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Finite-state automata serve as compute kernels for many application domains such as pattern matching and
data analytics. Existing approaches on GPUs exploit three levels of parallelism in automata processing tasks:
1) input stream level, 2) automaton-level and 3) state-level. Among these, only state-level parallelism is intrinsic
to automata while the other two levels of parallelism depend on the number of automata and input streams to
be processed. As GPU resources increase, a parallelism-limited automata processing task can underutilize
GPU compute resources.

To this end, we propose AsYNCAP, a low-overhead approach that optimizes for both scalability and
throughput. Our insight is that most automata processing tasks have an additional source of parallelism
originating from the input symbols which has not been leveraged before. Making the matching process
associated with the automata tasks asynchronous, i.e., parallel GPU threads start processing an input stream
from different input locations instead of processing it serially, improves throughput significantly and scales
with input length.

When the task does not have enough parallelism to utilize all the GPU cores, detailed evaluation across 12
evaluated applications shows that AsYNCAP achieves up to 58x speedup on average over the state-of-the-art
GPU automata processing engine. When the tasks have enough parallelism to utilize GPU cores, AsyNCAP
still achieves 2.4X speedup.
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1 INTRODUCTION

Finite automata (or Finite State Machines, FSMs) are used as compute kernels for many applica-
tions in various domains such as bioinfomatics [16], machine learning [44, 50, 55, 63], intrusion
detection [3, 43], and textual data analytics [24, 25, 37]. Irregular memory accesses and intrin-
sic data dependencies make efficient automata processing extremely challenging for traditional
architectures. The users, therefore, resort to domain-specific accelerators based on ASICs or FP-
GAs [19, 21, 28, 30, 41, 47, 49, 52, 53, 73]. For example, Micron’s Automata Processor [19, 62]
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Table 1. Parallelism in NFA processing

Parallelism Source | Example

Input Streams Many network packets

NFAs Many intrusion signatures

Active NFA States Non-determinism intrinsic to NFAs

Input Symbols Intrusion pattern can start at any input locations

repurposes DRAM to process automata and outperforms traditional architectures by orders of mag-
nitude. However, these accelerators bring additional heterogeneity to the computing systems [57]
and are slow to configure [62, 68] and inflexible to algorithm changes [22].

In contrast, GPUs are found in many computing systems from mobile phones to data center
servers, working as general-purpose accelerators for performance-critical compute kernels as they
provide massive data-level parallelism and high memory bandwidth. The computing power of GPU
has scaled faster than CPUs in recent years [54]. Therefore, running automata processing tasks on
GPUs has attracted significant attention [18, 31, 58, 70, 71, 76]. Existing automata processing works
on GPUs have demonstrated that GPU achieves better performance than CPUs [34]. To process
automata, two representations of automata are often used — Deterministic Finite Automata (DFAs)
and Non-deterministic Finite Automata (NFAs). We focus on NFAs in this work because they are
compact in size [31] and have more parallelism which makes them a good fit for the GPU.

An automata processing task is to find patterns defined by automata in the input streams. To
parallelize the automata processing tasks on GPUs, as the first three rows of Table 1 show, existing
works leverage three levels of parallelism: (1) input stream level, (2) automaton-level, and (3) state-
level. First, the user may need to find a pattern across multiple input streams. For example, in a
network intrusion detection application, multiple network packets can be processed in parallel.
Second, multiple NFAs can be processed in parallel. For example, since each NFA represents an
interesting pattern, an application can have many patterns to find (e.g., signatures of network
intrusions). Third, non-determinism means multiple states can be active at the same time in NFAs,
so they can be processed in parallel. This level of parallelism only pertains to NFAs.

Only the state-level parallelism is intrinsic to NFAs, while the other two depend on the scale
of the task that the user runs [42]. In order to meet different latency requirements, a task expects
the execution engine to provide strong scaling such that adding more compute resources can
significantly reduce the latency of the task [73]. On the other hand, the execution engine needs
to utilize the compute resources well to retain high throughput when the task saturates compute
resources. In short, an automata processing task requires both scalability and throughput.

To scale out tasks to more compute resources, other lines of work increase the parallelism by
splitting input streams into input segments and breaking the dependencies between adjacent input
symbols, enabling parallel execution of input segments. Ladner and Fischer [29] use parallel prefix
sum to parallelize automata, though it leads to significantly more work. Speculation [38, 39, 74, 75]
and enumeration [33] are two categories of approaches that increase the parallelism of automata
on multi-core processors. These works focus on scalability rather than throughput, and are often
evaluated using DFAs as each DFA only has one active state at every step. However, using speculation
or enumeration for NFAs is difficult: 1) it is challenging to speculate which set of states are active at
every input segment; 2) enumerating every set of states at every input segment leads to prohibitive
execution paths.

To address these problems and provide high throughput and scalability for different task sizes, we
propose Asynchronous Parallel Automata Processing, ASYNCAP, a simple and low-overhead way
to exploit an additional source of parallelism of automata processing on GPU. Unlike prior works,
AsyYNCAP does not speculate or enumerate on execution paths. As a result, ASsyNCAP requires no
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validation process on the correctness of the extra execution paths, resulting in better utilization of
GPU resources. Instead, we leverage the fact that most evaluated applications search for patterns
from any position in the input streams rather than only from the starting position, bringing an
additional level of parallelism that was not exploited by the prior works as shown in the fourth row
of Table 1. ASYNCAP converts the input stream indexed by 0 to n to many input streams where the
kth input stream starts from position k of the original input. Thus, the matching processes mapped
to GPU threads can start from different locations in parallel.

However, AsYNCAP has higher worst-case time complexity because an input stream with n
symbols needs to be read O(n?) times at most. Nevertheless, we observe that this upper bound is
rarely reached in practice for two reasons: first, due to mismatches (when no state is active in a
thread), the amount of work depends on both application and input. An automaton that matches
every symbol of the input stream regardless of the starting location is very likely to be practically
meaningless. Second, the time complexity only shows the upper bound of the useful work, but the
total work considering implementation and synchronization may be different in AsyNcAP and
traditional approaches. To the best of our knowledge, no prior work has analyzed the source of
work in practice.

To understand the source of work, we perform a systematic characterization on previous synchro-
nous automata processing (e.g., GPU-NFA [31]) and AsyNcAP. Our characterization by emulation
analyzes both useful work (i.e., number of matches between states and input symbols) and useless
work caused by idle threads due to the synchronizations by thread blocks or SIMD-style execution.
We find that while AsyNcAP has higher time complexity than GPU-NFA, AsyNcAP only requires
6% of extra useful work than GPU-NFA on average across the evaluated applications. Further, if the
latency per unit work is considered as weight, ASYNCAP requires 15% less total weighted work
on average compared to GPU-NFA. We conclude that despite its apparent higher time complexity,
AsyNCAP does not lead to considerably more work in practice.

To show whether AsyNCcAP provides both scalability and throughput, we evaluate AsyNcAP
in scenarios with a different amount of parallelism. Compared with GPU-NFA, a state-of-the-art
automata execution engine on GPU, when the parallelism is not enough to utilize GPU cores, an
optimized version of AsyNCAP achieves 9.4X to 57.9X speedup on average across 12 evaluated
applications, respectively, demonstrating it provides strong scaling for parallelism-limited tasks.
When the original parallelism of the automata task is enough to utilize GPU cores, AsyNCAP
achieves 2.4x speedup over the state-of-the-art prior work demonstrating that it also achieves high
throughput. Executed by AsyNcAP, one of the evaluated applications has a significant slowdown
due to the imbalance of threads caused by long patterns. However, static analysis and runtime
detection can help us alleviate the impact of the slowdown. Statically, our study on the topology of
automata shows that long patterns are uncommon as most automata usually do not have infinitely
long patterns. Hence, one can choose only offloading the automata of short patterns to AsyNcAP.
Moreover, at runtime, we can detect the slowdown easily, so only marginal overhead is incurred
before rolling back to the traditional approach.

In summary, this paper makes the following contributions:

e We analyze and find that the prior work cannot adapt to automata processing tasks with a
different amount of parallelism.

e We propose AsYNCAP, a simple and low-overhead way to execute automata on GPUs that
exploits an additional source of parallelism neglected by prior works.

e Regardless of AsyNCAP’s higher time complexity, based on our characterization, on average,
AsyYNCAP only incurs marginal extra useful work and needs less total work considering both
per symbol latency and useless work caused by the implementations.
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Fig. 1. lllustrating the Matching Process of an NFA

e Evaluation results demonstrate that our approach provides both high scalability and through-
put across the evaluated applications over the prior state-of-the-art automata execution
engine on GPU.

2 BACKGROUND
2.1 Pattern Matching via NFAs

A finite automaton is a mathematical model of computation in which the computations are ab-
stracted as a finite number of states and transitions. Two representations of finite automaton are
widely used: deterministic finite automaton (DFA) and non-deterministic finite automaton (NFA).
Although DFAs are simpler in transitions as only one active state is allowed, DFA execution is
embarrassingly serial, and DFAs can be exponentially larger than equivalent NFAs. As also used in
many prior works [65], especially accelerators [47, 52], we focus on Glushkov NFAs [23], which
are e-free and the set of symbols that are matched is on the node instead of on the edge. Any NFA
that accepts a non-empty string can be transformed into an equivalent Glushkov NFA.

An NFA can be represented as a directed graph, where nodes represent states, edges represent
state transitions. Each state has a matchset that contains the symbols it can accept. An automaton
has one or more starting states (Figure 1, shown in hexagons) and reporting states (Figure 1, shown
in double circles).

Types of Starting States. A NFA processing application often uses ANML [1] or MNRL [10] format
to define the NFAs. Two types of starting states are used in the NFAs of the applications. If an NFA
searches for patterns that appear regardless of the starting position in the input stream, it has only
all-input starting states that are active at every symbol in the input stream. For example, a pattern
/apple/ searches “apple” in the text no matter from which position of the text it starts. In contrast,
an NFA equivalent to pattern /“apple/ contains start-of-data starting states, as it requires “apple”
to appear only in the first position.

Matching Process. Initially, only the starting states are active. The symbols of the input stream
are fed into the NFA one by one. The active states match with the incoming symbol. If the incoming
symbol falls into the matchset of an active state, the active state becomes a matched state. If a
reporting state is matched, a report is generated showing an interesting pattern is identified. The
matched states then activate their successors. This process finishes when all the symbols of the
input stream are processed.
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Fig. 2. Key ldea of the State-of-the-art NFA Processing Engine on GPU

2.2 Automata Processing on GPUs

GPUs support concurrent execution of a large number of threads and also have very high memory
bandwidth — orders of magnitude more than CPUs. Currently, applications with a large number
of automata are a good fit for GPUs because they exhibit parallelism at multiple levels [34, 61] as
shown in Table 1. First, input streams (e.g., different network packets) can be processed in parallel.
Second, many NFAs (e.g., different intrusion signatures) can run in parallel on the same input
stream (e.g., a single network packet). Third, multiple states can be active at the same time within
the same NFA and the same input symbol. The state-of-the-art NFA processing engine on GPU,
GPU-NFA [31], leverages these three levels of parallelism.

Figure 2 illustrates the basic idea of GPU-NFA. The key observation of GPU-NFA is that the
activation frequency varies for automata states. A portion of states are frequently activated (hot)
while other states are infrequently activated (cold). To increase the utilization of GPU, GPU-NFA
only maps hot states to GPU threads (@), and stores the neighbors and matchsets of the hot states
in the registers. The cold states are processed by a worklist shared by the thread block. To process
an input symbol, the execution comprises a hot stage (H) and a cold stage (C). At the hot stage,
when a hot state is matched, it activates its neighbors and pushes them (@@) into the next worklist
(®). Then, the same threads are reused to process the cold states that are in the worklist (which
was the next worklist of the prior symbol) (@). If no state is in the worklist, the next worklist is
assigned to the worklist, and the next worklist is emptied (@). A barrier is needed before processing
the next symbol. Next, the hot stage finishes when no hot state matches the input symbol (@).
The cold stage, hence, starts to process cold states @ and @ (@). The matched state @ activates its
neighbors and pushes them into the next worklist (@). This process continues until all the input
streams and all the symbols in the inputs are consumed.

3 ASYNCHRONOUS PARALLEL AUTOMATA PROCESSING ON GPUS

This section first introduces the motivation of proposing a new approach to process automata on
GPU and then describes the implementation details.

3.1 Why do we need a new way to process Automata on GPUs?

To understand the need for AsYNCAP, we revisit the existing works of automata processing on
CPUs, GPUs, and accelerators. Table 2 categorizes the existing works for automata (both DFA and
NFA) processing into three categories based on input stream accessibility, the number of automata,
and input streams. We make the following observations.
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Table 2. Categories of Prior Works

Type #Input | #FAs | HW Util. Focus Examples
GPU-NFA [31]
NFA-CG [76], INFANT [18]
Speculation [26, 39, 75]

Enumeration [33]
Multi-stride [14]
Streaming | Single | Any Under Latency Graph Transformation [72]
HW Accelerators [30, 47]

Buffered | Many | Many Over Throughput

Buffered | Single | Few Under Scalability

Throughput-focused works are not scalable. The first category (the first row in Table 2) focuses on
throughput, which considers the high parallelism case when the task requires more resources than
the hardware can provide. Particularly, this type of work addresses the bottleneck of automata
processing in oversubscribed hardware. Typical optimizations include data movement and hardware
utilization optimizations. For example, NFA-CG [76] calculates compatible groups of NFA states
to enhance the thread utilization of GPU. GPU-NFA [31] proposed new data structures to reduce
the data movement, and map hot and cold states differently to increase the GPU thread utilization.
However, these approaches do not provide strong scaling for parallelism-limited tasks.

Scalability-focused works have higher overhead. The second category (the second row in Table 2)
focuses on the scalability issue in a low parallelism case of automata processing. Existing works [33,
39, 74, 75] extract additional parallelism by splitting the input stream into segments and making
each segment of the input stream run in parallel. To address the dependencies across input symbols
and ensure the results are correct, these approaches either speculate which states are active or
enumerate all execution paths starting from every state. However, such approaches are difficult to
adapt for NFAs, because speculating or enumerating on state combinations of NFAs leads to more
overhead and limits the throughput.

Streaming-focused works only optimize for latency. The third category (the third row in Table 2)
optimizes for per-symbol latency when the input stream does not support random access. The
domain-specific accelerators for automata processing often fall into this category [19, 21, 30, 45—
49, 52, 53, 69]. Many works leverage in-memory processing to reduce the latency caused by
data movement through the memory hierarchy. These accelerators cannot provide scalability for
parallelism-limited tasks. Moreover, when the number of automata states exceeds the capacity of the
hardware, the accelerator requires many batches to finish the task, resulting in poor throughput [30].
Other works in software construct multi-stride automata [11, 14, 17] or compress automata by
graph transformation [13] to reduce the per symbol latency at the cost of an increased number of
states and state transitions. When the tasks have abundant parallelism, the increased number of
states and transitions hurts the throughput on limited hardware resources.

In summary, no single prior work can handle all scenarios of automata processing tasks with
varying parallelism. A scalable and high-throughput scheme on GPU for all automata tasks is
required.

3.2 Overview of Asynchronous Parallel Automata Processing

Figure 3 compares the traditional synchronous execution of automata processing with our proposed
asynchronous automata processing on GPU. First, Figure 3 (1) shows the basic idea of synchronous
execution. Generally, the NFAs states are mapped to the GPU threads (@). In particular, as discussed
in Section 2.2, GPU-NFA maps only hot states to threads. The thread block reads the symbols
from the input stream (@). A thread block barrier (__syncthreads()) ensures that all states have
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Fig. 3. Revisiting a generic synchronous automata processing on GPU (a) and the basic idea of AsYNCAP (b).
The executions try to find pattern def in an input stream abcdefg. . ..

finished the current symbol before moving to the next symbol. When the thread block reads a
symbol, it is broadcast to the entire thread block and matches with the active NFA states. The
successors of the matched states will be added to the next active worklist before processing the next
symbol. Overall, the total number of threads (or thread blocks) depends on the number of NFAs
and input streams—the two numbers come from the automata processing task. When the task is
limited in parallelism, it cannot utilize all cores of the GPU.

To address this issue, AsYNCAP aims to increase the parallelism of automata on GPU. AsyncAP
separates the execution paths for each symbol of the input stream to gain parallelism (Figure 3 (2)),
namely symbol-level parallelism. To ensure the correctness, the automata task should be able to
start matching anywhere in the input stream, i.e. the starting states of the NFAs must be “all-input”
starting states.

We map each symbol of the input stream to each thread (@). Each thread keeps its index at
which the symbol being processed is located, and also accesses the topology and matchsets of NFAs
from GPU global memory. Since we start from every position of the input stream, we disable the
all-input starting states such that they are only active at the first symbol of their threads. This is the
same as converting them to start-of-data starting states. We match them for all starting positions,
making the results equivalent to their original semantics.

When the matching process begins, thread i reads the input stream independently from input
position i to the end of the input stream (@). For example, thread 3 starts by loading an input
symbol from d, which is the 3rd location of the input stream (abcdefghi).

Each thread keeps its own set of active states as different threads act asynchronously. We disable
the all-input (always active) starting states. As a result, when there is no active state in a thread,
the thread finishes (@). For example, in Figure 3 (2), thread 3 has active states from positions 3 and
5 of the input stream (def), but mismatches at position 6 (g), so the thread terminates at position 6.
Other threads in Figure 3 (2) do not match in the beginning, so they finish when matching the first
symbols mapped to them.

Since the input stream is very long (otherwise it is a trivial problem), it provides enough par-
allelism to utilize GPU cores. Although GPUs may not have enough physical thread contexts to
accommodate all threads at once, the hardware thread block scheduler schedules thread blocks to
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GPUs as resources become available and older thread blocks finish [9]. We also applied granularity
coarsening [32] to ensure the maximum number of threads needed does not exceed the limitation
of the thread block scheduler (currently 23! — 1).

Applicability of ASYNCAP. AsyNCAP applies to the NFAs that only have all-input starting states.
We investigate all applications in two benchmark suites, ANMLZoo [59] and AutomataZoo [61].
Among 12 applications in ANMLZoo, all applications except SPM and Fermi contain NFAs with
only all-input starting states. Among the 13 applications of AutomataZoo, all applications except
SegMat and APPRNG contain only NFAs with all-input starting states. Based on this observation, we
conclude that AsYNCAP is applicable for most of the applications in the existing benchmarks suites.

Compatibility with Modern GPUs. The implementation of AsyNCAP is written in CUDA. We have
run it on NVIDIA GPUs of Pascal and Ampere Architecture. We expect the proposed AsyNcAP
could be compatible with most NVIDIA GPUs.

3.3 Design Space Exploration and Implementation

We examine the major decisions across several points in the design space of implementing AsyNcAP.

NFA Data Structures. Each thread accesses the NFA data structures to check the neighbors of
the active states and whether the active states match with the symbol. Two ways are commonly
seen in the literature to store the topology of the NFAs. First, most prior works [18, 76] use an
alphabet-oriented transition table to store the topology of the NFAs. It is a two-dimension table
T where the rows are indexed by the alphabet, and the columns are indexed by the states. For
example, T[ ‘a’][S] stores which states are matched when the incoming symbol is ‘a’ and S is
the current state. Second, other works [31, 34] use per-node data structures similar to Compressed
Sparse Rows (CSR) that decouple the alphabet and the states. With matchset compression [31],
such data structure reduces the data movement by placing it in GPU registers when possible. In the
best case, the matching process does not require reading global memory to proceed.

We observe that using a transition table is significantly more efficient in AsYNCAP because
AsyNCAP does not reuse the topology or matchsets of all-input states. The per-node data structure
is larger because it stores matchsets separately. When they are not put into registers and are reused
frequently, more data movement is needed. Therefore, ASYNCAP uses transition tables as data
structures of NFAs.

Per-thread Worklists. Each thread maintains double-buffered private worklists. Initially, the
worklist only contains the starting states, and then these states match with the symbol mapped to
this thread. If matched, the states extend their neighbors into the other worklist. The other worklist,
in the next iteration, is assigned to the current worklist by reference, and the next worklist is
emptied by updating its tail pointer. The matching process terminates when the current worklist is
empty. A simple way to implement the double-buffered worklists is to store them in arrays private
to each thread in the local memory. Although local memory can also utilize the caches in recent
generations of GPUs [2], since the GPU kernel of NFA processing is latency-bound, the worklist
arrays compete for the cache space with other data structures (e.g., transition table). This may affect
latency and degrade performance. To address this issue, we propose hybrid worklists in which
the first K elements are stored in the GPU’s shared memory while the rest is stored in the local
memory. The key observation behind it is that for most of the symbols, worklists are short. We
observe that the length of worklists is not larger than 1 for over 99% of the time by profiling the
first 1,000 symbols for each of the evaluated applications. However, the optimal K depends on input
(i.e., the length of the worklists at runtime). For the baseline version of AsyNcAP, we set K = 0
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(local memory only). We treat K as a tuning knob and determine it empirically in Section 5 for an
optimized version of AsynNcAP.
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Fig. 4. Worklist holds active states or matched states

Storing Active or Matched States in Worklists? Whether worklists hold active states or matched
states affects the matching process. Figure 4 illustrates this. If a worklist holds active states, when
one of the active states matches the incoming symbol, it activates its successors before the next
symbol comes. In this figure, S1 matches with b and expands to S2 and S3, which are then pushed to
the next active worklist (@). In contrast, if a worklist holds matched states, each state tries to match
the next symbol with all its successors one by one and pushes the matched successors to the next
matched worklist. In the figure, matched state S1 first expands to S2 and S3, but only S2 matches
with symbol y, and hence only S2 is stored in the matched worklist (@). Essentially, the steps are
the same (match and expand) whereas the key differences are what is stored in the memory and
what is computed on-the-fly. GPU-NFA [31] holds active states in its worklists because it keeps hot
states in registers. When a match happens, it does not need to access matchset of each state. On the
other hand, AsyNcAP disables the all-input states, so these hot states are not reused across threads
and therefore we found that holding matched states performs significantly better in ASYNCAP.

How many independent NFAs are grouped for a kernel launch? AsyNcAP exploits symbol-level
parallelism, so even a 1MB input stream can utilize all GPU threads in high-end GPUs. It is always
sufficient to utilize all GPU cores regardless of other levels of parallelism. As a result, we have the
option of running only one automaton with a kernel launch. This trades NFA-level parallelism
for the locality as each kernel instance only accesses smaller transition tables (< a few MBs). In
contrast, launching a kernel processing a group of NFAs (e.g., every M connected components are
grouped) at a time reduces the total accesses to the memory. For instance, having fewer kernel
launches reduces the total loads from the input stream as each kernel launch has to load the input
stream. For the baseline version of AsYNCAP, we set M to 1 (i.e., “one-automaton-one-kernel”). We
empirically determine M to tune an optimized version of AsyNCAP in Section 5.

Putting it All Together. Figure 5 illustrates the execution of AsyNcAP. On the host side, NFAs are
executed in a one-NFA-one-kernel fashion (@). Each NFA is launched on a different CUDA stream
to allow concurrent kernel execution (@). Here, we examine the Tth thread which starts execution
from position T of the input stream. Suppose the current location is T + 2 (@), and the current
worklist of Tth thread contains matched states S, and S, (@). Then, two cells of the transition
table are accessed (@), and the matched states are pushed to the next worklist (@). This finishes
processing the current symbol at T + 2. As soon as the current worklist is empty, the execution of
thread T terminates.
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Fig. 5. lllustrating the Implementation of AsyNcAP

3.4 Analysis

Correctness. We analyze why AsYNCAP generates the same reports as synchronous automata
processing on GPU. The basic idea is to show synchronous execution and AsyNcAP have the same
set of active states at any position of the input stream.

Suppose the all-input starting state of the NFA is s,. It is always active. Let the set of active states
for the NFA at position p as S, (S, must contain s, for any p). The function expand(S,, input|[p])
takes S, and input[p] (input symbol at position p), and calculates what the active states are based
on S, and the incoming symbol. We omit input[p] part because the value of p depends on the
order that the function is called. For example, if expand is nested called k times, then p = k. In the
synchronous execution, since all starting states are all-input, Sy is calculated by using S, and the
starting state sy to match with the incoming symbol input[p].

Sp+1 = expand(S,, input[p +1]) U {so} (1)
= expand . .. (expand(expand({so}) U {so})) U {so}) U {so} (2)
p times
=expand ...({so}) U expand ...({so}) U ...expand({so}) U ({so}) (3)
| — —_————
p times p—1 times

Here, the first line shows the synchronous execution. Based on the definition, we have
expand(A U expand(B)) = expand(A) U expand(expand(B)), where A and B are sets of active
states. Consequently, it reduces to the last equation which describes the process of AsynNcAP.
This proves that we will have the same active set of states in position p + 1 (i.e., Sp41). Since the
reports are generated when reporting states are matched, AsyNcAP generates the same results as
synchronous execution does.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 27. Publication date: March 2023.



Asynchronous Automata Processing on GPUs 27:11

Table 3. Comparison of Time Complexity. n: number of symbols; m number of states.

Synchronous Execution | AsyNcAP
Lower Bound | Q(n) Q(n)
Upper Bound | O(mn) O(mn?)

Time Complexity. We calculate the total time complexity of AsyNcAP. In the best case, all the
threads only read one symbol and then mismatch. The time complexity lower bound is Q(n), where
n is the number of symbols in the input stream. In the worst case, thread at position i (0 < i < n)
needs to match with n — i symbols. Summing up, they have read O(n?) symbols. At each position,
at most, all the m states can be active. Therefore, the time complexity is O(mn?), which is higher
than synchronous execution (Table 3), but in Section 4, by detailed characterization, we will show
that the worst case is unlikely in real applications.

4 UNDERSTANDING WORK CHARACTERISTICS OF ASYNCAP

Time complexity analysis (Section 3.4) only shows the upper bound of the required amount of work,
however, it does not reflect the runtime characteristics that are input-dependent and implementation-
dependent. To understand the amount work to be done by AsyNCAP, we characterize them focusing
on four aspects by emulation. First, to study the real cases compared to theoretical time complexity,
we compare GPU-NFA and AsyNCAP in terms of useful work (Section 4.3). Second, we show how
GPU is utilized for useful work and useless work (Section 4.4). Third, we compare them in terms of
total work (Section 4.5). Fourth, we study how work is distributed across GPU threads in AsyNCAP
(Section 4.6).

4.1 Application Configuration

We evaluate 13 applications from three benchmark suites, ANMLZoo [59], AutomataZoo [61], and
RegEx [15]. To keep the NFA-level parallelism the same for all applications, we randomly sample
256 NFAs from each of them with a fixed random seed (1234) to ensure reproducibility. Table 4
shows the basic characteristics of the evaluated applications and confirms that sampling does not
change the basic characteristics of NFAs in the applications. We also change the random seed to
other numbers and observe that the results are similar.

It is important to note that when there is only one input stream, no evaluated application can
fully utilize a commodity GPU without exploiting symbol-level parallelism by AsyNcAP. The
maximum application (CAV) contains 33,171 NFAs, which is also the number of threads by default
in the best scheme of GPU-NFA, and which is far lower than the hundreds of thousands of threads
a modern GPU can accommodate [8]. Although dynamic activities (e.g., activations of states) may
also affect the parallelism of the task, traditional ways to process NFAs on GPUs cannot scale out
automatically according to the runtime characteristics.

Each application has a representative input stream collected by the benchmark suites. We use
the first 1IMB input stream to characterize the applications as suggested by prior work [31].

4.2 Emulation and Work Metrics

This section describes the setup of the emulation of synchronous automata processing (GPU-NFA)
and AsYNCAP, and shows the metrics we focus on.

To understand the work of the two schemes, We bisect the work at runtime into useful work and
useless work according to whether the work is required to generate correct results.
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Table 4. Overview of Evaluated Applications

Sampled Unsampled
App. Abbr. #States | Avg. NFA Size | SD. #States | Avg. NFA Size | SD. #NFAs
Brill [61] Brill 5005 19.6 6.1 115549 19.4 5.6 5946
ClamAV [61] CAV 17932 70.0 41.2 | 2374717 71.6 | 144.1 33171
CRISPR_CasOT [61] CRISPR1 25856 101.0 0.0 202000 101.0 0.0 2000
CRISPR_CasOFFinder [61] | CRISPR2 9472 37.0 0.0 74000 37.0 0.0 2000
ExactMatch [15] EMatch 10594 41.4 15.4 12439 41.9 15.6 297
EntityResolution [61] ER 10656 41.6 6.7 413352 41.3 7.0 10000
Hamming_118d3 [61] HM 27648 108.0 0.0 108000 108 0.0 1000
PowerEN [59] PEN 3783 14.8 7.8 40513 14.2 7.9 2857
Ranges05 [61] Rg05 10843 42.4 17.2 12621 42.2 16.9 299
Ranges1 [61] Rgl 10688 41.8 15.7 12464 42.0 15.4 297
Snort [61] Snort 19906 77.8 | 178.1 202043 81.3 | 242.0 2486
TCP [15] TCP 6331 24.7 11.3 19704 26.7 22.0 738
YARA [61] YARA 9331 36.5 45.1 | 1047528 44.5 59.5 23530

|:| Match Hot States |:| Match Cold States |:| Useless Work |:| Symbol of Pattern

M hreadld 0 1 2 3 4 5 6 7 Time Threadld 0 1 2 3 4 5 6 7
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Fig. 6. lllustrating the Execution of GPU-NFA and AsyNcAP on GPU

Useful Work. When an active state tries to match with the incoming symbol, we count it as a
unit of useful work (i.e., required work) in the emulation. Useful work is necessary to generate
correct results. The time complexity analysis (Section 3.4) estimates the lower bound and upper
bound of useful work, but is difficult to estimate the actual useful work as it is input-dependent.

Useless Work. In contrast, useless work is due to either thread block synchronization or warp
synchronization. It is also input-dependent. If a thread is waiting for other threads to match with
an incoming symbol for synchronization compulsorily, we count the activity of the idle thread as a
unit of useless work.

Although one can easily collect GPU utilization results from existing profilers [5-7], simula-
tors [12, 27], or emulators [20], these tools find it difficult to differentiate the useful work and useless
work specific to the workload on GPU. Therefore, we emulate these workloads on the CPU with
the following models based on their simplified implementation ideas.

Model of GPU-NFA. Based on the key idea illustrated in Figure 2, Figure 6 (1) shows how we
emulate GPU-NFA [31]. Processing a symbol requires two stages. The hot states mapped statically
to threads match with the incoming symbol at the hot stage. Next, in the cold stage, the threads
process the elements in the worklist before the thread block synchronization. However, the worklist
may not contain enough active states for all threads to process, leaving other threads in the same
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Table 5. Characteristics of applications based on our emulation results. W. stands for weighted. The weights
are the latency of unit work.

Compare AsyNCAP w. GPU-NFA by Ratio Per Symbol Latency GPU Utilization
App. Useful | Total | W. Useful | W. Total GPU-NFA | AsyNCAP | GPU-NFA | AsyNcAP
Brill 1.00 4.87 0.92 4.48 1490.3 1370.6 0.89 0.18
CAV 1.00 0.74 0.84 0.62 789.3 663.4 0.67 0.90
CRISPR1 1.00 1.91 0.50 0.95 2497.2 1256.3 0.96 0.50
CRISPR2 1.00 1.89 0.51 0.98 2672.7 1374.9 0.89 0.47
EMatch 1.00 0.86 0.57 0.48 1545.3 874.1 0.57 0.67
ER 1.00 3.18 1.00 3.17 1133.9 1130.1 0.85 0.27
HM 1.00 1.59 0.82 1.31 1734.7 1430.2 0.93 0.59
PEN 1.04 1.91 0.59 1.08 1483.6 840.5 0.52 0.29
Rg05 1.00 0.84 0.51 0.43 1639.0 838.0 0.57 0.68
Rgl 1.00 0.85 0.54 0.46 1565.5 846.0 0.57 0.67
Snort 1.95 1.70 0.92 0.80 3003.8 1413.4 0.53 0.61
TCP 1.01 0.89 0.56 0.49 1457.8 800.3 0.52 0.58
YARA 1.00 0.66 0.43 0.28 1962.9 845.3 0.56 0.86
Mean 1.06 1.40 0.65 0.85 1767.4 1052.6 0.67 0.51

thread block idle for synchronization (grey cells) as the implementation uses static scheduling.
The work wasted by the idle threads is considered as useless work. We use block size 256 in our
emulation, which is also used in GPU execution because it can reach the best performance and
highest GPU occupancy.

Model of AsyNcAP. Figure 6 (2) shows the execution model of AsyNcAP. Each thread is mapped
to an input position as depicted in Section 3.2. The thread runs until no state is active. Thus, the
threads run for a different number of symbols depending on the length of patterns in the threads.
A cell counts as a unit of work. Due to the SIMD execution of GPU, the threads within a warp are
synchronized implicitly. For example, when a thread is processing a long pattern, other threads in
the same warp are idle (shown in grey cells). These grey shaded cells are useless work in AsyNcAP
and the green cells illustrate useful work. We use 32 as the warp size in the emulation, which is the
same as NVIDIA GPUs [2].

Latency of Unit Work. Since time complexity analysis also ignores constants, we measure the
average processing cycles of a unit of work on GPU. The #, and #; shown in Figure 6 illustrate the
latency of unit work in GPU-NFA and AsynNcAP. The measured latency, therefore, could be treated
like the constants in the time complexity analysis. We use ¢, and t; as the weight of a unit work in
GPU-NFA and AsyNCAP, respectively. We launch a small grid in which only the first 1,024 symbols
are processed to exclude the effects of the latency due to thread block scheduling. We record all
latency values in all threads and then average them across the total number of active states of all
the threads. Table 5 demonstrates that AsyNcAP has significant lower (41%) latency for a state to
process a symbol than GPU-NFA.

4.3 Analysis of Useful Work

Table 5 shows the results of useful work based on our execution models. The first four columns of
the Table 5 compare the metrics of AsyNCAP and GPU-NFA by ratios between the two schemes
where a value less than 1.0 indicates that ASYNCAP requires less work. As we analyzed in Section 3.4,
ASYNCAP can have more useful work than GPU-NFA, however, we observe that for all evaluated
applications, the useful work is far from the upper bound of AsyNcAP’s time complexity. For most
applications (11 out of 13), ASYNCAP requires less than 1% of useful work compared with GPU-NFA.
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Table 6. Spearman’s Correlation between Execution Model Metrics and Execution Time: Using weighted
work correlates better to the throughput. PEN was excluded when calculating this table due to its skewed
load balance.

Scheme ASYNCAP GPU-NFA
Result
. cesults Corr. | P-Value Corr. | P-Value
Metrics
Useful Work 0.83 0.0008 0.75 0.001
Total Work 0.95 | 2x107° 0.88 0.00001

Weighted Total Work | 0.96 | 9 x 1077 0.90 | 0.000005

The only outlier, Snort, needs 95% more useful work in AsyNCAP. Overall, AsYNCAP only requires
6% more useful work than GPU-NFA across the evaluated applications on average (geometric
mean).

We also compare the useful work considering the latency of a unit of work. We calculate weighted
useful work by multiplying the latency (introduced in Section 4.2) by the amount of useful work.
Overall, according to the third column of Table 5, AsYNCAP spends 35% and 15% less useful work
compared to GPU-NFA.

We conclude that on average ASYNCAP requires less weighted useful work for all applications than
GPU-NEFA, indicating that shorter latency of ASYNCAP could compensate for the extra useful work.

4.4 How GPU is Utilized?

Only useful work is necessary. Therefore, we study how much percentage of the work is spent on
useful work for GPU-NFA and AsyNcAP.

The last two columns of Table 5 show useful work utilization ratio of the two schemes, calculated by
%. Larger values indicate higher GPU utilization. We observe that the useful work utilization
ratio is application-dependent. Overall, the ratio of useful work is 0.51 and 0.67 in AsyNcAP and
GPU-NFA on average (geometric mean) across the evaluated applications, respectively. For example,
ASYNCAP has a larger utilization ratio for several applications (e.g., YARA, Rg1, CAV). We observe
that the variance of pattern length affects the utilization of AsyNcAP (Table 7), and affects the work
distribution in AsYNCAP (Section 4.6). Less variance is favorable to the useful work utilization ratio
of AsyNCAP. We conclude that GPU-NFA and AsyNcAP both have a large portion of useless work
that could be further improved.

4.5 Analysis of Total Work

Total work consists of useful work and useless work. Table 6 corroborated that total work is more
accurate to estimate the execution time as it considers the synchronization overhead (modeled as
useless work).

The second column of Table 5 shows the ratio of total work between AsyNcAP and GPU-NFA. A
value greater than 1.0 indicates that ASYNCAP requires more total work and vice versa. We observe
the total work is highly application-dependent. Compared to GPU-NFA, Brill and ER executed
with AsYNCAP use multiple times of total work (4.87x/3.18x work of GPU-NFA, respectively), while
for applications such as CAV and YARA, AsyNCAP has around 30% less total work than GPU-NFA. On
average across the evaluated applications, ASYNCAP requires 40% more total work than GPU-NFA,
because the implicit warp synchronization caused by processing patterns with various lengths
leads to more useless work.

Considering the latency of unit work, we multiply the measured latency of GPU-NFA and
AsyYNCAP by the total work, which is shown in the fourth column of Table 5. In contrast, ASYNCAP

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 27. Publication date: March 2023.



Asynchronous Automata Processing on GPUs 27:15

Table 7. Pattern Length of the Evaluated Applications and Imbalance Ratio of AsyNcAP

Pattern Length .
App. Max Avg. ; SD. fmb. Ratio
Brill 75 1.59 2.0 14.6
CAV 16 2.67 0.9 3.2
CRISPR1 24 4.02 1.3 11.6
CRISPR2 13 1.00 0.1 3.2
EMatch 22 1.14 0.5 27.00
ER 42 1.02 0.2 10.0
HM 19 | 5.33 1.3 2.3
PEN 923049 1.05 | 1424 486913.1
Rg05 46 1.02 0.2 53.8
Rgl 46 1.02 0.2 47.7
Snort 9558 1.31 6.8 5677.1
TCP 1108 1.02 1.1 2795.7
YARA 27 1.12 0.4 114.5

requires ~15% less weighted total work than GPU-NFA due to its lower average latency to match a
symbol.

4.6 How the work is distributed in AsyNncAP?
GPU-NFA balances the works in the worklist within a thread block. However, how the work is
balanced in AsYNCAP depends on the pattern characteristics of applications, relying on the thread

block scheduler to balance them. Therefore, we measure how the work is distributed across threads
in ASYNCAP.

Max Work of Warps

Imbalance Ratio =
Average Work Per Warp

4)

Although the standard deviation of pattern length (shown in Table 7) indicates how the useful
work varies in threads, it does not reflect how many thread blocks (or warps) we need in the kernel
grid to balance the work across GPU compute units. Therefore, we define imbalance ratio shown in
Equation 4 that indicates how many average warps are needed to offset a very slow warp.

Table 7 demonstrates that the thread imbalance situation varies across the applications. A few
applications, such as CRISPR2 and HM, have very balanced work across threads (i.e., the warp that
has the most work only costs a few times more works than the average), potentially because their
automata are similar in shape and size. While CAV, ER, and Rg05 are more diverse, their work is
also well balanced. On average (geometric mean), the applications need 75.1 warps to offset a warp
with a lot of work. On the other hand, a few applications (e.g., Snort, TCP) have a relatively large
imbalance ratio, but launching many thread blocks (i.e., the number of thread blocks for a 1MB
input stream) can compensate for the imbalance. However, PEN has a dramatically large value
(orders of magnitude larger than the values of other applications), showing its threads are severely
imbalanced.

We do not apply software-based load balance to ASYNCAP as it requires global synchronization
across all threads, whose performance is not optimal in automata processing [31]. Instead, the
thread block scheduler can balance the work in a coarse-grained way by assigning a new block.
As AsYNCAP has a bigger pool of thread blocks due to the increase in parallelism, we rely on the
hardware scheduler to balance the work. We conclude that most applications distribute the work
across threads well, but rarely, extremely imbalanced work can happen.
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5 EVALUATION METHODOLOGY

This section describes our evaluation methodology.
Application Configuration. We use the same application configuration as Section 4.1.

Hardware Platforms. We primarily use an NVIDIA Quadro P6000 GPU for evaluation. We also
perform a sensitivity study on an NVIDIA RTX 3090 GPU to show the effectiveness for other GPU
architectures. We use a 12-core Intel Xeon Silver 4214R for CPU evaluation.

#symbol
Performance Measurement. We use throughput = % to measure the performance. We do

not consider the time of copying NFAs and input streams to GPU, but we have confirmed this
only incurs negligible (less than 10%) overhead. We measure the end-to-end time from launching
the first kernel to the end of execution when the reports are copied back to the host. Each set of
experiments is performed 3 times and we report 95% confidence intervals for our results (shown as
error bars).

Evaluated Scenarios. We evaluate our approach for automata processing tasks with a different
amount of parallelism. Since NFAs have different runtime characteristics, to better control the
parallelism, we vary the number of input streams. We study three scenarios, low (1 input stream),
medium (15 input streams), and high parallelism (240 input streams). The low parallelism only
has one input stream, which is evaluated in most of the prior works that focus on automata
parallelization (such as speculation/enumeration techniques). The medium parallelism scenario is a
case when the parallelism is not enough to utilize all the compute resources. Since our evaluated
GPU has 30 stream multiprocessors (SMs), we use half of the number of SMs as the number of input
streams. Last, the evaluated GPU supports 240 thread blocks running on the SMs, so we consider
the scenario with 240 input streams as high parallelism as it requires at least 240 thread blocks [4].

Table 8. Overview of Evaluated Schemes

Scheme Description

VASim CPU Implementation VASim [60]

Sync-HS HotSTART in GPU-NFA [31]

Sync-HC NT-MAC-ACP in GPU-NFA [31]

ScaLeOuT-HC | Sync-HC such that each thread block starts at a different input location
ASYNCAP Proposed scheme detailed in Section 3.3

AsYNCAPOPT | AsyNCAP with tuned parameters for better performance

Evaluated Schemes. Table 8 summarizes the evaluated schemes. We compare our schemes
with two synchronous execution schemes proposed by prior work — GPU-NFA [31]: Sync-HS
(HoTSTART [31]) and Sync-HC (NT-MAC-ACP [31]). The latter supports the flexible placement of
hot and cold states to threads. We enable Sync-HC to leverage symbol-level parallelism by starting
each thread at a different input location (namely ScALEOuUT-HC). We use VASim [60] running in
multi-thread mode as the CPU baseline. Programs running on P6000 GPU are compiled with nvcc
11.0 with 03 -arch=sm_61 and the programs running on RTX 3090 GPU are compiled with nvcc
11.7 with -03 -arch=sm_86.

Performance tuning for AsyNCAPOPT. To optimize ASYNCAP, we sweep the parameters of the two
tuning knobs introduced in Section 3.3. First, as discussed in Section 3.3, part (K elements) of thread-
local worklist can be stored in shared memory to make room in caches for other data structures.
However, a large K may reduce the occupancy as shared memory is limited. Figure 7 depicts the
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Fig. 8. Performance sensitivity to the number of NFAs (connected components, CCs) per kernel launch under
high parallelism scenario

performance results by varying Ks normalized to AsYNCAP with all elements of worklists in local
memory (K = 0). While still application-dependent, we observe that the best average performance
is achieved with K = 1. Therefore, we use K = 1 in AsyNCAPOPT. Second, we tune the number of
NFAs (M) for each kernel launch. In AsyNcAP, we use M = 1 (i.e., “one-automaton-one-kernel”).
A small M leads to a small transition table at the cost of scanning the input streams multiple
times. Figure 8 shows that despite being application-dependent, M = 4 achieves the best average
performance. Consequently, we set M = 4 for AsyNCAPOPT.

6 EXPERIMENTAL RESULTS
6.1 Results

Table 9 shows the throughput of evaluated applications in evaluated scenarios. To simplify the
discussion, we exclude the application, PEN, from this section and discuss it separately in Section 6.2.
Figure 9 shows the performance results. We observe that the evaluated GPU implementations
outperform multi-core CPU significantly, especially when the parallelism is sufficient.

Low and Medium Parallelism. In this scenario, the approaches of GPU-NFA only use one thread
block to execute the NFAs on an input stream, which severely underutilized GPU cores. Figure 9 (a)
shows the throughput obtained from this scenario in log-scale. We found that AsyNcAP achieves
26.4x speedup for the evaluated applications on average and AsyNCAPOPT achieves 57.9X speedup.
Figure 9 (b) shows that AsYNCAP achieves 4.4X speedup on average in the medium parallelism
scenario while the tuned version AsyNCAPOPT achieves 9.4X speedup. For all evaluated applications
except PEN, AsyNCAP achieves significant speedup showing its effectiveness in increasing the
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Fig. 9. Performance of synchronous and asynchronous automata executions on GPU under a different amount
of parallelism

parallelism of automata processing tasks. The results confirm that AsyNCAP provides high scalability
for parallelism-limited tasks.

High Parallelism. We evaluate AsyNCAP to confirm whether AsyNcAP provides high throughput
compared with GPU-NFA when the GPU is saturated by high-parallelism tasks. Figure 9 (c) shows
our results. Overall, we observe that AsyNcAP achieves 1.07X speedup on average compared to
SyYNc-HS, the fastest implementation of GPU-NFA across the 12 evaluated applications. Further, the
throughput of the optimized AsyNCAPOPT is 2.4X of GPU-NFA on average. The results confirm that
ASYNCAP provides high throughput when GPU is saturated.

AsYNCAPOPT achieves up to 6.7X speedup over GPU-NFA (CRISPR1). Although CRISPRI1,
CRISPR2, HM, and Snort have more total work in AsYNCAP (up to 1.91X total work of GPU-NFA),
AsyNCAP outperforms GPU-NFA in these applications significantly due to lower per symbol over-
head. Albeit Snort is not a very balanced application (Table 5), coarse-grained thread block load
balance can schedule multiple short blocks to compensate for the long blocks. To further study the
reason, we observe that AsyNCAP works more efficiently for the applications that have more acti-
vation or have longer average pattern length (demonstrated in Table 4) because of the lower latency
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Table 9. Throughput (in MB/s) of evaluated applications under the evaluated scenarios

Parallelism Low Medium High
Scheme

App. AsYNCAPOPrT | Sync-HS | AsyNcAPOPT | Sync-HS | AsyNcAPOrT | Sync-HS
Brill 22.5 0.6 32.2 8.6 35.1 49.4
CAV 78.1 1.6 322.7 24.1 458.5 148.3
CRISPR1 22.9 0.2 325 2.9 34.5 5.1
CRISPR2 32.1 0.4 50.2 5.3 54.8 124
EMatch 64.8 1.1 192.7 16.9 246.5 113.9
ER 394 1.3 68.5 19.5 77.8 110.0
HM 20.1 0.2 27.7 3.1 29.2 10.1
PEN 0.6 0.8 0.5 11.5 3.7 83.8
Rg05 63.5 1.1 196.9 15.9 249.8 108.1
Rgl 63.5 1.1 189.5 16.5 239.0 110.8
Snort 26.0 0.5 72.8 8.2 86.9 42.0
TCP 26.2 0.9 138.1 13.8 211.7 82.5
YARA 66.9 0.8 234.9 11.6 308.3 74.8

of state matching. In contrast, when the pattern is long (i.e., states are more frequently activated),
the overhead to maintain worklists and synchronize of GPU-NFA leads to poor performance.

In comparison, AsYNCAP has a slowdown in a few applications for two reasons: 1) For example,
even executed with AsyNcAPOPT, Brill and ER incur 1.40% and 1.41x slowdown, because AsyNCcAP
requires more weighted total work (2.1x and 2.4X, respectively; see Table 5). 2) Applications, such
as EMatch, Rg@5, Rg1, do not need more work in AsyNcAP though, have a slowdown because their
states are matched rarely, therefore, they are more favorable to be executed by GPU-NFA as it
optimizes for skimming over the input streams by the always-active starting states. On the other
hand, the optimized version AsyNcCAPOPT does not have a slowdown for these applications.

Scaled Out GPU-NFA (ScarLeOut-HC). Figure 9 includes the results of ScALEOuT-HC. We observe
that ScALEOUT-HC is on average slower in all scenarios because SCALEOUT-HC is not able to reuse
the hot nodes mapped to threads and has a higher overhead in synchronization between every
contiguous symbol. Nevertheless, by leveraging symbol-level parallelism, ScALEOuT-HC achieved
speedup in a few applications under low and medium parallelism scenarios.

Oracular Speculation ‘ Input segment 1 | Input segment 2 | Input segment 3 | Input segment 4 ‘
start nodes Speculation: Speculation: Speculation:
are active start nodes are active start nodes are active start nodes are active

High Parallelism Scenario ‘ Input segment 1 | Input segment 2 | Input segment 3 | Input segment 4
start nodes start nodes start nodes start nodes
are active are active are active are active

Fig. 10. Oracular Speculation vs High Parallelism Scenario

Comparison with Oracular Speculation. A speculation mechanism for automata processing needs
two components: 1) speculation component that decides the active state at the beginning of each
input stream segment; 2) matching component that matches all the input segments starting from
the speculated states. Since no speculation scheme is implemented on GPU for NFAs, we perform
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Fig. 11. Performance Sensitivity to Ampere GPU Architecture

an oracular case study where the speculation component is oracular and use GPU-NFA, the state-
of-the-art scheme on GPU, as the matching component. Figure 10 (@) depicts that a speculation
approach partitions the input stream into 4 segments. The speculation component decides the set
of active states at the beginning of segments 2, 3, and 4. Suppose in this case, it correctly speculates
that only the always-active starting states are active, and hence no re-execution is needed. The
matching component, therefore, processes the 4 segments in parallel. In comparison, Figure 10 (@)
depicts the high parallelism scenario in which GPU-NFA is processing 4 input streams. Equivalently,
GPU-NFA here acts like the matching component that processes input segments. Therefore, the
measured throughput could serve as a proxy to study what is the upper bound performance when
GPU-NFA works as the matching component. Figure 9 (c) is a proxy comparison between AsYNCAP
and the oracular speculation. In conclusion, AsyNCAPOPT obtains 2.4X speedup over the oracular
speculation approach with GPU-NFA matching component.

Sensitivity to Ampere Architecture. We evaluate high parallelism and low parallelism scenarios
on NVIDIA RTX 3090 GPU. Since RTX 3090 has 82 SMs, we use 656 (82 X 8) input streams in the
high parallelism scenario. Figure 11 demonstrates the performance results. In the low parallelism
scenario, on average, ASYNCAPOPT achieves 67.7X speedup (y-axis is in log-scale) over Sync-HS. We
observe that several applications (e.g., CRISPR2, CRISPR1, and HM) achieve better speedup compared
to the P6000 GPU because more cores benefit from increased parallelism by AsyNcAP. For example,
with AsyNcAPOPT, CRISPR1 achieves 209.4X speedup on RTX 3090 compared to 117.4X speedup
on P6000. We also observe that AsYNCAPOPT has better performance improvement compared to
ASYNCAP in the RTX 3090 GPU, indicating that the two tuned parameters are also portable to
Ampere GPUs. In the high parallelism scenario, AsYNCAP and AsyNCAPOPT achieves 1.3x and 3.2X
speedup compared to GPU-NFA on average across the 12 evaluated applications (PEN is excluded).
The applications with slowdown in P6000 GPU (e.g., EMatch, ER, Brill) also perform better as
Ampere architecture has less memory latency and consequently, GPU-NFA slightly loses its edge.
We conclude that AsYNCAP also provides high throughput and scalability on the Ampere Architecture.

6.2 Analysis of Pattern Length and Discussion

Slowdown of PEN. Compared with Sync-HS (the fastest version of GPU-NFA), Table 9 shows that
AsYNCAPOPT incurs 22.7X%, 23.0%, and 1.3X slowdown in the high, medium, and low parallelism
scenarios for PEN!. The slowdown is because the matching process of PEN gets stalled at certain
states with self-loops.

We further examine the patterns of applications to understand the slowdown. Table 7 shows the
length of patterns in the evaluated applications. We observe that most applications’ patterns are

1As suggested by prior work [61], PowerEN (PEN) is an arbitrary benchmark that may not reflect real applications.
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Fig. 12. Large portion of NFAs only generate patterns with limited length.

short with low variance. Applications with longer average pattern length (e.g., CRISPR1, CRISPR2,
HM) tend to perform better in AsyNCAP because long patterns imply more frequent activation.
When non-starting states are activated frequently, the worklist used in GPU-NFA needs to read
the per-node data structure of NFAs, which causes a large amount of data movement overhead
and higher per symbol latency (Table 5). For a few applications can have very long patterns (e.g.,
PEN, Snort), since their pattern length has distinct standard deviations (142.4 and 6.8, respectively),
they have very different performance results. When the number of warps that execute on shorter
patterns can offset the warps for long patterns, the performance degradation is not much: For
example, the imbalance ratio of Snort is 5.6k, which is far less than a kernel that has 31k warps for
a 1MB input. In contrast, the imbalance ratio of PEN is too large (480Kk) to be offset by the thread
block scheduler, and hence the performance drops significantly.

In summary, AsYNCAP performs well in all scenarios when the length of patterns is moderate
but can lead to slowdown due to imbalance when the patterns are extremely long and the standard
deviation of pattern length is also high.

How likely are very long patterns? To study how common the long patterns are, we classify the
NFAs into four types by static analysis on NFA graphs: 1) The first type only generates patterns
with finite length (the NFA graphs are directed acyclic graphs). 2) The second type can generate
patterns with infinite length only when the matching process is stalled in the same state (the NFA
graph has no back edge but has self-loops). 3) The third type can generate patterns with infinite
length when going through a cycle containing more than one state (the NFA graph has no state
with a self-loop but has back edges). 4) The fourth type can generate any length of patterns (the
NFA graph has back edges and self-loops).

Figure 12 shows the results for the applications (Here, NFAs are not sampled. The sampled case
also shows a very similar figure). We observe that a large portion of NFAs can only generate patterns
with finite length. In other applications, although statically it is possible to have very long patterns,
they do not have long patterns in real input streams (Table 7).

Performance sensitivity to pattern length cutoff. A simple way to reduce the slowdown caused by
extremely long patterns is to cutoff pattern length at a predefined value which each thread terminates
when it reaches instead of terminating when the pattern finishes. Figure 13 portrays results of
varying pattern length cutoff. We observe that when the pattern length cutoff doubles starting from
1k, the performance degrades slightly due to the coarse-grained load balance performed by GPU’s
thread block scheduler. However, when the cutoff reaches 32K, the performance degrades more
for each step, showing that the imbalance could not be compensated well. We also confirmed that
although the pattern length is very high in PEN, these long patterns (matching processes) do not
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Fig. 13. Performance results of PEN with various pattern length cutoff points under high parallelism scenario

generate reports. However, cutting off the matching process by pattern length may omit reports,
leading to correctness issues. Therefore, the users may need to provide insights about how long
the patterns are in their applications.

Type 1 NFAs

(Finite Pattern Length)
Static Checking

Other Type NFAs

Prepare NFA AsyncAP with Patterns Gr NFAs and
| —Pattemns___ | oup NFAs ai R
Data Structures Pattern Length Cutoff Exceed Cutoff Prepare Data Structures GPU-NFA

Load NFAs AsyncAP

Fig. 14. Workflow to process automata with GPU-NFA to avoid extreme slowdown

Discussion on Workflow with GPU-NFA. We discuss how AsyNcAP could work with GPU-NFA
to avoid the slowdown due to extremely imbalanced patterns. Figure 14 demonstrates a potential
workflow. After loading NFAs and preparing their data structures, we statically check whether
these NFAs can lead to long patterns by NFA topology analysis (Figure 12). As a large portion of
NFAs will never have long patterns, we offload them to AsYNcAP due to better throughput and
scalability. Other types of NFAs are opportunistically offloaded to AsyNcAP but with a pattern
length cutoff. A large cutoff threshold brings more opportunity to run NFAs on AsyNcAP while a
small cutoff threshold has less chance to suffer from slowdown. For instance, Figure 13 shows that
if we limit the cutoff to 1k, AsyNCAP has around 5.8x throughput than GPU-NFA. When it fallbacks
to GPU-NFA, the overhead would be 17.2% without considering the data structures preparation. If
any of the NFAs exceed the cutoff, they will be collected on the CPU and offloaded to GPU-NFA
again. We leave this complete workflow for future work.

7 RELATED WORK

This section summarizes prior works into two categories. First, we discuss how prior works map
automata processing to hardware resources. Second, we discuss existing works that increase the
parallelism of automata.

7.1 Mapping Automata to Compute Resources

To parallelize the automata processing, the program needs to map automata to compute resources.
Vasiliadis et al. [57] and Gregex [64] use GPU threads to handle different network packets (i.e., input
stream level parallelism). Smith et al. [51] merge DFAs (and extended DFAs) with a 64MB memory
budget and execute them in batches on GPU threads. Tran et al. [56] use each warp to handle an
NFA and an input stream. HyperScan [65] maps NFA states to SIMD lanes of CPUs and uses parallel
bit operations of SIMD to calculate the next states of NFA. Prior work by Vu [58] maps threads to
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state vectors and performs vector and matrix multiplication to leverage the bit-parallelism of NFAs.
iNFAnt [18] and Nourian et al. [34] map state transitions to threads. Nourian et al. also propose
compiler-based schemes to map the traversals of NFAs to the code of GPUs [35] or FPGAs [36], but
these approaches are limited to fixed-topology NFAs.

These works treat all states equally, neglecting their matching activity. Zu et al. [76] statically
group the states that can never be grouped into compatible groups, and map the compatible groups
to threads to increase the GPU utilization. GPU-NFA [31] classifies states as hot and cold and maps
the hot states to threads.

In contrast, AsyNCAP maps input symbols to GPU threads. Since the input stream is long enough,
this mapping increases the parallelism.

7.2 Increasing Parallelism of Automata

A large body of work focuses on how to break dependencies across symbols to gain more parallelism.
The approaches can be categorized as prefix-sum parallelization [29], enumeration [33], specula-
tion [38, 40, 74, 75], or their hybrids [26, 67]. Speculation is more work-efficient than prefix-sum
parallelization and enumeration [75]. All of these works assume the compute resources are more
than the parallelism provided by the original task (i.e., automata level, input stream level, and
state-level parallelism).

All the aforementioned works focus on DFAs because DFA always has one active state at every
step, making it easier for speculation to decide the active states and enumeration to merge paths [33].
A recent work [66] implements the idea of speculation for DFAs on GPUs. To reduce the overhead
of misspeculation, it proposes techniques to reduce the redundant work caused by speculation.
Since it does not support NFAs yet, we cannot compare AsYNCAP with it directly. Nevertheless,
we compared AsyNCAP with an oracular speculation approach that uses GPU-NFA as matching
processes in Section 6 and found that AsyNCAP achieves significant speedup over the oracular
speculation approach.

Traditional enumeration schemes enumerate the active states at the beginning of each segment.
The matching processes need to be synchronized because they need to discard the incorrect results
from the enumeration of active states. Although the separation of execution paths of AsyNcAP
can also be viewed as an enumeration of input locations, AsyNCAP does not enumerate active
states and hence needs neither validation nor discarding incorrect results. As a result, ASYNCAP is
more efficient as it fully utilizes the massively parallel processor GPUs regardless of the amount of
parallelism. The limitation of AsYNCARP is that it only applies to all-input starting states.

No prior work adapts to tasks with a different amount of parallelism, whereas AsyNCAP achieves
both scalability and high throughput for all evaluated tasks.

8 CONCLUSIONS

With each generation, GPUs are more capable and equipped with more resources. However, not all
automata tasks have enough parallelism to fully utilize these GPUs.

We proposed a lightweight approach to increase the parallelism of automata processing on GPUs
by searching for patterns in parallel asynchronously in the input stream. While it requires additional
work theoretically, our study revealed that in real applications this approach performs less work
than expected.

Experimental results confirm that our approach provides both high throughput and scalability.
The increased parallelism enabled by our approach reduces the under-utilization of GPU cores and
leads to significant speedup when original task parallelism does not saturate the GPU. Even when
the GPU is saturated, our approach performs considerably faster than the state-of-the-art NFA
processing engine on GPU.
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