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Abstract. We study two-stage stochastic optimization problems with random recourse, 
where the coefficients of the adaptive decisions involve uncertain parameters. To deal with 
the infinite-dimensional recourse decisions, we propose a scalable approximation scheme 
via piecewise linear and piecewise quadratic decision rules. We develop a data-driven dis-
tributionally robust framework with two layers of robustness to address distributional 
uncertainty. We also establish out-of-sample performance guarantees for the proposed 
scheme. Applying known ideas, the resulting optimization problem can be reformulated 
as an exact copositive program that admits semidefinite programming approximations. 
We design an iterative decomposition algorithm, which converges under some regularity 
conditions, to reduce the runtime needed to solve this program. Through numerical exam-
ples for various known operations management applications, we demonstrate that our 
method produces significantly better solutions than the traditional sample-average approx-
imation scheme especially when the data are limited. For the problem instances for which 
only the recourse cost coefficients are random, our method exhibits slightly inferior out-of- 
sample performance but shorter runtimes compared with a competing approach.
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github.io/. 
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1. Introduction
Two-stage decision-making under uncertainty considers settings where recourse actions can be taken once the 
realizations of the uncertain parameters are revealed. The setting is prevalent across many problems in opera-
tions management, transportation, and finance (Birge and Louveaux 2011). The classical two-stage stochastic pro-
gramming approach for these problems assumes that the uncertain parameters are random with complete 
knowledge of the underlying probability distribution. Unfortunately, precise distributional information is rarely 
available in practice. Optimizing in view of the discrete empirical distribution based on historical samples often 
yields inferior solutions that perform poorly in out-of-sample tests (Van Parys et al. 2021). To mitigate these over-
fitting effects, recent interest has grown in using the distributionally robust optimization (DRO) methodology 
(Bertsimas et al. 2022, Cheramin et al. 2022, Delage and Saif 2022, Li et al. 2022). In DRO, one constructs an ambi-
guity set of different plausible distributions consistent with the available information. Optimal decisions are then 
obtained in view of the worst-case probability distribution taken from the ambiguity set. Hence, the DRO model 
yields decisions that can safely anticipate adverse outcomes and exhibit superior performance in out-of-sample 
tests (Delage and Ye 2010, Wiesemann et al. 2014). Despite this promising observation, two-stage DRO problems 
are generically intractable because they optimize over functions describing the recourse policies (Bertsimas et al. 
2010).
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Current solution schemes for two-stage DRO problems focus on problems with fixed recourse matrices, that is, 
the coefficients of the adaptive decisions in the constraints are fixed parameters. However, many optimization 
problems under uncertainty in finance (Rocha and Kuhn 2012), energy systems (Martins da Silva Rocha 2013), 
and inventory control (Bertsimas and Georghiou 2018) have random (or nonfixed) recourse. In this paper, we con-
sider the popular decision rule approximation scheme, which restricts the recourse variables to simple functions 
(Garstka and Wets 1974, Georghiou et al. 2019). The simplest approximation scheme is obtained using linear 
decision rules (LDR) (Ben-Tal et al. 2005, Atamtürk and Zhang 2007, Chen et al. 2007), which use affine functions 
of the uncertain parameters. Decision rules are attractive because they usually lead to tractable approximations 
for problems with fixed recourse. However, when the problem has random recourse, even the simplest LDR are 
intractable (Guslitser 2002, Ben-Tal et al. 2004).

Compared with LDR, more advanced decision rules may improve the approximation quality but are more 
computationally demanding. One can use the polynomial or piecewise affine functions of the uncertain para-
meters, respectively, denoted as polynomial decision rules (Bampou and Kuhn 2011, Bertsimas et al. 2011) and 
piecewise linear decision rules (PLDR) (Bertsimas and Georghiou 2015, Ben-Tal et al. 2020). Quadratic decision 
rules (QDR) are a class of polynomial decision rules with degree 2 that provide a reasonable tradeoff between 
solution quality and computational cost. PLDR also provide a tighter approximation than basic LDR. Although 
highly effective, these methods can only cope with two-stage DRO problems with fixed recourse.

Two-stage DRO problems have been widely studied in the literature using different ambiguity sets. Bertsimas 
et al. (2010) study two-stage DRO problems with a non-data-driven ambiguity set based on first- and second- 
order moments. Bertsimas et al. (2018) propose a modified sample-average approximation (SAA) to approximate 
a two-stage DRO model in which the ambiguity set is a confidence region of a goodness-of-fit hypothesis test. 
Jiang and Guan (2018) derive an equivalent reformulation of two-stage DRO problems with an L1-norm ambigu-
ity set and uses SAA as an approximation. Bayraksan and Love (2015) study two-stage DRO problems using the 
φ-divergence (e.g., Kullback-Leibler divergence and χ2-distance) ambiguity sets, which lead to tractability. 
Unfortunately, these papers do not provide any out-of-sample guarantees.

Although data-driven DRO problems with both random recourse costs and random recourse matrices have 
not been studied in the literature, several solution schemes for problems with random recourse have been 
devised in other settings. In robust optimization, Xu and Hanasusanto (2023) derive exact copositive program-
ming reformulations for LDR approximations; Postek and Hertog (2016) construct adjustable approximation pol-
icy for recourse variables by iteratively splitting the uncertainty set. However, the resulting decision can be too 
conservative because it does not take into account the distributional information embedded in the historical data. 
At the other extreme, Kuhn et al. (2011) apply LDR for multistage stochastic optimization, an approach that 
requires complete distributional knowledge of the random parameters. Hanasusanto and Kuhn (2018) derive 
copositive programming approximations for DRO problems with random recourse costs only in the objective 
function.

In this paper, we combine the enhanced PLDR and piecewise quadratic decision rules (PQDR) to tackle two- 
stage linear DRO problems with random recourse. To the best of our knowledge, we do so for the first time in 
the case of random recourse cost and matrices. Our work uses a partitioning scheme based on Voronoi diagrams 
(Aurenhammer 1991). The Voronoi diagrams have previously been used for an iterative finite adaptability 
approach to solving multistage robust optimization problems (Bertsimas and Dunning 2016). In a similar vein, 
Chen et al. (2020) introduce the event-wise affine adaptive solution scheme for two-stage DRO with K-means 
clustering ambiguity sets. Here, the K-means clustering is used to construct Voronoi partitions by using perpen-
dicular bisectors of cluster centroids.

The traditional reformulation technique based on standard convex duality theory (Boyd et al. 2004) is not 
applicable for the decision rule approximations because of the random recourse setting. We leverage the modern 
conic programming machinery (Burer 2012) to derive a concise copositive program (COP) that is intractable but 
admits high-quality semidefinite programming approximations. The reformulation method we use relies on the 
approach developed by Xu and Hanasusanto (2023) for robust optimization.

We construct a tailored ambiguity set with two layers of robustness: (1) an ambiguity set of conditional distri-
butions given that the random parameters fall within a partition and (2) an uncertainty set for the marginal prob-
abilities that the random parameters realize in different partitions. Given the particular decision rules that we 
use, the conditional ambiguity set for each partition can be aptly defined through the conditional second 
moments of the random parameters. We then use the χ2-distance (Ben-Tal et al. 2013) to construct the uncertainty 
set for the marginal probabilities. Thus, we design the ambiguity set by combining the concentration inequalities 
for second moments (Shawe-Taylor and Cristianini 2003) and χ2 statistics (Laurent and Massart 2000), which has 
not been considered in the context of DRO models. The ambiguity set enables us to derive a theoretical out-of- 
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sample performance guarantee that does not suffer from the curse of dimensionality, whereas the finite-sample 
guarantees for the ambiguity set based on Wasserstein metric (Hanasusanto and Kuhn 2018) are known to suffer 
from the curse of dimensionality (Esfahani and Kuhn 2018). A recent result by Gao (2022) shows that under 
some Lipschitz continuity assumptions on the loss function, the curse of dimensionality can be eliminated. How-
ever, the assumptions are not satisfied in the general two-stage settings in which the loss function is not finite 
whenever the second-stage problem is infeasible, such as the problems without complete recourse.

To reduce the computational effort of solving the conic program, we design a Benders-type decomposition 
algorithm (Benders 1962) that exploits the structure of the partitioned ambiguity set. The decomposition algo-
rithm separates the complexity of finding the optimal first-stage decision, which constitutes a tractable second- 
order cone program, and the second-stage policy, which comprises several concise copositive programs. Each 
second-stage subproblem is of a much smaller size compared with the original copositive program and can be 
solved independently within each partition. We prove that, under some regularity conditions, the algorithm con-
verges in a finite number of iterations.

To demonstrate the performance of our methodology in terms of solution quality and computational effort, we 
conduct an extensive computational investigation on network inventory allocation, newsvendor, medical sched-
uling, and facility location problems. The numerical results show that our proposed approach achieves signifi-
cantly better solution quality than SAA, especially with limited data. Even in the particular case where the 
random recourse costs appear only in the objective function, as in the network inventory allocation problem, we 
observe that our method distinctly outperforms the benchmark solution scheme proposed by Hanasusanto and 
Kuhn (2018) in terms of computational requirement, although it incurs a small out-of-sample performance loss 
compared with this approach. Additionally, our computational study demonstrates the benefit of using the 
decomposition algorithm to reduce runtimes as the number of partitions increases.

In Section 2, we introduce the risk-averse two-stage linear DRO problem. In Section 3, we use piecewise deci-
sion rules (PDR) to obtain an exact copositive programming reformulation and then derive its out-of-sample per-
formance guarantee. Section 4 develops a decomposition algorithm to solve the reformulation. Section 5 reports 
our numerical results for the network inventory allocation and newsvendor problems. We conclude and delin-
eate possible avenues for future research in Section 6. Online Appendix A includes all the proofs. Online Appen-
dix B presents the semidefinite approximations of both the copositive cones and completely positive cones. We 
discuss our numerical study for the medical scheduling and facility location problems in Online Appendix C.

2. Risk-Averse Two-Stage DRO Model
We study the risk-averse two-stage linear distributionally robust optimization problem (Rahimian and Mehrotra 
2019) using the conditional value-at-risk (CVaR) (Rockafellar and Uryasev 2000) measure. In this adaptive opti-
mization problem, a decision maker first selects a here-and-now decision x 2 X ✓ RN1 , which incurs the immedi-
ate cost c>x. After the realization of the uncertain parameter vector ! 2 Ξ, the wait-and-see decision y(!) 2 RN2 

that minimizes the second-stage cost (D!)>y(!) is taken. The decision maker seeks a decision x and a policy y(·)
that perform the best in view of the worst-case CVaR at level δ 2 (0, 1]. The two-stage problem is formally written 
as

inf
x2X

c>x + sup
P2P

P-CVaRδ[Z(x, !)], (1) 

where P is an ambiguity set containing plausible distributions of the uncertain parameter vector ! 2 RS+1 with a 
known support set Ξ. In this work, we will construct the ambiguity set in a data-driven manner using historical 
samples {!̂i}i2[N] of the random vector !. The inf-sup formulation in (1) means that the first-stage decision x is 
chosen in view the most adverse distribution P 2 P that maximizes the CVaR of the second-stage recourse func-
tion Z(x, !). When δ�à 1, the worst-case CVaR reduces to the worst-case expectation.

The recourse function Z(x, !) in (1) corresponds to the optimal value of the linear program:
inf (D!)>y
s:t: y 2 RN2

Tℓ(x)>!  (Wℓ!)>y ∀ℓ 2 [L],
(2) 

where D 2 RN2⇥(S+1) and Wℓ 2 RN2⇥(S+1), ℓ 2 [L] :à {1, : : : , L} are coefficient matrices. The matrices Tℓ(x) 2 RS+1, 
ℓ 2 [L], are assumed to be affine functions in x. Two-stage linear DRO problems are NP-hard even with fixed 
recourse (Bertsimas et al. 2010). The structure of our second-stage Problem (2) has random recourse, where the 
adaptive decision y(!) is multiplied with the uncertain parameters ! in both the objective function and the 
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constraints. The structure introduces significant challenges in addressing the problem. In this paper, we employ 
the decision rule approach that enables an exact reformulation with tractable approximations. To this end, we 
first reformulate Problem (1) as a distributionally robust semi-infinite linear program involving a worst-case 
expectation, as stated in the following proposition.

Proposition 1. The risk-averse two-stage DRO problem (1) can be reformulated as

inf c>x + θ + 1
δ

sup
P2P

EP[τ(!)]

s:t: x 2 X , θ 2 R, y : RS+1 ! RN2 , τ : RS+1 ! R

τ(!) � 0
τ(!) � (D!)>y(!)� θ
Tℓ(x)>!  (Wℓ!)>y(!) ∀ℓ 2 [L]

)

∀! 2 Ξ,

(3) 

where the second-stage decision variables y and τ�are measurable mappings from RS+1 to RN2 and from RS+1 to R, 
respectively.

Reformulated Problem (3) contains random recourse matrices in the constraints even if the original two-stage 
DRO Problem (1) has random recourse costs only in the objective. In the following sections, we focus on addres-
sing the equivalent Problem (3).

We now explain the structure of the support set. The uncertain parameter vector ! belongs to a support set Ξ�
defined as a slice of a convex cone K 2 RS ⇥ R+, given by

Ξ :à ! :à "
ν

� �
2K : ν à 1

� ⌧
: (4) 

The restriction that the last component of ! is one enables us to simplify any affine function of the primitive 
parameter vector " as a linear function of !. Similarly, it can also represent any quadratic function in a homoge-
nized form. The support set Ξ�is assumed to satisfy the following mild condition.
Assumption 1. The support set Ξ�is nonempty, compact, convex, and full-dimensional.

The support set Ξ�in (4) can model widely used support sets. For instance, we can define a polytope by setting

K :à ! :à "
ν

� �
2 RS ⇥ R+ : P" � tν

� ⌧
, 

with P 2 RSp⇥S, t 2 RSp . In addition, we can model an ellipsoid or two-norm ball by setting

K :à ! :à "
ν

� �
2 RS ⇥ R+ : kR"k2  qν

� ⌧
, 

with R 2 RSr⇥S, q 2 R.

3. Decision Rule Approach
In this section, we develop an approximation scheme for the two-stage linear DRO problems. In Section 3.1, we 
approximate the problem using a combination of PLDR and PQDR. We then design the ambiguity set and derive 
an alternative formulation of the objective function in Section 3.2. In Section 3.3, we illustrate that, with appropri-
ate choices of ambiguity set parameters, we can establish a theoretical out-of-sample guarantee for the solution 
of the PDR problem.

3.1. Decision Rule Framework
We adopt the combination of PLDR and PQDR to conservatively approximate the two-stage Problem (3) by 
restricting the adaptive decisions y(!) and τ(!) to, respectively, piecewise affine functions and piecewise qua-
dratic functions of the uncertain parameters. To this end, we partition the support set Ξ�into K subsets Ξ1, … , ΞK, 
and we optimize basic linear or quadratic decision rules in each partition separately. Specifically, the PLDR 
scheme for the decision variable y(!) is given by

y(!) à Yk! ∀! 2 Ξk ∀k 2 [K], 
where Yk 2 RN2⇥(S+1) is the coefficient matrix of the linear decision rule for partition k.
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We observe that at optimality the second-stage epigraphical variable τ(!) in Problem (3) coincides with 
max{(D!)>y(!)�θ, 0}. After replacing y(!) with a piecewise linear decision rule, the term (D!)>y(!) constitutes a 
piecewise quadratic function in !, and the semi-infinite inequality constraints in (3) are satisfied if τ(!) exhibits a 
piecewise quadratic form in !. Thus, we express τ(!) as a piecewise quadratic decision rule

τ(!) à !>Qk! ∀! 2 Ξk ∀k 2 [K], 
where Qk 2 R(S+1)⇥(S+1) is the coefficient matrix of the quadratic decision rule for partition k.

Using the combination of PLDR and PQDR and applying the law of total expectation yield the conservative 
PDR problem

JPDR :à inf c>x + θ + 1
δ

sup
P2P

X

k2[K]
P(! 2 Ξk)EP[!>Qk! | ! 2 Ξk]

s:t: x 2 X , θ 2 R, Yk 2 RN2⇥(S+1), Qk 2 R(S+1)⇥(S+1)

T ℓ(x)>!  (Wℓ!)>Yk! + λℓ!>Qk! + κℓθ ∀! 2 Ξk ∀k 2 [K] ∀ℓ 2 [L + 2],

(5) 

where
T ℓ(x) à Tℓ(x), Wℓ à Wℓ, λℓ à 0, κℓ à 0 ∀ℓ 2 [L],
T ℓ(x) à [0], Wℓ à [0], λℓ à 1, κℓ à 0 ℓ à L + 1,
T ℓ(x) à [0], Wℓ à �D, λℓ à 1, κℓ à 1 ℓ à L + 2: (6) 

In this work, we construct the partitioning of the support set Ξ�corresponding to Voronoi regions. Starting with a 
set of constructor points {!0k}k2[K], we define the region Ξk as the set of all points in Ξ�whose Euclidean distance is 
closer to !0k than any other constructor points. That is, for the kth partition we have

Ξk à {! 2 Ξ : ||!� !0k||2  ||!� !0i ||2 ∀i 2 [K] : i ≠ k}
à {! 2 Ξ : 2(!0i � !0k)

>!  !0i
>!0i � !0k

>!0k ∀i 2 [K] : i ≠ k}
à {! 2Kk : e>S+1! à 1}, 

where
Kk à {! 2K : 2(!0i � !0k)

>!  !0i
>!0i � !0k

>!0k ∀i 2 [K] : i ≠ k} (7) 

is a convex cone generated by the kth region. Here, ei denotes the ith standard basis vector. The constructor points 
{!0k}k2[K] are selected independently of the samples {!̂i}i2[N]. One possibility is to sample the constructor points 
from an independent uniform distribution over the support set Ξ. Alternatively, one can split the available N his-
torical data points into two parts: samples to build the ambiguity set and samples for the constructor points.

3.2. Design of the Ambiguity Set
The objective function of Problem (5) contains two sets of terms: the partition probabilities P(! 2 Ξk), k 2 [K] and 
the conditional expectations EP[!>Qk! | ! 2 Ξk], k 2 [K]. Their values depend on the distribution of the uncertain 
parameter !. One could naïvely define the ambiguity set P to contain only the empirical distribution 
P̂ à 1

N
P

i2[N]δ!̂ i
, where δ!̂ i 

denotes the Dirac delta measure that places a unit mass at !̂i. This choice of ambiguity 
set reduces the DRO problem into the classical SAA for stochastic programming. The approximation, however, 
tends to result in poor decisions that are overfitted to the observed data points (Van Parys et al. 2021). To miti-
gate the overfitting effects, we design a tailored data-driven ambiguity set with two layers of robustness on the 
partition probabilities and the conditional expectations, as follows.
Definition 1 (Ambiguity Set). The ambiguity set is given by

P :à P 2 P(Ξ) : P à
X

k2[K]
pkPk with p 2 � and Pk 2 Pk ∀k 2 [K]

( )

: (8) 

Here, the uncertainty set � for the partition probability vector p is defined in terms of the χ2-distance as

� :à p 2 RK
+ : e>p à 1,

XK

kà1
(pk� p̂k)

2=pk  γ
( )

, (9) 
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whereas the ambiguity set Pk for the conditional distribution Pk is defined as

Pk :à {Pk 2 P(Ξk) : || EPk[!!>]�EP̂k
[!!>] ||F  ✏k}: (10) 

In the definition, we denote by P(Ξ) :à {µ 2M+ :
R
Ξµ(dξ) à 1} the set of all probability measures supported on 

Ξ, where M+ is the set of nonnegative Borel measures. The vector of all ones is denoted by e. The empirical parti-
tion probabilities are defined as p̂k à 1

N
P

i2[N]1Ξk(!̂i), k 2 [K], where the indicator function 1Ξ : RS+1 ! {0, 1} of a 
set Ξ ✓ RS+1 is defined through 1Ξ(!) à 1 if ! 2 Ξ�and 1Ξ(!) à 0 if ! ∉ Ξ. The set I k à {i 2 [N] : !̂i 2 Ξk} contains the 
indices i for which the corresponding sample point !̂i falls in the partition Ξk. Accordingly, P̂k à 1

|I k |
P

i2I k
δ!̂ i 

denotes the empirical conditional distribution over that partition. Here, k · kF denotes the Frobenius norm.
Any distribution P in the ambiguity set P is defined as a mixture of the conditional distributions P1, : : : ,PK 

with weights p1, : : : , pK. The weights are assumed to belong to the uncertainty set �. The set is described by a sin-
gle parameter γ�and contains all probability vectors p whose χ2-distance to the empirical marginal probability 
vector p̂ is less than or equal to γ. The χ2-distance belongs to the class of φ-divergences (Pardo 2018), which 
includes the KL divergence, the Hellinger distance, and the Burg entropy-based divergence. We use the χ2-dis-
tance as it leads to a tractable reformulation and provides an attractive statistical guarantee. Each conditional 
distribution Pk belonging to the ambiguity set Pk is defined as the set of all probability distributions, whose 
second-moment matrix EPk[!!>] is within a distance ✏k from the empirical second-moment matrix EP̂k

[!!>] with 
respect to the Frobenius norm. By (4), the matrix EPk[!!>] incorporates both the first- and second-order moments 
of the random parameter ".

In view of the ambiguity set P defined in (8), the objective function of Problem (5) can be rewritten as

c>x +θ+ 1
δ

sup
P2P

X

k2[K]
P(! 2 Ξk)EP[!>Qk! | ! 2 Ξk]

à c>x +θ+ 1
δ

sup
p2�

sup
Pk2Pk∀k

X

k2[K]
pkEPk[!>Qk!]

à c>x +θ+ 1
δ

sup
p2�

X

k2[K]
pk sup

Pk2Pk

EPk[!>Qk!]: (11) 

The second equality holds because each innermost maximization problem optimizes the conditional distribution 
Pk separately. In Proposition 2, we first derive the reformulation of the kth inner worst-case expectation over the 
conditional ambiguity set Pk defined in (10). Then, in Proposition 3, we state the reformulation of the outer 
worst-case expectation problem over the uncertainty set �.
Proposition 2. Using the conditional ambiguity set Pk defined in (10), the kth worst-case expectation in (11) can be refor-
mulated as the semi-infinite program

sup
Pk2Pk

EPk[!>Qk!] à inf αk + tr(Qk#̂k) + tr(Bk#̂k) + ✏kkQ>
k + BkkF

s:t: αk 2 R, Bk 2 SS+1

αk + !>Bk! � 0 ∀! 2 Ξk,

(12) 

where #̂k à
P

i2I k
!̂i!̂

>
i = |I k | is the empirical second-order moment matrix.

Proposition 3 (Ben-Tal et al. 2013, theorem 4.1). Let the uncertainty set � be defined in (9). For any $ 2 RK, the worst- 
case expectation problem maxp2�$>p is equivalent to the second-order cone program (SOCP)

max $>p

s:t: p, q 2 RK
+, e>p à 1, e>q  γ

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
(pk� p̂k)

2 + 1
4 p2

k + q2
k

r
 1

2 pk + qk ∀k 2 [K],

(13) 

that is, the optimal value and the optimal solution of the expectation problem can be computed by solving Problem (13). The 
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optimal value can also be obtained by solving the following SOCP dual to (13):
min γω� η� 2p̂>r + 2ωp̂>e

s:t: ω 2 R+, η 2 R, r, s 2 RK

�k  sk, sk + η  ω,
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
4r2

k + (sk + η)2
q

 2ω� sk� η ∀k 2 [K]:

Combining Propositions 2 and 3 and identifying �k with the optimal value of the kth inner worst-case expecta-
tion supPk2Pk

EPk[!>Qk!], we obtain the reformulation of the objective function (11). Incorporating the reformula-
tion of the objective function, we find that the PDR problem (5) is equivalent to the semi-infinite program

JPDR à inf c>x +θ+ 1
δ
(γω� η� 2p̂>r + 2ωp̂>e)

s:t: x 2 X , θ,η 2 R, ω 2 R+, r, s, % 2 RK,
Yk 2 RN2⇥(S+1), Qk 2 R(S+1)⇥(S+1), Bk 2 SS+1

sk + η  ω,
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
4r2

k + (sk + η)2
q

 2ω� sk� η

αk + tr(Qk#̂k) + tr(Bk#̂k) + ✏kkQ>
k + BkkF  sk

αk + !>Bk! � 0 ∀! 2 Ξk

T ℓ(x)>!  (Wℓ!)>Yk! +λℓ!>Qk! + κℓθ ∀ℓ 2 [L + 2] ∀! 2 Ξk

)
∀k 2 [K]:

(14) 

3.3. Out-of-Sample Performance Guarantee
In the following, we establish the theoretical performance guarantee for the solution of the PDR problem (5). The 
result uses Lemmas 1 and 2 in Online Appendix A.3, which provide high confidence bounds on the errors of the 
empirical estimates EP̂k

[!!>] and p̂. Based on the confidence bounds, we can ensure the objective value of the 
PDR problem (14) constitutes an upper bound on the out-of-sample CVaR with a large probability, as follows.

Theorem 1 (Out-of-Sample Guarantee). Let the ambiguity set P in Problem (5) be defined in (8). Setting the robustness 
parameters to ✏k à R2

k(2 +
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
2 ln K=ρ1

p
)=

ÇÇÇÇÇÇÇÇÇ
|I k |

p
, k 2 [K], and γ à

⌘
K� 1 + 2

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
�(K� 1)ln ρ2

p
� 2 ln ρ2

✓
=N, we can ascer-

tain that

Prob
⌘

JPDR � c>x̂ +P⇤-CVaRδ[Z(x̂, !)]
✓
� 1� ρ1� (1 + o(1))ρ2, 

where x̂ is an optimal solution of Problem (5), P⇤ is the true underlying distribution, and ρ1,ρ2 2 (0, 1) are the prescribed 
tolerance levels that control the tightness of the bound.

Setting ρ à ρ1 + (1 + o(1))ρ2), the theorem implies that with judicious choices for the robustness parameters, the 
optimal value JPDR of PDR Problem (14) provides a 1� ρ�confidence bound on the out-of-sample performance of 
the data-driven solution. The theorem also provides guidance for choosing the values of the robustness para-
meters in practice. Specifically, we can determine the values of the robustness parameters {✏k}k2[K] and γ�by 
approximating (1 + o(1)) with its asymptotic value of one. Then, for a desired tolerance level ρ, one can set 
✏k à R2

k(2 +
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
2 ln 2K=ρ

p
)=

ÇÇÇÇÇÇÇÇÇ
|I k |

p
, k 2 [K], and γ à

⌘
K� 1 + 2

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
�(K� 1)lnρ=2

p
� 2 lnρ=2

✓
=N to ensure that the guar-

antee JPDR � c>x̂ +P⇤-CVaRδ[Z(x̂, !)] holds with an approximate confidence level 1� ρ. Theorem 1 shows that γ�
decays at rate 1=N, which is faster than ✏k with rate 1=

ÇÇÇÇ
N

p
. Thus, as the size of in-sample data N increases, we 

give more trust to the empirical partition probabilities than the estimated conditional distributions.

4. Algorithms
In this section, we reformulate semi-infinite Problem (14) as a convex conic program and develop a decomposi-
tion algorithm to accelerate the solution process. In Section 4.1, we use the copositive technique to derive an 
equivalent copositive program that admits tractable approximations in semidefinite programming. In Section 
4.2, we develop an iterative Benders-type decomposition algorithm that allows the subproblems to be solved 
independently to further reduce the runtime.
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4.1. Copositive Reformulations
Problem (14) has infinitely many constraints parametrized by the realizations of ! in the partitions Ξk, k 2 [K]. 
For any fixed decision (x,θ, %, Yk, Qk, Bk), the constraints are equivalent to the following constraints involving 
nonconvex quadratic minimization problems:

0  inf
!2Ξk

!>W>
ℓ Yk! +λℓ!>Qk!� T ℓ(x)>! + κℓθ ∀ℓ 2 [L + 2] ∀k 2 [K], (15a) 

0  inf
!2Ξk

!>Bk! + αk ∀k 2 [K]: (15b) 

To convexify these problems, we use the copositive programming scheme to derive equivalent reformulations of 
(15). The reformulation technique is based on the one developed by Xu and Hanasusanto (2023) in the robust 
optimization setting.

In this paper, we use the generalized copositive cone C(K) :à {X 2 SN : v>Xv � 0 ∀v 2 K} and its dual, that is, 
the generalized completely positive cone C⇤(K) :à {X 2 SN : X àPi2Nxi(xi)>, xi 2K} over a closed and convex 
cone K 2 RN. Here, we refer to linear optimization over C(K) and C⇤(K) as (generalized) copositive programming 
and (generalized) completely positive programming, respectively. In addition, to simplify the notation, we define 
the matrices &k

ℓ(x, Yk, Qk), ℓ 2 [L + 2], k 2 [K] that are affine in their arguments as follows:

&k
ℓ(x, Yk, Qk) :à 1

2
⌘
W>
ℓ Yk + Y>

k Wℓ +λℓQk +λℓQ>
k � T ℓ(x)e>S+1� eS+1T

>
ℓ (x)

✓
: (16) 

Based on the technical lemmas in Online Appendix A.4, the following proposition presents copositive reformula-
tions of the constraints in (15).
Proposition 4. The constraints in (15a) are satisfied if and only if there exist πk

ℓ 2 R, ℓ 2 [L + 2], k 2 [K], such that

&k
ℓ(x, Yk, Qk)�πk

ℓeS+1e>S+1 2 C(Kk), πk
ℓ + κℓθ � 0 ∀ℓ 2 [L + 2] ∀k 2 [K]: (17) 

Similarly, the constraints in (15b) are satisfied if and only if there exists a vector ' 2 RK such that

Bk� ρkeS+1e>S+1 2 C(Kk), ρk + αk � 0 ∀k 2 [K]: (18) 

Proposition 4 enables us to reformulate the semi-infinite program (14) as a COP, as follows.
Theorem 2. PDR Problem (5) is equivalent to the following polynomial-size copositive program:

JPDR à inf c>x + θ + 1
δ
(γω� η� 2p̂>r + 2ωp̂>e)

s:t: x 2 X , θ, η 2 R, ω 2 R+, r, s, % 2 RK

(k 2 RL, Yk 2 RN2⇥(S+1), Qk 2 R(S+1)⇥(S+1), Bk 2 SS+1 ∀k 2 [K]

sk + η  ω,
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
4r2

k + (sk + η)2
q

 2ω� sk � η

αk + tr(Qk#̂k) + tr(Bk#̂k) + ✏kkQ>
k + BkkF  sk

πk
ℓ + κℓθ � 0 ∀ℓ 2 [L + 2]

&k
ℓ(x, Yk, Qk)� πk

ℓeS+1e>S+1 2 C(Kk) ∀ℓ 2 [L + 2]
Bk + αkeS+1e>S+1 2 C(Kk)

)

∀k 2 [K],

(19) 

where the affine functions &k
ℓ(x, Yk, Qk), ℓ 2 [L + 2], k 2 [K], are defined in (16).

The size of Problem (19) is independent of the number of historical samples N. However, copositive programs 
are generically intractable (Burer 2012). To develop a tractable solution scheme for the problem, we replace each 
copositive cone C(Kk) with the semidefinite-representable inner approximation developed in Online Appendix B. 
In this way, we obtain a conservative solution by solving a tractable semidefinite program with O(KL) semidefi-
nite constraints. The time complexity of solving the semidefinite program using the interior point algorithm is 
O(K3L3(KSL + KS2 + KN2S + N1)

1
2 + K2L2(KSL + KS2 + KN2S + N1)

5
2 + (KSL + KS2 + KN2S + N1)

7
2) (Ben-Tal and 

Nemirovski 2001).
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4.2. Decomposition Algorithm
The copositive program (19) with O(KL) copositive constraints introduces additional computational challenges 
when we increase the number of partitions to improve the approximation quality. Fortunately, the structure of 
Problem (19) allows us to solve the subproblems corresponding to different partitions. Exploiting this decompo-
sition structure, we now develop an iterative Benders-type algorithm to solve the PDR problem (19). The main 
idea of the algorithm is to divide the original problem into a master problem and K subproblems. The subpro-
blems can be solved independently given a fixed first-stage decision returned by the master problem. They yield 
optimality cuts and feasibility cuts that are then passed to the master problem as additional constraints. The algo-
rithm proceeds iteratively until a termination criterion is attained and returns an η-optimal solution for a given 
tolerance level η > 0.

To design the decomposition algorithm for Problem (19), we consider the following equivalent reformulation:

JPDR à inf c>x + θ + 1
δ
(γω� η� 2p̂>r + 2ωp̂>e)

s:t: x 2 X , θ, η 2 R, ω 2 R+, r, s 2 RK

sk + η  ω,
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
4r2

k + (sk + η)2
q

 2ω� sk � η

ZPDR
k (x,θ)  sk

⌧ ∀k 2 [K]:

(20) 

Here, for fixed (x,θ), the residual problem corresponding to the kth partition is given by

ZPDR
k (x,θ) :à inf αk + tr(Qk#̂k) + tr(Bk#̂k) + ✏kkQ>

k + BkkF

s:t: Yk 2 RN2⇥(S+1), Qk 2 R(S+1)⇥(S+1), Bk 2 SS+1, αk 2 R, πk 2 RL+2

πk
ℓ + κℓθ � 0 ∀ℓ 2 [L + 2]

&k
ℓ(x, Yk, Qk)�πk

ℓeS+1e>S+1 2 C(Kk) ∀ℓ 2 [L + 2]
Bk +αkeS+1e>S+1 2 C(Kk),

(21) 

where the affine functions &k
ℓ(x, Yk, Qk), ℓ 2 [L + 2], k 2 [K], are defined in (16). Because Problems (19) and (20) are 

equivalent, we can obtain the optimal solution of Problem (19) by solving the COP (20), which involves K smaller 
residual problems (21), using a Benders-type algorithm.

Before describing the algorithm, we introduce the following terminology that will be used to obtain its theoret-
ical foundation.

Definition 2 (Complete Recourse Under Linear Decision Rules). We say that the two-stage DRO Problem (1) has 
complete recourse under linear decision rules if there exists Y 2 RN2⇥(S+1) such that (Wℓ!)>Y! > 0 for all ! 2 Ξ�and 
ℓ 2 [L].

This condition implies that the second-stage Problem (2) is always feasible under linear decision rules; that is, 
there exists Y 2 RN2⇥(S+1) such that y à Y! is feasible to (2) for every x 2 X and ! 2 Ξ. The existence of feasible 
LDR also implies the existence of feasible PDR. By the equivalence between Problems (5) and (20), we conclude 
that Subproblem (21) is feasible for any fixed x 2 X and θ 2 R, that is, ZPDR

k (x,θ) < 1, k 2 [K]. The following 
lemma provides an equivalent condition for checking complete recourse under linear decision rules.
Lemma 1. The complete recourse under linear decision rules is satisfied if and only if there exist Y 2 RN2⇥(S+1) and 
βℓ 2 R++, ℓ 2 [L], such that

1
2 (Y>Wℓ + W>

ℓ Y)� βℓeS+1e>S+1 2 C(K) ∀ℓ 2 [L]: (22) 

Condition (22) can be sufficiently checked by replacing the copositive cone with its inner semidefinite approxi-
mations described in Online Appendix B. We also impose the following condition for the theoretical convergence 
guarantee of the algorithm.
Definition 3 (Sufficiently Expensive Recourse). The two-stage DRO problem (1) has sufficiently expensive 
recourse if for any fixed x 2 X and ! 2 Ξ, the dual of the recourse problem (2) is feasible.

The sufficiently expensive recourse condition guarantees that for any fixed x 2 X and ! 2 Ξ, the residual prob-
lem (21) is not unbounded, that is, ZPDR

k (x,θ) >�1, for every k 2 [K].
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We now describe the framework of the decomposition algorithm. For fixed first-stage decision variables x̂ and 
θ̂, the kth subproblem solved by the algorithm corresponds to the dual of the COP (21), as follows:

ZPDR
k

⇤(x̂, θ̂) :à sup 1
2
X

ℓ

tr
⌘

Hk
ℓ(eS+1T ℓ(x̂)> + T ℓ(x̂)e>S+1)

✓
�
X

ℓ

κℓθ̂e>S+1Hk
ℓeS+1

s:t: Gk 2 R(S+1)⇥(S+1), Ok 2 SS+1, Hk
ℓ 2 SS+1 ∀ℓ 2 [L + 2]

kGkkF  ✏k,
X

ℓ

WℓHk
ℓ à 0

e>S+1OkeS+1 à 1, e>S+1Hk
ℓeS+1 � 0 ∀ℓ 2 [L + 2]

#̂k + Gk�Ok à 0, #̂k + Gk�
X

ℓ

λℓHk
ℓ à 0

Ok 2 C⇤(Kk), Hk
ℓ 2 C⇤(Kk) ∀ℓ 2 [L + 2]:

(23) 

The following proposition states that the primal and dual problems are equivalent.
Proposition 5. Suppose the complete recourse under linear decision rule assumption is satisfied. Then, strong duality holds 
between the copositive program (21) and the completely positive program (23), that is, ZPDR

k (x̂, θ̂) à ZPDR
k

⇤ (x̂, θ̂).
At every iteration, the first-stage decision variables x̂ and θ̂�are solved via the master problem given by

JPDR :à inf c>x +θ+ 1
δ
(γω� η� 2p̂>r + 2ωp̂>e)

s:t: x 2 X , θ,η 2 R, ω 2 R+, r, s 2 RK

sk + η  ω,
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
4r2

k + (sk + η)2
q

 2ω� sk� η ∀k 2 [K]
1
2
X

ℓ

tr
⌘

Hk
ℓ(eS+1T ℓ(x)> + T ℓ(x)e>S+1)

✓

�
X

ℓ

κℓθe>S+1Hk
ℓeS+1  sk ∀(Hk

1, : : : , Hk
L) 2 Vk ∀k 2 [K],

(24a) 

1
2
X

ℓ

tr
⌘

Hk
ℓ(eS+1T ℓ(x)> + T ℓ(x)e>S+1)

✓

�
X

ℓ

κℓθe>S+1Hk
ℓeS+1  0 ∀(Hk

1, : : : , Hk
L) 2Wk ∀k 2 [K],

(24b) 

which involves tractable linear and second-order cone constraints only.
The constraint systems in (24a) and (24b) serve as the optimality cuts and the feasibility cuts, respectively. The 

left-hand sides of the constraints correspond to the objective function of Subproblem (23). To generate an optimal-
ity cut when the subproblem is feasible but not optimal (ŝk  ZPDR

k
⇤(x̂, θ̂) < 1), we add the solution (Hk

ℓ)ℓ2[L+2] to 
the set Vk by solving Subproblem (23). Conversely, to generate a feasibility cut in the master problem when Sub-
problem (23) is unbounded (ZPDR

k
⇤ (x̂, θ̂) à1), we add the solution (Hk

ℓ)ℓ2[L+2] to the set Wk by solving

(Hk
ℓ)ℓ2[L+2] 2 argmax1

2
X

ℓ

(tr(Hk
ℓ(eS+1T ℓ(x̂)> + T ℓ(x̂)e>S+1)))�

X

ℓ

κℓθ̂e>S+1Hk
ℓeS+1

s:t: Gk 2 R(S+1)⇥(S+1), Ok 2 SS+1, Hk
ℓ 2 SS+1 ∀ℓ 2 [L + 2]

kGkkF  ✏k,
X

ℓ

WℓHk
ℓ à 0

e>S+1OkeS+1 à 0, e>S+1Hk
ℓeS+1 � 0 ∀ℓ 2 [L + 2]

Gk�Ok à 0, Gk�
X

ℓ

λℓHk
ℓ à 0

Ok 2 C⇤(Kk), Hk
ℓ 2 C⇤(Kk) ∀ℓ 2 [L + 2]

�ee>  Gk, Ok, Hk
ℓ  ee> ∀ℓ 2 [L + 2]:

(25) 
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Here, ee> denotes the matrix of ones. Problem (25) finds the direction in which Subproblem (23) becomes 
unbounded. The decomposition algorithm consecutively adds the optimal solution (Hk

ℓ)ℓ2[L+2] obtained from 
solving Problems (23) and (25) to the sets Vk and Wk at each iteration.

Based on the previous description, we provide the decomposition procedure in Algorithm 1.

Algorithm 1 (Decomposition Algorithm for Two-Stage DRO) 
1: Input: Parameters of Problem (5), tolerance level η � 0
2: Output: Solution (x⇤,θ⇤) to Problem (5) within 100η% of optimal
3: INITIALIZE JPDR à1, Vk àWk à ; ∀k 2 [K]
4: Step 1 Solve the master Problem (24) and obtain the optimal value JPDR. If JPDR� JPDR  ηmin(| JPDR | , | JPDR |), 

stop.
5: Step 2 For k 2 [K], given fixed (x̂, θ̂), solve the Subproblem (23) and get the optimal value ZPDR

k
⇤ (x̂, θ̂). Solve 

Problem (20) with input ZPDR
k

⇤ (x̂, θ̂) and get the optimal value ĴPDR. If ĴPDR
< JPDR, set JPDR à ĴPDR, and (x⇤,θ⇤) à

(x̂, θ̂).
6: Step 3 For k 2 [K], if ZPDR

k
⇤(x̂, θ̂) à1, add the feasibility cut by solving Problem (25) and updating 

Wk àWk[ (Hk
1, : : : , Hk

L); else if ZPDR
k

⇤(x̂, θ̂) < 1, add the optimality cut by solving Problem (23) and updating 
Vk à Vk[ (Hk

1, : : : , Hk
L).

The algorithm terminates in finitely many iterations, as stated in the next theorem.
Theorem 3 (Finite η-Convergence). Assume X is a nonempty compact convex set or a finite discrete set. If the two-stage 
DRO problem (1) satisfies both the complete recourse under linear decision rules and sufficiently expensive recourse 
assumptions, then Algorithm 1 converges in a finite number of steps for any given tolerance level η.

For the special case where the first-stage decision vector x is integer-valued, the benefit of the decomposition 
algorithm is substantial because it breaks up the complexity of the original problem, which constitutes a mixed- 
integer COP. Indeed, the master problem is now a more tractable mixed-integer second-order cone program, for 
which off-the-shelf solvers are applicable. Furthermore, as the feasible set of the first-stage decision variables is 
finite, the decomposition algorithm can solve the problem to optimality in a finite number of iterations (Geoffrion 
1972, theorem 2.4).

As in the development of the inner semidefinite approximations for the copositive programs, we derive the 
corresponding semidefinite approximations in Online Appendix B for the completely positive programs (23) and 
(25) in the decomposition algorithm. After the approximation, each semidefinite subproblem is solvable in 
O(L3(SL + S2 + N2S)1

2 + L2(SL + S2 + N2S)5
2 + (SL + S2 + N2S)7

2) time, whereas the time complexity of solving the 
second-order conic master problem is O((N1 + K)3K1

2n1
2 + (N1 + K)K3

2n3
2) at iteration n (Ben-Tal and Nemirovski 

2001). In Online Appendix B, we provide further detailed comparisons of different semidefinite approximations.

5. Computational Study
In this section, we demonstrate the effectiveness of our copositive programming approach to two-stage DRO 
problems on two applications. In Section 5.1, we compare various data-driven methods and describe the plat-
form on which we run the optimization models. Section 5.2 deals with a network inventory allocation problem 
that uses expectation as the risk measure and has random recourse costs in the objective function. The multi-item 
newsvendor problem in Section 5.3 uses CVaR as a risk measure, where its expectation reformulation involves 
random recourse matrices in the constraints. Two additional applications are discussed in the online appen-
dix: the medical scheduling problem in Online Appendix C.1 and the facility location problem in Online 
Appendix C.2.

5.1. Setup
We compare different methods by evaluating their out-of-sample performance and computation time. The vari-
ous data-driven methods include the following: 

• C0 SDP: The semidefinite approximation using the cone IA0(K) defined in (B.1) in Online Appendix B for the 
copositive reformulation (19), where the ambiguity set is defined in (8).

• C1 SDP: The semidefinite approximation using the cone IA1(K) defined in (B.3) in Online Appendix B for the 
copositive reformulation (19), where the ambiguity set is defined in (8).

• Wass SDP: The semidefinite approximation for the copositive reformulation of two-stage DRO with the Was-
serstein ambiguity set, proposed by Hanasusanto and Kuhn (2018). We only apply this method in the first 
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application because this scheme is only applicable for solving two-stage DRO problems with random recourse costs 
in the objective.

• SAA: The sample-average approximation.
All optimization problems are solved using MOSEK 9.2.28 via the YALMIP interface (a toolbox in MATLAB; 

Löfberg 2004) on a 10-core, 2.8-GHz Windows PC with 32 GB of RAM. All implementation codes are available in 
the Github repository (Fan and Hanasusanto 2023).

5.2. Network Inventory Allocation
5.2.1. Problem Description. We consider a two-stage capacitated network inventory problem (Bertsimas et al. 
2022) with M locations where one should determine the stock allocations xi, i 2 [M], before knowing the realiza-
tions of demands ui, i 2 [M], and per-unit transportation costs vij from location i to j, i, j 2 [M]. The unit cost of 
buying stock in advance at location i is ci. The demand ui in location i can be satisfied by existing stock xi and by 
transporting yji units from location j. The stock capacity at each location is T units. The network inventory alloca-
tion problem minimizes the worst-case storage and transportation cost given by

min c>x + sup
P2P

EP[Z(x, u, v)]

s:t: x 2 RM, 0  xi  T ∀i 2 [M], 
where the second-stage cost is defined as

Z(x, u, v) :àmin
X

i2[M]

X

j2[M]
vijyij

s:t: y 2 RM⇥M
+

xi +
X

j2[M]
yji�

X

j2[M]
yij � ui ∀i 2 [M]:

In this problem, we assume the only information provided is the historical observations of the random para-
meters, (û1, v̂1), : : : , (ûN, v̂N), and the description of the support set Ξ à {(u, v) 2 (RM,RM⇥M) : ul  ui  uu, vl 
 vij  vu, i, j 2 [M]}.

5.2.2. Experimental Setting. Because the problem has random recourse costs in the objective function and fixed 
recourse matrices in the constraints, we apply the PLDR introduced in Section 3.1 to the second-stage decision 
variable y(u, v). Throughout our computational study, we use all N samples to construct the ambiguity set for 
the DRO model. The constructor points are drawn in two ways: (1) from the empirical distribution that assigns 
equal mass 1=N to all the historical samples and (2) from an independent uniform distribution on the support. In 
the first case, we do not adopt the sample-splitting scheme to ensure the independence between the samples 
used for the ambiguity set and the constructor points. Instead, we make full use of all available data to build 
both the ambiguity set and the Voronoi diagram and construct more balanced partitions such that the numbers 
of samples in different partitions are evenly distributed. This is done to achieve the best out-of-sample perfor-
mance. In the numerical study, we approximate the copositive problems as semidefinite programs using the 
cones IA0(K) and IA1(K). We denote the problems as C0 SDP and C1 SDP when the constructor points are 
drawn from the empirical distribution; and as C0

0 SDP and C0
1 SDP when the constructor points are drawn from 

the uniform distribution. We compare our SDP solution schemes with Wass SDP and SAA. Furthermore, we 
apply Algorithm 1 and show the advantages of using the decomposition algorithm in accelerating the solution 
process. To calculate the runtime of the decomposition algorithm, we choose the maximum among the runtimes 
of solving the K subproblems and add that to the total time of running the algorithm.

We evaluate the out-of-sample performance of the previous solution schemes over 100 instances by randomly 
generating N à 10, 20, 40, 80, 160 independent training samples, which are taken to be the historical data, and 
50,000 independent testing samples. We set the number of partitions K equal to the size of the historical data set, 
N. For each instance, we construct a network of moderate size M à 5 with inventory costs c à [40, 50, 60, 70, 80]. 
We set T à 80, ul à 20, uu à 40, vl à 40, vu à 50. We assume the true distributions of the demands u are truncated 
lognormal, which is a conditional distribution that results from restricting the domain of a lognormal distribu-
tion to the support Ξ, with means )1 à [3, 3, 3:5, 3:5, 3:5] and standard deviations *1 à 0:2e. The true distributions 
of the per-unit transportation costs v are also assumed to be truncated lognormal with means )2 à 3e and stan-
dard deviations *2 à 0:1e. Based on the theoretical decay rate in Theorem 1, the robustness parameters are set to 
✏k à

R2
kÇÇÇÇ
I k

p ✏0k and γ à K
Nγ

0, where the values of ✏0k, k 2 [K], and γ0 are determined using a twofold cross-validation 
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procedure so that they give the best performance on the validation set (see the work by Hastie et al. (2009) for a 
review of the procedure). Numerical results are averaged over 100 random instances.

5.2.3. Analysis of the Results. We calculate the average proportion of realizations where the first-stage decision x 
is feasible in the out-of-sample tests. The numerical results show that, as expected, all the SDP solution schemes are 
guaranteed to produce feasible first-stage decisions. Conversely, SAA exhibits poor feasibility performance. It pro-
duces no feasible solution on these instances when the number of in-sample data N is less than 80. As such, we no 
longer consider SAA’s out-of-sample performance and runtime in subsequent comparisons for this application.

Table 1 compares the out-of-sample performance of different approaches. In all applications, the time limit is set 
to 900 seconds. The emdash indicates that the method cannot solve the problem within the specified time limit. In 
addition, because the objective value obtained from the decomposition method is within the optimality tolerance η�
of that associated with directly solving the corresponding semidefinite program, we no longer report its value. 
Under this setting, the optimal value is approximately 10,408, which is computed by solving SAA with a large 
enough sample size, for example, N à 50, 000. We observe that the out-of-sample costs of C1 SDP and C0

1 SDP 
decrease as the number of in-sample points increases. The semidefinite approximations that use the inner cones 
IA0(K) perform slightly worse than the ones based on IA1(K). Also, we can see that it is better to choose the con-
structor points according to the empirical distribution because the partitions are more balanced. The results in Table 
1 further show that, although Wass SDP can be solved within the imposed time limit only when the number of 
samples is 10, in this case, it outperforms the other methods, slightly for C1 SDP, in terms of out-of-sample cost.

With regard to computational costs, C0 SDP, C1 SDP, C0
0 SDP, and C0

1 SDP have notably lower runtime than Wass 
SDP as shown in Table 2. One possible reason is that Wass SDP solves a large SDP problem with O(N) semidefinite 
constraints involving matrices of size O((S + N2 + L)2). In comparison, the other semidefinite methods solve an SDP 
problem with O(KL) semidefinite constraints involving smaller matrices of size O(S2). However, the SDP solution 
schemes become less time efficient as the number of partitions increases. Thus, it would be advantageous to use Algo-
rithm 1, which solves the subproblems independently. We further observe that C1 SDP takes much longer time to 
solve and their runtime exceeds the time limit, that is, 900seconds with more than 20 in-sample points, but they deliver 
similar out-of-sample performance to C0 SDP. Therefore, we conclude C0 SDP is a better choice when balancing opti-
mality and scalability. Hence, we only apply the decomposition algorithm to solve C0 SDP, denoted as Benders C0. 
We set the tolerance level to η à 0:05 when solving the decomposition algorithm, which indicates that the objective 
costs of Benders C0 are within 5% gap from those of C0 SDP. Numerically this algorithm significantly reduces the 
runtime compared with the original SDP schemes, particularly when the number of in-sample points is large.

5.3. Multi-Item Newsvendor
5.3.1. Problem Description. In this application, we explore an inventory management problem (Hanasusanto 
et al. 2015) where we want to decide the order quantities xi, i 2 [M], of M products, before observing the random 
demands ξi, i 2 [M], and the random stockout costs si, i 2 [M]. There is a limit B on the total order quantity. We 
incur a per-unit stockout cost si when the order quantity xi is less than the demand ξi and a holding cost gi if the 
order quantity xi is more than the demand ξi. The second-stage variables y1, i :àmax{xi� ξi, 0} and y2, i :à
max{ξi� xi, 0} correspond to the excess amount and the shortfall amount, respectively. Our goal is to minimize 

Table 2. Average Runtime (Seconds) for the Network Inventory Problem of Different Approaches

N C0 SDP C1 SDP C0
0 SDP C0

1 SDP Benders C0 Wass SDP

10 3.728 16.468 2.810 23.321 10.085 737.800
20 9.743 76.215 7.607 104.61 6.178 —
40 28.097 — 14.901 — 7.276 —
80 97.241 — 87.645 — 10.584 —
160 351.984 — 696.5 — 16.524 —

Table 1. Average Out-of-Sample Cost for the Network Inventory Problem of Different Approaches

N C0 SDP C1 SDP C0
0 SDP C0

1 SDP Wass SDP

10 11,999 11,627 12,000 11,774 11,516
20 12,000 11,622 12,000 11,289 —
40 12,000 — 12,000 — —
80 12,000 — 12,000 — —
160 12,000 — 12,000 — —
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the worst-case CVaR of the total stockout and holding costs given by
min sup

P2P
P-CVaR✏[Z(x, !, s)]

s:t: x 2 RM
+ , e>x  B, 

where the second-stage cost is defined as
Z(x, !, s) :à inf g>y1 + s>y2

s:t: y1 2 RM
+ , y2 2 RM

+
y1 � x� !, y2 � !� x:

According to the definition of CVaR, it can be shown that this problem is equivalent to

inf θ + 1
δ

sup
P2P

EP[τ(!, s)]

s:t: θ 2 R, x 2 RM
+ , y1 : Ξ! RM, y2 : Ξ! RM, τ : Ξ! R

e>x  B
τ(!, s) � 0, τ(!, s) � g>y1(!, s) + s>y2(!, s)� θ
y1(!, s) � 0, y1(!, s) � x� !
y2(!, s) � 0, y2(!, s) � !� x

) ∀(!, s) 2 Ξ:

(26) 

We assume the only information provided is the historical data (!̂1, ŝ1), : : : , (!̂N, ŝN), and the description of the 
support set Ξ à {(!, s) 2 (RM,RM) : ξl  ξi  ξu, sl  si  su, i 2 [M]}.

5.3.2. Experimental Setting. Reformulated Problem (26) has random recourse matrices in the constraints. After 
applying PLDR to the second-stage decision variables y1(!, s) and y2(!, s), the right-hand side of the third 
inequality contains a quadratic term of random parameters (!, s). Thus, PQDR are applied to the second-stage 
decision variable τ(!, s) on the left-hand side. After applying the decision rules, we separately use the inner 
approximations IA0(K) and IA1(K) proposed in Online Appendix B and solve the corresponding semidefinite 
programs denoted as C0 SDP and C1 SDP. We further take advantage of the decomposition algorithm to reduce 
the runtime of the semidefinite programs.

To assess the performance of C0 SDP, C1 SDP, and SAA, we compute the out-of-sample performance of a real-
istic size multi-item newsvendor problem with M à 5 products. The training data sets are of sizes 
N à 10, 20, 40, 80, 160, whereas the testing data sets contain 50,000 independent samples. Here we select the con-
structor points according to the empirical distribution generated from the historical (i.e., training) data. We eval-
uate the out-of-sample performance by averaging the results obtained on 100 instances. For each instance, we set 
B à 30, ξl à 0, ξu à 10, sl à 0, su à 50 and the holding cost vector g à [5, 6, 7, 8, 9]. The parameter δ�related to the 
risk attitude of CVaR is fixed to 0.1. The true distributions of the demands ! are assumed to be truncated lognor-
mal with means )1 à e and standard deviations *1 à e, and the true distributions of the stockout costs s are 
assumed to be truncated lognormal with means )2 à 3e and standard deviations *2 à 2e. We determine the 
values of the robustness parameters γ�and ✏k, k 2 [K] in the ambiguity set using a twofold cross-validation proce-
dure. The tolerance level η�of the decomposition algorithm is set to 0.05.

5.3.3. Analysis of the Results. A comparison of the out-of-sample performance of C0 SDP, C1 SDP, and SAA is 
shown in Figure 1. In Figure 1, we observe that the out-of-sample costs of all three methods decrease with the training 
data size and approach the optimal cost. Both C0 SDP and C1 SDP achieve better out-of-sample performance with 
approximately 15% improvement compared with SAA when the in-sample data are limited (e.g., n à 10), whereas 
the optimality gaps of both the semidefinite approaches are about 20%. When the data size is less limited (e.g., n à
160), the gaps between the semidefinite approaches and SAA shrink to 3% as the solutions of SAA asymptotically 
converge to the optimal one. Meanwhile, the optimality gaps of both SDP solution schemes become fairly small at 
around 1%. Comparing the two SDP schemes, we notice that C1 SDP has a marginal advantage over C0 SDP in terms 
of out-of-sample performance, which indicates IA1(K) provides a slightly better approximation than IA0(K).

Table 3 shows the runtimes of all three previous methods, with the addition of Benders C0, which solves C0 
SDP using the decomposition algorithm. The runtime of C1 SDP exceeds the time limit with 160 in-sample 
points. Our results confirm the benefit of applying the Benders decomposition algorithm, where the advantage 
grows with the number of in-sample data. Table 4 shows that the algorithm reaches a near-optimal solution in a 
small number of iterations and each subproblem is solved within one second.
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Figure 1. (Color online) Out-of-Sample Cost for the Newsvendor Problem as a Function of the Number of In-Sample Data 
Points with a Fixed Number of Partitions K àN=2 

Note. The dashed lines represent the average values, and the shaded areas depict the 10%–90% quantile range over 100 instances.

Table 3. Average Runtime (Seconds) for the Newsvendor Problem of Different Approaches with Fixed Number of 
Partitions K àN=2

N C1 SDP C0 SDP Benders C0 SAA

10 0.572 0.181 0.992 0.003
20 1.965 0.370 1.001 0.004
40 11.313 0.926 1.032 0.006
80 66.086 2.819 1.074 0.013
160 — 6.614 1.664 0.022

Table 4. Computational Performance of the Decomposition Algorithm for the Newsvendor Problem

N

Benders C0

Runtime Maximum sub. runtime No. of iterations

10 0.992 0.081 12
20 1.001 0.099 10
40 1.032 0.127 8
80 1.074 0.177 6
160 1.664 0.274 6

Note. All runtimes are in seconds.

Figure 2. (Color online) Out-of-Sample Cost for the Newsvendor Problem as a Function of the Values of Parameters K, ✏K, and γ�

Notes. (Left) Out-of-sample cost for the newsvendor problem as a function of the number of partitions K with fixed n à 40 and parameters 
✏k à 300 ∀k 2 [K], γ à 0:5. (Middle) Out-of-sample cost as a function of the value of parameter ✏K with fixed n à 20, K à 5, and parameter γ à 0:5. 
(Right) Out-of-sample cost as a function of the value of parameter γ�with fixed n à 20, K à 5, and parameters ✏k à 300 ∀k 2 [K].
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When using PDR, the number of partitions K affects the out-of-sample performance. In Figure 2 (left), we 
observe that the out-of-sample performance reaches its minimum at the midpoint. This could be attributed to the 
fact that increasing the number of partitions enhances the approximation power of PDR, yet the moment estima-
tion within each partition becomes less accurate as a smaller number of samples fall into each partition. Conse-
quently, the optimal number of partitions strikes a balance. In Figure 2 (middle), we investigate the impact of 
varying the robustness parameter ✏k on the performance of the considered methods. Here, the best value of ✏K is 
600. This observation is consistent with the fact that a sufficiently small parameter value leads to overfitting, 
whereas a value that is too large yields overly conservative solutions. Either one of these situations gives rise to 
poor out-of-sample performance. Figure 2 (right) illustrates the impact of different values of the robustness 
parameter γ�on the out-of-sample performance. We observe that, although the optimal value of γ�is achieved at 
point 0.5, when we select the constructor points based on the empirical distribution, that is, set γ�à 0, the perfor-
mance is only slightly inferior to the optimal one, whereas the computational effort is reduced.

6. Conclusions
Efficient solution schemes for two-stage DRO problems with random recourse have not yet been developed due 
to their high level of intractability. In this paper, we leveraged the decision rule approach to alleviate the compu-
tational challenge of solving these problems and proposed a novel ambiguity set with two layers of robustness 
based on the decision rule structure. The resulting distributionally robust model admits an attractive out-of- 
sample performance guarantee that provides valuable guidance in choosing the robustness parameters in appli-
cations. We reformulated the model as a convex copositive program, which is amenable to tractable semidefinite 
programming approximations. We further developed a decomposition algorithm that can significantly speed up 
the solution time. This method enables us to efficiently solve the more difficult problem instances with integer 
first-stage decisions. Through a variety of numerical studies, we demonstrated that our solution method exhibits 
near-optimal out-of-sample performance with reasonable computational effort, even under limited sample sizes.

We see at least three opportunities for further investigation. First, it would be interesting to explore other parti-
tioning schemes than the Voronoi regions for the piecewise decision rules, which may lead to solutions with dif-
ferent optimality and scalability properties. Second, the decomposition algorithm can naturally be implemented 
in a parallel computing environment because the subproblems can be solved independently. Investigating the 
computational implications of this approach could be an interesting avenue of exploration. Third, it would be 
beneficial to extend the proposed approach to address DRO problems with more than two stages, which can 
attain the theoretical performance guarantee while maintaining similar scalability in its solution algorithm.
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