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Abstract. We study decision rule approximations for generic multistage robust linear 
optimization problems. We examine linear decision rules for the case when the objective 
coefficients, the recourse matrices, and the right-hand sides are uncertain, and we 
explore quadratic decision rules for the case when only the right-hand sides are uncer-
tain. The resulting optimization problems are NP hard but amenable to copositive pro-
gramming reformulations that give rise to tight, tractable semidefinite programming 
solution approaches. We further enhance these approximations through new piecewise 
decision rule schemes. Finally, we prove that our proposed approximations are tighter 
than the state-of-the-art schemes and demonstrate their superiority through numerical 
experiments.
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1. Introduction
Decision making under uncertainty arises in a wide 
spectrum of applications in operations management, 
engineering, finance, and process control. A prominent 
modeling approach for decision making under uncer-
tainty is robust optimization (RO), whereby one seeks for 
a decision that hedges against the worst-case realiza-
tion of uncertain parameters; see Ben-Tal and Nemir-
ovski (2002), Ben-Tal et al. (2009), and Bertsimas et al. 
(2011a). The RO paradigm is appealing because it leads 
to computationally tractable solution schemes for 
many static decision-making problems under uncer-
tainty. However, real-life problems are often dynamic in 
nature, where the uncertain parameters are revealed 
sequentially and the decisions must be adapted to the 
current realizations. The adaptive decisions are funda-
mentally infinite dimensional as they constitute map-
pings from the space of uncertain parameters to the 
space of actions. This setting gives rise to the multistage 
robust optimization (MSRO) problems, which in general, 
are computationally challenging to solve. Only in a few 
cases and under very stringent conditions are the pro-
blems efficiently solvable; see, for instance, Ben-Tal and 
Nemirovski (1999), Guslitser (2002), and Bertsimas et al. 

(2015). Consequently, the design of solution schemes 
for MSRO necessitates reconciling the conflicting objec-
tives of optimality and scalability.

Conservative approximations for MSRO can be derived 
by using linear decision rules, where we restrict the adaptive 
decisions to be affine functions in the uncertain para-
meters. Popularized by Ben-Tal et al. (2004), linear deci-
sion rules have found successful applications in various 
areas of decision-making problems under uncertainty 
(Ben-Tal et al. 2005; Atamtürk and Zhang 2007; Chen 
et al. 2007, 2008; Calafiore 2008; Rocha and Kuhn 2012; 
Gounaris et al. 2013) as they are simple yet valuable to 
implement in practice. Moreover, linear decision rules 
are optimal for some instances of MSRO (Bertsimas and 
Goyal 2012, Iancu et al. 2013), linear quadratic optimal 
control (Anderson and Moore 2007), and robust vehicle 
routing (Gounaris et al. 2013) problems. The resulting 
optimization problems, however, are tractable only 
under the restrictive setting of fixed recourse (i.e., when 
the adaptive decisions are not multiplied with the 
uncertain parameters in the problem’s formulation). 
Many decision-making problems under uncertainty, 
such as portfolio optimization (Dantzig and Infanger 
1993, Ben-Tal et al. 2000, Rocha and Kuhn 2012), energy 
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systems operation planning (Martins da Silva Rocha 
2013), inventory planning (Bertsimas and Georghiou 
2018), etc., do not satisfy the fixed recourse assumption. 
For these problem instances, the linear decision rule 
approximation is NP hard already in a two-stage set-
ting; see, for example, Guslitser (2002) and Ben-Tal et al. 
(2004).

The basic linear decision rules have been extended to 
truncated linear (See and Sim 2010), segregated linear 
(Chen et al. 2008, Chen and Zhang 2009, Goh and Sim 
2010), and piecewise linear (Georghiou et al. 2015, Ben- 
Tal et al. 2020) functions in the uncertain parameters. If 
the MSRO problem has fixed recourse, then one can 
formally prove that the optimal adaptive decisions are 
piecewise linear (Bemporad et al. 2003), which justifies 
the use of these enhanced approximations. Unfortu-
nately, optimizing for the best piecewise linear decision 
rule entails globally solving a nonconvex optimization 
problem, which is inherently difficult; see Bertsimas 
and Georghiou (2015) and Ben-Tal et al. (2020). If, in 
addition, some basic descriptions about the piecewise 
linear structure are prescribed, then one can derive 
tractable linear programming approximations for prob-
lem instances with fixed recourse by Georghiou et al. 
(2015). Their piecewise linear decision rule scheme is a 
generalization of the aforementioned methods, includ-
ing the truncated linear decision rule by See and Sim 
(2010) and the segregated linear decision rule by Chen 
et al. (2008), Chen and Zhang (2009), and Goh and Sim 
(2010).

If a tighter approximation is desired or the problem 
has nonfixed recourse, then one can in principle develop 
a hierarchy of increasingly tight semidefinite approxi-
mations using polynomial decision rules (Bertsimas et al. 
2011b). Although optimizing for the best polynomial 
decision rule of fixed degree is difficult, tractable conser-
vative approximations can be obtained by employing 
the Lasserre hierarchy (Parrilo 2000, Lasserre 2009). 
Such approximations are attractive because they do not 
require prior structural knowledge about the optimal 
adaptive decisions. However, the resulting semidefinite 
programs scale poorly with the degree of the polyno-
mial decision rules. A decent trade-off between subop-
timality and scalability is attained in quadratic decision 
rules (QDRs), where one merely optimizes over poly-
nomial functions of degree 2. Their semidefinite approx-
imations, based on the well-known approximate S 
lemma (Ben-Tal et al. 2009), have been applied success-
fully to instances of inventory planning (Bertsimas et al. 
2011b, Hanasusanto et al. 2015) and electricity capacity 
expansion (Bampou and Kuhn 2011) problems. A poste-
riori lower bounds to the MSRO problem can be derived 
by applying decision rules to the problem’s dual formu-
lation; see Bampou and Kuhn (2011), Kuhn et al. (2011), 
and Lasserre (2009). Alternative schemes that similarly 
provide aggressive bounds for MSRO are proposed in 

Hadjiyiannis et al. (2011) and Bertsimas and de Ruiter 
(2016). All the methods mentioned can be applied to dif-
ferent paradigms in optimization under uncertainty, 
such as stochastic programming, robust optimization, 
and distributionally robust optimization. Our paper 
focuses on the robust optimization setting because it 
requires minimal assumptions about the uncertainty, 
which allows us to present the main idea cleanly. If dis-
tributional information is available, then the proposed 
methods can be directly applied to the other settings in a 
relatively straightforward fashion.

Global optimization approaches have also been de-
signed to derive exact solutions of MSRO problems. In 
the two-stage robust optimization setting, these meth-
ods include Benders’ decomposition (Bertsimas et al. 
2013, Hashemi Doulabi et al. 2021), column and con-
straint generation (Zeng and Zhao 2013), extreme point 
enumeration combined with decision rules (Georghiou 
et al. 2020), and Fourier–Motzkin elimination (Zhen et al. 
2018). The Benders’ decomposition scheme has been 
extended to the multistage setting for MSRO problems 
where the uncertain parameters exhibit a stage-wise 
rectangular structure (Georghiou et al. 2019). Bertsimas 
and Dunning (2016) and Postek and den Hertog (2016) 
develop adaptive uncertainty set partitioning schemes 
that generate a sequence of increasingly accurate con-
servative approximations for MSRO. A global optimi-
zation scheme has also been conceived through the 
lens of conic reformulations. Hanasusanto and Kuhn 
(2018) and Xu and Burer (2018) propose indepen-
dently equivalent copositive programming reformula-
tions for two-stage robust optimization problems and 
develop conservative semidefinite approximations for 
the reformulations.

Using copositive programming techniques, this paper 
takes a first step toward addressing a generic linear 
MSRO problem where the objective coefficients, the 
recourse matrix, and the right-hand sides are uncertain. 
A copositive program is a convex program that opti-
mizes a linear function over the cone of copositive 
matrices subject to linear constraints; see Dür (2010), 
Bomze (2012), and Burer (2012). Bomze et al. (2000) are 
the first to reformulate an NP-hard problem, namely 
the standard quadratic optimization problem, to an 
equivalent copositive program. The seminal work of 
Burer (2009) shows that a generic quadratic program 
can be reformulated to an equivalent copositive pro-
gram. In another work, Burer and Dong (2012) establish 
the equivalence between a nonconvex quadratically 
constrained quadratic program (QCQP) and a general-
ized copositive program under certain conditions. We 
refer the reader to Natarajan et al. (2011), Burer and 
Dong (2012), Chen and Burer (2012), Kong et al. (2013), 
and Natarajan and Teo (2017) for more works on using 
copositive techniques to reformulate nonconvex qua-
dratic programs arising in different applications.
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Our key contribution is to utilize copositive program-
ming techniques to develop stronger decision rule ap-
proximations for generic MSRO problems. In the generic 
setting, the direct use of decision rules leads to computa-
tionally intractable semiinfinite programs, with finitely 
many decision variables but infinitely many constraints. 
The standard dualization procedure in robust optimiza-
tion does not apply because these constraints involve 
nonconvex QCQPs. We leverage the copositive refor-
mulation techniques to convexify the QCQPs, which 
enable the dualization of the constraints to arrive at 
finite-dimensional convex optimization problems. The 
copositive techniques further allow us to handle com-
plex uncertainty sets (e.g., integrating complementary 
constraints), which lead to exact convex reformulations 
for a class of piecewise decision rule approximations. 
All these new reformulations enjoy tractable semidefi-
nite approximations that are provably superior to the 
state-of-the-art schemes. We summarize the contribu-
tions of the paper as follows. 

1. For the generic MSRO problems, we derive new 
copositive programming reformulations in view of the 
popular linear decision rules. For MSRO problems with 
fixed recourse, we derive new copositive programming 
reformulations in view of the more powerful quadratic 
decision rules. The exactness results are general. They 
hold for MSRO problems without relatively complete 
recourse and under very minimal assumption about the 
compactness of the uncertainty set without requiring it 
to exhibit stage-wise rectangularity.

2. The emerging copositive programs are amenable 
to a hierarchy of increasingly tight conservative semi-
definite programming approximations. We formulate 
the simplest of these approximations and prove that it 
is tighter than the state-of-the-art scheme by Ben-Tal 
et al. (2004) and also, the polynomial decision rule 
scheme by Bertsimas et al. (2011b) when the degree of 
the polynomial is set to the degree of our decision rules 
(degree 1 for problems with nonfixed recourse and 
degree 2 for problems with fixed recourse). We demon-
strate empirically that our proposed approximation is 
competitive to polynomial decision rules of higher 
degrees while displaying more favorable scalability.

3. We propose piecewise linear decision rules for 
MSRO problems with nonfixed recourse and piecewise 
quadratic decision rules for MSRO problems with fixed 
recourse. To our best knowledge, these decision rules 
are new for their respective problem classes. By leverag-
ing recent techniques in copositive programming, we 
derive equivalent copositive programs for the piecewise 
decision rule approximations. For MSRO problems with 
fixed recourse, we show that the state-of-the-art scheme 
by Georghiou et al. (2015) can be futile even on trivial 
two-stage problem instances, whereas our semidefinite 
approximation produces high-quality solutions. We for-
mally prove that our proposed approximation is indeed 

tighter than that of Georghiou et al. (2015) and further 
identify the simplest set of semidefinite constraints that 
retains the outperformance while maintaining scalability.

The remainder of the paper is organized as follows. 
We derive the copositive programming reformulations 
for two-stage robust optimization problems in Section 2. 
In Section 3, we develop the conservative semidefinite 
programming approximations. We extend all results to 
the multistage setting in Section 4 and present the numer-
ical results in Section 5.

1.1. Notation and Terminology
For any M 2 N, we define [M] as the set of running indi-
ces {1, : : : , M}. We let [M]\{1} be the set of running 
indices {2, : : : , M}. We denote by e the vector of all ones 
and by ei the ith standard basis vector. For notational 
convenience, we use both vi and [v]i to denote the ith 
component of the vector v. The p-norm of a vector v 2
RN is defined as kvkp. We will drop the subscript for 
the Euclidean norm (i.e., kvk :à kvk2). For a 2 RN and 
b 2 RN, the Hadamard product of a and b is denoted by 
a � b :à (a1b1, : : : , aNbN)>. The trace of a square matrix X 
is denoted as trace(X). We use [A]ij to denote the entry 
in the ith row and the jth column of the matrix A. We 
define diag(X) as the vector comprising the diagonal 
entries of X and Diag(v) as the diagonal matrix with 
the vector v along its main diagonal. We use X � 0 to 
denote that X is a component-wise nonnegative matrix. 
For any matrix A 2 RM⇥N, the inclusion Rows(A) 2K 
indicates that the column vectors corresponding to the 
rows of A are members of K. We denote by FK+1, N the 
space of all measurable mappings y(·) from RK+1 to RN.

For any closed and convex cone K, we denote its dual 
cone as K⇤. We define by SOC ✓ RK+1 the standard 
second-order cone (i.e., v 2 SOC w k(v1, : : : , vK)>k  vK+1). 
We denote the space of symmetric matrices in RN⇥N as 
SN. For any X 2 SN, we set X�0 to denote that X is posi-
tive semidefinite. For convenience, we call the cone of 
positive semidefinite matrices as the semidefinite cone 
and the cone of symmetric nonnegative matrices as the 
nonnegative cone. The copositive cone is defined as COP 
(RN

+ ) :à {M 2 SN : x>Mx � 0 ∀x 2 RN
+ }. Its dual cone, the 

completely positive cone, is defined as CP(RN
+ ) :à {X 2 SN :

X àPi xi(xi)>, xi 2 RN
+ }, where the summation over i is 

finite, but its cardinality is unspecified. For a general 
closed and convex cone K ✓ RN, we define the generalized 
copositive cone as COP(K) and the generalized completely 
positive cone as CP(K), respectively, in analogy with 
COP(RN

+ ) and CP(RN
+ ). Note that COP(K) and CP(K) are 

dual cones to each other. The term copositive programming 
refers to linear optimization over COP(K) or via duality, 
linear optimization over CP(K). To distinguish from the 
standard case where K à RN

+ , they are sometimes called 
generalized copositive programming or set-semidefinite optimi-
zation; see Eichfelder and Jahn (2008) and Burer and 
Dong (2012). In this paper, we work with generalized 
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copositive programming, although we use the shorter 
phrase for simplicity.

2. Copositive Reformulations for Two- 
Stage Decision Rule Problems

In this section, we first state the generic setting of a 
two-stage robust optimization problem. We then con-
sider various decision rules for the two-stage problem 
and propose copositive programming reformulations 
for the decision rule problems.

2.1. Two-Stage Robust Optimization Problem
We study adaptive linear optimization problems of the 
following general structure. A decision maker first takes 
a here-and-now decision x 2 X , which incurs an imme-
diate linear cost c>x. Nature then reacts with a worst- 
case parameter realization u 2 U. In response, the deci-
sion maker takes a recourse action y(u) 2 RN, which 
incurs a second-stage linear cost d(u)>y(u). In this game 
against nature, the decision maker endeavors to opti-
mally select a feasible solution (x, y(·)) that minimizes 
the total cost c>x + supu2Ud(u)>y(u). We note that the 
second-stage decision vector constitutes a mapping y :
U ! RN and is thus infinite dimensional.

The emerging sequential decision problem can be 
formulated as a two-stage robust optimization problem 
given by

Z à inf c>x + sup
u2U

d(u)>y(u)

s:t: A(u)x + B(u)y(u) � h(u) ∀u 2 U

x 2 X , y 2 FK+1, N:

(1) 

Here, the feasible set of the first-stage decision x is cap-
tured by a generic set X ✓ RM, whereas that of the 
second-stage decision y(u) is defined through a linear 
constraint system A(u)x +B(u)y(u) � h(u). The uncertain 
parameter vector u is assumed to belong to a prescribed 
uncertainty set U, which we model as the intersection of a 
slice of a closed and convex cone K ✓ RK ⇥ R+, and the 
level sets of I quadratic functions. Specifically, we set

U :à u 2K :
e>K+1u à 1

u>bCiu à 0 ∀i 2 [I]

( )

, (2) 

where bC i 2 SK+1 for all i 2 [I]. The problem parameters 
A(u) 2 RJ⇥M, B(u) 2 RJ⇥N, d(u) 2 RN, and h(u) 2 RJ in (1) 
are assumed to be linear in u, given by

A(u) à
XK+1

kà1
uk bAk, B(u) à

XK+1

kà1
uk bBk,

d(u) à bDu, h(u) à bHu, 

where bAk 2 RJ⇥M, bBk 2 RJ⇥N, bD :à (bd1, : : : ,bdN)> 2 RN⇥(K+1), 
and bH :à (bh1, : : : ,bhJ)> 2 RJ⇥(K+1) are deterministic data. 

The nonrestrictive assumption that uK+1 à 1 in (2) will 
simplify notation as it allows us to represent affine func-
tions in the primitive uncertain parameters (u1, : : : , uK)>
in a compact way as linear functions of u (e.g., the prob-
lem parameters A(u), B(u), d(u), and h(u) and the linear 
decision rule Yu) (Section 2.2) and as it also allows us to 
represent quadratic functions in the primitive uncertain 
parameters in a homogenized manner (e.g., the qua-
dratic decision rule u>Qu) (Section 2.3).

The cone K in the description of U has a generic form 
and can model many common uncertainty sets in the 
literature. We highlight three pertinent examples as 
follows.

Example 1 (Polytope). If the uncertainty set of the prim-
itive vector (u1, : : : , uK)> is given by a polytope {! 2 RK :
P! � q}, then the corresponding cone is defined as

K :à {(!,τ) 2 RK ⇥ R+ : P! � qτ}:

Example 2 (Polytope and Two-Norm Ball). If the uncer-
tainty set of the primitive vector is given by the intersec-
tion of a polytope and a transformed two-norm ball, 
{! 2 RK : P! � q, kR!� sk2  t}, then the corresponding 
cone is defined as

K :à {(!,τ) 2 RK ⇥ R+ : P! � qτ, kR!� sτk  tτ}:

Example 3 (Ellipsoids). Consider the setting where the 
uncertainty set of the primitive vector is described by 
an intersection of L ellipsoids: {! 2 RK : !>Fℓ! + 2g>ℓ ! 
hℓ, ∀ℓ 2 [L]}. Here, Fℓ 2 SK, Fℓ�0, gℓ 2 RK, and hℓ 2 R 
for all ℓ 2 [L]. Because Fℓ�is positive semidefinite, we 
have Fℓ à P>

ℓ Pℓ�for some matrix Pℓ 2 RIℓ⇥K whose rank 
is Iℓ. In Alizadeh and Goldfarb (2003), it is shown that

!>Fℓ! + 2g>ℓ !  hℓw

Pℓ!
1
2 (1� hℓ) + g>ℓ !

1
2 (1 + hℓ)� g>ℓ !

0

BBBB@

1

CCCCA
2 SOC(Iℓ + 2), 

where SOC(Iℓ + 2) denotes the second-order cone of 
dimension Iℓ + 2. In this case, the corresponding cone is 
given by

K :à

8
>>>><

>>>>:

(!,τ) 2 RK ⇥ R+ :

Pℓ!
1
2 (1� hℓ)τ+ g>ℓ !

1
2 (1 + hℓ)τ� g>ℓ !

0

BBBB@

1

CCCCA

2 SOC(Iℓ + 2) ∀ℓ 2 [L]

9
>>>>=

>>>>;

:
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In the following, to simplify our exposition, we define 
the convex set

U0 :à {u 2 K : e>K+1u à 1}, (3) 

which corresponds to the uncertainty set U in the 
absence of the nonconvex constraints u>bC iu à 0, i 2 [I]. 
We further assume that the uncertainty set satisfies the 
following regularity conditions.
Assumption 1. The set U0 defined in (3) is nonempty and 
compact.
Assumption 2. The minimum value of the quadratic func-
tion u>bC iu over the set U0 is zero for all i 2 [I] (i.e., 
0 à minu2U0 u>bC iu, i 2 [I]).

The quadratic constraints in the description of U are 
motivated by both practical and modeling requirements. 
Numerous applications in robust optimization, including 
inventory planning and project crashing problems, in-
volve binary uncertain parameters; see Mittal et al. (2020). 
In this case, we can incorporate binary variables in U via 
quadratic constraints of the form in (2). Specifically, we 
have that uk 2 {0, 1} is equivalent to u2

k à uk. If the relation 
0  uk  1 is implied by U0 (note that we can explicitly 
introduce these constraints into U0 if necessary), then we 
have 0 à minu2U0{�u2

k + uk}, which shows that the qua-
dratic constraint �u2

k + uk à 0 satisfies the condition in 
Assumption 2. Furthermore, these constraints will be 
crucial for deriving our improved decision rules as they 
enable us to model complementary constraints (e.g., 
ukuk0 à 0); see Section 2.4 for detail. If U0 implies that 
both uk and uk0 are nonnegative and bounded, then we 
have 0 à minu2U0{ukuk0}. Thus, the quadratic constraint 
ukuk0 à 0 satisfies the condition in Assumption 2.

Two-stage robust optimization problems of the form 
(1) are generically NP hard; see Ben-Tal et al. (2004). A 
popular conservative approximation scheme is obtained 
in linear decision rules, where we restrict the recourse 
action y(·) to be a linear function of u. If the problem has 
fixed recourse (i.e., B(u) and d(u) are constant), then the 
linear decision rule approximation leads to tractable lin-
ear programs. On the other hand, if the problem has non-
fixed recourse (i.e., B(u) or d(u) depends linearly in u), 
then the approximation itself is intractable. In the follow-
ing, we show that the linear decision rule problems are 
amenable to exact copositive programming reformula-
tions. Furthermore, in the specific case where the problem 
has fixed recourse, we develop an improved approxima-
tion in quadratic decision rules and show that the resulting 
optimization problems can also be reformulated as equiv-
alent copositive programs.

2.2. Linear Decision Rule for Problems with 
Nonfixed Recourse

In this section, we derive an exact copositive program by 
applying linear decision rules to Problem (1). Instead of 

considering all possible choices of functions y : U ! RN 

from FK+1, N, we restrict ourselves to linear functions of 
the form

y(u) à Yu, 

for some coefficient matrix Y 2 RN⇥(K+1). This setting 
yields the following conservative approximation of Prob-
lem (1):

ZL à inf c>x + sup
u2U

d(u)>(Yu)

s:t: A(u)x +B(u)Yu � h(u) ∀u 2 U (L)

x 2 X , Y 2 RN⇥(K+1):

Problem (L) is finite dimensional but remains difficult 
to solve as there are infinitely many constraints param-
eterized by u 2 U. In particular, it is shown in Ben-Tal 
et al. (2004) that the problem is NP hard via a reduction 
from the problem of checking matrix copositivity.

We now show that an equivalent copositive pro-
gramming reformulation can principally be derived for 
Problem (L). We first introduce the following technical 
lemmas, which are fundamental for our derivations. 
The first technical lemma establishes the equivalence 
between a nonconvex quadratic program

sup u>bC0u

s:t: e>K+1u à 1

u>bCiu à 0 ∀i 2 [I]

u 2 K

(4) 

and its copositive relaxation

sup bC0 • U

s:t: eK+1e>K+1 • U à 1

bC i • U à 0 ∀i 2 [I]

U 2 CP(K),

(5) 

where bC0 2 SK+1,K ✓ RK+1 is a closed and convex cone 
and CP(K) is the cone of completely positive matrices 
with respect to K.

Lemma 1 (Burer 2012, corollary 8.4 and theorem 8.3). 
Suppose that Assumptions 1 and 2 hold. Then, Problem (5) 
is equivalent to (4) (i.e., (i) the optimal value of (5) is equal 
to that of (4); (ii) if U? is an optimal solution for (5), then 
U?e1 is in the convex hull of optimal solutions for (4)).
Lemma 2. Suppose Assumption 1 holds. Then, for any 
(z,τ) 2K, we have that τà0 implies z à 0.
Proof. See the e-companion. w

The dual of Problem (5) is given by the following lin-
ear program over the cone of copositive matrices with 
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respect to K:
inf λ

s:t: λeK+1e>K+1 +
XI

ià1
αibC i� bC0 2 COP(K)

λ 2 R, " 2 RI:

(6) 

Our next technical lemma establishes strong duality for 
the primal and dual pairs.
Lemma 3. Suppose Assumption 1 holds. Then, strong dual-
ity holds between Problems (5) and (6).

Proof. See the e-companion. w

In the following, we define the auxiliary matrices

b#j :à
e>j bA1⋮

e>j bAK+1

0

B@

1

CA 2 R(K+1)⇥M,

b$j :à
e>j bB1⋮

e>j bBK+1

0

B@

1

CA 2 R(K+1)⇥N, and (7) 

%j(x, Y) :à 1
2
⌘
b#jxe>K+1 + eK+1x> b#>

j + b$jY

+ Y> b$>
j � bhje>K+1 � eK+1bh>j ) ∀j 2 [J],

(8) 
where ej represents the jth standard basis vector in RJ. 
We are now ready to state our main result.
Theorem 1. Problem (L) is equivalent to the copositive 
program

ZL à inf c>x + λ

s:t: λ eK+1e>K+1 �
1
2 (bD>Y + Y> bD)

+
XI

ià1
αibCi 2 COP(K)

%j(x, Y)� πj eK+1e>K+1 �
XI

ià1
[&j]i bC i 2 COP(K)

∀j 2 [J]

x 2 X , λ 2 R, Y 2 RN⇥(K+1), ' 2 RJ
+, " 2 RI,

&j 2 RI ∀j 2 [J], (9) 

where the affine functions %j(x, Y), j 2 [J] are defined as in (8).
Proof. See the e-companion. w

2.3. Quadratic Decision Rule for Problems with 
Fixed Recourse

We now study two-stage robust optimization problems 
with fixed recourse. In this simpler setting, the second- 

stage cost coefficients and the recourse matrix are deter-
ministic: that is,
d(u) à bd 2 RN and B(u) à bB 2 RJ⇥N ∀u 2 RK+1:

Using techniques developed in the previous section, 
we will derive a copositive programming reformula-
tion by applying decision rules to the recourse action 
y : U ! RN. Because d(u) and B(u) are constant, we 
may utilize the more powerful quadratic decision rules 
defined as

[y(u)]n à u>Qnu ∀n 2 [N], 

for some coefficient matrices Qn 2 SK+1, n 2 [N]. This 
yields the following conservative approximation of 
Problem (1):

ZQ à inf c>x + sup
u2U

XN

nà1

bdnu>Qnu

s:t: u> b#jx +
XN

nà1

bbjnu>Qnu � bh>j u ∀u 2 U ∀j 2 [J]

x 2 X , Qn 2 SK+1 ∀n 2 [N]: (Q) 
In view of the restriction uK+1 à 1 in the description of U, 
the decision rule [y(u)]n à u>Qnu constitutes a homoge-
nized version of a nonhomogenized quadratic function 
in the primitive vector (u1, : : : , uK)>. We remark that opti-
mizing for the best quadratic decision rule is generically 
NP hard (Ben-Tal et al. 2009, section 14.3.2). This justifies 
our proposed copositive programming reformulation, 
which we derive in the following theorem. To that end, 
we define the affine functions

Γj(x, Q1, : : : , QN)

:à 1
2 ( b#jxe>K+1 + eK+1x> b#>

j � eK+1bh>j � bhje>K+1)

+
XN

nà1

bbjnQn ∀j 2 [J]: (10) 

Theorem 2. Problem (Q) is equivalent to the copositive 
program

ZQ à min c>x + λ

s:t: λ eK+1e>K+1 �
XN

nà1

bdnQn +
XI

ià1
αibC i 2 COP(K)

(j(x, Q1, : : : , QN)� πj eK+1e>K+1

�
XI

ià1
[&j]i bC i 2 COP(K) ∀j 2 [J]

x 2 X , λ 2 R, " 2 RI, ' 2 RJ
+, Qn 2 SK+1

∀n 2 [N], &j 2 RI ∀j 2 [J],
(11) 

where the affine functions Γj(x, Q1, : : : , QN), j 2 [J] are defined 
as in (10).
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Proof. See the e-companion. w

2.4. Enhanced Decision Rule
In this section, we tighten the basic decision rule 
approximations by employing piecewise linear and 
piecewise quadratic decision rules. Although piecewise 
quadratic decision rules are a new concept, piecewise 
linear decision rules have been studied extensively in 
the literature (Chen and Zhang 2009, Georghiou et al. 
2015). Their utilization is supported by a strong theoret-
ical justification. For problems with fixed recourse, the 
optimal recourse action y(·) can be described by a piece-
wise linear continuous function (Bemporad et al. 2003). 
However, optimizing for the best piecewise linear deci-
sion rule is NP hard even if the folding directions and 
their respective break points are prescribed a priori 
(Georghiou et al. 2015, theorem 4.2). We endeavor to 
derive equivalent copositive reformulations for the 
piecewise decisions rule problems that lead to tight 
semidefinite approximations.

To this end, for a prescribed number of pieces L, we 
define the mappings

Fℓ(u) à max{0, f>ℓ u} ∀u 2 RK+1 ∀ℓ 2 [L]:
(12) 

Here, f ℓ :à (gℓ, �hℓ) 2 RK+1, where gℓ 2 RK denotes the 
folding direction of the ℓth mapping, whereas hℓ�de-
fines its break point. These mappings constitute the 
building blocks of our improved decision rules. Specifi-
cally, by applying the basic linear and quadratic deci-
sion rules on the lifted uncertain parameter vector 
v :à (F1(u), : : : , FL (u), u) 2 RL+K+1, we arrive at the de-
sired piecewise linear and piecewise quadratic decision 
rules, respectively.

Example 4 (Integer Programming Feasibility Problem). 
Consider a norm maximization problem given by 
maxu2Ukuk1, where U à {u 2 RK : Pu  q} ✓ [�1, 1]K is a 
prescribed polytope. An elementary analysis shows 
that the optimal value of this problem is equal to K if 
and only if there exists a binary vector u 2 {�1, 1}K 

within the polytope U. Thus, it solves the NP-hard 
integer programming (IP) feasibility problem (Garey 
and Johnson 1979). We can reformulate the norm max-
imization problem as a two-stage robust optimization 
problem without a first-stage decision x given by

inf sup
u2U

e>y(u)

s:t: y(u) � u, y(u) ��u ∀u 2 U

y 2 FK, K:

Indeed, at optimality we have [y(u)]k à |uk | , which 
implies that e>y(u) à kuk1. Consider now the mappings

Fℓ(u) à max{0, uℓ} ∀u 2 RK ∀ℓ 2 [K]:

Our previous argument shows that the piecewise lin-
ear decision rule given by

[y(u)]ℓ à �uℓ + 2Fℓ(u) à �uℓ + max{0, 2uℓ} à |uℓ |∀ℓ 2 [K]

is optimal. This decision rule is linear in the lifted param-
eter vector (F1(u), : : : , FK(u), u).

To formalize the idea into our setting, we define the 
lifted set

U0 :à {v :à (w, u) 2 RL ⇥ U : wℓ à Fℓ(u) ∀ℓ 2 [L]}
(13) 

and the lifted parameters

A0(v) à A(u), B0(v) à B(u), d0(v) à d(u), h0(v) à h(u),

b#0
j à ( 0>, b#>

j )>2R(L+K+1)⇥M ∀j 2 [J]:

Then, by replacing the set U with U0 and employing the 
lifted parameters in (L) and (Q), we obtain the corre-
sponding piecewise decision rule problems. These are 
given by

ZPL à inf c>x + sup
v2U0

d0(v)>Yv

s:t:A0(v)x +B0(v)Yv � h0(v) ∀v 2 U0 (PL)

x 2 X , Y 2 RN⇥(L+K+1)

and

ZPQ à inf c>x + sup
u02U0

XN

nà1

bdnv>Qnv

s:t: v> b#0
j x +

XN

nà1

bbjnv>Qnv � [h0(v)]n

∀v 2 U0 ∀j 2 [J] (PQ)

x 2 X , Qn 2 SL+K+1 ∀n 2 [N], 

respectively.
We now establish that the piecewise decision rule pro-

blems can be equivalently reformulated as polynomial- 
size copositive programs. The reformulations leverage 
our capability to incorporate complementary constraints 
in the uncertainty set U. We remark that Problems (PL) 
and (PQ) share the same structure as their plain vanilla 
counterparts (L) and (Q). To establish that equivalent 
copositive programs can also be derived for these pro-
blems, we need to show that the set U0 can be brought 
into the standard form (2). First, we prove that the non-
convex set U0 is equivalent to a concise set involving 
O(L) linear and complementary constraints.
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Theorem 3. The lifted uncertainty set in (13) can be repre-
sented as the set

U0 à (w, u) 2 RL ⇥ U :

0  w  w
wℓ � f>ℓ u ∀ℓ 2 [L]
wℓ(wℓ � f>ℓ u) à 0 ∀ℓ 2 [L]

8
><

>:

9
>=

>;
,

(14) 

where w 2 RL is a vector whose components are upper 
bounds on the auxiliary parameters w1, : : : , wL. These upper 
bounds can be computed by solving L convex conic optimiza-
tion problems given by

wℓ :à max
u2U0

f>ℓ u ∀ℓ 2 [L], 

where U0 is defined as in (3).

Proof. For any fixed u 2 U and ℓ 2 [L], the complemen-
tary constraint wℓ(wℓ � f>ℓ u) à 0 implies that either 
wℓ à 0 or wℓ à f>ℓ u. Thus, the constraints wℓ � 0 and 
wℓ � f>ℓ u yield wℓ à max{0, f>ℓ u}. This completes the 
proof. w

Remark 1. The inclusion of the upper bound w on the 
lifted parameters w ensures the boundedness of the 
uncertainty set U0, which is required by Assumption 1. 
We also note that U0 is closed because wℓ(wℓ � f>ℓ u) à
0wwℓ à 0 or wℓ � f>ℓ u à 0 for all ℓ 2 [L]. Therefore, U0

is a compact set.
Next, in view of the equivalent set in (14), we define 

the lifted cone

K0 :à (w, u) 2 RL ⇥ U :
0  w  wuK+1

wℓ � f>ℓ u ∀ℓ 2 [L]

� ⌧
:

Letting the matrices bCℓ, ℓ 2 [L] be defined as

bCℓ à (e>ℓ , 0>)>(e>ℓ , 0>)� 1
2 (e>ℓ , 0>)>(0>, f>ℓ )

� 1
2 (0>, f>ℓ )

>(e>ℓ , 0>) ∀ℓ 2 [L], 

we can capture the complementarity constraints in U0

via the quadratic equalities v>bCℓv à 0, ℓ 2 [L]. Thus, 
the lifted set coincides with the set

U0 :à {v :à (w, u) 2K0 : uK+1 à 1, v>bCℓ v à 0 ∀ℓ 2 [L] }, 

which indeed assumes the standard form in (2). In sum-
mary, we have established that equivalent copositive 
programs can be derived for the proposed piecewise 
linear and piecewise quadratic decision rule problems. 
As described in Section 3, tractable semidefinite pro-
gramming approximations can then be obtained by 
replacing the cone COP(K0) in the respective copositive 
programs with the inner approximation IA(K0).

3. Semidefinite Programming 
Solution Schemes

Our equivalence results imply that the decision rule 
problems are amenable to semidefinite programming 
solution schemes. Specifically, there exists a hierarchy 
of increasingly tight semidefinite-representable inner 
approximations that converge to COP(K); see, for exam-
ple, Parrilo (2000), Bomze and de Klerk (2002), de Klerk 
and Pasechnik (2002), and Lasserre (2009). Replacing the 
cone COP(K) with these inner approximations yields 
conservative semidefinite programs that can be solved 
using standard off-the-shelf solvers. In this section, we 
develop new tractable approximations and exact semi-
definite reformulations for the copositive programs 
derived in Section 2. To this end, we primarily consider 
polyhedral- and second-order cone-representable uncer-
tainty sets defined via closed and convex cones of the 
following generic form:

K :à {u 2 RK ⇥ R+ : bPu � 0, bRu 2 SOC(Kr)}, (15) 

with bP 2 RKp⇥(K+1) and bR 2 RKr⇥(K+1). As illustrated in 
the examples of Section 2, the generic structure for the 
cone K can encompass many commonly used uncer-
tainty sets in practice.

3.1. Conservative Approximation
We consider a semidefinite-representable inner approxi-
mation to the cone COP(K) given by

IA(K)

:à V 2 SK+1 :

W 2 SK+1, W�0, Σ 2 SKp

) 2 SK+1, * 2RKp⇥Kr , τ 2R

V àW + τbS + bP>+bP +Ψ, +� 0, τ� 0

Ψà 1
2 (bP>*bR + bR>*>bP),

Rows(*) 2 SOC(Kr)

8
>>>>>>>>>><

>>>>>>>>>>:

9
>>>>>>>>>>=

>>>>>>>>>>;

,

(16) 

where the matrix bS is defined as

bS :à bR>
eKr e>Kr

bR�
XKr�1

ℓà1

bR
>

eℓe>ℓ bR: (17) 

We now establish that IA(K) is a subset of COP(K). To 
this end, we make the following observation.
Lemma 4. We have u>bSu � 0 for all u 2K.

Proof. See the e-companion. w

Using Lemma 4, we are now ready to prove the con-
tainment result.

Proposition 1. We have IA(bU ) ✓ COP(bU ).
Proof. See the e-companion. w
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Replacing the cone COP(K) in (9) and (11) with the 
inner approximation IA(K) yields conservative semi-
definite programs. We denote their optimal values as 
ZL

IA and ZQ
IA, respectively. The following proposition 

summarizes our current findings.
Proposition 2. We have ZL  ZL

IA and ZQ  ZQ
IA.

An alternative conservative approximation scheme 
is proposed by Ben-Tal et al. (2009) in view of the 
approximate S lemma (Ben-Tal et al. 2009, theorem B.3.1). 
In this case, the corresponding inner approximation for 
the cone COP(K) is given by
AS(K)

:à V 2 SK+1 :
τ � 0, , 2RKp

+ , W 2 SK+1, W�0

V àW + τbS + 1
2 (bP>,e>K+1 + eK+1,>bP)

8
<

:

9
=

;,

(18) 
where bS is defined as in (17). Replacing the cone COP(K)
in (9) and (11) with AS(K) yields conservative semidefi-
nite programs whose optimal values are denoted as ZL

AS 
and ZQ

AS, respectively. We now show that AS(K) is infe-
rior to IA(K) for approximating COP(K).
Proposition 3. We have AS(K) ✓ IA(K).
Proof. The inclusion follows by simply setting + à
1
2 (,e>K+1 + eK+1,>) and ) à 0 in cone IA(K). w

Lastly, another conservative approximation scheme 
naturally arises in polynomial decision rules (Bertsimas 
et al. 2010). Here, one first imposes the restriction that 
the recourse function y(·) in (1) is a polynomial of fixed 
degree d. Because optimizing for the best polynomial 
decision rule is generically NP hard, one resorts to 
another layer of approximation in semidefinite pro-
gramming. To this end, consider a degree d polynomial 
decision rule. For problems with nonfixed recourse, we 
find that each semiinfinite constraint in (1) reduces to 
the problem of checking the nonnegativity of a polyno-
mial of degree bd à d + 1 over the set U, whereas for pro-
blems with fixed recourse, it reduces to the problem of 
checking the nonnegativity of a polynomial of degree 
bd à d over the set U. A sufficient condition would be if 
the polynomial admits a sum-of-squares (SOS) decom-
position relative to U, which is equivalent to checking 
the feasibility of a semidefinite-representable constraint 
system whose size grows exponentially in d. We refer 
the reader to Bertsimas et al. (2010) for a more detailed 
discussion about the SOS decomposition and its param-
eterization. When the corresponding polynomial in the 
semiinfinite constraint is of degree bd à 2, then one can 
show that the resulting constraint system coincides with 
that from the approximate S lemma. To this end, let ZPd

SOS 
be the optimal value of the approximation when polyno-
mial decision rules of degree d are employed. Then, we 

have ZP1
SOS à ZL

AS and ZP2
SOS à ZQ

AS. Increasing the degree 
of the polynomial decision rules helps improve approxi-
mation quality at the expense of significant computa-
tional burden and numerical instability, even if we 
merely raise the degree by one (that is, when we employ 
quadratic decision rules for problems with nonfixed 
recourse or cubic decision rules for problems with fixed 
recourse).

The findings of this section culminate in the follow-
ing theorem.
Theorem 4. The following chains of inequalities hold:

ZL  ZL
IA  ZL

AS à ZP1
SOS and ZQ  ZQ

IA  ZQ
AS à ZP2

SOS:

3.2. Exact Reformulation
We identify two cases where the semidefinite-based 
approximations are equivalent to the respective coposi-
tive programs. First, in view of the exact S lemma, one 
can show that the inner approximation IA(K) coincides 
with COP(K) whenever the cone K in (15) is described 
by only a second-order cone constraint bRu 2 SOC(Kp).
Proposition 4 (S Lemma). If K à {u 2 RK+1 : bRu 2 SOC 
(Kp)}, then

COP(K)à IA(K)àAS(K) :à {V 2 SK+1 : V�τbS, τ� 0}, 

where bS 2 SK+1 is defined as in (17).
Another exactness result arises when linear con-

straints are present in K, and they satisfy the following 
condition.
Assumption 3. If u 2 RK+1 satisfies bRu 2 SOC(Kp) and 
bp>ℓ u à 0 for some ℓ 2 [Kp], then u 2K.

The condition stipulates that the cone {u 2 RK+1 :
bRu 2 SOC(Kp)} must not contain points in the hyper-
plane bp>ℓ u à 0 that do not belong to K. Applying the 
restriction uK+1 à 1, we find that the implied uncer-
tainty set for the primitive vector (u1, : : : , uK)> is given 
by an intersection of a ball and a polytope whose facets 
do not intersect within the ball.
Example 5. Consider the set

U :à u 2 R2 ⇥ {1} : u2
1 + u2

2  1, u1 � �
1
2 , u1 

1
2

� ⌧
:

The two lines u1 à� 1
2 and u1 à 1

2 do not intersect as 
they are parallel. Thus, Assumption 3 holds for this 
uncertainty set.

We state the second exactness result in the follow-
ing proposition.
Proposition 5 (Theorem 5 in Burer 2015). If Assumption 
3 holds, then COP(K) à IA(K).

We remark that this positive result holds only for the 
proposed inner approximation IA(K) and not for the 
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cone AS(K), which is obtained from applying the ap-
proximate S lemma. Thus, in general, we may still have 
AS(K) ✓ COP(K).

We conclude the section with the following theorem 
regarding the exactness of the semidefinite programs.
Theorem 5. If the cone K is given by {u 2 RK+1 : bRu 2
SOC(Kp)} or if it satisfies Assumption 3, then ZL

IA à ZL 

and ZQ
IA à ZQ.

3.3. Approximation Quality of the Enhanced 
Decision Rule

We now restrict our study to the case of two-stage 
robust optimization problems with fixed recourse and 
with piecewise linear decision rules. In this setting, lin-
ear programming approximations have been proposed 
for the decision rule problems (Chen and Zhang 2009, 
Georghiou et al. 2015). If, in addition, the uncertainty 
set U is given by a hyperrectangle and each folding 
direction gℓ�is aligned with a coordinate axis, then these 
linear programs become exact (Georghiou et al. 2015). 
Unfortunately, for generic uncertainty sets, the result-
ing approximation can sometimes be of poor quality.

Example 6 (Partition Problem). Consider the following 
instance of the IP feasibility problem (Example 4), 
which corresponds to the NP-hard partition problem. 
Given an input vector c 2 NK, the problem asks if one 
can partition the components of c into two sets so that 
both sets have an equal sum. We can reduce this prob-
lem to the instance of the IP feasibility problem that 
seeks for a binary vector u 2 {�1, 1}K within the poly-
tope U à {u 2 [�1, 1]K : c>u à 0}. If a partition exists, 
then the components of u will denote the indicator 
function of the two sets. For example, if c à (1, 2, 3)>, 
then the possible solutions are u à (1, 1, �1)> or u à
(�1, �1, 1)>. On the other hand, if c à (2, 2, 3)>, then no 
such solution exists, and necessarily, the optimal value 
of the corresponding norm maximization problem is 
strictly less than Kà3. In particular, one can show that 
the optimal value is 2.5, which is attained by the solu-
tion u à (0:5, 1, 1)>.

For the input c à (2, 2, 3)>, the best piecewise linear 
decision rule approximation in the literature yields a 
conservative upper bound of three, which fails to cer-
tify the nonexistence of binary solutions. On the other 
hand, the semidefinite programming approximation 
of the equivalent copositive program yields a tighter 
upper bound of 2.54 and thus, provides a correct cer-
tificate. As the corresponding two-stage problem has 
fixed recourse, our scheme allows us to utilize qua-
dratic decision rules. In this case, the resulting semide-
finite program yields the best optimal value of 2.5.

The example highlights the surprising fact that, even for 
seemingly trivial low-dimensional problem instances, one 
necessarily has to go through the copositive programming 

route in order to obtain a satisfactory approximation for 
the piecewise decision rule problem.

We now formally establish that the semidefinite 
programming approximation obtained from applying 
piecewise linear decision rules is never inferior to the 
state-of-the-art scheme by Georghiou et al. (2015). In the 
following, we briefly discuss their setting and formulate 
the corresponding lifted uncertainty set U0. For cleaner 
exposition, we primarily consider the setting of piece-
wise linear decision rules with axial segmentation where 
each folding direction is aligned with a coordinate axis. 
We remark that all results extend to the case with gen-
eral segmentation, albeit at the expense of more cumber-
some notation (see section 4.2 of Georghiou et al. 2015). 
To this end, let the interval [uk, uk] be the marginal sup-
port of the kth uncertain parameter. For each coordinate 
axis uk, we generate L piecewise linear mappings in view 
of the prescribed break points hk, 1 à uk < hk, 2 <⋯< hk, L 
< uk, as follows:

F̃k, l(u)
à max{0, uk� hk, ℓ}�max{0, uk� hk, ℓ+1} ∀ℓ 2 [L]:

(19) 
To simplify the notation, we assume that there are 
exactly L mappings for each coordinate axis. Such a 
construction leads to the lifted uncertainty set

U0 :à {(w, u) 2 RKL ⇥ U : wk, ℓ

à F̃k, ℓ(u) ∀k 2 [K] ℓ 2 [L]}: (20) 

Note that each mapping in (19) can be defined through 
the difference F̃k, l(u) à Fk, l(u)� Fk, l+1(u), where the func-
tions Fk, l(u) à max{0, f>k, ℓu}, ℓ 2 [L], assume the stan-
dard form described in (12), with f k, ℓ à (ek, �hk, ℓ), 
ℓ 2 [L]. By our construction of U0, we can further impose 
that Fk, 1(u) à uk� uk and Fk, L+1(u) à 0.

Using Theorem 3, the lifted set in (20) can be refor-
mulated as
U0

à (w, u) 2 RKL ⇥ U :

z 2 RK(L+1)
+

wk, ℓ à zk, ℓ � zk, ℓ+1∀k 2 [K] ℓ 2 [L]
zk, 1 à uk � uk, zk, L+1 à 0∀k 2 [K]
zk, ℓ � uk � hk, ℓ, uk � zk, ℓ∀k 2 [K] ℓ 2 [L + 1]
zk, ℓ(zk, ℓ � uk + hk, ℓ) à 0∀k 2 [K] ℓ 2 [L + 1]

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>;

:

(21) 
In view of our discussion in Section 2.4, an equivalent 
copositive program can thus be derived for the piecewise 

Xu and Hanasusanto: Decision Rule Approximation for Multistage Robust Optimization 
10 Operations Research, Articles in Advance, pp. 1–20, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

30
.1

26
.2

55
.8

5]
 o

n 
31

 Ja
nu

ar
y 

20
24

, a
t 0

9:
06

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



linear decision rule Problem (PL). We denote by ZPL
IA 

the optimal value of the corresponding semidefinite pro-
gramming approximation. Alternatively, in Georghiou 
et al. (2015), a tractable outer approximation of U0 is 
derived as follows:

U⇤⇤

à (w,u)2RKL⇥U :

uk�ukà
X

ℓ2[L]
wk,ℓ ∀k2 [K]

hk,2�uk�wk,1 ∀k2 [K]
(hk,ℓ+1�hk,ℓ)wk,ℓ�1� (hk,ℓ�hk,ℓ�1)wk,ℓ∀k2 [K]ℓ2 [L]\{1}

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

:

(22) 

By replacing the set U0 with U⇤⇤ in (2.4), one can obtain a 
linear decision rule approximation problem with a poly-
hedral uncertainty set, which can be reformulated to a 
tractable linear program if the recourse matrix B0(v) is 
fixed. We denote by ZPL

GWK its optimal value. We now 
examine the relation between ZPL

IA and ZPL
GWK. To this 

end, by using the copositive programming techniques, 
we first propose a looser outer approximation U⇤ of the 
lifted set U0 and establish that the set is still tighter than 
U⇤⇤. We define this outer approximation as

U⇤ à (w,u)
2RKL⇥U :

z2RK(L+1)
+

Zk,ℓ2S3,Zk,ℓ�0 ∀k2[K]ℓ2[L]
wk,ℓàzk,ℓ�zk,ℓ+1 ∀k2[K]ℓ2[L]
zk,1àuk�uk,zk,L+1à0 ∀k2[K]
zk,ℓ�uk�hk,ℓ,uk�zk,ℓ ∀k2[K]ℓ2[L+1]
Zk

1,3�Zk
3,3+zk,ℓ+1(hk,ℓ�1�hk,ℓ+1)�0∀k2[K]ℓ2[L]

Zk
2,3�Zk

3,3+zk,ℓ+1(hk,ℓ�hk,ℓ+1)�0∀k2[K]ℓ2[L]
Zk

1,3�Zk
1,1+zk,ℓ�1(hk,ℓ+1�hk,ℓ�1)

+Zk
2,2�Zk

2,3+zk,ℓ(hk,ℓ�hk,ℓ+1)�0∀k2[K]ℓ2[L]
Zk

3,3�Zk
1,3+zk,ℓ+1(hk,ℓ+1�hk,ℓ�1)

+Zk
1,2�Zk

2,2+zk,ℓ(hk,ℓ�1�hk,ℓ)�0∀k2[K]ℓ2[L]
Zk

2,3�Zk
2,2+zk,ℓ(hk,ℓ+1�hk,ℓ)�0∀k2[K]ℓ2[L]

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

, 

which is a concise set involving O(KL) semidefinite 
constraints of size 3⇥3. The following proposition 
describes the chain relation of U0, U⇤, and U⇤⇤.
Proposition 6. We have U0 ✓ U⇤ ✓ U⇤⇤.
Proof. See the e-companion. w

Finally, we are ready to state the main result of this 
section in the following theorem.

Theorem 6. We have ZPL
IA  ZPL

GWK.
Proof. See the e-companion. w

The proof of Theorem 6 imparts the favorable insight 
that a tighter approximation can already be obtained 
by considering a concise set involving O(KL) semidefi-
nite constraints of size 3⇥3.

4. Copositive Reformulation for 
Multistage Decision Rule Problems

We now extend the proposed copositive programming 
approach to multistage robust optimization problems 
of the following generic form:

inf c>x + sup
u2U

XT

tà1
dt(ut)>yt(ut)

s:t: A(u1)x +
XT

tà1
Bt(ut)yt(ut) � h(u) ∀u 2 U

x 2 X , yt 2 FKt+1, Nt ∀t 2 [T]:

(23) 

The vector ut in (23) collects the history of observations 
up to time t, and it is defined as

ut à (u1, : : : , ut, 1) 2 RKt+1, 

where ut 2 RKt contains uncertain parameters observed 
at time t 2 [T] and Kt :àPt

sà1 Ks. Here, we have appended 
the constant scalar 1 at the end of the vector so that 
affine functions in (u1, : : : , ut) can be represented as lin-
ear functions in ut, whereas quadratic functions in 
(u1, : : : , ut) can be formulated compactly in a homoge-
nized manner. We set the vector of all uncertain para-
meters in (23) to u :à uT 2 RK+1, with K à KT. As in the 
two-stage setting, the problem parameters A(u1),Bt(ut), 
dt(ut), and h(u) are described by linear functions in their 
respective arguments as follows:

A(u1) :à
XK1+1

kà1
[u1]k bAk, Bt(ut) :à

XKt+1

kà1
[ut]k bBk, t,

dt(ut) :à bDtut, h(u) :à bHu, 

where bAk 2 RJ⇥M, bBk, t 2 RJ⇥Nt , bDt :à (bd1, t, : : : ,bdNt, t)> 2
RNt⇥(Kt+1), and bH :à (bh1, : : : ,bhJ)> 2 RJ⇥(K+1) are determin-
istic data.

The decision vector yt(ut) 2 RNt in (23) is chosen after 
the realization of uncertain parameters up to time t but 
before the revelation of future outcomes {us}s2[t+1, T]. 
The objective of Problem (23) is to find a here-and-now 
decision x 2 X and a sequence of nonanticipative deci-
sion rules {yt(·)}t2[T] that are feasible to the semiinfinite 
constraint in (23) and minimize the total cost c>x +
supu2U

PT
tà1 dt(ut)>yt(ut). Problem (23) constitutes an 

extension of the two-stage Problem (1) to the multistage 
setting, and as such, it is computationally challenging 
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to solve. To this end, we endeavor to derive copositive 
programming reformulations in view of linear and 
quadratic decision rules. Tractable semidefinite pro-
gramming approximations can then be derived using 
the techniques discussed in Section 3. One can further 
enhance these approximations by utilizing the piece-
wise linear and piecewise quadratic decision rules dis-
cussed in Section 2.4.

As in the two-stage setting, we assume that the 
uncertainty set U is defined as in (2) and satisfies both 
Assumptions 1 and 2. In the following, we use the lin-
ear truncation operator -t : RK+1 !̀ RKt+1 that satisfies

-tu à ut ∀u 2 RK+1:

We first examine the case when the multistage robust 
optimization problem has nonfixed recourse. Here, we 
apply the linear decision rules

yt(ut) à Ytut à Yt-tu, 

for some coefficient matrix Yt 2 RNt⇥(Kt+1). This yields 
the following conservative approximation of Problem 
(23):

ZML à inf c>x + sup
u2U

XT

tà1
dt(ut)>Yt-tu

s:t:A(u1)x +
XT

tà1
Bt(ut)Yt-tu � h(u) ∀u 2 U

x 2 X , Yt 2 RNt⇥(Kt+1) ∀t 2 [T]: (ML)
Problem (ML) shares the same structure as its two- 
stage counterpart (L). Hence, by employing the same 
reformulation techniques described in Section 2.2, we 
can derive a polynomial-size copositive program for 
the problem. For notational convenience, in the follow-
ing, we define the matrices

b#j :à
e>j bA1⋮

e>j bAK1+1

0

BB@

1

CCA 2 R(K1+1)⇥M,

b$j, t :à
e>j bB1, t⋮

e>j bBKt+1, t

0

BB@

1

CCA 2 R(Kt+1)⇥Nt ∀t 2 [T] ∀j 2 [J], 

and we define the affine functions

%j(x, Y1, : : : , YT) :à 1
2 ->

1 ( b#j xe>K1+1 + eK1+1x> b#>
j )-1

+ 1
2
XT

tà1
->

t (b$j, tYt + Y>
t
b$j, t)-t

� 1
2 (bhje>K+1 + eK+1bh>j ) ∀j 2 [J]:

The equivalent reformulation is provided in the follow-
ing theorem. We omit the proof as it closely follows 
that of Theorem 1.

Theorem 7. Problem (ML) is equivalent to the following 
copositive program:
ZML à inf c>x + λ

s:t: λ eK+1e>K+1 �
1
2
XT

tà1
->

t ( bD>
t Yt + Y>

t
bDt)-t

+
XI

ià1
αibCi 2 COP(K)

%j(x, Y1, : : : , YT)� πj eK+1e>K+1

�
XI

ià1
e>i &j

bC i 2 COP(K) ∀j 2 [J]

λ 2 R, x 2 X , " 2 RI, ' 2 RJ
+, &j 2 RI

∀j 2 [J], Yt 2 RNt⇥(Kt+1) ∀t 2 [T]:
(24) 

Next, we consider the case when the multistage 
problem has fixed recourse (i.e.,

dt(ut) à bdt and Bt(ut) à bBt ∀ut 2 RKt+1 ∀t 2 [T], 

where bdt 2 RNt and bB 2 RJ⇥Nt are the deterministic vec-
tor and matrix, respectively). Here, we can apply the 
quadratic decision rules
[y(ut)]nt à (ut)>Qnt, tut à (-tu)>Qnt, t-

tu ∀nt 2 [Nt], 
for some coefficient matrices Qnt, t 2 SKt+1, nt 2 [Nt], 
t 2 [T]. This yields the following conservative approxi-
mation of Problem (23):

ZMQà inf c>x+sup
u2U

XT

tà1

XNt

ntà1

bdnt,t(-tu)>Qnt,t-tu

s:t: (-1u)> b#jx+
XT

tà1

XNt

ntà1

�
bj,nt(-tu)>Qnt,t-tu

⇥

�h(u) ∀u2U

x2X , Qnt,t2SKt+1 ∀t2 [T] ∀nt2 [Nt]:
(MQ)

Problem (ML) shares the same structure as its two-stage 
counterpart (Q), which indicates that it is also amenable 
to an equivalent copositive programming reformulation. 
To this end, we define the affine functions

Γj(x,Q1,1: : : ,QNT ,T) :à1
2->

1 ( b#jxe>K1+1 +eK1+1x> b#>
j )-1

�1
2(eK+1bh>j �bhje>K+1)+

XT

tà1

XNt

ntà1

bbj,nt -
>
t

Qnt,t-t ∀j2 [J]:
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The equivalent reformulation is provided in the follow-
ing theorem, whose proof is omitted as it closely fol-
lows that of Theorem 2.
Theorem 8. Problem (MQ) is equivalent to the following 
copositive program:
ZMQ àmin c>x+λ

s:t: λeK+1e>K+1�
XT

tà1

XNt

ntà1
[bdnt,t-

>
t Qnt,t-t]

+
XI

ià1
αibC i 2 COP(K)

(j(x,Q1,1: : : ,QNT ,T)�πjeK+1e>K+1

�
XI

ià1
[e>i &j] bC i 2 COP(K) ∀j2 [J]

λ 2R, x2X , " 2RI, '2RJ
+, &j 2RI ∀j2 [J]

Qnt,t 2SKt+1 ∀t2 [T] ∀nt 2 [Nt]:
(25) 

Remark 2. In some multistage robust optimization pro-
blems, we may observe that some of the recourse deci-
sion variables are multiplied with uncertain parameters, 
whereas the remaining recourse decisions are multiplied 
with deterministic terms. In such situations, we can 
apply quadratic decision rules to the latter, which yields 
stronger decision rule approximations. With minimum 
modification, we can reformulate the decision rule prob-
lem into an equivalent copositive program similar to 
(25). We omit the detailed reformulation here.

5. Numerical Experiments
In this section, we assess the effectiveness of our coposi-
tive programming approach over three applications in 
operations management. The first example is a multii-
tem newsvendor problem, which can be reformulated 
to a two-stage robust optimization problem with fixed 
recourse. The following two examples are inventory 
control and index tracking problems, which corre-
spond to multistage robust optimization problems 
with nonfixed recourse. All optimization problems are 
solved using MOSEK 8.1.0.56 (ApS 2016) via the YAL-
MIP interface (Lofberg 2004) on a 16-core 3.4-GHz 
Linux PC with 32 GB of RAM. The codes for these three 
examples are available at https://github.com/guxu- 
iowa/OR-MSRO.

5.1. Multiitem Newsvendor
We consider the following robust multiitem newsvendor 
problem studied in Ardestani-Jaafari and Delage (2021):

max
x�0

min
!2Ξ

XN

nà1
(rn min(xn, ξn)� cnxn � sn max(ξn � xn, 0)):

(26) 
Here, N represents the number of products; x is the vec-
tor of order quantities; ! is the vector of uncertain 

demands; and r, c, and s are the vectors of sales prices, 
order costs, and shortage costs, respectively. We assume 
that the products do not have a salvage value, and the 
salvage value is set to zero. Problem (26) can be refor-
mulated as the two-stage robust optimization problem 
given by

max
x,y(·)

min
!2Ξ

XN

nà1
yn(!)

s:t: yn(!) (rn� cn)xn� rn(xn�ξn) ! 2Ξ, ∀n2 [N]
yn(!) (rn� cn)xn� sn(ξn�xn) ! 2Ξ, ∀n2 [N]
x� 0:

(27) 
In this problem, the uncertainty set is specified through 
a factor model defined as

Ξ :à ! 2 RN :
! à ! + Diag(b!)F.,
. 2 RN, k.k1  1, k.k1  ρ

( )

, 

where . is a vector comprising all factors, F 2 RN⇥N is 
the factor loading matrix, and ρ <N is a scalar that con-
trols the level of conservativeness. The associated cone 
K related to this uncertainty set is written as

K :à (!,τ) 2 RN ⇥ R+ :
! à !τ+Diag(b!)F.,
. 2 RN, k.k1  τ, k.k1  ρτ

( )

:

As the problem has fixed recourse, we can apply the 
QDR scheme proposed in Section 2.3 and solve the 
semidefinite approximation, which results from repla-
cing the copositive cone COP(K) with the inner approx-
imation IA(K) defined in (16). We compare our QDR 
scheme with the one proposed by Ben-Tal et al. (2009) 
(BGGN), where we replace the cone COP(K) with the 
inner approximation AS(K) defined in (18), with the 
polynomial decision rule scheme of degree 3 (PDR3), 
and with the piecewise linear decision rule scheme pro-
posed by Georghiou et al. (2015) (GWK). In addition, 
we also compare our method with state-of-the-art 
schemes for two-stage robust optimization problems 
with fixed recourse: the method COP described in Xu 
and Burer (2018) and the method AJD described in 
Ardestani-Jaafari and Delage (2021). We note that these 
two methods generate the same solutions with compa-
rable computational times.

All experimental results are averaged over 100 ran-
dom instances. We utilize the mechanism in Ardestani- 
Jaafari and Delage (2021) to set up the parameters and 
to generate the random instances. For each instance, we 
consider nà 5 items and set r à 80e and p à 60e. We 
further sample the vector c uniformly at random from 
the hypercube [40, 60]5. For the uncertainty set, we set 
ρà4 and ! à 60e, whereas the vector b! is generated 
uniformly at random from [50, 60]5. We sample each 
entry of the matrix F uniformly from [�1, 1] and nor-
malize each row so that its sum is equal to one. Table 1
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reports several statistics of relative gaps between the 
optimal value of QDR and those of the other alternative 
methods. We find that QDR provides a substantial 
average improvement of 52% over BGGN and an aver-
age improvement of 22.3% over GWK. Rather surpris-
ingly, we also find that QDR outperforms the state-of- 
the-art COP and AJD schemes by 6%. Table 1 indicates 
that QDR generates the same performance as the less 
tractable PDR3. Table 2 reports the average computa-
tion times of the four methods. We observe that QDR 
can be solved as fast as BGGN, GWK, COP, and AJD, 
whereas it takes 40 times as long to solve PDR3. In sum-
mary, we may thus conclude that QDR provides high- 
quality solutions efficiently.

Remark 3. Because COP corresponds to a semidefinite 
programming approximation of the exact copositive 
reformulation of the newsvendor problem, it is indeed 
surprising that QDR can outperform COP. For the tempo-
ral network example described in Xu and Burer (2018) 
where the uncertainty set is given by a one-norm ball, 
one can formally prove that QDR performs better than 
COP. In general, however, we cannot prove that one 
approximation is tighter than the other or vice versa.

We also assess the quality of the first-stage decisions 
(order quantities) obtained from the different approxi-
mation methods by evaluating their true worst-case 
profits. Because the profit function in (26) is concave, the 
worst-case profit of any fixed decision occurs at a 
demand scenario from an extreme point of the uncer-
tainty set Ξ. Thus, we can enumerate all extreme points 
of the uncertainty set and find the one that minimizes 
the profit to determine the worst-case scenario profit of 
each first-stage decision. In general, it is computationally 
prohibitive to enumerate the extreme points of a polyhe-
dral set. However, it is manageable for our case because 
there are only a few variables and constraints involved. 
Table 3 reports the statistics of relative gaps between the 
worst-case scenario profit of our method and those of 
other methods. We find that the proposed QDR scheme 
provides substantial average improvements of 36.3%, 

36.3%, 4.7%, and 4.7% over BGGN, GWK, COP, and 
AJD, respectively.

Finally, we analyze the optimal decision rules from 
the different approximation methods by considering a 
two-item instance of the robust newsvendor pro-
blems. Figure 1 visualizes the decision rules from the 
different methods as a function of the demand ξ2 of 
the second item. We observe that the quadratic func-
tion from QDR and the polynomial function from 
PDR3 coincide with the optimal decision rule (opti-
mal) at the extreme points of the uncertainty set. This 
implies that QDR and PDR3 can generate optimal 
order quantities as their decision rules anticipate the 
worst-case demand scenarios on par with the optimal 
one. On the other hand, BGGN generates suboptimal 
order quantities as its decision rule function does not 
coincide with the extremes of the optimal decision 
rule. We note that the COP method does not generate 
any decision rules. We further remark that GWK and 
BGGN return the same function, and thus, we only 
plot the one from BGGN.

5.2. Inventory Control
We next consider a multistage robust inventory control 
problem with multiple products and backlogging. A 
stochastic programming version of the problem is 
described in Georghiou et al. (2015). In this problem, 
we must determine the sales and order policies that 
maximize the worst-case profit over a planning horizon 
of T time stages. At the beginning of each time stage t, 
we observe a vector of risk factors !t that explains the 
uncertainty in the current demand Dt, p(!t) and the unit 
sales price Rt, p(!t) of each product p 2 [P]. After !t is 
revealed at time stage t, we must determine the quan-
tity st, p of product p to sell at the current price, the 
amount ot, p of product p to replenish the inventory, and 
the amount bt, p of product p to backlog to the next time 
stage at the unit cost Cb. The sales st, p of product p at 
time stage t can only be provided by orders placed at 
time stage t�1 or earlier. We denote the inventory level 
at the beginning of each time stage t by It. For simplic-
ity, we assume that one unit of each product occupies 
the same amount of space and incurs periodically the 
same inventory holding costs Ch. The inventory level is 
required to remain nonnegative and is not allowed to 
exceed the capacity limit I throughout the planning 

Table 1. Relative Gaps (in Percentages) Between the 
Alternative Approximation Schemes and QDR

Statistic

Approximation method

BGGN GWK COP AJD PDR3

10th percentile 26.5 26.5 2.3 2.3 0
Mean 52.0 52.0 6.0 6.0 0
90th percentile 87.3 87.3 9.7 9.7 0

Table 2. The Average Computation Times (in Seconds) of 
the Different Approximation Schemes

BGGN GWK COP AJD QDR PDR3

Time 1.68 1.75 1.61 1.59 1.62 62.17

Table 3. Relative Gaps (in Percentages) of the Worst-Case 
Scenario Profits Between the Alternative Approximation 
Schemes and QDR

Statistic

Approximation method

BGGN GWK COP AJD PDR3

10th percentile 14.5 14.5 2.1 2.1 0
Mean 36.3 36.3 4.7 4.7 0
90th percentile 76.2 76.2 9.3 9.3 0
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time horizon. The inventory control problem can be 
stated as the MSRO problem

max min
!2Ξ

XT

tà1

XP

pà1
[Rt,p(!t)st,p(!t)�Cbbt,p(!t)�ChIt,p(!t)]

s:t: I1,p(!1)à I0,p�s1,p(!1), b1,p(!1)àD1,p(!1)�s1,p(!1)∀!2Ξ, ∀p2 [P]

It,p(!t)à It�1,p(!t�1)+ot,p(!t�1)�st,p(!t)∀!2Ξ, ∀p2 [P], ∀t2 [T]\{1}

bt,p(!t)àbt�1,p(!t�1)+Dt,p(!t)�st,p(!t)∀!2Ξ, ∀p2 [P], ∀t2 [T]\{1}

ot,p(!t),st,p(!t),bt,p(!t),It,p(!t)�0,It,p(!t) I∀!2Ξ, ∀p2 [P], ∀t2 [T],
(28) 

where I0, p are fixed to prespecified quantities for all 
p 2 [P]. The product prices are defined as

Rt, p(!t) à 4 + α1, pξt, 1 + α2, pξt, 2 + α3, pξt, 3 + α4, pξt, 4 

with factor loadings α1, p,α2, p,α3, p,α4, p 2 [�1, 1]. Simi-
larly, we set the demands to

Dt, p(!t) à 2 + sin 2π(t� 1)
12

◆ 
+ 1

2 [β1, pξt, 1 + β2, pξt, 2

+ β3, pξt, 3 + β4, pξt, 4]

for p à 1, : : : , P=2 and

Dt, p(!t) à 2 + cos 2π(t� 1)
12

◆ 
+ 1

2 [β1, pξt, 1 + β2, pξt, 2

+ β3, pξt, 3 + β4, pξt, 4]

for p à 1=P + 1, : : : , P with factor loadings β1, p,β2, p,β3, p, 
β4, p 2 [�1, 1]. The sine (cosine) terms in the expression 
reflect our expectation that the demands of the first 
(last) P/2 products are high in spring (winter) and low 
in fall (summer). We assume that the vectors of risk fac-
tors !t 2 R4 for all t à 1, : : : , T are serially independent 
and uniformly distributed on [�1, 1]4. Formally, the 
uncertainty set is defined as

Ξ :à {(! :à !1, : : : , !t) : k!tk1  1 ∀t 2 [T]}:

The associated cone K is written as follows:

K :à {(!,τ) 2 R4T ⇥ R+ : k!tk1  τ ∀t 2 [T]}:

In all numerical experiments, we generate 25 random 
instances of the inventory control problem with pà 4 
products. We utilize the mechanism in Georghiou et al. 
(2015) to set up the parameters and to generate the ran-
dom instances. We set backlogging and inventory hold-
ing costs identically to Cb à Ch à 0:2. We further set the 
initial inventory level to I0, p à 0 and the inventory capa-
city to I à 24. We sample the factor loadings α1, p, 
α2, p,α3, p,α4, p and β1, p,β2, p,β3, p,β4, p uniformly from the 

Figure 1. (Color online) Comparison of the Decision Rule Functions from QDR, BGGN, PDR3, and GWK 
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interval [�1, 1]. As Problem (28) has nonfixed recourse, 
we employ linear decision rules and further enhance 
them by applying the piecewise scheme discussed in 
Section 2.4, where the folding directions are described 
by the standard basis vectors eℓ, ℓ 2 [4]. This gives rise 
to a semidefinite approximation, which results from 
replacing the copositive cone COP(K) in the equivalent 
copositive program with the inner approximation 
IA(K) defined in (16). We compare our piecewise lin-
ear decision rule (PLDR) scheme with the one proposed 
by Ben-Tal et al. (2009) (BGGN), where we replace the 
cone COP(K) with the inner approximation AS(K)
defined in (18), and with PDR3.

We test the different schemes on problem instances 
with planning horizons Tà 1, 3, 6, 9, 12, 15, 18, 21, and 
24. Table 4 reports the relative gaps between the opti-
mal values of PLDR and those of the other two 
schemes, whereas Table 5 shows the average computa-
tion times for the three approximation schemes. Note 
that PDR3 can only solve instances up to Tà 3 before it 
starts experiencing numerical issues. As illustrated in 
Table 4, the relative gap between PLDR and BGGN 
increases dramatically with the planning horizon, 
where the largest average improvement of 191.2% is 
observed for Tà 24. Meanwhile, PLDR can generate the 
same results as PDR3 in the case of Tà 1 and remain 
very close to PDR3 for Tà 3. As illustrated in these 
tables, our proposed copositive scheme can return solu-
tions that are of very high quality without sacrificing 
much computational effort.

We also assess the quality of the decision rules 
obtained from the different approximation methods 

by evaluating their actual worst-case profits. Because 
the inventory control problem has nonfixed recourse, 
the worst-case profit of a fixed decision does not neces-
sarily correspond to an extreme point scenario of the 
uncertainty set Ξ. Hence, we design a simulation pro-
cedure to estimate the worst-case profit as follows. We 
randomly generate 10,000 samples from the uncer-
tainty set. Each sample point corresponds to a trajec-
tory realization of the demands and prices over the T 
periods. The approximate worst-case profit is then 
given by the sample point that generates the smallest 
profit. Table 6 reports the statistics of relative gaps 
between the worst-case scenario profit of our method 
and those of BGGN and PDR3. We find that the pro-
posed PLDR scheme still provides substantial average 
improvements over the BGGN method.

5.3. Index Tracking
For the last example, we study a dynamic index track-
ing problem, which aims at matching the performance 
of a stock index as closely as possible with a portfolio of 
other financial instruments over a finite discrete plan-
ning horizon T. A stochastic programming version of 
the problem is described in Hanasusanto and Kuhn 
(2013). To this end, we consider five stock indices 
where the first four constitute the tracking instruments, 
whereas the last one corresponds to the target index. 
Let ! 2 R5

+ be the vector of total returns (price relatives) 
of these indices from time stage t�1 to time stage t. 
Here, ξt, 1, ξt, 2, ξt, 3, and ξt, 4 are returns of the four 
tracking instruments, whereas ξt, 5 is the return of the 
target index at time stage t. The robust dynamic index 

Table 4. Relative Gaps (in Percentages) Between the Alternative Approximation Schemes and PLDR

Method and statistic

Number of time stages

1 3 6 9 12 15 18 21 24

BGGN
10th percentile 3.5 9.8 1.7 18.8 8.5 4.6 24.8 23.5 6.6
Mean 17.3 21.0 20.8 42.7 47.9 43.7 99.2 129.3 191.2
90th percentile 39.2 38.3 36.8 70.6 100.5 94.6 154.9 225.4 762.7

PDR3
10th percentile 0 0 — — — — — — —
Mean 0 �0.1 — — — — — — —
90th percentile 0 �0.2 — — — — — — —

Table 5. The Average Computation Times (in Seconds) of the Different Approximation Schemes

Method

Number of time stages

1 3 6 9 12 15 18 21 24

PLDR 0.02 0.29 2.31 9.66 34.60 99.29 248.40 541.75 1,050.91
BGGN 0.01 0.04 0.33 1.23 4.76 14.48 36.85 94.49 191.30
PDR3 0.13 28.17 — — — — — — —

Xu and Hanasusanto: Decision Rule Approximation for Multistage Robust Optimization 
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tracking problem is stated as follows:

min max
!2Ξ

XT

tà1
|ξt, 5� st(!t) |

s:t: x0 � 0, e>x0  1, s1(!1) à !>1 x0

st(!t) à !>t xt�1(!t�1) ∀t 2 [T]\{1}

e>xt(!t)  st(!t), xt(!t) � 0 ∀t 2 [T]:

(29) 

The decision variable st(!t) 2 R+ determines the value 
of the tracking portfolio at time stage t. Here, we aim to 
rebalance the portfolio allocation vector x(!t) 2 R4 of 
the four tracking instruments such that st(!t) is as close 
to ξt, 5 as possible throughout the planning time hori-
zon. The uncertainty set Ξ�in (29) is specified through a 
factor model as follows:

Ξ :à ! :à (!1, : : : , !T) :
!t à f + F.t, .t 2 R3 ∀t 2 [T]
k.tk1  1, k.tk1  ρ ∀t 2 [T]

( )

:

The associated cone K is accordingly written as

K :à !,τ) 2 R4T ⇥ R+ :
!t à fτ+ F.t, .t 2 R3 ∀t 2 [T]
k.tk1  τ, k.tk1  ρτ ∀t 2 [T]

( )

:

Because the objective function of (29) is not linear, we 
introduce auxiliary variables wt(·) to linearize each 
absolute term. This yields the multistage robust linear 
optimization problem

min max
!2Ξ

XT

tà1
wt(!t)

s:t: x0 � 0, e>x0  1, s1(!1) à !>1 x0

st(!t) à !>t xt�1(!t�1) ∀t 2 [T]\{1}

e>xt(!t)  st(!t), xt(!t) � 0 ∀t 2 [T]

wt(!t) � ξt, 5� st(!t), wt(!t) � st(!t)� ξt, 5 ∀t 2 [T]:
(30) 

As Problem (30) has nonfixed recourse, we apply linear 
decision rules to the decision variables xt(·), t 2 [T], 
which are multiplied with some uncertain parameters. 
On the other hand, we may utilize quadratic decision 
rules on st(·) and wt(·), t 2 [T] because they are not mul-
tiplied with any uncertain parameters. With minimum 
modification, the copositive approach introduced in 
Section 4 can be applied, and accordingly, we can solve 
the semidefinite approximation obtained from replacing 
the copositive cone COP(K) with the inner approxima-
tion IA(K) defined in (16). We denote our approach by 
LQDR. We compare LQDR with the scheme proposed 
by Ben-Tal et al. (2009) (BGGN) where we replace the 
cone COP(K) with the inner approximation AS(K)
defined in (18) and with PDR3.

All experimental results are averaged over 25 ran-
domly generated instances. We utilize the mechanism 
in Hanasusanto and Kuhn (2013) to set up the para-
meters and generate the random instances. For each 
instance, f is set to the vector of all ones, whereas each 
entry of F is sampled uniformly from the interval 
[�1, 1]. We further normalize each row of F such that 
the sum of the absolute values in each row equals one. 
We test the different schemes on problem instances 
with planning horizons Tà1, 3, 6, 9, 12, 15, and 18. 
Note that PDR3 can only solve instances up to Tà3. 
Table 7 reports the statistics of relative gaps between 
the optimal values obtained from LQDR and those 
from the two alternative approximation schemes, 
whereas Table 8 shows the average computation times 
for all three approximation schemes. As indicated in 
Table 7, the relative gap between LQDR and BGGN 
increases with the planning horizon, where the largest 
average improvement of 18.2% is observed for Tà18. 
On the other hand, LQDR generates similar perfor-
mance to PLDR3 but with significantly less computa-
tional effort.

We also assess the quality of the decision rules 
obtained from the different approximation methods by 
evaluating their true worst-case risks. As in the 

Table 6. Relative Gaps (in Percentages) of the Simulated Worst-Case Scenario Profits Between the Alternative Approxima-
tion Schemes and PLDR

Method and statistic

Number of time stages

1 3 6 9 12 15 18 21 24

BGGN
10th percentile 1.7 6.9 1.5 12.8 6.9 3.7 22.3 19.4 6.1
Mean 15.3 19.6 17.9 35.9 42.8 41.6 79.2 119.9 181.7
90th percentile 34.7 36.1 34.5 61.7 89.1 90.3 132.8 187.8 692.4

PDR3
10th percentile 0 0 — — — — — — —
Mean 0 �0.1 — — — — — — —
90th percentile 0 �0.1 — — — — — — —
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inventory control problem, the index tracking problem 
has a nonfixed recourse. We adopt the same simulation 
procedure by using 10,000 sample trajectories from the 
uncertainty set to estimate the worst-case risks. Table 9
reports the statistics of relative gaps between the worst- 
case scenario risk of our method and those of BGGN 
and PDR3. We find that the proposed PLDR scheme 
provides significant average improvements over the 
BGGN method.

6. Concluding Remarks
Generic MSRO problems (with nonfixed recourse) have 
so far resisted strong decision rule approximations. This 
paper leveraged modern conic programming techni-
ques to derive an exact convex copositive program for 
the linear decision rule approximation of the generic 
problems. We further derived an equivalent copositive 
program for the more powerful quadratic decision rule 
approximation of instances with fixed recourse. These 
reformulations enabled us to obtain a new semidefinite 
approximation that is provably tighter than an existing 
scheme of similar complexity by Ben-Tal et al. (2009). 
The copositive approach further inspired us to develop 
a new piecewise decision rule scheme for the generic 
problems. For MSRO problems with nonfixed recourse, 
we proved that the resulting approximation is tighter 
than the state-of-the-art scheme by Georghiou et al. 
(2015). Extensive numerical results demonstrate that 
our scheme can substantially outperform existing sch-
emes in terms of optimality while maintaining scalabil-
ity when solving large problem instances. We conclude 
that our proposed copositive approach provides an 
excellent balance between optimality and scalability.

We mention two promising directions for further 
research. First, it would be interesting to derive a copo-
sitive programming reformulation for the piecewise 
decision rule scheme that can simultaneously optimize 
the best folding directions and break points. Second, it 
is imperative to design a global solution approach for 
MSRO problems with nonfixed recourse that leverages 
the proposed decision rule schemes.
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