NTC. Insert:
excludes MSH2 and MSH6 genotypes.
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Supplementary Figure 4. Experimental design and QC, related to Figure 3. A) Schematic
depicting the replicate structure of our single-cell kinome screen. B) Correlation between replicate
screens across the three glioblastoma cell lines in our experiment. Top: Linear regression model
and goodness of fit.
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Supplementary Figure 5: Effect of kinase perturbation and RTK pathway inhibition on GBM
cell bulk viability, related to Figure 3. A. Proportion of cells expressing sgRNAs targeting
individual kinases in our screen relative to the starting proportion of sgRNAs in our CROP-seq
kinome plasmid library. Labels correspond to depleted kinases over a z-score of 1. B. Heatmap
depicting viability estimates derived from sci-Plex cell counts for unperturbed cells expressing
non-targeting or random targeting control sgRNAs.
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Supplementary Figure 6. Exposure to small molecule inhibitors targeting the RTK pathway
leads to dynamic rewiring of transcriptional networks in glioblastoma cells, related to
Figure 4. A-C) Volcano plots of the relationship between statistical significance and effect size of
exposure to small molecules targeting the RTK pathway (lapatinib, nintedanib, trametinib,
zstk474) on gene expression for A172 (A), T98G (B), and U87MG (C) cells. A generalized linear
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model with a quasi-poisson random component of the form expression ~ log(dose) + replicate
was fitted across log normalized expressions for every subset containing cells exposed to one of
the 4 agents and vehicle control. Red dots correspond to genes whose expression is significantly
altered by kinase perturbation at an FDR < 0.01. D-F) UpsetR plots depicting the overlap in
differentially expressed genes as a function of exposure to RTK pathway targeting agents in A172
(D), T98G (E), and U87MG (F) GBM cells. G) Bar plots depicting the percent of cells positive for
the specified kinase transcripts differentially expressed in at least 1 of 4 drug exposures across
the 3 GBM lines in our study. H-J) Heatmaps depicting the top overlap of genes between cell
clusters for each pair-wise combination of the 3 GBM cell lines. Significant overlap is defined as
having a Jaccard coefficient larger than 0.1 (details in K). K) Distribution of Jaccard indices for
the overlap between drug-responsive gene clusters from Fig. 4A-C. Real vs. permuted refers to
the Jaccard indices calculated between clusters without and with perturbation of gene ids. Based
on this test, we used a Jaccard index of 0.1 or larger to collapse signature genes across cell
types. L) Aggregate expression of conserved upregulated (S1) and downregulated (S2) gene
signatures as a function of each dose, exposure, and cell type. M-N) Violin plots depicting the
expression of conserved S1 (M) and S2 (N) signatures in trametinib exposed glioma stem cell
cultures.

55



>
w

A172 T98G Us7MG Al72 T98G Us7MG

Upregulated
signature score
Downregulated
signature score

T T T 11T T TT TTT1T17T
01234 01234 01234

A172 T98G us7MG Al72 T98G Us7MG

Downregulated
signature score

55 j A=0.36,p<2.2016 R=027,p=19¢11 R=027,p=62014
T T

Upregulated
signature score

T T T T T T T T T
0123 0123 01 2 3
G1/S score
° A172 T98G UB7MG . A172 T98G UB7MG
TS 25 70 ;
3 A
za 22 654
=] o - b
D5 (o=
g8 wvnpine S8 U] -
o c s 2 C 55 = R-0anpczzets  A=03p=3%e-ts R=031, p< 22016
=) 3
.% rrrrr Trrrr Trrrr D% rrrrr Trrrr T rrritT
01234 01234 012234 01234 01234 01234
G2/M score G2/M score
C
A172 A172
jwn ot j i ot M
_I_ -r — 1 _I_ _I_ L
3 4 4
<
9_) Q
S &
n
o T98G g T98G
5 2 treatment
& 70 g 70 )
< s ' ' S 4 vehicle
-] , ' ’ . @ ” apatinib
o 6.0 g 6o nintedanib
< 55 o 55 trametinib
c_; ' ' ' (_% ' ' ' zstkd74
g £
5

MMMM SLWWM
Proluferatlon lndei quantlle Proluferatlon mdei quantl‘lte

Supplementary Figure 7. Conserved drug-dependent signatures are correlated with the cell
cycle stage of a cell and by MEK kinase activity across all stages of the cell cycle, related
to Figure 4. A-B) Expression of conserved S1 (A) and S2 (B) signatures across NTC cells as a
function of the aggregate expression of genes associated with proliferation (top panels), G1/S
(middle panels), and G2/M (lower panels) phases of the cell cycle. Red line: Linear regression fit.
Bottom: Pearson’s rho and p-value (two-sided t-test). C) Violin plots depicting the expression of
S1 (C) and S2 (D) signatures as a function of treatment across cells of varying proliferation index
quantiles (i.e., the x-axes of the top panel of A and B were divided into 4 equal-sized bins). Note
that trametinib exposed cells have higher S1 expression and lower S2 expression across all bins
compared to vehicle control.
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Supplementary Figure 8. Effect and similarity of CDK4/6, CDC7/CDK9 and additional kinase
inhibition on the trametinib induced compensatory program, related to Figure 6. A) Density
plots of upregulated and downregulated signature scores of cells treated with the MEK inhibitor
trametinib (MEK:i), the CDK4/6 inhibitor palbociclib (CDK4/6i) or the CDC?7 inhibitor PHA767491
(CDCTi) for the three glioblastoma cell lines. The 10 uM dose for PHA767491 exposed A172 and
U87MG cells have been removed due to low recovery of cells for those exposures. Red vertical
lines denote the mean signature expression of vehicle exposed cells. *FDR < 0.05. Pearson’s p
relates to the Pearson’s correlation coefficient between aggregated expression scores for the
specified drug treatment and trametinib exposure. B) UMAP embeddings summarizing the pair-
wise correlation of all specified single exposures across genes that compose the compensatory
program enacted by RTK pathway inhibition. Shapes refer to individual cell lines. C) UMAP as in
B, colored by the correlation of each single exposure to cells exposed to trametinib alone across
genes that compose the compensatory program enacted by RTK pathway inhibition. D) UMAP
as in B colored by response group clusters identified by Leiden-based community detection.
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Supplementary Figure 9. Summaries of the effect of single and combinatorial chemical
exposure on the expression of conserved S1 and S2 signature genes and cellular viability,
related to Figure 6. A-C) Cell count viability estimates derived from sci-Plex hash labels for each
treatment and dose across A172 (B), T98G (C), and U87MG (D) GBM cells. D-F) Cell count
viability estimates as in A-C for combinatorial trametinib exposure across A172 (D), T98G (E),
and U87MG (F) GBM cells.
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Supplementary Tables

Experiment Screen id Total Cells Cells Cells Median Duplication
cells with 1 with with 1 UMis per rate
hash sgRNA | sgRNA cell
A172 sciPlexGxE_1 18,585 17,599 | 15,589 14,716 6,120 20.4%
CRISPRI
HPRT1/MMR
GBM sciPlexGxE_2 | 1,052,205 | 991,940 | 988,276 | 687,879 | 3140 (A172), 58.5%
CRISPRI 3065 (T98),
Kinome 1833 (U87)
screen

Supplementary Table 2: Summary of sci-Plex-GxE experiments in this study, related to
Figures 1 and 3. Screen id refers to the experiment identifier in the NCBI GEO submission of our
dataset.
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Experiment Screen id Total Median UMis Duplication
cells per cell rate

GSC RTK sciPlex_3 135,710 | 531 (GBM4), 363 21.3%
inhibitor (GBM8), 281

(GSC0131), 341

(GSC0827)

Combinatorial | sciPlex_4 213,404 851 (A172), 28.9%
chemical 1044 (T98), 622
genomics (U87)

Supplementary Table 6: Summary of sci-Plex chemical transcriptomics experiments in

this study, related to Figure 6 and Supplementary Figure 6. Screen id refers to the experiment

identifier in the NCBI GEO submission of our dataset.
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Compound Target(s) Known Off-Target(s) Selleckchem Cat. No.
Alectinib ALK S2762
AZ628 ARAF,BRAF,RAF1 S2746
AZD7762 CHK1,CHK2 S1532
BI-D1870 RSK1,RSK2,RSK3,RSK4 S2843
BMS345541 IKK1,IKK2 S8044
DDR1-IN-1 DDR1,DDR2 S7498
Doxorubicin TOP2A E2516
GSK690693 AKT1,AKT2,AKT3 ULK1,AMPK,STING S1113
Infigratinib FGFR1,FGFR2,FGFR3,FGFR4 S2183
KU-55933 ATM ULK1 S1092
MK-2206 AKT1,AKT2,AKT3 S1078
Nintedanib FGFR1,FGFFr2,FGFR3,PDGFRA,PDGFRB, S1010
VEGFR1,VEGFR2,VEGFR3
Nutlin-3A MDM2 S8059
Palbociclib CDK4,CDK6 S4482
PHA-767491 CDC7,CDK9 CDK1,CDK2,GSK3B S2742
RIPA-56 RIPK1 S6511
Roscovitine CDK1,CDK2,CDK5 S1153
Salubrinal EIF2AK1,EIF2AK2,EIF2AK3,EIF2AK4 S2923
Temozolomide | SN-1 alkylating agent S1237
Temsirolimus MTOR FKBP12 S1044
VE-821 ATR S8007
Volasertib PLK1,PLK2 PLK3 S2235

Supplementary Table 8: Compounds used in our validation chemical genomics screen,
related to Figure 6.
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