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Abstract. We study decision rule approximations for generic multistage robust linear
optimization problems. We examine linear decision rules for the case when the objective
coefficients, the recourse matrices, and the right-hand sides are uncertain, and we
explore quadratic decision rules for the case when only the right-hand sides are uncer-
tain. The resulting optimization problems are NP hard but amenable to copositive pro-
gramming reformulations that give rise to tight, tractable semidefinite programming
solution approaches. We further enhance these approximations through new piecewise
decision rule schemes. Finally, we prove that our proposed approximations are tighter
than the state-of-the-art schemes and demonstrate their superiority through numerical
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1. Introduction

Decision making under uncertainty arises in a wide
spectrum of applications in operations management,
engineering, finance, and process control. A prominent
modeling approach for decision making under uncer-
tainty is robust optimization (RO), whereby one seeks for
a decision that hedges against the worst-case realiza-
tion of uncertain parameters; see Ben-Tal and Nemir-
ovski (2002), Ben-Tal et al. (2009), and Bertsimas et al.
(2011a). The RO paradigm is appealing because it leads
to computationally tractable solution schemes for
many static decision-making problems under uncer-
tainty. However, real-life problems are often dynamic in
nature, where the uncertain parameters are revealed
sequentially and the decisions must be adapted to the
current realizations. The adaptive decisions are funda-
mentally infinite dimensional as they constitute map-
pings from the space of uncertain parameters to the
space of actions. This setting gives rise to the multistage
robust optimization (MSRO) problems, which in general,
are computationally challenging to solve. Only in a few
cases and under very stringent conditions are the pro-
blems efficiently solvable; see, for instance, Ben-Tal and
Nemirovski (1999), Guslitser (2002), and Bertsimas et al.

(2015). Consequently, the design of solution schemes
for MSRO necessitates reconciling the conflicting objec-
tives of optimality and scalability.

Conservative approximations for MSRO can be derived
by using linear decision rules, where we restrict the adaptive
decisions to be affine functions in the uncertain para-
meters. Popularized by Ben-Tal et al. (2004), linear deci-
sion rules have found successful applications in various
areas of decision-making problems under uncertainty
(Ben-Tal et al. 2005; Atamtiirk and Zhang 2007; Chen
et al. 2007, 2008; Calafiore 2008; Rocha and Kuhn 2012;
Gounaris et al. 2013) as they are simple yet valuable to
implement in practice. Moreover, linear decision rules
are optimal for some instances of MSRO (Bertsimas and
Goyal 2012, Iancu et al. 2013), linear quadratic optimal
control (Anderson and Moore 2007), and robust vehicle
routing (Gounaris et al. 2013) problems. The resulting
optimization problems, however, are tractable only
under the restrictive setting of fixed recourse (i.e., when
the adaptive decisions are not multiplied with the
uncertain parameters in the problem’s formulation).
Many decision-making problems under uncertainty,
such as portfolio optimization (Dantzig and Infanger
1993, Ben-Tal et al. 2000, Rocha and Kuhn 2012), energy
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systems operation planning (Martins da Silva Rocha
2013), inventory planning (Bertsimas and Georghiou
2018), etc., do not satisfy the fixed recourse assumption.
For these problem instances, the linear decision rule
approximation is NP hard already in a two-stage set-
ting; see, for example, Guslitser (2002) and Ben-Tal et al.
(2004).

The basic linear decision rules have been extended to
truncated linear (See and Sim 2010), segregated linear
(Chen et al. 2008, Chen and Zhang 2009, Goh and Sim
2010), and piecewise linear (Georghiou et al. 2015, Ben-
Tal et al. 2020) functions in the uncertain parameters. If
the MSRO problem has fixed recourse, then one can
formally prove that the optimal adaptive decisions are
piecewise linear (Bemporad et al. 2003), which justifies
the use of these enhanced approximations. Unfortu-
nately, optimizing for the best piecewise linear decision
rule entails globally solving a nonconvex optimization
problem, which is inherently difficult; see Bertsimas
and Georghiou (2015) and Ben-Tal et al. (2020). If, in
addition, some basic descriptions about the piecewise
linear structure are prescribed, then one can derive
tractable linear programming approximations for prob-
lem instances with fixed recourse by Georghiou et al.
(2015). Their piecewise linear decision rule scheme is a
generalization of the aforementioned methods, includ-
ing the truncated linear decision rule by See and Sim
(2010) and the segregated linear decision rule by Chen
et al. (2008), Chen and Zhang (2009), and Goh and Sim
(2010).

If a tighter approximation is desired or the problem
has nonfixed recourse, then one can in principle develop
a hierarchy of increasingly tight semidefinite approxi-
mations using polynomial decision rules (Bertsimas et al.
2011b). Although optimizing for the best polynomial
decision rule of fixed degree is difficult, tractable conser-
vative approximations can be obtained by employing
the Lasserre hierarchy (Parrilo 2000, Lasserre 2009).
Such approximations are attractive because they do not
require prior structural knowledge about the optimal
adaptive decisions. However, the resulting semidefinite
programs scale poorly with the degree of the polyno-
mial decision rules. A decent trade-off between subop-
timality and scalability is attained in quadratic decision
rules (QDRs), where one merely optimizes over poly-
nomial functions of degree 2. Their semidefinite approx-
imations, based on the well-known approximate S
lemma (Ben-Tal et al. 2009), have been applied success-
fully to instances of inventory planning (Bertsimas et al.
2011b, Hanasusanto et al. 2015) and electricity capacity
expansion (Bampou and Kuhn 2011) problems. A poste-
riori lower bounds to the MSRO problem can be derived
by applying decision rules to the problem’s dual formu-
lation; see Bampou and Kuhn (2011), Kuhn et al. (2011),
and Lasserre (2009). Alternative schemes that similarly
provide aggressive bounds for MSRO are proposed in

Hadjiyiannis et al. (2011) and Bertsimas and de Ruiter
(2016). All the methods mentioned can be applied to dif-
ferent paradigms in optimization under uncertainty,
such as stochastic programming, robust optimization,
and distributionally robust optimization. Our paper
focuses on the robust optimization setting because it
requires minimal assumptions about the uncertainty,
which allows us to present the main idea cleanly. If dis-
tributional information is available, then the proposed
methods can be directly applied to the other settings in a
relatively straightforward fashion.

Global optimization approaches have also been de-
signed to derive exact solutions of MSRO problems. In
the two-stage robust optimization setting, these meth-
ods include Benders” decomposition (Bertsimas et al.
2013, Hashemi Doulabi et al. 2021), column and con-
straint generation (Zeng and Zhao 2013), extreme point
enumeration combined with decision rules (Georghiou
etal.2020), and Fourier-Motzkin elimination (Zhen et al.
2018). The Benders’ decomposition scheme has been
extended to the multistage setting for MSRO problems
where the uncertain parameters exhibit a stage-wise
rectangular structure (Georghiou et al. 2019). Bertsimas
and Dunning (2016) and Postek and den Hertog (2016)
develop adaptive uncertainty set partitioning schemes
that generate a sequence of increasingly accurate con-
servative approximations for MSRO. A global optimi-
zation scheme has also been conceived through the
lens of conic reformulations. Hanasusanto and Kuhn
(2018) and Xu and Burer (2018) propose indepen-
dently equivalent copositive programming reformula-
tions for two-stage robust optimization problems and
develop conservative semidefinite approximations for
the reformulations.

Using copositive programming techniques, this paper
takes a first step toward addressing a generic linear
MSRO problem where the objective coefficients, the
recourse matrix, and the right-hand sides are uncertain.
A copositive program is a convex program that opti-
mizes a linear function over the cone of copositive
matrices subject to linear constraints; see Diir (2010),
Bomze (2012), and Burer (2012). Bomze et al. (2000) are
the first to reformulate an NP-hard problem, namely
the standard quadratic optimization problem, to an
equivalent copositive program. The seminal work of
Burer (2009) shows that a generic quadratic program
can be reformulated to an equivalent copositive pro-
gram. In another work, Burer and Dong (2012) establish
the equivalence between a nonconvex quadratically
constrained quadratic program (QCQP) and a general-
ized copositive program under certain conditions. We
refer the reader to Natarajan et al. (2011), Burer and
Dong (2012), Chen and Burer (2012), Kong et al. (2013),
and Natarajan and Teo (2017) for more works on using
copositive techniques to reformulate nonconvex qua-
dratic programs arising in different applications.
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Our key contribution is to utilize copositive program-
ming techniques to develop stronger decision rule ap-
proximations for generic MSRO problems. In the generic
setting, the direct use of decision rules leads to computa-
tionally intractable semiinfinite programs, with finitely
many decision variables but infinitely many constraints.
The standard dualization procedure in robust optimiza-
tion does not apply because these constraints involve
nonconvex QCQPs. We leverage the copositive refor-
mulation techniques to convexify the QCQPs, which
enable the dualization of the constraints to arrive at
finite-dimensional convex optimization problems. The
copositive techniques further allow us to handle com-
plex uncertainty sets (e.g., integrating complementary
constraints), which lead to exact convex reformulations
for a class of piecewise decision rule approximations.
All these new reformulations enjoy tractable semidefi-
nite approximations that are provably superior to the
state-of-the-art schemes. We summarize the contribu-
tions of the paper as follows.

1. For the generic MSRO problems, we derive new
copositive programming reformulations in view of the
popular linear decision rules. For MSRO problems with
fixed recourse, we derive new copositive programming
reformulations in view of the more powerful quadratic
decision rules. The exactness results are general. They
hold for MSRO problems without relatively complete
recourse and under very minimal assumption about the
compactness of the uncertainty set without requiring it
to exhibit stage-wise rectangularity.

2. The emerging copositive programs are amenable
to a hierarchy of increasingly tight conservative semi-
definite programming approximations. We formulate
the simplest of these approximations and prove that it
is tighter than the state-of-the-art scheme by Ben-Tal
et al. (2004) and also, the polynomial decision rule
scheme by Bertsimas et al. (2011b) when the degree of
the polynomial is set to the degree of our decision rules
(degree 1 for problems with nonfixed recourse and
degree 2 for problems with fixed recourse). We demon-
strate empirically that our proposed approximation is
competitive to polynomial decision rules of higher
degrees while displaying more favorable scalability.

3. We propose piecewise linear decision rules for
MSRO problems with nonfixed recourse and piecewise
quadratic decision rules for MSRO problems with fixed
recourse. To our best knowledge, these decision rules
are new for their respective problem classes. By leverag-
ing recent techniques in copositive programming, we
derive equivalent copositive programs for the piecewise
decision rule approximations. For MSRO problems with
fixed recourse, we show that the state-of-the-art scheme
by Georghiou et al. (2015) can be futile even on trivial
two-stage problem instances, whereas our semidefinite
approximation produces high-quality solutions. We for-
mally prove that our proposed approximation is indeed

tighter than that of Georghiou et al. (2015) and further
identify the simplest set of semidefinite constraints that
retains the outperformance while maintaining scalability.

The remainder of the paper is organized as follows.
We derive the copositive programming reformulations
for two-stage robust optimization problems in Section 2.
In Section 3, we develop the conservative semidefinite
programming approximations. We extend all results to
the multistage setting in Section 4 and present the numer-
ical results in Section 5.

1.1. Notation and Terminology
For any M € N, we define [M] as the set of running indi-
ces {1,...,M}. We let [M]\{1} be the set of running
indices {2, ..., M}. We denote by e the vector of all ones
and by e; the ith standard basis vector. For notational
convenience, we use both v; and [v]; to denote the ith
component of the vector v. The p-norm of a vector v €
RY is defined as l[vll,- We will drop the subscript for
the Euclidean norm (i.e., |[v| :=|[o||,). For a € RY and
b € RY, the Hadamard product of a and b is denoted by
aob:=(mby,..., anby) . The trace of a square matrix X
is denoted as trace(X). We use [A]; to denote the entry
in the ith row and the jth column of the matrix A. We
define diag(X) as the vector comprising the diagonal
entries of X and Diag(v) as the diagonal matrix with
the vector v along its main diagonal. We use X >0 to
denote that X is a com]];\)/‘onent—wise nonnegative matrix.
For any matrix A € R *N the inclusion Rows(A) € K
indicates that the column vectors corresponding to the
rows of A are members of K. We denote by # k.1, v the
space of all measurable mappings y(-) from R**! to RV.
For any closed and convex cone K, we denote its dual
cone as K'. We define by SOCCR**! the standard
second-order cone (ie, v € SOC < ||(vy, .. ., oK) || < vk41).
We denote the space of symmetric matrices in RN*N as
SN. For any X € SV, we set X > 0 to denote that X is posi-
tive semidefinite. For convenience, we call the cone of
positive semidefinite matrices as the semidefinite cone
and the cone of symmetric nonnegative matrices as the
nonnegative cone. The copositive cone is defined as COP
(RY):={M e SN :x"Mx >0 VxeRY)}.Its dual cone, the
completely positive cone, is defined as CP(RY) := {X e SV :
X =3,x(x")7, x' e RY}, where the summation over i is
finite, but its cardinality is unspecified. For a general
closed and convex cone K € RY, we define the generalized
copositive cone as COP(K) and the generalized completely
positive cone as CP(K), respectively, in analogy with
COP(RY) and CP(RY). Note that COP(K) and CP(K) are
dual cones to each other. The term copositive programming
refers to linear optimization over COP(K) or via duality,
linear optimization over CP(K). To distinguish from the
standard case where K = RY, they are sometimes called
generalized copositive programming or set-semidefinite optimi-
zation; see Eichfelder and Jahn (2008) and Burer and
Dong (2012). In this paper, we work with generalized
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copositive programming, although we use the shorter
phrase for simplicity.

2. Copositive Reformulations for Two-
Stage Decision Rule Problems

In this section, we first state the generic setting of a

two-stage robust optimization problem. We then con-

sider various decision rules for the two-stage problem

and propose copositive programming reformulations

for the decision rule problems.

2.1. Two-Stage Robust Optimization Problem

We study adaptive linear optimization problems of the
following general structure. A decision maker first takes
a here-and-now decision x € X, which incurs an imme-
diate linear cost ¢"x. Nature then reacts with a worst-
case parameter realization u € . In response, the deci-
sion maker takes a recourse action y(u) e RN, which
incurs a second-stage linear cost d(u) " y(u). In this game
against nature, the decision maker endeavors to opti-
mally select a feasible solution (x,y(-)) that minimizes
the total cost ¢"x + supueud(u)Ty(u). We note that the
second-stage decision vector constitutes a mapping y :
U — RY and is thus infinite dimensional.

The emerging sequential decision problem can be
formulated as a two-stage robust optimization problem
given by

Z =inf ¢"x + sup d(u) y(u)
ueld
s.t. A(w)x + B(w)y(u) > h(u) Yueld 1)
xEX,yEyK_H,N.

Here, the feasible set of the first-stage decision x is cap-
tured by a generic set X' C RM whereas that of the
second-stage decision y(u) is defined through a linear
constraint system A(u)x + B(u)y(u) > h(u). The uncertain
parameter vector u is assumed to belong to a prescribed
uncertainty set U, which we model as the intersection of a
slice of a closed and convex cone K C RX x R,, and the
level sets of I quadratic functions. Specifically, we set

egqu=1
U=<uek: _ ’ )
u'"Cu=0 Vie[l]

where C; € S for all i € [I]. The problem parameters
Am) e RPM B(u) e RPN, d(u) e RN, and h(u) € R in (1)
are assumed to be linear in u, given by

K+1 K+1

Aw) = we Ay, Bu)= ucBy,
k=1 k=1
d(u) = Du, h(u)=Hu,

where A, e RPM, B, e RN, D i= (dy,...,dy) " e RVUHD,
and H := (hy,.. .ﬁj)T e RIXK*D are deterministic data.

The nonrestrictive assumption that ug; =1 in (2) will
simplify notation as it allows us to represent affine func-
tions in the primitive uncertain parameters (i1, ..., ug)"
in a compact way as linear functions of u (e.g., the prob-
lem parameters A(u), B(u), d(u), and h(u) and the linear
decision rule Yu) (Section 2.2) and as it also allows us to
represent quadratic functions in the primitive uncertain
parameters in a homogenized manner (e.g., the qua-
dratic decision rule #™ Qu) (Section 2.3).

The cone K in the description of ¢/ has a generic form
and can model many common uncertainty sets in the
literature. We highlight three pertinent examples as
follows.

Example 1 (Polytope). If the uncertainty set of the prim-
itive vector (uy,...,ux)" is given by a polytope {£ € RX:
P& > g}, then the corresponding cone is defined as

K:={(&1) e R xR, : PE> gt}

Example 2 (Polytope and Two-Norm Ball). If the uncer-
tainty set of the primitive vector is given by the intersec-
tion of a polytope and a transformed two-norm ball,
{£€ R : PE> q, |RE— s||, < t}, then the corresponding
cone is defined as

K:={(&1) e RE xR, : PE> g7, ||RE — s7|| < tT}.

Example 3 (Ellipsoids). Consider the setting where the
uncertainty set of the primitive vector is described by
an intersection of L ellipsoids: {£ € RN £"F e+ 28/ €<
he, Y€ e[L]}. Here, F; € S, F; >0, 8/ € RK, and hy e R
for all €€ [L]. Because F; is positive semidefinite, we
have F; = P; P; for some matrix P, € R>K whose rank
is I;. In Alizadeh and Goldfarb (2003), it is shown that

P/
1
EFE+2gTe<h = | 2171 +808 | e socq, +2),
1
S(+h) — gl
where SOC(I; +2) denotes the second-order cone of

dimension I, + 2. In this case, the corresponding cone is
given by

Pe§
1
K:={ (§1)eREXR, : 5(1*h5)7+g[T§

1
5(1 +he)t—g &

€SOC(, +2) VL e[L]
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In the following, to simplify our exposition, we define
the convex set

U :={uek: ep . u=1}, 3)

which corresponds to the uncertainty set U in the
absence of the nonconvex constraints u"C;u =0, i € [I].
We further assume that the uncertainty set satisfies the
following regularity conditions.

Assumption 1. The set U° defined in (3) is nonempty and
compact.

Assumption 2. The minimum value of the quadratic func-
tion u"Ciu over the set U is zero for all i€(l] (ie.,
0 =min, ., ou’ Ciu, i€ [I]).

The quadratic constraints in the description of U/ are
motivated by both practical and modeling requirements.
Numerous applications in robust optimization, including
inventory planning and project crashing problems, in-
volve binary uncertain parameters; see Mittal et al. (2020).
In this case, we can incorporate binary variables in I/ via
quadratic constraints of the form in (2). Specifically, we
have that 1y € {0, 1} is equivalent to u? = uy. If the relation
0 <u <1 is implied by 4° (note that we can explicitly
introduce these constraints into /° if necessary), then we
have 0 = min,,;,o{—u? + 1}, which shows that the qua-
dratic constraint —uf + 1, = 0 satisfies the condition in
Assumption 2. Furthermore, these constraints will be
crucial for deriving our improved decision rules as they
enable us to model complementary constraints (e.g.,
ugp = 0); see Section 2.4 for detail. If 1/° implies that
both 1y and ;. are nonnegative and bounded, then we
have 0 = min,,.; o {uuy }. Thus, the quadratic constraint
ugy = 0 satisfies the condition in Assumption 2.

Two-stage robust optimization problems of the form
(1) are generically NP hard; see Ben-Tal et al. (2004). A
popular conservative approximation scheme is obtained
in linear decision rules, where we restrict the recourse
action y(-) to be a linear function of u. If the problem has
fixed recourse (i.e., B(u) and d(u) are constant), then the
linear decision rule approximation leads to tractable lin-
ear programs. On the other hand, if the problem has ron-
fixed recourse (i.e., B(u) or d(u) depends linearly in u),
then the approximation itself is intractable. In the follow-
ing, we show that the linear decision rule problems are
amenable to exact copositive programming reformula-
tions. Furthermore, in the specific case where the problem
has fixed recourse, we develop an improved approxima-
tion in quadratic decision rules and show that the resulting
optimization problems can also be reformulated as equiv-
alent copositive programs.

2.2. Linear Decision Rule for Problems with
Nonfixed Recourse

In this section, we derive an exact copositive program by

applying linear decision rules to Problem (1). Instead of

considering all possible choices of functions y : U — RY
from Z k41 N, we restrict ourselves to linear functions of
the form

y(u) = Yu,

for some coefficient matrix Y € RN® D This setting
yields the following conservative approximation of Prob-
lem (1):

ZE =inf ¢"x+sup d(u)" (Yu)
ueld

s.t. Au)x+ Bu)Yu>h(u) Yueld (L)
x€X,Ye RN,

Problem (£) is finite dimensional but remains difficult
to solve as there are infinitely many constraints param-
eterized by u € Y. In particular, it is shown in Ben-Tal
et al. (2004) that the problem is NP hard via a reduction
from the problem of checking matrix copositivity.

We now show that an equivalent copositive pro-
gramming reformulation can principally be derived for
Problem (£). We first introduce the following technical
lemmas, which are fundamental for our derivations.
The first technical lemma establishes the equivalence
between a nonconvex quadratic program

sup u' Cou
st.egu=1

uw Cu=0 Viel[l]

uek
and its copositive relaxation
sup Coel
s.t.exrieg e U =1
. ®)
CieU=0 Viell]
U € CP(K),

where Cp € 81, K ¢ R¥*! is a closed and convex cone
and CP(K) is the cone of completely positive matrices
with respect to K.

Lemma 1 (Burer 2012, corollary 8.4 and theorem 8.3).
Suppose that Assumptions 1 and 2 hold. Then, Problem (5)
is equivalent to (4) (i.e., (i) the optimal value of (5) is equal
to that of (4); (ii) if U* is an optimal solution for (5), then
U*ey is in the convex hull of optimal solutions for (4)).

Lemma 2. Suppose Assumption 1 holds. Then, for any
(z,7) € K, we have that T =0 implies z = 0.

Proof. See the e-companion. [

The dual of Problem (5) is given by the following lin-
ear program over the cone of copositive matrices with
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respect to K: stage cost coefficients and the recourse matrix are deter-
. ministic: that is,
inf A ~ ~
! du)=deRY and B(u)=B e R*N Vu € RE
st. dexeg,, + Y _aiCi—CoeCOP(K) (6)  Using techniques developed in the previous section,
i=1 we will derive a copositive programming reformula-
ALeR, ac RL tion by applying decision rules to the recourse action

Our next technical lemma establishes strong duality for
the primal and dual pairs.

Lemma 3. Suppose Assumption 1 holds. Then, strong dual-
ity holds between Problems (5) and (6).

Proof. See the e-companion. [

In the following, we define the auxiliary matrices

8;31
(?)j = : c R(K+1)><M’
e]TAKH
e]TE’l
Aji= : e RN and 7)
ejT§1<+1

1/~ PO
Qi(x,Y) = 5 ((DJ-er+1 + eK+1xT®jT +AY
+YTA] —hjel,, —exah]) Vje[]],
8)

where e; represents the jth standard basis vector in R/
We are now ready to state our main result.

Theorem 1. Problem (L) is equivalent to the copositive
program

ZF =infc'x+ A

1 N
s.t Aexieg, — E(DTY +Y'D)

1
+ Za,-Ci S COP(K)
i=1
I o~
Q(x, Y) — mjexaeg — Bl Ci € COP(K)

i=1

vjell
xeX, AeR, YERVKD #eR, acR,
BeR Viell

where the affine functions ;(x,Y), j € []] are defined as in (8).

Proof. See the e-companion. [

2.3. Quadratic Decision Rule for Problems with
Fixed Recourse

We now study two-stage robust optimization problems

with fixed recourse. In this simpler setting, the second-

y:U — RY. Because d(u) and B(u) are constant, we
may utilize the more powerful quadratic decision rules
defined as

[y@], =u"Qu  Vne[N],

for some coefficient matrices Q, € S 1 e [N]. This
yields the following conservative approximation of
Problem (1):

79 =inf ¢"x + sup ZﬁnuTQnu

ueld ;=1

N

stuT@x+Y by Quxhlu Yuel Vjel]]
n=1

xeX,Q,eS! vnel[N]. (Q)

In view of the restriction 1y, = 1 in the description of U,
the decision rule [y(u)], = u™ Q,u constitutes a homoge-
nized version of a nonhomogenized quadratic function
in the primitive vector (u1,. .., ux) . We remark that opti-
mizing for the best quadratic decision rule is generically
NP hard (Ben-Tal et al. 2009, section 14.3.2). This justifies
our proposed copositive programming reformulation,
which we derive in the following theorem. To that end,
we define the affine functions

Tj(x, Qy,- -, Q)

1 ~ N U
= E((E)jerLr1 + eK+1ijT - eK+1h]-T —hjeg,,)
N o~
+ Zb]'nQn viel]l. (10)
n=1

Theorem 2. Problem (Q) is equivalent to the copositive
program

Z9=minc"x+ A
N [
st Aexiieg,y —» dyQ,+ Y aC; e COP(K)
n=1 i=1
F]'(xr Ql/ sy QN) — Ty eK+1elz+1

1
~ > [Bjl;Ci € COP(K) Vje [l
i=1

1
xeX,AeR, acRl, meR, Q, e
vne[N], B eR' Vje[]],
(11)

where the affine functions Tj(x, Qy, ..., Qy), j € [J] are defined
as in (10).
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Proof. See the e-companion. O

2.4. Enhanced Decision Rule
In this section, we tighten the basic decision rule
approximations by employing piecewise linear and
piecewise quadratic decision rules. Although piecewise
quadratic decision rules are a new concept, piecewise
linear decision rules have been studied extensively in
the literature (Chen and Zhang 2009, Georghiou et al.
2015). Their utilization is supported by a strong theoret-
ical justification. For problems with fixed recourse, the
optimal recourse action y(-) can be described by a piece-
wise linear continuous function (Bemporad et al. 2003).
However, optimizing for the best piecewise linear deci-
sion rule is NP hard even if the folding directions and
their respective break points are prescribed a priori
(Georghiou et al. 2015, theorem 4.2). We endeavor to
derive equivalent copositive reformulations for the
piecewise decisions rule problems that lead to tight
semidefinite approximations.

To this end, for a prescribed number of pieces L, we
define the mappings

Fe(u) = max{0,f; u} Vu e RE vee L]

(12)

Here, f,:=(g,, —h;) € R**!, where g, € RX denotes the
folding direction of the {th mapping, whereas 1, de-
fines its break point. These mappings constitute the
building blocks of our improved decision rules. Specifi-
cally, by applying the basic linear and quadratic deci-
sion rules on the lifted uncertain parameter vector
v:=(F(w),...,FL (u),u) e R we arrive at the de-
sired piecewise linear and piecewise quadratic decision
rules, respectively.

Example 4 (Integer Programming Feasibility Problem).
Consider a norm maximization problem given by
maxyey|lull;, where U = {u e RX : Pu<q} [-1,1]%isa
prescribed polytope. An elementary analysis shows
that the optimal value of this problem is equal to K if
and only if there exists a binary vector u € {(-1,1}*
within the polytope U. Thus, it solves the NP-hard
integer programming (IP) feasibility problem (Garey
and Johnson 1979). We can reformulate the norm max-
imization problem as a two-stage robust optimization
problem without a first-stage decision x given by

inf supe "y (u)

ueld
sty(w)>u,ylu)>—u Yueld

yE%K,K-

Indeed, at optimality we have [y(u)], = |uk|, which
implies that e "y(u) = [[u]|;. Consider now the mappings

F(u) = max{0, u,} VueRK vee[K].

Our previous argument shows that the piecewise lin-
ear decision rule given by
[y()], = —ue +2F(u) = —ur + max{0, 2uc} = |u|
V{ € [K]

is optimal. This decision rule is linear in the lifted param-
eter vector (F1(u), ..., Fx(u),u).

To formalize the idea into our setting, we define the
lifted set

U ={v:=(w,u)e R xU: wy=F/(u) VCe][L]}

(13)
and the lifted parameters
A'(v) = Aw), B'(v) = B(u), d'(v) = d(u), I (v) = h(u),

— (OT,@]T )TE RLHK+)xM vj e [J].

Then, by replacing the set &/ with /" and employing the
lifted parameters in (£) and (Q), we obtain the corre-
sponding piecewise decision rule problems. These are
given by

7P = inf ¢"x +supd’(v)" Yo

veld’
st. A(x+B@)Yo>h(v) VYoeld (PL)

xe X, Ye RNX(L+K+1)

and
N o~
ZPC = inf ¢"x + sup Zdan Qv
weld n=1
~ N -~
s.t. UT(B;x + ijanQnU > [ (v)],
n=1
Yoel Vje[]] (PQ)
xeX, Q, eSS vne[N],

respectively.

We now establish that the piecewise decision rule pro-
blems can be equivalently reformulated as polynomial-
size copositive programs. The reformulations leverage
our capability to incorporate complementary constraints
in the uncertainty set /. We remark that Problems (PL)
and (PQ) share the same structure as their plain vanilla
counterparts (£) and (Q). To establish that equivalent
copositive programs can also be derived for these pro-
blems, we need to show that the set &/’ can be brought
into the standard form (2). First, we prove that the non-
convex set U’ is equivalent to a concise set involving
O(L) linear and complementary constraints.
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Theorem 3. The lifted uncertainty set in (13) can be repre-
sented as the set

0O<w<w
U =L (wu)eREXU: we>fju VEe[L] ,
we(we —fiu)=0 VCe[L]

(14)

where W € R" is a vector whose components are upper
bounds on the auxiliary parameters ws, ..., wy. These upper
bounds can be computed by solving L convex conic optimiza-
tion problems given by

17 e — T
W = max fou VeelL],

ueld

where U° is defined as in (3).

Proof. For any fixed u € i/ and ¢ € [L], the complemen-
tary constraint we(w,—f,;u)=0 implies that either
wr,=0 or wy = f}u Thus, the constraints w, >0 and
we > fu yield we =max{0,f;u}. This completes the
proof. O

Remark 1. The inclusion of the upper bound w on the
lifted parameters w ensures the boundedness of the
uncertainty set /', which is required by Assumption 1.
We also note that ¢/’ is closed because w(w, — f; u) =
0=w;=0 or wy —f;u =0 for all £ € [L]. Therefore, U’
is a compact set.
Next, in view of the equivalent set in (14), we define
the lifted cone
;o L _OSZUSWMKH
= {(w’")eR xu: we>fiu Vle [L]}‘

Letting the matrices Cy e [L] be defined as
Cr=(e],07) " (e],07) — %(eg,oT)T(oT, 1)
1
_E(OT'f;)T(eZI OT) er [L]/

we can capture the complementarity constraints in &/’
via the quadratic equalities v"C,v =0, £ € [L]. Thus,
the lifted set coincides with the set

U ={v:=(w,u) €K : ug,; =1,v7C,0=0 VCe[L]},

which indeed assumes the standard form in (2). In sum-
mary, we have established that equivalent copositive
programs can be derived for the proposed piecewise
linear and piecewise quadratic decision rule problems.
As described in Section 3, tractable semidefinite pro-
gramming approximations can then be obtained by
replacing the cone COP(K”) in the respective copositive
programs with the inner approximation Z.A(K').

3. Semidefinite Programming
Solution Schemes

Our equivalence results imply that the decision rule
problems are amenable to semidefinite programming
solution schemes. Specifically, there exists a hierarchy
of increasingly tight semidefinite-representable inner
approximations that converge to COP(K); see, for exam-
ple, Parrilo (2000), Bomze and de Klerk (2002), de Klerk
and Pasechnik (2002), and Lasserre (2009). Replacing the
cone COP(K) with these inner approximations yields
conservative semidefinite programs that can be solved
using standard off-the-shelf solvers. In this section, we
develop new tractable approximations and exact semi-
definite reformulations for the copositive programs
derived in Section 2. To this end, we primarily consider
polyhedral- and second-order cone-representable uncer-
tainty sets defined via closed and convex cones of the
following generic form:

K:={ueRX xR, : Pu>0, RucSOCK,)}, (15)

with P e RK*®+) and R € RK*KD | As illustrated in
the examples of Section 2, the generic structure for the
cone K can encompass many commonly used uncer-
tainty sets in practice.

3.1. Conservative Approximation
We consider a semidefinite-representable inner approxi-
mation to the cone COP(K) given by

TAK)

WeS, wr-o,Zes

VeSS @R reR
—lyesk . V=W+18+PT3P+W,3>0,7>0

W:%(fﬂcpﬁ+ﬁTcpTﬁ),

Rows(®) € SOC(K;)
(16)
where the matrix S is defined as
~ ~T o Kl ~T ~
S:=R exegR— > R ese/R. 17)

=1

We now establish that Z.A(K) is a subset of COP(K). To
this end, we make the following observation.

Lemma 4. We have u™Su > 0 for all u € K.
Proof. See the e-companion. O

Using Lemma 4, we are now ready to prove the con-
tainment result.

Proposition 1. We have TA(U) € COPU).

Proof. See the e-companion. O
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Replacing the cone COP(K) in (9) and (11) with the
inner approximation Z.A(K) yields conservative semi-
definite programs. We denote their optimal values as
ZfA and ZI%, respectively. The following proposition
summarizes our current findings.

Proposition 2. We have Z* < Z5, and Z° < 773,

An alternative conservative approximation scheme
is proposed by Ben-Tal et al. (2009) in view of the
approximate S lemma (Ben-Tal et al. 2009, theorem B.3.1).
In this case, the corresponding inner approximation for
the cone COP(K)) is given by

AS(K)

o 1>0,0eRY, We S, W0
={VesStt: o~ 1o N
V=W+TS+§(P Oey ., +ex10'P)

(18)

where S is defined as in (17). Replacing the cone COP(K)
in (9) and (11) with AS(K) yields conservative semidefi-
nite programs whose optimal values are denoted as Z4q
and Z$;, respectively. We now show that AS(K) is infe-
rior to Z.A(K) for approximating COP(K).

Proposition 3. We have AS(K) C ZA(K).

Proof. The inclusion follows by simply setting 2 =
1(Bef,, +ex10") and W =0 in cone ZA(K). O

Lastly, another conservative approximation scheme
naturally arises in polynomial decision rules (Bertsimas
et al. 2010). Here, one first imposes the restriction that
the recourse function y(-) in (1) is a polynomial of fixed
degree d. Because optimizing for the best polynomial
decision rule is generically NP hard, one resorts to
another layer of approximation in semidefinite pro-
gramming. To this end, consider a degree d polynomial
decision rule. For problems with nonfixed recourse, we
find that each semiinfinite constraint in (1) reduces to
the problem of checking the nonnegativity of a polyno-
mial of degree d =d + 1 over the set U/, whereas for pro-
blems with fixed recourse, it reduces to the problem of
checking the nonnegativity of a polynomial of degree
d =d over the set U. A sufficient condition would be if
the polynomial admits a sum-of-squares (SOS) decom-
position relative to ¢/, which is equivalent to checking
the feasibility of a semidefinite-representable constraint
system whose size grows exponentially in d. We refer
the reader to Bertsimas et al. (2010) for a more detailed
discussion about the SOS decomposition and its param-
eterization. When the corresponding polynomial in the

semiinfinite constraint is of degree d =2, then one can
show that the resulting constraint system coincides with
that from the approximate S lemma. To this end, let chd)s
be the optimal value of the approximation when polyno-

mial decision rules of degree d are employed. Then, we

have ZL's = Z4; and Z12 = Z%.. Increasing the degree
of the polynomial decision rules helps improve approxi-
mation quality at the expense of significant computa-
tional burden and numerical instability, even if we
merely raise the degree by one (that is, when we employ
quadratic decision rules for problems with nonfixed
recourse or cubic decision rules for problems with fixed
recourse).

The findings of this section culminate in the follow-
ing theorem.

Theorem 4. The following chains of inequalities hold:

ZF < 7§ <755 = 7%

Q Q Q _ 7P
sos and Z¥ < Zp < Zig = Zgl

sos-
3.2. Exact Reformulation

We identify two cases where the semidefinite-based
approximations are equivalent to the respective coposi-
tive programs. First, in view of the exact S lemma, one
can show that the inner approximation Z.A(K) coincides
with COP(K) whenever the cone K in (15) is described
by only a second-order cone constraint Ruesoc (Kp).

Proposition 4 (S Lemma). If K = {u e R“*! : Ru € SOC
(Kp)}, then

COP(K) =T AK) = AS(K):={VeS: V=18, 7t>0},

where S € S5 is defined as in (17).

Another exactness result arises when linear con-
straints are present in K, and they satisfy the following
condition.

Assumption 3. If u € R*! satisfies Ru € SOC(K,) and
p;u=0 for some { € [K,], then u € K.

The condition stipulates that the cone {u € RX*!:
Rue SOC(K,,)} must not contain points in the hyper-
plane p/u =0 that do not belong to K. Applying the
restriction ugs; =1, we find that the implied uncer-
tainty set for the primitive vector (u1,...,ux)" is given
by an intersection of a ball and a polytope whose facets
do not intersect within the ball.

Example 5. Consider the set

U := {uesz{l}:u%+u§s1, up 2—%,1415%}.
The two lines u; = —% and uy :% do not intersect as
they are parallel. Thus, Assumption 3 holds for this
uncertainty set.

We state the second exactness result in the follow-
ing proposition.

Proposition 5 (Theorem 5 in Burer 2015). If Assumption
3 holds, then COP(K) = ZA(K).

We remark that this positive result holds only for the
proposed inner approximation Z.A(K) and not for the
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cone AS(K), which is obtained from applying the ap-
proximate S lemma. Thus, in general, we may still have
AS(K) € COP(K).

We conclude the section with the following theorem
regarding the exactness of the semidefinite programs.

Theorem 5. If the cone K is given by {u e R<*' : Ru e
SOC(K,)} or if it satisfies Assumption 3, then Z&, = Z*
and 7% = 7°.

3.3. Approximation Quality of the Enhanced
Decision Rule

We now restrict our study to the case of two-stage
robust optimization problems with fixed recourse and
with piecewise linear decision rules. In this setting, lin-
ear programming approximations have been proposed
for the decision rule problems (Chen and Zhang 2009,
Georghiou et al. 2015). If, in addition, the uncertainty
set U is given by a hyperrectangle and each folding
direction g, is aligned with a coordinate axis, then these
linear programs become exact (Georghiou et al. 2015).
Unfortunately, for generic uncertainty sets, the result-
ing approximation can sometimes be of poor quality.

Example 6 (Partition Problem). Consider the following
instance of the IP feasibility problem (Example 4),
which corresponds to the NP-hard partition problem.
Given an input vector ¢ € NK, the problem asks if one
can partition the components of c into two sets so that
both sets have an equal sum. We can reduce this prob-
lem to the instance of the IP feasibility problem that
seeks for a binary vector u € {—1,1} within the poly-
tope U={ue [-1,1]%:cTu=0}. If a partition exists,
then the components of u# will denote the indicator
function of the two sets. For example, if ¢=(1,2,3)",
then the possible solutions are u= (1,1, -1)" or u=
(=1, =1,1)". On the other hand, if ¢ = (2,2,3)", then no
such solution exists, and necessarily, the optimal value
of the corresponding norm maximization problem is
strictly less than K=3. In particular, one can show that
the optimal value is 2.5, which is attained by the solu-
tionu = (0.5,1,1)".

For the input ¢ =(2,2,3)", the best piecewise linear
decision rule approximation in the literature yields a
conservative upper bound of three, which fails to cer-
tify the nonexistence of binary solutions. On the other
hand, the semidefinite programming approximation
of the equivalent copositive program yields a tighter
upper bound of 2.54 and thus, provides a correct cer-
tificate. As the corresponding two-stage problem has
fixed recourse, our scheme allows us to utilize qua-
dratic decision rules. In this case, the resulting semide-
finite program yields the best optimal value of 2.5.

The example highlights the surprising fact that, even for
seemingly trivial low-dimensional problem instances, one
necessarily has to go through the copositive programming

route in order to obtain a satisfactory approximation for
the piecewise decision rule problem.

We now formally establish that the semidefinite
programming approximation obtained from applying
piecewise linear decision rules is never inferior to the
state-of-the-art scheme by Georghiou et al. (2015). In the
following, we briefly discuss their setting and formulate
the corresponding lifted uncertainty set ¢{’. For cleaner
exposition, we primarily consider the setting of piece-
wise linear decision rules with axial segmentation where
each folding direction is aligned with a coordinate axis.
We remark that all results extend to the case with gen-
eral segmentation, albeit at the expense of more cumber-
some notation (see section 4.2 of Georghiou et al. 2015).
To this end, let the interval [uy, k] be the marginal sup-
port of the kth uncertain parameter. For each coordinate
axis 1y, we generate L piecewise linear mappings in view
of the prescribed break points hy 1 = uy <hyo <---<hy
< Uy, as follows:

Fri(u)
=max{0, ux — g, ¢} — max{0, ux — Iy 11} VEE[L]
(19)
To simplify the notation, we assume that there are

exactly L mappings for each coordinate axis. Such a
construction leads to the lifted uncertainty set

U :={(w,u) e RE X U wy ¢

zﬁk,f(”)

Note that each mapping in (19) can be defined through
the difference F k1) = Fi /(1) — F 111 (1), where the func-
tions Fy,;(u) = max{0,f, ,u}, £ €[L], assume the stan-
dard form described in (12), with fk, o= (ex, —hi ),
¢ € [L]. By our construction of ¢’, we can further impose
that Fy 1 () = uy — uy and Fy, 41 (u) = 0.

Using Theorem 3, the lifted set in (20) can be refor-
mulated as

ul

Vk e [K] € [L]}. (20)

z € RK(+D)

Wi, 0 = Zk,t — Zk, t+1
Vk e [K] ¢ e [L]

Zk1 = Ug — U, Zk, 141 = 0
Vk € [K]

Z, ¢ 2 U — hy, ¢, U 2 zg, ¢
Vk e [K]€e[L+1]

zk, (2,0 — g + I ) =0
Vk e [K]€e[L+1]

={ (w,u) e R x U -

(21)

In view of our discussion in Section 2.4, an equivalent
copositive program can thus be derived for the piecewise
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linear decision rule Problem (PL). We denote by ZE\'C
the optimal value of the corresponding semidefinite pro-
gramming approximation. Alternatively, in Georghiou
et al. (2015), a tractable outer approximation of U’ is
derived as follows:

U
w—u=y wir Vke[K]

te[L]
=< (w,u) e RN XU : Ty — g > Wiy Vke[K]

(Mg, e31 — i O )wi -1 = (hy o — i g1 )wy. ¢
Vke|[K]Ce[L]\{1}
(22)

By replacing the set &/’ with &/*" in (2.4), one can obtain a
linear decision rule approximation problem with a poly-
hedral uncertainty set, which can be reformulated to a
tractable linear program if the recourse matrix 55'(v) is
fixed. We denote by ZZ5, its optimal value. We now
examine the relation between ZIF and ZZ5, . To this
end, by using the copositive programming techniques,
we first propose a looser outer approximation ¢/ of the
lifted set &’ and establish that the set is still tighter than
U™. We define this outer approximation as
zeRKED
ZHes8, 750 Vke[K]Ce[L]
Vke[K]te[L]
Zk =k — Uk, 2141 =0 Vk€E[K]
[

Zye2up—hy o, U=z VkeE[K]CE[L+1]

Wk, =Zk,t —Zk,+1

7 3= Z8 s+ 2 e1 (i -1 — Tk, £41) 20
Vke[K]Ce[L]
78 5= ZE s+ 2z e (i e — T 041) 20
U =< (w,u)
KLy
ERTXU: 7k 7K 4z 0 (a1 — i 1)
+Z5 ) —Zh s+ 2 (e — T £41) 20
Vke[K]Ce[L]
7K 3= Z% s+ 2z p1 (i e — T e-1)
+Z5 =75 )+ 2z (o1 — by ) 20
Vke[K]le[L]
Z8 5 —Z5 o+ 21 o (g 01 — it ) 20
Vke[K]Ce[L)]

which is a concise set involving O(KL) semidefinite
constraints of size 3x3. The following proposition
describes the chain relation of I/, U*, and U™

Proposition 6. We have U’ CU* CU™.
Proof. See the e-companion. [

Finally, we are ready to state the main result of this
section in the following theorem.

vke[K]te[L] ¢

Theorem 6. We have Z[F < ZZ5 ..
Proof. See the e-companion. O

The proof of Theorem 6 imparts the favorable insight
that a tighter approximation can already be obtained
by considering a concise set involving O(KL) semidefi-
nite constraints of size 3 x 3.

4. Copositive Reformulation for

Multistage Decision Rule Problems
We now extend the proposed copositive programming
approach to multistage robust optimization problems
of the following generic form:

T
inf ¢"x + sup Zdt(ut)Tyt(ut)

ueld j=1

- (23)
st AW )x+ > Byu')y, ') = h(n) Yuel

t=1
X € X, yt € th+1,Nt Vt e [T]

The vector u' in (23) collects the history of observations
up to time £, and it is defined as

t
' =w,...u,1) e RETL

where u; € RX contains uncertain parameters observed
attimet e [T]and K := 3" _, K,. Here, we have appended
the constant scalar 1 at the end of the vector so that
affine functions in (w1, ..., u;) can be represented as lin-
ear functions in u!, whereas quadratic functions in
(u1,...,u) can be formulated compactly in a homoge-
nized manner. We set the vector of all uncertain para-
meters in (23) to u := u” € RX*!, with K= K”. As in the
two-stage setting, the problem parameters A(u!), Bi(u'),
di(u'), and h(u) are described by linear functions in their
respective arguments as follows:

K'+1 N K'+1 .
A(') = Z[ul]kAkz Bi(u') := Z[ut]kBk,tr
k=1 k=1

di(u') := D!, h(u) := Hu,

where A\k S R]XM, ﬁk,t [S R]XN’, ﬁt = (;i\l,tr- . .,HNht)T S
RNXEKHD) and H := (ﬁl,. ) .ﬁ])T € RIXK+D) gre determin-
istic data.

The decision vector y,(u') € RM in (23) is chosen after
the realization of uncertain parameters up to time ¢ but
before the revelation of future outcomes {us}scs11,7)-
The objective of Problem (23) is to find a here-and-now
decision x € X and a sequence of nonanticipative deci-
sion rules {y,(-)}+r) that are feasible to the semiinfinite
constraint in (23) and minimize the total cost ¢'x +
SUp,,qy, Sy di(u') Ty, (u'). Problem (23) constitutes an
extension of the two-stage Problem (1) to the multistage
setting, and as such, it is computationally challenging
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to solve. To this end, we endeavor to derive copositive
programming reformulations in view of linear and
quadratic decision rules. Tractable semidefinite pro-
gramming approximations can then be derived using
the techniques discussed in Section 3. One can further
enhance these approximations by utilizing the piece-
wise linear and piecewise quadratic decision rules dis-
cussed in Section 2.4.

As in the two-stage setting, we assume that the
uncertainty set U/ is defined as in (2) and satisfies both
Assumptions 1 and 2. In the following, we use the lin-
ear truncation operator II; : RX*! — RK'*1 that satisfies

Iu= ut Yue RK+1.

We first examine the case when the multistage robust
optimization problem has nonfixed recourse. Here, we
apply the linear decision rules

y,w') = V' = Y/ ILu,

for some coefficient matrix ¥; € RN*K*D_ This yields
the following conservative approximation of Problem
(23):

T
ZME = infcTx + sup Zdt(ut)TYthu
ueld =1

T
s.t. A(ul)x + ZBt(ut)Ythu >h(u) Yueld
=1

x€X, Y, e RVEHD) yre|T). (ML)

Problem (ML) shares the same structure as its two-
stage counterpart (£). Hence, by employing the same
reformulation techniques described in Section 2.2, we
can derive a polynomial-size copositive program for
the problem. For notational convenience, in the follow-
ing, we define the matrices

ejTﬁl
(t)j — : e RK+DM
e]-TAKul
ejTELt
Aji= € RK+DxN: vt e [T] V€[],
ejTEKf+1,t

and we define the affine functions

1 ~ ~
Q]'(x, Yy,..., YT) = EHI(jxe;(—1+1 + eKlJrle@]T)Hl
1< ~ ~
+ EZH?(A],th + Y:A]‘,t)l—[t
t=1

1 ~ ~
— E(hje;(:_l + eKHh].T) Vj € U]

The equivalent reformulation is provided in the follow-
ing theorem. We omit the proof as it closely follows
that of Theorem 1.

Theorem 7. Problem (ML) is equivalent to the following
copositive programnt:

ZME —infcTx + A

It A -
st Aexsief, — EZH:(DfYt + Y[ DI,
t=1

I
+ZO{Z‘C,' € COP(IC)
=1
Qi(x, Yq,..., Y1) — mjexiieg,,

I
—Y e[ B,Ci € COP(K) Vje[]]
i=1

AeR,xeX, acR, meR, B eR
Vi€ [J], i € RN v e [T).
(24)

Next, we consider the case when the multistage
problem has fixed recourse (i.e.,

dw)=d, and Bu')=B,  Vu' eRK"! vte[T),
where Et € RN and B € R are the deterministic vec-
tor and matrix, respectively). Here, we can apply the
quadratic decision rules

[y@")],, =)' Q,, «' =)' Q, Mu  Vn [N,
for some coefficient matrices Q, , eSKf“,nte [N¢],

t € [T]. This yields the following conservative approxi-
mation of Problem (23):

T N;

ZMC =inf c'x+sup Zza\m,t(ntu)TQm,thu

uell =1 n,=1
T N;

s.t. (T u)T@jx + ZZ (b, (M) " Q,,, M)

t=1 m=1
>h(u) Yueld
xeX,Q, €SN Vie[T] Y e[N].
(MQ)
Problem (M L) shares the same structure as its two-stage
counterpart (Q), which indicates that it is also amenable

to an equivalent copositive programming reformulation.
To this end, we define the affine functions

1 ~ o~
L, Q1. Qg 1) = 510 (Opxef  + ex1x 0L

_E(EK_H”I]T — h]'e}(r+1) + ZZ b]',n[H;r
t=1n=1
Q,, Al viell
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The equivalent reformulation is provided in the follow-
ing theorem, whose proof is omitted as it closely fol-
lows that of Theorem 2.

Theorem 8. Problem (M Q) is equivalent to the following
copositive program:

ZMC =min ¢"x+A

T N
st Aexaefy— > > [dn, 1] Q, 1]

t=1 m;=1

I
+ ZaiCi €COP(K)
i=1
Li(x, Q11+, Qny 1) — Tj@K+1€R 4

1
—Y e/ B1CieCOP(K) Vjel]]

i=1
AER,xeX, acR!, meR, B;eR Vje[]]
Q,, e8! Vte[T] Vn, € [Ny].

(25)

Remark 2. In some multistage robust optimization pro-
blems, we may observe that some of the recourse deci-
sion variables are multiplied with uncertain parameters,
whereas the remaining recourse decisions are multiplied
with deterministic terms. In such situations, we can
apply quadratic decision rules to the latter, which yields
stronger decision rule approximations. With minimum
modification, we can reformulate the decision rule prob-
lem into an equivalent copositive program similar to
(25). We omit the detailed reformulation here.

5. Numerical Experiments

In this section, we assess the effectiveness of our coposi-
tive programming approach over three applications in
operations management. The first example is a multii-
tem newsvendor problem, which can be reformulated
to a two-stage robust optimization problem with fixed
recourse. The following two examples are inventory
control and index tracking problems, which corre-
spond to multistage robust optimization problems
with nonfixed recourse. All optimization problems are
solved using MOSEK 8.1.0.56 (ApS 2016) via the YAL-
MIP interface (Lofberg 2004) on a 16-core 3.4-GHz
Linux PC with 32 GB of RAM. The codes for these three
examples are available at https://github.com/guxu-
iowa/OR-MSRO.

5.1. Multiitem Newsvendor
We consider the following robust multiitem newsvendor
problem studied in Ardestani-Jaafari and Delage (2021):

N
111§’x 1?61%1 ;(rn min(x,, &,) — c,x, — symax(&,, — x,,,0)).
(26)

Here, N represents the number of products; x is the vec-
tor of order quantities; & is the vector of uncertain

demands; and r, ¢, and s are the vectors of sales prices,
order costs, and shortage costs, respectively. We assume
that the products do not have a salvage value, and the
salvage value is set to zero. Problem (26) can be refor-
mulated as the two-stage robust optimization problem
given by

N

max min Zyn €3]

xy() 2 L
st. yn(&) < (rn—cu)xn —1u(xn — &) EEE, Vne[N]
Yn(&) < (rn—cu)xy —su(&y —xn) E€E, Vne[N]
x=>0.
(27)
In this problem, the uncertainty set is specified through
a factor model defined as

g = {geRN: §=g+Diag(§)F§, }
CeRY, Wl <1 1Eh <pf

where { is a vector comprising all factors, F € S
the factor loading matrix, and p < N is a scalar that con-
trols the level of conservativeness. The associated cone
K related to this uncertainty set is written as

: E=ET+ Diag(/f\)F g }
CeRY, Nl <7, 1 < p7

RNXN i

K= {(§,T)€RN xR,

As the problem has fixed recourse, we can apply the
QDR scheme proposed in Section 2.3 and solve the
semidefinite approximation, which results from repla-
cing the copositive cone COP(K) with the inner approx-
imation ZA(K) defined in (16). We compare our QDR
scheme with the one proposed by Ben-Tal et al. (2009)
(BGGN), where we replace the cone COP(K) with the
inner approximation AS(K) defined in (18), with the
polynomial decision rule scheme of degree 3 (PDR3),
and with the piecewise linear decision rule scheme pro-
posed by Georghiou et al. (2015) (GWK). In addition,
we also compare our method with state-of-the-art
schemes for two-stage robust optimization problems
with fixed recourse: the method COP described in Xu
and Burer (2018) and the method AJD described in
Ardestani-Jaafari and Delage (2021). We note that these
two methods generate the same solutions with compa-
rable computational times.

All experimental results are averaged over 100 ran-
dom instances. We utilize the mechanism in Ardestani-
Jaafari and Delage (2021) to set up the parameters and
to generate the random instances. For each instance, we
consider n=>5 items and set r = 80e and p = 60e. We
further sample the vector ¢ uniformly at random from
the hypercube [40,60]. For the uncertainty set, we set
p=4 and £ =60e, whereas the vector & is generated
uniformly at random from [50,60]°. We sample each
entry of the matrix F uniformly from [—1,1] and nor-
malize each row so that its sum is equal to one. Table 1


https://github.com/guxu-iowa/OR-MSRO
https://github.com/guxu-iowa/OR-MSRO
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Table 1. Relative Gaps (in Percentages) Between the
Alternative Approximation Schemes and QDR

Approximation method

Statistic BGGN GWK Ccor AJD PDR3
10th percentile 26.5 26.5 2.3 2.3 0
Mean 52.0 52.0 6.0 6.0 0
90th percentile 87.3 87.3 9.7 9.7 0

reports several statistics of relative gaps between the
optimal value of QDR and those of the other alternative
methods. We find that QDR provides a substantial
average improvement of 52% over BGGN and an aver-
age improvement of 22.3% over GWK. Rather surpris-
ingly, we also find that QDR outperforms the state-of-
the-art COP and AJD schemes by 6%. Table 1 indicates
that QDR generates the same performance as the less
tractable PDR3. Table 2 reports the average computa-
tion times of the four methods. We observe that QDR
can be solved as fast as BGGN, GWK, COP, and AJD,
whereas it takes 40 times as long to solve PDR3. In sum-
mary, we may thus conclude that QDR provides high-
quality solutions efficiently.

Remark 3. Because COP corresponds to a semidefinite
programming approximation of the exact copositive
reformulation of the newsvendor problem, it is indeed
surprising that QDR can outperform COP. For the tempo-
ral network example described in Xu and Burer (2018)
where the uncertainty set is given by a one-norm ball,
one can formally prove that QDR performs better than
COP. In general, however, we cannot prove that one
approximation is tighter than the other or vice versa.

We also assess the quality of the first-stage decisions
(order quantities) obtained from the different approxi-
mation methods by evaluating their true worst-case
profits. Because the profit function in (26) is concave, the
worst-case profit of any fixed decision occurs at a
demand scenario from an extreme point of the uncer-
tainty set 2. Thus, we can enumerate all extreme points
of the uncertainty set and find the one that minimizes
the profit to determine the worst-case scenario profit of
each first-stage decision. In general, it is computationally
prohibitive to enumerate the extreme points of a polyhe-
dral set. However, it is manageable for our case because
there are only a few variables and constraints involved.
Table 3 reports the statistics of relative gaps between the
worst-case scenario profit of our method and those of
other methods. We find that the proposed QDR scheme
provides substantial average improvements of 36.3%,

Table 2. The Average Computation Times (in Seconds) of
the Different Approximation Schemes

BGGN GWK cor AJD QDR PDR3

Time 1.68 1.75 1.61 1.59 1.62 62.17

Table 3. Relative Gaps (in Percentages) of the Worst-Case
Scenario Profits Between the Alternative Approximation
Schemes and QDR

Approximation method

Statistic BGGN GWK Ccop AJD PDR3
10th percentile 14.5 14.5 2.1 21 0
Mean 36.3 36.3 47 47 0
90th percentile 76.2 76.2 9.3 9.3 0

36.3%, 4.7%, and 4.7% over BGGN, GWK, COP, and
AJD, respectively.

Finally, we analyze the optimal decision rules from
the different approximation methods by considering a
two-item instance of the robust newsvendor pro-
blems. Figure 1 visualizes the decision rules from the
different methods as a function of the demand &, of
the second item. We observe that the quadratic func-
tion from QDR and the polynomial function from
PDR3 coincide with the optimal decision rule (opti-
mal) at the extreme points of the uncertainty set. This
implies that QDR and PDR3 can generate optimal
order quantities as their decision rules anticipate the
worst-case demand scenarios on par with the optimal
one. On the other hand, BGGN generates suboptimal
order quantities as its decision rule function does not
coincide with the extremes of the optimal decision
rule. We note that the COP method does not generate
any decision rules. We further remark that GWK and
BGGN return the same function, and thus, we only
plot the one from BGGN.

5.2. Inventory Control

We next consider a multistage robust inventory control
problem with multiple products and backlogging. A
stochastic programming version of the problem is
described in Georghiou et al. (2015). In this problem,
we must determine the sales and order policies that
maximize the worst-case profit over a planning horizon
of T time stages. At the beginning of each time stage ¢,
we observe a vector of risk factors & that explains the
uncertainty in the current demand D; ,(§;) and the unit
sales price R; (&) of each product p € [P]. After § is
revealed at time stage {, we must determine the quan-
tity s, of product p to sell at the current price, the
amount o , of product p to replenish the inventory, and
the amount by, of product p to backlog to the next time
stage at the unit cost C;. The sales s; , of product p at
time stage ¢ can only be provided by orders placed at
time stage t — 1 or earlier. We denote the inventory level
at the beginning of each time stage t by I;. For simplic-
ity, we assume that one unit of each product occupies
the same amount of space and incurs periodically the
same inventory holding costs C;,. The inventory level is
required to remain nonnegative and is not allowed to
exceed the capacity limit I throughout the planning
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Figure 1. (Color online) Comparison of the Decision Rule Functions from QDR, BGGN, PDR3, and GWK
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time horizon. The inventory control problem can be
stated as the MSRO problem

T P
max min DO R p(E st p(8) — Cubr (€)= Cali p(€)]

R

st Iy p(E)=Iop —51,p(€),b1p(€)=D1 (&) —s1,(£)
VéeE, VpelP]

Lp(&) =L 1, (E ) +o,p(E) —s1p(&)
VéeE, VpelP], Vie[TI\{1}

bt,p(gt) = bt—l,p(gtil) +Dt,p(§t) - St,p(ft)
VéeE, VpelP], Vie[T]\{1}

Ot,p(gt)lst,p(gt)/bt,p(gt)rlt,p(gt) 2 O/It,p(gt) <I
VEeE, Vpel[P], Vte[T],
(28)

where Iy, are fixed to prespecified quantities for all
p € [P]. The product prices are defined as

Rip(&)=4+ay,p& 1+ a0+ a3 pEs 3+ a,péy s

with factor loadings a1, a2, p, as,p, a4, € [—1,1]. Simi-
larly, we set the demands to

2n(t —1 1
Dyp(&) =2 +sin <n(12)) +5 [B1, ,&01 + o, pEt,2

+P5 &3+ Py plral

&

forp=1,...,P/2and

2n(t —1 1
Dy, ,(&) =2+ cos (%) +5 [ﬁl,pét,l + By, pSt,2

+ ﬁ3,p‘£t,3 + ,84,pét,4]

forp=1/P+1,... ,P with ffictor loadir.1gs ﬁ1,pfﬁ2,p/ﬁ§,p/
B, p € [—1,1]. The sine (cosine) terms in the expression

reflect our expectation that the demands of the first
(last) P/2 products are high in spring (winter) and low
in fall (summer). We assume that the vectors of risk fac-
tors & € R* forall t=1,...,T are serially independent
and uniformly distributed on [—1, 1]% Formally, the
uncertainty set is defined as

E={(E=£,....£) & <1 Vte[T]}
The associated cone K is written as follows:
K:={(&1) eR" xRy : ||gllo <7 VEE[T]}.

In all numerical experiments, we generate 25 random
instances of the inventory control problem with p=4
products. We utilize the mechanism in Georghiou et al.
(2015) to set up the parameters and to generate the ran-
dom instances. We set backlogging and inventory hold-
ing costs identically to C, = Cj, = 0.2. We further set the
initial inventory level to I, = 0 and the inventory capa-

city to I =24. We sample the factor loadings aj,,,
a2,p, Q3,p, 04, p and ﬁl,p’ﬁZ,p’lB3,p’ﬁ4,p uniformly from the
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Table 4. Relative Gaps (in Percentages) Between the Alternative Approximation Schemes and PLDR

Number of time stages

Method and statistic 1 3 6 9 12 15 18 21 24
BGGN
10th percentile 3.5 9.8 1.7 18.8 8.5 4.6 24.8 23.5 6.6
Mean 17.3 21.0 20.8 42.7 479 43.7 99.2 129.3 191.2
90th percentile 39.2 38.3 36.8 70.6 100.5 94.6 154.9 225.4 762.7
PDR3
10th percentile 0 0 — — — — — — —
Mean 0 -0.1 — — — — — — —
90th percentile 0 -02 — — — — — — —

interval [—1,1]. As Problem (28) has nonfixed recourse,
we employ linear decision rules and further enhance
them by applying the piecewise scheme discussed in
Section 2.4, where the folding directions are described
by the standard basis vectors ey, € € [4]. This gives rise
to a semidefinite approximation, which results from
replacing the copositive cone COP(K) in the equivalent
copositive program with the inner approximation
ZA(K) defined in (16). We compare our piecewise lin-
ear decision rule (PLDR) scheme with the one proposed
by Ben-Tal et al. (2009) (BGGN), where we replace the
cone COP(K) with the inner approximation AS(K)
defined in (18), and with PDR3.

We test the different schemes on problem instances
with planning horizons T=1, 3, 6, 9, 12, 15, 18, 21, and
24. Table 4 reports the relative gaps between the opti-
mal values of PLDR and those of the other two
schemes, whereas Table 5 shows the average computa-
tion times for the three approximation schemes. Note
that PDR3 can only solve instances up to T = 3 before it
starts experiencing numerical issues. As illustrated in
Table 4, the relative gap between PLDR and BGGN
increases dramatically with the planning horizon,
where the largest average improvement of 191.2% is
observed for T'=24. Meanwhile, PLDR can generate the
same results as PDR3 in the case of T=1 and remain
very close to PDR3 for T=3. As illustrated in these
tables, our proposed copositive scheme can return solu-
tions that are of very high quality without sacrificing
much computational effort.

We also assess the quality of the decision rules
obtained from the different approximation methods

by evaluating their actual worst-case profits. Because
the inventory control problem has nonfixed recourse,
the worst-case profit of a fixed decision does not neces-
sarily correspond to an extreme point scenario of the
uncertainty set E. Hence, we design a simulation pro-
cedure to estimate the worst-case profit as follows. We
randomly generate 10,000 samples from the uncer-
tainty set. Each sample point corresponds to a trajec-
tory realization of the demands and prices over the T
periods. The approximate worst-case profit is then
given by the sample point that generates the smallest
profit. Table 6 reports the statistics of relative gaps
between the worst-case scenario profit of our method
and those of BGGN and PDR3. We find that the pro-
posed PLDR scheme still provides substantial average
improvements over the BGGN method.

5.3. Index Tracking

For the last example, we study a dynamic index track-
ing problem, which aims at matching the performance
of a stock index as closely as possible with a portfolio of
other financial instruments over a finite discrete plan-
ning horizon T. A stochastic programming version of
the problem is described in Hanasusanto and Kuhn
(2013). To this end, we consider five stock indices
where the first four constitute the tracking instruments,
whereas the last one corresponds to the target index.
Letée Ri be the vector of total returns (price relatives)
of these indices from time stage t —1 to time stage t.
Here, &1, &2, &3, and &; 4 are returns of the four
tracking instruments, whereas &; 5 is the return of the
target index at time stage t. The robust dynamic index

Table 5. The Average Computation Times (in Seconds) of the Different Approximation Schemes

Number of time stages

Method 1 3 6 9 12 15 18 21 24
PLDR 0.02 0.29 2.31 9.66 34.60 99.29 248.40 541.75 1,050.91
BGGN 0.01 0.04 0.33 1.23 476 14.48 36.85 94.49 191.30

PDR3 0.13 28.17 — —_
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Table 6. Relative Gaps (in Percentages) of the Simulated Worst-Case Scenario Profits Between the Alternative Approxima-

tion Schemes and PLDR

Number of time stages

Method and statistic 1 3 6 9 12 15 18 21 24
BGGN
10th percentile 1.7 6.9 15 12.8 6.9 37 22.3 19.4 6.1
Mean 15.3 19.6 17.9 35.9 428 41.6 79.2 119.9 181.7
90th percentile 34.7 36.1 34.5 61.7 89.1 90.3 132.8 187.8 692.4
PDR3
10th percentile 0 0 — — — — — — —
Mean 0 -0.1 — — — — — — —
90th percentile 0 -0.1 — — — — — — —

tracking problem is stated as follows:

T
min r?eapx Z|§t,5 —si(&)]
=

st x>0,e x<1,5(&)=E&x (29)
s(€) =& x (£ Ve [TI\{1}

e'x(&) <s(&), x:(&) =0 Vte[T].

The decision variable s;(&) € R, determines the value
of the tracking portfolio at time stage f. Here, we aim to
rebalance the portfolio allocation vector x(£') € R* of
the four tracking instruments such that s;(£') is as close
to &; 5 as possible throughout the planning time hori-
zon. The uncertainty set E in (29) is specified through a
factor model as follows:

E=f+F(, [ eR Vtem}

o {g: G808 <, gl <p vee(T)

The associated cone K is accordingly written as

& =fr+Fg, { eR® Vte[T]}

K:={&1)eRY xR, :
16l <7 Gl < pT VEE[T]

Because the objective function of (29) is not linear, we
introduce auxiliary variables w;(-) to linearize each
absolute term. This yields the multistage robust linear
optimization problem

T
min max wa(gt)
&eE =)
st x>0,e"x<1,5(£)=&x
s&) =& x (87" Vee[TI\{1}
e x(&) <si(&), x(£) 20 Vie[T]

Wi(E) > &5 — (&), w(E) 2 s/(&) — &5 VEe[T].
(30)

As Problem (30) has nonfixed recourse, we apply linear
decision rules to the decision variables x(-), t€[T],
which are multiplied with some uncertain parameters.
On the other hand, we may utilize quadratic decision
rules on s(-) and wy(-), t € [T] because they are not mul-
tiplied with any uncertain parameters. With minimum
modification, the copositive approach introduced in
Section 4 can be applied, and accordingly, we can solve
the semidefinite approximation obtained from replacing
the copositive cone COP(K) with the inner approxima-
tion Z.A(K) defined in (16). We denote our approach by
LQDR. We compare LQDR with the scheme proposed
by Ben-Tal et al. (2009) (BGGN) where we replace the
cone COP(K) with the inner approximation AS(K)
defined in (18) and with PDR3.

All experimental results are averaged over 25 ran-
domly generated instances. We utilize the mechanism
in Hanasusanto and Kuhn (2013) to set up the para-
meters and generate the random instances. For each
instance, f is set to the vector of all ones, whereas each
entry of F is sampled uniformly from the interval
[—1,1]. We further normalize each row of F such that
the sum of the absolute values in each row equals one.
We test the different schemes on problem instances
with planning horizons T=1, 3, 6, 9, 12, 15, and 18.
Note that PDR3 can only solve instances up to T=3.
Table 7 reports the statistics of relative gaps between
the optimal values obtained from LQDR and those
from the two alternative approximation schemes,
whereas Table 8 shows the average computation times
for all three approximation schemes. As indicated in
Table 7, the relative gap between LQDR and BGGN
increases with the planning horizon, where the largest
average improvement of 18.2% is observed for T=18.
On the other hand, LQDR generates similar perfor-
mance to PLDR3 but with significantly less computa-
tional effort.

We also assess the quality of the decision rules
obtained from the different approximation methods by
evaluating their true worst-case risks. As in the
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Table 7. Relative Gaps (in Percentages) Between the
Alternative Approximation Schemes and LQDR

Number of time stages

Method and statistic 1 3 6 9 12 15 18

BGGN
10th percentile 0.0 1.0 19 22 47 18 25
Mean 0.0 71 125 118 142 170 182
90th percentile 00 217 294 290 338 301 342
PDR3
10th percentile 0.0 00 - - - - -
Mean 60 -01 — - - — —
90th percentile 00 -04 — — - — —

inventory control problem, the index tracking problem
has a nonfixed recourse. We adopt the same simulation
procedure by using 10,000 sample trajectories from the
uncertainty set to estimate the worst-case risks. Table 9
reports the statistics of relative gaps between the worst-
case scenario risk of our method and those of BGGN
and PDR3. We find that the proposed PLDR scheme
provides significant average improvements over the
BGGN method.

6. Concluding Remarks

Generic MSRO problems (with nonfixed recourse) have
so far resisted strong decision rule approximations. This
paper leveraged modern conic programming techni-
ques to derive an exact convex copositive program for
the linear decision rule approximation of the generic
problems. We further derived an equivalent copositive
program for the more powerful quadratic decision rule
approximation of instances with fixed recourse. These
reformulations enabled us to obtain a new semidefinite
approximation that is provably tighter than an existing
scheme of similar complexity by Ben-Tal et al. (2009).
The copositive approach further inspired us to develop
a new piecewise decision rule scheme for the generic
problems. For MSRO problems with nonfixed recourse,
we proved that the resulting approximation is tighter
than the state-of-the-art scheme by Georghiou et al.
(2015). Extensive numerical results demonstrate that
our scheme can substantially outperform existing sch-
emes in terms of optimality while maintaining scalabil-
ity when solving large problem instances. We conclude
that our proposed copositive approach provides an
excellent balance between optimality and scalability.

Table 8. The Average Computation Times (in Seconds) of
the Different Approximation Schemes

Number of time stages

Method 1 3 6 9 12 15 18

LQDR 0.03 040 5.01 329 12734 601.57 1,703.32
BGGN 0.02 0.08 0.69 5.47 24.70 75.48 226.18
PDR3 009 850 — — — — —

Table 9. Relative Gaps (in Percentages) of the Simulated
Worst-Case Scenario Risks Between the Alternative
Approximation Schemes and LODR

Number of time stages

Method and statistic 1 3 6 9 12 15 18

BGGN
10th percentile 0.0 0.1 1.2 16 42 14 19
Mean 0.0 52 104 9.7 121 137 141
90th percentile 0.0 185 242 252 31.0 274 292
PDR3
10th percentile 60 00 — — - — —
Mean 0.0 —-00 — — — — —

90th percentile 00 -03 — — — — —

We mention two promising directions for further
research. First, it would be interesting to derive a copo-
sitive programming reformulation for the piecewise
decision rule scheme that can simultaneously optimize
the best folding directions and break points. Second, it
is imperative to design a global solution approach for
MSRO problems with nonfixed recourse that leverages
the proposed decision rule schemes.
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