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1. Introduction

Two-stage decision-making under uncertainty considers settings where recourse actions can be taken once the
realizations of the uncertain parameters are revealed. The setting is prevalent across many problems in opera-
tions management, transportation, and finance (Birge and Louveaux 2011). The classical two-stage stochastic pro-
gramming approach for these problems assumes that the uncertain parameters are random with complete
knowledge of the underlying probability distribution. Unfortunately, precise distributional information is rarely
available in practice. Optimizing in view of the discrete empirical distribution based on historical samples often
yields inferior solutions that perform poorly in out-of-sample tests (Van Parys et al. 2021). To mitigate these over-
fitting effects, recent interest has grown in using the distributionally robust optimization (DRO) methodology
(Bertsimas et al. 2022, Cheramin et al. 2022, Delage and Saif 2022, Li et al. 2022). In DRO, one constructs an ambi-
guity set of different plausible distributions consistent with the available information. Optimal decisions are then
obtained in view of the worst-case probability distribution taken from the ambiguity set. Hence, the DRO model
yields decisions that can safely anticipate adverse outcomes and exhibit superior performance in out-of-sample
tests (Delage and Ye 2010, Wiesemann et al. 2014). Despite this promising observation, two-stage DRO problems
are generically intractable because they optimize over functions describing the recourse policies (Bertsimas et al.
2010).
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Current solution schemes for two-stage DRO problems focus on problems with fixed recourse matrices, that is,
the coefficients of the adaptive decisions in the constraints are fixed parameters. However, many optimization
problems under uncertainty in finance (Rocha and Kuhn 2012), energy systems (Martins da Silva Rocha 2013),
and inventory control (Bertsimas and Georghiou 2018) have random (or nonfixed) recourse. In this paper, we con-
sider the popular decision rule approximation scheme, which restricts the recourse variables to simple functions
(Garstka and Wets 1974, Georghiou et al. 2019). The simplest approximation scheme is obtained using linear
decision rules (LDR) (Ben-Tal et al. 2005, Atamtiirk and Zhang 2007, Chen et al. 2007), which use affine functions
of the uncertain parameters. Decision rules are attractive because they usually lead to tractable approximations
for problems with fixed recourse. However, when the problem has random recourse, even the simplest LDR are
intractable (Guslitser 2002, Ben-Tal et al. 2004).

Compared with LDR, more advanced decision rules may improve the approximation quality but are more
computationally demanding. One can use the polynomial or piecewise affine functions of the uncertain para-
meters, respectively, denoted as polynomial decision rules (Bampou and Kuhn 2011, Bertsimas et al. 2011) and
piecewise linear decision rules (PLDR) (Bertsimas and Georghiou 2015, Ben-Tal et al. 2020). Quadratic decision
rules (QDR) are a class of polynomial decision rules with degree 2 that provide a reasonable tradeoff between
solution quality and computational cost. PLDR also provide a tighter approximation than basic LDR. Although
highly effective, these methods can only cope with two-stage DRO problems with fixed recourse.

Two-stage DRO problems have been widely studied in the literature using different ambiguity sets. Bertsimas
et al. (2010) study two-stage DRO problems with a non-data-driven ambiguity set based on first- and second-
order moments. Bertsimas et al. (2018) propose a modified sample-average approximation (SAA) to approximate
a two-stage DRO model in which the ambiguity set is a confidence region of a goodness-of-fit hypothesis test.
Jiang and Guan (2018) derive an equivalent reformulation of two-stage DRO problems with an L'-norm ambigu-
ity set and uses SAA as an approximation. Bayraksan and Love (2015) study two-stage DRO problems using the
¢-divergence (e.g., Kullback-Leibler divergence and yx2-distance) ambiguity sets, which lead to tractability.
Unfortunately, these papers do not provide any out-of-sample guarantees.

Although data-driven DRO problems with both random recourse costs and random recourse matrices have
not been studied in the literature, several solution schemes for problems with random recourse have been
devised in other settings. In robust optimization, Xu and Hanasusanto (2023) derive exact copositive program-
ming reformulations for LDR approximations; Postek and Hertog (2016) construct adjustable approximation pol-
icy for recourse variables by iteratively splitting the uncertainty set. However, the resulting decision can be too
conservative because it does not take into account the distributional information embedded in the historical data.
At the other extreme, Kuhn et al. (2011) apply LDR for multistage stochastic optimization, an approach that
requires complete distributional knowledge of the random parameters. Hanasusanto and Kuhn (2018) derive
copositive programming approximations for DRO problems with random recourse costs only in the objective
function.

In this paper, we combine the enhanced PLDR and piecewise quadratic decision rules (PQDR) to tackle two-
stage linear DRO problems with random recourse. To the best of our knowledge, we do so for the first time in
the case of random recourse cost and matrices. Our work uses a partitioning scheme based on Voronoi diagrams
(Aurenhammer 1991). The Voronoi diagrams have previously been used for an iterative finite adaptability
approach to solving multistage robust optimization problems (Bertsimas and Dunning 2016). In a similar vein,
Chen et al. (2020) introduce the event-wise affine adaptive solution scheme for two-stage DRO with K-means
clustering ambiguity sets. Here, the K-means clustering is used to construct Voronoi partitions by using perpen-
dicular bisectors of cluster centroids.

The traditional reformulation technique based on standard convex duality theory (Boyd et al. 2004) is not
applicable for the decision rule approximations because of the random recourse setting. We leverage the modern
conic programming machinery (Burer 2012) to derive a concise copositive program (COP) that is intractable but
admits high-quality semidefinite programming approximations. The reformulation method we use relies on the
approach developed by Xu and Hanasusanto (2023) for robust optimization.

We construct a tailored ambiguity set with two layers of robustness: (1) an ambiguity set of conditional distri-
butions given that the random parameters fall within a partition and (2) an uncertainty set for the marginal prob-
abilities that the random parameters realize in different partitions. Given the particular decision rules that we
use, the conditional ambiguity set for each partition can be aptly defined through the conditional second
moments of the random parameters. We then use the y*-distance (Ben-Tal et al. 2013) to construct the uncertainty
set for the marginal probabilities. Thus, we design the ambiguity set by combining the concentration inequalities
for second moments (Shawe-Taylor and Cristianini 2003) and x? statistics (Laurent and Massart 2000), which has
not been considered in the context of DRO models. The ambiguity set enables us to derive a theoretical out-of-
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sample performance guarantee that does not suffer from the curse of dimensionality, whereas the finite-sample
guarantees for the ambiguity set based on Wasserstein metric (Hanasusanto and Kuhn 2018) are known to suffer
from the curse of dimensionality (Esfahani and Kuhn 2018). A recent result by Gao (2022) shows that under
some Lipschitz continuity assumptions on the loss function, the curse of dimensionality can be eliminated. How-
ever, the assumptions are not satisfied in the general two-stage settings in which the loss function is not finite
whenever the second-stage problem is infeasible, such as the problems without complete recourse.

To reduce the computational effort of solving the conic program, we design a Benders-type decomposition
algorithm (Benders 1962) that exploits the structure of the partitioned ambiguity set. The decomposition algo-
rithm separates the complexity of finding the optimal first-stage decision, which constitutes a tractable second-
order cone program, and the second-stage policy, which comprises several concise copositive programs. Each
second-stage subproblem is of a much smaller size compared with the original copositive program and can be
solved independently within each partition. We prove that, under some regularity conditions, the algorithm con-
verges in a finite number of iterations.

To demonstrate the performance of our methodology in terms of solution quality and computational effort, we
conduct an extensive computational investigation on network inventory allocation, newsvendor, medical sched-
uling, and facility location problems. The numerical results show that our proposed approach achieves signifi-
cantly better solution quality than SAA, especially with limited data. Even in the particular case where the
random recourse costs appear only in the objective function, as in the network inventory allocation problem, we
observe that our method distinctly outperforms the benchmark solution scheme proposed by Hanasusanto and
Kuhn (2018) in terms of computational requirement, although it incurs a small out-of-sample performance loss
compared with this approach. Additionally, our computational study demonstrates the benefit of using the
decomposition algorithm to reduce runtimes as the number of partitions increases.

In Section 2, we introduce the risk-averse two-stage linear DRO problem. In Section 3, we use piecewise deci-
sion rules (PDR) to obtain an exact copositive programming reformulation and then derive its out-of-sample per-
formance guarantee. Section 4 develops a decomposition algorithm to solve the reformulation. Section 5 reports
our numerical results for the network inventory allocation and newsvendor problems. We conclude and delin-
eate possible avenues for future research in Section 6. Online Appendix A includes all the proofs. Online Appen-
dix B presents the semidefinite approximations of both the copositive cones and completely positive cones. We
discuss our numerical study for the medical scheduling and facility location problems in Online Appendix C.

2. Risk-Averse Two-Stage DRO Model
We study the risk-averse two-stage linear distributionally robust optimization problem (Rahimian and Mehrotra
2019) using the conditional value-at-risk (CVaR) (Rockafellar and Uryasev 2000) measure. In this adaptive opti-
mization problem, a decision maker first selects a here-and-now decision x € X' C RM  which incurs the immedi-
ate cost ¢"x. After the realization of the uncertain parameter vector £ € 2, the wait-and-see decision y(§) € RN
that minimizes the second-stage cost (D€) " y(£) is taken. The decision maker seeks a decision x and a policy y(-)
that perform the best in view of the worst-case CVaR at level 6 € (0,1]. The two-stage problem is formally written
as

; T

;g)f( c x+?Plel7I>) P-CVaRs[Z(x, &)], 1)
where P is an ambiguity set containing plausible distributions of the uncertain parameter vector & € R>*! with a
known support set E. In this work, we will construct the ambiguity set in a data-driven manner using historical
samples {%’i}ie[m of the random vector & The inf-sup formulation in (1) means that the first-stage decision x is
chosen in view the most adverse distribution P € P that maximizes the CVaR of the second-stage recourse func-
tion Z(x, §). When 6 = 1, the worst-case CVaR reduces to the worst-case expectation.

The recourse function Z(x, §) in (1) corresponds to the optimal value of the linear program:

inf (D& "y
st.ye RN 2)
T:(x)'§ < (We§)'y VCe]L],
where D € RNG*) and W, e RN ¢ e[L]:={1,...,L} are coefficient matrices. The matrices T,(x) € RS*!,
¢ €[L], are assumed to be affine functions in x. Two-stage linear DRO problems are NP-hard even with fixed

recourse (Bertsimas et al. 2010). The structure of our second-stage Problem (2) has random recourse, where the
adaptive decision y(§) is multiplied with the uncertain parameters & in both the objective function and the
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constraints. The structure introduces significant challenges in addressing the problem. In this paper, we employ
the decision rule approach that enables an exact reformulation with tractable approximations. To this end, we
first reformulate Problem (1) as a distributionally robust semi-infinite linear program involving a worst-case
expectation, as stated in the following proposition.

Proposition 1. The risk-averse two-stage DRO problem (1) can be reformulated as

inf ¢"x+060+ %sup Ep[t(&)]

PeP
st. xeX, 0eR, y: R 5 RN, 7R SR
3
(&) >0 ®)
(&) = (D§) y(§) — 0 VEEE,

Te(x)"§ < (W) y(§) VCell]

where the second-stage decision variables y and T are measurable mappings from R°™! to R and from RS to R,
respectively.

Reformulated Problem (3) contains random recourse matrices in the constraints even if the original two-stage
DRO Problem (1) has random recourse costs only in the objective. In the following sections, we focus on addres-
sing the equivalent Problem (3).

We now explain the structure of the support set. The uncertain parameter vector & belongs to a support set =
defined as a slice of a convex cone K € R® x R, given by

E::{g;: [ﬂelC:v:l}. “)

The restriction that the last component of § is one enables us to simplify any affine function of the primitive
parameter vector { as a linear function of & Similarly, it can also represent any quadratic function in a homoge-
nized form. The support set = is assumed to satisfy the following mild condition.

Assumption 1. The support set Z is nonempty, compact, convex, and full-dimensional.

The support set Z in (4) can model widely used support sets. For instance, we can define a polytope by setting
K= {§:= [5] €eR® XR+:P§2tv},
with P € R%*®, t € R%. In addition, we can model an ellipsoid or two-norm ball by setting

K= {g:: F} eR’ X R, : Ry, < qv},

v

with R e RS, g e R.

3. Decision Rule Approach

In this section, we develop an approximation scheme for the two-stage linear DRO problems. In Section 3.1, we
approximate the problem using a combination of PLDR and PQDR. We then design the ambiguity set and derive
an alternative formulation of the objective function in Section 3.2. In Section 3.3, we illustrate that, with appropri-
ate choices of ambiguity set parameters, we can establish a theoretical out-of-sample guarantee for the solution
of the PDR problem.

3.1. Decision Rule Framework

We adopt the combination of PLDR and PQDR to conservatively approximate the two-stage Problem (3) by
restricting the adaptive decisions y(§) and 7(§) to, respectively, piecewise affine functions and piecewise qua-
dratic functions of the uncertain parameters. To this end, we partition the support set E into K subsets Z1, ..., Eg,
and we optimize basic linear or quadratic decision rules in each partition separately. Specifically, the PLDR
scheme for the decision variable y(§) is given by

y(§)=Yi§ VEeE, Vke[K],

RN2X5*D) is the coefficient matrix of the linear decision rule for partition k.

where Y} €
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We observe that at optimality the second-stage epigraphical variable 7(§) in Problem (3) coincides with
max{(D§) "y(£€) — 0,0}. After replacing y(£) with a piecewise linear decision rule, the term (D£) y(£) constitutes a
piecewise quadratic function in &, and the semi-infinite inequality constraints in (3) are satisfied if 7(&) exhibits a
piecewise quadratic form in & Thus, we express 7(&) as a piecewise quadratic decision rule

©(§)=§" Qi VE€E Vke[K],

where Q, € RE*X5*D) is the coefficient matrix of the quadratic decision rule for partition k.
Using the combination of PLDR and PQDR and applying the law of total expectation yield the conservative
PDR problem

1
JPPR .= infcTx + 0 + 5sup > P(§€ BE[£T Qi | £ € By

PeP ke[K]

st. xeX, B eR, Y, e RNXCD g e REHDXG+) ©)
To(x)" & < W) Y+ A€ Qué+ K0 VEEE, Vhke K] Vle[L+2],
where
Tix)=Tix), We=W,, Ar=0, x,=0 V(e [L],
T(x) =[0], We=10], Ar=1, x,=0 t=L+1,
Tx)=[0], W;=-D, Ar=1, x,=1 €£=L+2. (6)

In this work, we construct the partitioning of the support set & corresponding to Voronoi regions. Starting with a
set of constructor points {& },x;, we define the region &y as the set of all points in & whose Euclidean distance is
closer to &, than any other constructor points. That is, for the k' partition we have

Ex={&cE: [l &l, <&, Vie[K]:i#k}
={€€B:2E &) E<ETE -§TE Vie[K]:i#k}
={eKi:ed£=1},
where
Ke={E€K:2(8 —£) €< 7 £ Vie[K]:i#k} @)

is a convex cone generated by the k' region. Here, e; denotes the i standard basis vector. The constructor points
{& }ke[x) are selected independently of the samples {§,},e . One possibility is to sample the constructor points
from an independent uniform distribution over the support set E. Alternatively, one can split the available N his-
torical data points into two parts: samples to build the ambiguity set and samples for the constructor points.

3.2. Design of the Ambiguity Set

The objective function of Problem (5) contains two sets of terms: the partition probabilities P(& € ), k € [K] and
the conditional expectations Ep[&" Q€| & € Z¢], k € [K]. Their values depend on the distribution of the uncertain
parameter & One could naively define the ambiguity set P to contain only the empirical distribution
P= NZzG 0z , where 6 denotes the Dirac delta measure that places a unit mass at &.. This choice of ambiguity
set reduces the DRO problem into the classical SAA for stochastic programming. The approximation, however,
tends to result in poor decisions that are overfitted to the observed data points (Van Parys et al. 2021). To miti-
gate the overfitting effects, we design a tailored data-driven ambiguity set with two layers of robustness on the
partition probabilities and the conditional expectations, as follows.

Definition 1 (Ambiguity Set). The ambiguity set is given by

P = {IP’ ePE):P= Z piPr with pe Aand Py e Py Vke [K]} (8)
ke[K]

Here, the uncertainty set A for the partition probability vector p is defined in terms of the x>-distance as

K
A= {p €RY:e'p=1, (pr— P’ /px < y}, ©)

k=1
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whereas the ambiguity set Py for the conditional distribution Py is defined as
= {Px € P(Ex) : || Ep,[6€7] — Ep, [£€" ] [l < €x}- (10)

In the definition, we denote by P(Z) := {u € M, : [cu(d&) =1} the set of all probability measures supported on
E, where M. is the set of normegatlve Borel measures. The vector of all ones is denoted by e. The empirical parti-
tion probabilities are defined as p, = NZle[N nuk(gz) k € [K], where the indicator function 1z : RS™! — {0,1} of a
set & C R°*! is defined through 15(£) =1if £€ E and 15 2(§) =0if §¢ 5. The set 7, = {i € [N]: e Ex} contains the
indices i for which the corresponding sample point £ falls in the partition ;. Accordingly, P\ = \Iklzzelk
denotes the empirical conditional distribution over that partition. Here, || - || denotes the Frobenius norm.

Any distribution P in the ambiguity set P is defined as a mixture of the conditional distributions Py, ..., Px
with weights p1, ..., pk. The weights are assumed to belong to the uncertainty set A. The set is described by a sin-
gle parameter y and contains all probability vectors p whose x*-distance to the empirical marginal probability
vector p is less than or equal to y. The y?-distance belongs to the class of ¢-divergences (Pardo 2018), which
includes the KL divergence, the Hellinger distance, and the Burg entropy-based divergence. We use the x>-dis-
tance as it leads to a tractable reformulation and provides an attractive statistical guarantee. Each conditional
distribution Py belonging to the ambiguity set Py is defined as the set of all probability distributions, whose
second-moment matrix Ep, [££7] is within a distance €, from the empirical second-moment matrix Ep [§§ ] with
respect to the Frobenius norm. By (4), the matrix Ep, [££" ] incorporates both the first- and second- order moments
of the random parameter .

In view of the ambiguity set P defined in (8), the objective function of Problem (5) can be rewritten as

x4+ ssup 3 PECBIEHETQuE| £ il

PeP ke[K]

cTx+06+ 1sup sup Z peBr [E7 QL€

o peA PrePVkke[K]

1
c"x+6+ 5Sup E pr sup Ep [E7 Q&) 11)
peEA ke[K] PrePy

The second equality holds because each innermost maximization problem optimizes the conditional distribution
P, separately. In Proposition 2, we first derive the reformulation of the kth inner worst-case expectation over the
conditional ambiguity set Py defined in (10). Then, in Proposition 3, we state the reformulation of the outer
worst-case expectation problem over the uncertainty set A.

Proposition 2. Using the conditional ambiguity set Py defined in (10), the kth worst-case expectation in (11) can be refor-
mulated as the semi-infinite program

sup Ep[£ Qi£] = inf a + tr(Q ) + tr(Br ) + el Qf + Byllr
PrePy
st. ax€R, By e SS+1 (12)

a + gTka >0 Vg € Ek,

where Q=3

Proposition 3 (Ben-Tal et al. 2013, theorem 4.1). Let the uncertainty set A be defined in (9). For any ¢ € RX, the worst-
case expectation problem max,ca¢' p is equivalent to the second-order cone program (SOCP)

ier,&:€! | | Iy | is the empirical second-order moment matrix.

max ¢'p

K eTy= Tg <
st. pgeR;, e'p=1,e'g<y (13)

o 1 1
\/(Pk —pO*+gPi Gk < sptae VKe[K],

that is, the optimal value and the optimal solution of the expectation problem can be computed by solving Problem (13). The
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optimal value can also be obtained by solving the following SOCP dual to (13):

min yo—n—2p r+2wp’e
st. weRy, neR, r,seRK

P < Sk s+ <, \/4ri+(sk+n)2 <2w-s—n VkelK].

Combining Propositions 2 and 3 and identifying ¢, with the optimal value of the kth inner worst-case expecta-
tion SIJpIPkE7,k]EH:>k[§T Q,&], we obtain the reformulation of the objective function (11). Incorporating the reformula-
tion of the objective function, we find that the PDR problem (5) is equivalent to the semi-infinite program

JPPR —inf ¢Tx + 6 + %()/w —n—2p"r+2wp’e)

st. xekX, O,neR, weR,, r,s,a€RK,

Yk e RNzX(SJrl), Qk e R(S+1)><(5+1), Bk € SS+1

Skt N < @, /472 + (sp+ 1) < 20 — s — 1] (14)

e+ tr(Qe) + tr(Bey) + ellQT + Bellp < si vk e [K].
ap+ & Bé>0 VEEE
To(x) €< W) Y+ Ak Qué+ k0 VEE[L+2] VEEE,

3.3. Out-of-Sample Performance Guarantee

In the following, we establish the theoretical performance guarantee for the solution of the PDR problem (5). The
result uses Lemmas 1 and 2 in Online Appendix A.3, which provide high confidence bounds on the errors of the
empirical estimates ]E@k[ggT] and p. Based on the confidence bounds, we can ensure the objective value of the
PDR problem (14) constitutes an upper bound on the out-of-sample CVaR with a large probability, as follows.

Theorem 1 (Out-of-Sample Guarantee). Let the ambiguity set P in Problem (5) be defined in (8). Setting the robustness
parameters to e, = R2(2+ /2 In K/p,)/V|Zk|, k € [K], and y = (K -1+2{/=(K=1)lnp, —21In pz) /N, we can ascer-

tain that
Prob (]PDR > ¢T3 + P'-CVaRy[Z(, ._f)]) >1—p, —(1+0(1)p,,

where X is an optimal solution of Problem (5), P* is the true underlying distribution, and p,,p, € (0,1) are the prescribed
tolerance levels that control the tightness of the bound.

Setting p = p, + (1 +0(1))p,), the theorem implies that with judicious choices for the robustness parameters, the
optimal value JPPR of PDR Problem (14) provides a 1 — p confidence bound on the out-of-sample performance of
the data-driven solution. The theorem also provides guidance for choosing the values of the robustness para-
meters in practice. Specifically, we can determine the values of the robustness parameters {e;}cx) and y by
approximating (1 +0(1)) with its asymptotic value of one. Then, for a desired tolerance level p, one can set

er=R2(2+/2In2K/p)/VIZx], k€ [K], and y = (K —14+2/—(K—=1)Inp/2-2 lnp/Z) /N to ensure that the guar-
antee J'PR > ¢T& + P*-CVaR;[Z(%, £)] holds with an approximate confidence level 1 — p. Theorem 1 shows that y

decays at rate 1/N, which is faster than ¢, with rate 1/ VN. Thus, as the size of in-sample data N increases, we
give more trust to the empirical partition probabilities than the estimated conditional distributions.

4. Algorithms

In this section, we reformulate semi-infinite Problem (14) as a convex conic program and develop a decomposi-
tion algorithm to accelerate the solution process. In Section 4.1, we use the copositive technique to derive an
equivalent copositive program that admits tractable approximations in semidefinite programming. In Section
4.2, we develop an iterative Benders-type decomposition algorithm that allows the subproblems to be solved
independently to further reduce the runtime.
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4.1. Copositive Reformulations

Problem (14) has infinitely many constraints parametrized by the realizations of & in the partitions &, k € [K].
For any fixed decision (x,0, @, Yi, Q;, B), the constraints are equivalent to the following constraints involving
nonconvex quadratic minimization problems:

0< nf EWIY E+ N E Qe Ti(x) E+x,0 Vee[L+2] VkelK], (15a)
(SIE7N
0< §ln”f gTka-i- ar Vke [K] (15b)
(SIGH3

To convexify these problems, we use the copositive programming scheme to derive equivalent reformulations of
(15). The reformulation technique is based on the one developed by Xu and Hanasusanto (2023) in the robust
optimization setting.

In this paper, we use the generalized copositive cone C(K) :={X e SV : 9" Xv >0 Vo € K} and its dual, that is,
the generalized completely positive cone C'(K):={XeSV:X =3, x/(x))", x' € K} over a closed and convex
cone K € RN. Here, we refer to linear optimization over C(K) and C*(K) as (generalized) copositive programming
and (generalized) completely positive programming, respectively. In addition, to simplify the notation, we define
the matrices A’;(x, Y., Qp), € € [L+2], k € [K] that are affine in their arguments as follows:

1
A’g(x, Yk, Qk) = E (W;Yk + Y;(I—Wg + Aka + /\gQ;— — T[(x)e;_l — e5+1’T{T(x)) . (16)

Based on the technical lemmas in Online Appendix A.4, the following proposition presents copositive reformula-
tions of the constraints in (15).

Proposition 4. The constraints in (15a) are satisfied if and only if there exist n’; eR, L€ [L+2], ke[K],such that
Ak(x, Yy, Q) — hesiiel,, €C(Ky), T+ 1,0 >0 Ve [L+2] Vke[K]. (17)
Similarly, the constraints in (15b) are satisfied if and only if there exists a vector p € RX such that

By — piesiied,; € C(Ky), pp+ax >0 Vkel[K]. (18)

Proposition 4 enables us to reformulate the semi-infinite program (14) as a COP, as follows.

Theorem 2. PDR Problem (5) is equivalent to the following polynomial-size copositive program:

JPPR = inf cTx + 0 +%()/a) —N—=2p"r+2wp’e)

st.xeX, 0,neER, weR,, r,s5,ac RK
W € RL, Yk e RNZX(5+1), Qk c R(SH)X(SH), Bk € SS+1 Vk € [K]

sk+17£a),\/4r£+(sk+r])2SZa)—sk—T] (19)

g + tr(Qu€dy) + tr(Bry) + el Q) + Billp < si
i +x,0>0 Vle[L+2] Vk € [K],
Al(x, Vi, Q) — mhesiiel,, €C(Ky) Ve [L+2]

B, + ake5+1esT+1 € C(’Ck)

where the affine functions A][f(x, Y, Qi) € € [L+2], k € [K], are defined in (16).

The size of Problem (19) is independent of the number of historical samples N. However, copositive programs
are generically intractable (Burer 2012). To develop a tractable solution scheme for the problem, we replace each
copositive cone C(Ky) with the semidefinite-representable inner approximation developed in Online Appendix B.
In this way, we obtain a conservative solution by solving a tractable semidefinite program with O(KL) semidefi-
nite constraints. The time complexity of solving the semidefinite program using the interior point algorithm is
O(K3L3(KSL + KS? + KNoS + N1 )t + K2L2(KSL+KS?+KN»S+N;): + (KSL+KS?+KN,S+Ni)?) (Ben-Tal and
Nemirovski 2001).
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4.2. Decomposition Algorithm

The copositive program (19) with O(KL) copositive constraints introduces additional computational challenges
when we increase the number of partitions to improve the approximation quality. Fortunately, the structure of
Problem (19) allows us to solve the subproblems corresponding to different partitions. Exploiting this decompo-
sition structure, we now develop an iterative Benders-type algorithm to solve the PDR problem (19). The main
idea of the algorithm is to divide the original problem into a master problem and K subproblems. The subpro-
blems can be solved independently given a fixed first-stage decision returned by the master problem. They yield
optimality cuts and feasibility cuts that are then passed to the master problem as additional constraints. The algo-
rithm proceeds iteratively until a termination criterion is attained and returns an n-optimal solution for a given
tolerance level 1 > 0.

To design the decomposition algorithm for Problem (19), we consider the following equivalent reformulation:

1
JPOR — inf ¢Tx + 0 +S(yw —n=2p"r+2wpe)

st. xeX, O,neR, weR,, r s € R

S+ < @ 4ri+<sk+n>2S-’-w—Sk—’?}Vkem

ZPPR(x,0) < s¢

(20)

Here, for fixed (x, 0), the residual problem corresponding to the k' partition is given by

ZPPR(x, 0) :=inf oy + tr(Q Q) + tr(Bey) + exl|Q7 + Byl
st Y e RNEH) g e REHDXGH) B e s o e R, iy € RE?
it +1,0>0 Vee[L+2] (21)
Af(x, Yy, Q) — mihesiiel,, € C(Ky)  VEe[L+2]
By + aresiiel,, € C(KCy),

where the affine functions A’}(x, Yy, Qu), € € [L+2], ke [K], are defined in (16). Because Problems (19) and (20) are
equivalent, we can obtain the optimal solution of Problem (19) by solving the COP (20), which involves K smaller
residual problems (21), using a Benders-type algorithm.

Before describing the algorithm, we introduce the following terminology that will be used to obtain its theoret-
ical foundation.

Definition 2 (Complete Recourse Under Linear Decision Rules). We say that the two-stage DRO Problem (1) has
complete recourse under linear decision rules if there exists ¥ € RN+ guch that (W€) Y&> 0 for all £€  and
te[L].

This condition implies that the second-stage Problem (2) is always feasible under linear decision rules; that is,
there exists Y € RNt sych that y = Y& is feasible to (2) for every x € X and &€ E. The existence of feasible
LDR also implies the existence of feasible PDR. By the equivalence between Problems (5) and (20), we conclude
that Subproblem (21) is feasible for any fixed x € X and 0 € R, that is, Z}%(x,0) < oo, k € [K]. The following
lemma provides an equivalent condition for checking complete recourse under linear decision rules.

Lemma 1. The complete recourse under linear decision rules is satisfied if and only if there exist Y € RNt gpgd
B, € R4y, L €[L], such that

1
S(YTWe+ WIY) —Bresiied,; €CK) Vee[L]. (22)

Condition (22) can be sufficiently checked by replacing the copositive cone with its inner semidefinite approxi-
mations described in Online Appendix B. We also impose the following condition for the theoretical convergence
guarantee of the algorithm.

Definition 3 (Sufficiently Expensive Recourse). The two-stage DRO problem (1) has sufficiently expensive
recourse if for any fixed x € X and &€ € E, the dual of the recourse problem (2) is feasible.

The sufficiently expensive recourse condition guarantees that for any fixed x € A and & € E, the residual prob-
lem (21) is not unbounded, that is, Z}PR(x, 6) > —co, for every k € [K].
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_ We now describe the framework of the decomposition algorithm. For fixed first-stage decision variables & and
0, the kth subproblem solved by the algorithm corresponds to the dual of the COP (21), as follows:

coa A 1 N . A
ZIPR'(,0) := supigtr(H’}(esﬂ’fg(x)T + Tg(x)e;l)) - ;Kfeeg+1HléeS+1

st. G e RS 0 e s HEeS™ vie[L+2]
Gl < ex, > WeH; =0
4

el Oress1=1,el, Hjes,1 >0 Vle[L+2]

Qk-}-Gk—Ok:O,ﬂk-i-Gk—ZAcH};:O
14

Oy eC'(Ky), Hi € C'(Ky) VEe[L+2].
The following proposition states that the primal and dual problems are equivalent.

Proposition 5. Suppose the complete recourse under linear decision rule assumption is satisfied. Then, strong duality holds
between the copositive program (21) and the completely positive program (23), that is, ZYPR(%, 0) = ZEPR (%, 0).

At every iteration, the first-stage decision variables & and @ are solved via the master problem given by

JPPR = infcTx+ 6 + %(ya) —n—=2pTr+2wp’e)

stxedX, 0,neR, weR,, r,seRK

Sct 1] < @, /4}+ (st )’ < 20 —sc—n Vke[K] (242)

%Z tr (H’é('35+17€(75)T + Tt(x)esT+1))
7

=Y x/0el,\Hies,1 < s V(HS,... Hf)eV* VkelK],
¢

% Z tr (Hlé(es+1 T((X)T + Té’(x)e—Sr+l))
7

(24b)
=Y “x/0el,\Hies,1 <0 V(HS,... Hf)e W Vke[K],
t

which involves tractable linear and second-order cone constraints only.

The constraint systems in (24a) and (24b) serve as the optimality cuts and the feasibility cuts, respectively. The
left-hand sides of the constraints correspond to the objective function of Subproblem (23). To generate an optimal-
ity cut when the subproblem is feasible but not optimal (5 < ZFPX'(%,6) < o), we add the solution (H{)¢(; 12 to
the set V' by solving Subproblem (23). Conversely, to generate a feasibility cut in the master problem when Sub-
problem (23) is unbounded (Z}°X (%, 0) = o), we add the solution (H}) (142 to the set W by solving

1 . . A
(H}) peqr12) € argmax Z(tr(H’é(e5+1Tg(x)T +Ti(®)ed, 1)) — Z keOel, Hresy
¢ ¢

st. GreRETVXEH 0 e s HY e S vee[L+2]
Gl < ex, > WeH; =0
4

25
e;lOkeSH =0, e;—Hle;eSH >0 V{e[L+2] (25)

Gi— 0y =0,Gc— > AH;=0
¢

Oy eC(Ky), Hi e C'(Ky) Vle[L+2]
—ee” < Gy, O, HE <ee™ Vie[L+2]
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Here, ee” denotes the matrix of ones. Problem (25) finds the direction in which Subproblem (23) becomes
unbounded. The decomposition algorithm consecutively adds the optimal solution (HIZ’)KE[L +2] Obtained from
solving Problems (23) and (25) to the sets VF and WF at each iteration.

Based on the previous description, we provide the decomposition procedure in Algorithm 1.

Algorithm 1 (Decomposition Algorithm for Two-Stage DRO)

1: Input: Parameters of Problem (5), tolerance level > 0

2: Output: Solugj%rﬁ (x*,0%) to Problem (5) within 1001% of optimal

3 INITIALIZE ] ™% = 0o, Vs = WK =0 Vk e [K]

4: Step 1 Solve the master Problem (24) and obtain the optimal value J*PR. If 7% — JPPR < pmin(| 77281, | JPPR ),
stop.

5: Step 2 For k € [K], given fixed (%,0), solve the Subproblem (23) and get the optimal value Z}°X'(%, ). Solve

Problem (20) with input ZIPR'(%,0) and get the optimal value | PR 1 J PR o T8 set TN =] PR and (x*,0) =

(&,0).

6: Step 3 For ke[K], if Z}PX'(#,0) =00, add the feasibility cut by solving Problem (25) and updating
Wi = WiU (HE, ... HY); else if Z[PR'(%,0) < oo, add the optimality cut by solving Problem (23) and updating
Ve=WVU (HE, ... HY).

The algorithm terminates in finitely many iterations, as stated in the next theorem.

Theorem 3 (Finite n-Convergence). Assume X is a nonempty compact convex set or a finite discrete set. If the two-stage
DRO problem (1) satisfies both the complete recourse under linear decision rules and sufficiently expensive recourse
assumptions, then Algorithm 1 converges in a finite number of steps for any given tolerance level 1.

For the special case where the first-stage decision vector x is integer-valued, the benefit of the decomposition
algorithm is substantial because it breaks up the complexity of the original problem, which constitutes a mixed-
integer COP. Indeed, the master problem is now a more tractable mixed-integer second-order cone program, for
which off-the-shelf solvers are applicable. Furthermore, as the feasible set of the first-stage decision variables is
finite, the decomposition algorithm can solve the problem to optimality in a finite number of iterations (Geoffrion
1972, theorem 2.4).

As in the development of the inner semidefinite approximations for the copositive programs, we derive the
corresponding semidefinite approximations in Online Appendix B for the completely positive programs (23) and
(25) in the decomposition algorithm. After the approximation, each semidefinite subproblem is solvable in
O(L3*(SL+ S* + N»2S)? + L?(SL+S?+ N2S)* + (SL+S? + N,S)?) time, whereas the time complexity of solving the
second-order conic master problem is O((N7 + K)’Kznz + (N; + K)K3n?) at iteration n (Ben-Tal and Nemirovski
2001). In Online Appendix B, we provide further detailed comparisons of different semidefinite approximations.

5. Computational Study

In this section, we demonstrate the effectiveness of our copositive programming approach to two-stage DRO
problems on two applications. In Section 5.1, we compare various data-driven methods and describe the plat-
form on which we run the optimization models. Section 5.2 deals with a network inventory allocation problem
that uses expectation as the risk measure and has random recourse costs in the objective function. The multi-item
newsvendor problem in Section 5.3 uses CVaR as a risk measure, where its expectation reformulation involves
random recourse matrices in the constraints. Two additional applications are discussed in the online appen-
dix: the medical scheduling problem in Online Appendix C.1 and the facility location problem in Online
Appendix C.2.

5.1. Setup
We compare different methods by evaluating their out-of-sample performance and computation time. The vari-
ous data-driven methods include the following;:

e Cj SDP: The semidefinite approximation using the cone Z.4y(K) defined in (B.1) in Online Appendix B for the
copositive reformulation (19), where the ambiguity set is defined in (8).

e C; SDP: The semidefinite approximation using the cone Z.4; (K) defined in (B.3) in Online Appendix B for the
copositive reformulation (19), where the ambiguity set is defined in (8).

e Wass SDP: The semidefinite approximation for the copositive reformulation of two-stage DRO with the Was-
serstein ambiguity set, proposed by Hanasusanto and Kuhn (2018). We only apply this method in the first
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application because this scheme is only applicable for solving two-stage DRO problems with random recourse costs
in the objective.

e SAA: The sample-average approximation.

All optimization problems are solved using MOSEK 9.2.28 via the YALMIP interface (a toolbox in MATLAB;
Lofberg 2004) on a 10-core, 2.8-GHz Windows PC with 32 GB of RAM. All implementation codes are available in
the Github repository (Fan and Hanasusanto 2023).

5.2. Network Inventory Allocation
5.2.1. Problem Description. We consider a two-stage capacitated network inventory problem (Bertsimas et al.
2022) with M locations where one should determine the stock allocations x;, i € [M], before knowing the realiza-
tions of demands u;, i € [M], and per-unit transportation costs v;; from location i to j, 7,j € [M]. The unit cost of
buying stock in advance at location i is ¢;. The demand u; in location i can be satisfied by existing stock x; and by
transporting y;; units from location j. The stock capacity at each location is T units. The network inventory alloca-
tion problem minimizes the worst-case storage and transportation cost given by

min c¢"x+sup Ep[Z(x,u,v)]

PeP
st.xeRM, 0<x, <T Vie[M],

where the second-stage cost is defined as

Z(x,u,0) := minz Z VijYij
ie[M] je[M]
st. yeRMM

X + Zy]z - Zyz] >u; Vie[M].
jelm] jelm]

In this problem, we assume the only information provided is the historical observations of the random para-
meters, (it1,01),...,(fin,On), and the description of the support set E = {(u,v) € (RM, RMM) -y, < u; < T, 0y
<v; < Oy, 1,j € [M]}.

5.2.2. Experimental Setting. Because the problem has random recourse costs in the objective function and fixed
recourse matrices in the constraints, we apply the PLDR introduced in Section 3.1 to the second-stage decision
variable y(u,v). Throughout our computational study, we use all N samples to construct the ambiguity set for
the DRO model. The constructor points are drawn in two ways: (1) from the empirical distribution that assigns
equal mass 1/N to all the historical samples and (2) from an independent uniform distribution on the support. In
the first case, we do not adopt the sample-splitting scheme to ensure the independence between the samples
used for the ambiguity set and the constructor points. Instead, we make full use of all available data to build
both the ambiguity set and the Voronoi diagram and construct more balanced partitions such that the numbers
of samples in different partitions are evenly distributed. This is done to achieve the best out-of-sample perfor-
mance. In the numerical study, we approximate the copositive problems as semidefinite programs using the
cones ZAy(K) and Z.A;(K). We denote the problems as Cy SDP and C; SDP when the constructor points are
drawn from the empirical distribution; and as C; SDP and C; SDP when the constructor points are drawn from
the uniform distribution. We compare our SDP solution schemes with Wass SDP and SAA. Furthermore, we
apply Algorithm 1 and show the advantages of using the decomposition algorithm in accelerating the solution
process. To calculate the runtime of the decomposition algorithm, we choose the maximum among the runtimes
of solving the K subproblems and add that to the total time of running the algorithm.

We evaluate the out-of-sample performance of the previous solution schemes over 100 instances by randomly
generating N = 10,20,40,80,160 independent training samples, which are taken to be the historical data, and
50,000 independent testing samples. We set the number of partitions K equal to the size of the historical data set,
N. For each instance, we construct a network of moderate size M = 5 with inventory costs ¢ = [40,50,60,70,80].
We set T =80, u; =20, u,, =40, v; = 40, v, = 50. We assume the true distributions of the demands u are truncated
lognormal, which is a conditional distribution that results from restricting the domain of a lognormal distribu-
tion to the support E, with means p, = [3,3,3.5,3.5,3.5] and standard deviations o = 0.2e. The true distributions
of the per-unit transportation costs v are also assumed to be truncated lognormal with means u, = 3e and stan-
dard czleviations o, = 0.1e. Based on the theoretical decay rate in Theorem 1, the robustness parameters are set to

€= \/—jk;e,’( and y = %y’, where the values of €], k € [K], and )’ are determined using a twofold cross-validation
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Table 1. Average Out-of-Sample Cost for the Network Inventory Problem of Different Approaches

N Cy SDP C; SDP C; SDP C; SDP Wass SDP
10 11,999 11,627 12,000 11,774 11,516
20 12,000 11,622 12,000 11,289 —

40 12,000 — 12,000 — e

80 12,000 — 12,000 — —

160 12,000 — 12,000 e —

procedure so that they give the best performance on the validation set (see the work by Hastie et al. (2009) for a
review of the procedure). Numerical results are averaged over 100 random instances.

5.2.3. Analysis of the Results. We calculate the average proportion of realizations where the first-stage decision x
is feasible in the out-of-sample tests. The numerical results show that, as expected, all the SDP solution schemes are
guaranteed to produce feasible first-stage decisions. Conversely, SAA exhibits poor feasibility performance. It pro-
duces no feasible solution on these instances when the number of in-sample data N is less than 80. As such, we no
longer consider SAA’s out-of-sample performance and runtime in subsequent comparisons for this application.

Table 1 compares the out-of-sample performance of different approaches. In all applications, the time limit is set
to 900 seconds. The emdash indicates that the method cannot solve the problem within the specified time limit. In
addition, because the objective value obtained from the decomposition method is within the optimality tolerance 71
of that associated with directly solving the corresponding semidefinite program, we no longer report its value.
Under this setting, the optimal value is approximately 10,408, which is computed by solving SAA with a large
enough sample size, for example, N = 50,000. We observe that the out-of-sample costs of C; SDP and CQ SDP
decrease as the number of in-sample points increases. The semidefinite approximations that use the inner cones
Z Ao(K) perform slightly worse than the ones based on Z.4;(K). Also, we can see that it is better to choose the con-
structor points according to the empirical distribution because the partitions are more balanced. The results in Table
1 further show that, although Wass SDP can be solved within the imposed time limit only when the number of
samples is 10, in this case, it outperforms the other methods, slightly for C; SDP, in terms of out-of-sample cost.

With regard to computational costs, Co SDP, C; SDP, C;; SDP, and C; SDP have notably lower runtime than Wass
SDP as shown in Table 2. One possible reason is that Wass SDP solves a large SDP problem with O(N) semidefinite
constraints involving matrices of size O((S + N, + L)%). In comparison, the other semidefinite methods solve an SDP
problem with O(KL) semidefinite constraints involving smaller matrices of size O(S?). However, the SDP solution
schemes become less time efficient as the number of partitions increases. Thus, it would be advantageous to use Algo-
rithm 1, which solves the subproblems independently. We further observe that C; SDP takes much longer time to
solve and their runtime exceeds the time limit, that is, 900 seconds with more than 20 in-sample points, but they deliver
similar out-of-sample performance to Cy SDP. Therefore, we conclude Cy SDP is a better choice when balancing opti-
mality and scalability. Hence, we only apply the decomposition algorithm to solve Cy SDP, denoted as Benders Cy.
We set the tolerance level to n = 0.05 when solving the decomposition algorithm, which indicates that the objective
costs of Benders Cy are within 5% gap from those of Cy SDP. Numerically this algorithm significantly reduces the
runtime compared with the original SDP schemes, particularly when the number of in-sample points is large.

5.3. Multi-ltem Newsvendor

5.3.1. Problem Description. In this application, we explore an inventory management problem (Hanasusanto
et al. 2015) where we want to decide the order quantities x;, i € [M], of M products, before observing the random
demands ¢&;, i € [M], and the random stockout costs s;, i € [M]. There is a limit B on the total order quantity. We
incur a per-unit stockout cost s; when the order quantity x; is less than the demand &; and a holding cost g; if the
order quantity x; is more than the demand ¢&;. The second-stage variables y; ; := max{x; —&;,0} and 1,;:=
max{&; — x;,0} correspond to the excess amount and the shortfall amount, respectively. Our goal is to minimize

Table 2. Average Runtime (Seconds) for the Network Inventory Problem of Different Approaches

N Cy SDP C, SDP C; SDP C; SDP Benders C, Wass SDP
10 3.728 16.468 2.810 23.321 10.085 737.800
20 9.743 76.215 7.607 104.61 6.178 —

40 28.097 — 14.901 — 7.276 —

80 97.241 — 87.645 — 10.584 —

160 351.984 — 696.5 — 16.524 —
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the worst-case CVaR of the total stockout and holding costs given by

min sup P-CVaR.[Z(x,§,s)]
PeP
st xeRY, eTx < B,

where the second-stage cost is defined as
Z(x,&s):=inf g"y, +s"y,
sty € RZXI, Yy, € Rﬁd
yy2x—&§y,>2&—x.

According to the definition of CVaR, it can be shown that this problem is equivalent to

inf 6 + %sup Ep[(§,s)]

PeP
st. O eR, xGRT, y1:E—>RM, yZ:E—>RM, 7:2E—>R
e'x <B (26)
T(f, S) 2 O/ T(f, S) = gTyl(gl S) + STyZ(gl S) -0
y,(§s) >0, y,(§s) >x—§ }V(g,s) €.
yz(gl S) > 0/ yz(frs) > §_ X

We assume the only information provided is the historical data (él,él), .. .,(éN,éN), and the description of the
support set E = {(§,s) € (RM,RM):Q <& <&, 8 <5 <5, ie[M]}.

5.3.2. Experimental Setting. Reformulated Problem (26) has random recourse matrices in the constraints. After
applying PLDR to the second-stage decision variables y,(§ s) and y,(§s), the right-hand side of the third
inequality contains a quadratic term of random parameters (&, s). Thus, PQDR are applied to the second-stage
decision variable 7(§,s) on the left-hand side. After applying the decision rules, we separately use the inner
approximations Z.4y(K) and Z.4;(K) proposed in Online Appendix B and solve the corresponding semidefinite
programs denoted as Cy SDP and C; SDP. We further take advantage of the decomposition algorithm to reduce
the runtime of the semidefinite programs.

To assess the performance of Cy SDP, C; SDP, and SAA, we compute the out-of-sample performance of a real-
istic size multi-item newsvendor problem with M = 5 products. The training data sets are of sizes
N =10,20,40,80,160, whereas the testing data sets contain 50,000 independent samples. Here we select the con-
structor points according to the empirical distribution generated from the historical (i.e., training) data. We eval-
uate the out-of-sample performance by averaging the results obtained on 100 instances. For each instance, we set
B=30,&=0, &,=10,5,=0,5, =50 and the holding cost vector g =[5,6,7,8,9]. The parameter 0 related to the
risk attitude of CVaR is fixed to 0.1. The true distributions of the demands £ are assumed to be truncated lognor-
mal with means u; = e and standard deviations o4 = e, and the true distributions of the stockout costs s are
assumed to be truncated lognormal with means m, =3e and standard deviations o, =2e. We determine the
values of the robustness parameters y and ¢, k € [K] in the ambiguity set using a twofold cross-validation proce-
dure. The tolerance level 1 of the decomposition algorithm is set to 0.05.

5.3.3. Analysis of the Results. A comparison of the out-of-sample performance of Cy SDP, C; SDP, and SAA is
shown in Figure 1. In Figure 1, we observe that the out-of-sample costs of all three methods decrease with the training
data size and approach the optimal cost. Both Cy SDP and C; SDP achieve better out-of-sample performance with
approximately 15% improvement compared with SAA when the in-sample data are limited (e.g., n = 10), whereas
the optimality gaps of both the semidefinite approaches are about 20%. When the data size is less limited (e.g., n =
160), the gaps between the semidefinite approaches and SAA shrink to 3% as the solutions of SAA asymptotically
converge to the optimal one. Meanwhile, the optimality gaps of both SDP solution schemes become fairly small at
around 1%. Comparing the two SDP schemes, we notice that C; SDP has a marginal advantage over Cy SDP in terms
of out-of-sample performance, which indicates Z.4;(K) provides a slightly better approximation than Z.4y().

Table 3 shows the runtimes of all three previous methods, with the addition of Benders Cy, which solves C,
SDP using the decomposition algorithm. The runtime of C; SDP exceeds the time limit with 160 in-sample
points. Our results confirm the benefit of applying the Benders decomposition algorithm, where the advantage
grows with the number of in-sample data. Table 4 shows that the algorithm reaches a near-optimal solution in a
small number of iterations and each subproblem is solved within one second.
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Figure 1. (Color online) Out-of-Sample Cost for the Newsvendor Problem as a Function of the Number of In-Sample Data
Points with a Fixed Number of Partitions K = N/2
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Note. The dashed lines represent the average values, and the shaded areas depict the 10%-90% quantile range over 100 instances.

Table 3. Average Runtime (Seconds) for the Newsvendor Problem of Different Approaches with Fixed Number of
Partitions K= N/2

N C, SDP Cy SDP Benders C, SAA
10 0.572 0.181 0.992 0.003
20 1.965 0.370 1.001 0.004
40 11.313 0.926 1.032 0.006
80 66.086 2.819 1.074 0.013
160 — 6.614 1.664 0.022

Table 4. Computational Performance of the Decomposition Algorithm for the Newsvendor Problem

Benders Cy
N Runtime Maximum sub. runtime No. of iterations
10 0.992 0.081 12
20 1.001 0.099 10
40 1.032 0.127 8
80 1.074 0.177 6
160 1.664 0.274 6

Note. All runtimes are in seconds.

Figure 2. (Color online) Out-of-Sample Cost for the Newsvendor Problem as a Function of the Values of Parameters K, ek, and y
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Notes. (Left) Out-of-sample cost for the newsvendor problem as a function of the number of partitions K with fixed n = 40 and parameters
€, =300 Vk € [K], y = 0.5. Middle) Out-of-sample cost as a function of the value of parameter ex with fixed n = 20, K = 5, and parameter y = 0.5.
(Right) Out-of-sample cost as a function of the value of parameter y with fixed n = 20, K = 5, and parameters €, = 300 Vk € [K].
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When using PDR, the number of partitions K affects the out-of-sample performance. In Figure 2 (left), we
observe that the out-of-sample performance reaches its minimum at the midpoint. This could be attributed to the
fact that increasing the number of partitions enhances the approximation power of PDR, yet the moment estima-
tion within each partition becomes less accurate as a smaller number of samples fall into each partition. Conse-
quently, the optimal number of partitions strikes a balance. In Figure 2 (middle), we investigate the impact of
varying the robustness parameter €, on the performance of the considered methods. Here, the best value of e is
600. This observation is consistent with the fact that a sufficiently small parameter value leads to overfitting,
whereas a value that is too large yields overly conservative solutions. Either one of these situations gives rise to
poor out-of-sample performance. Figure 2 (right) illustrates the impact of different values of the robustness
parameter y on the out-of-sample performance. We observe that, although the optimal value of y is achieved at
point 0.5, when we select the constructor points based on the empirical distribution, that is, set y = 0, the perfor-
mance is only slightly inferior to the optimal one, whereas the computational effort is reduced.

6. Conclusions
Efficient solution schemes for two-stage DRO problems with random recourse have not yet been developed due
to their high level of intractability. In this paper, we leveraged the decision rule approach to alleviate the compu-
tational challenge of solving these problems and proposed a novel ambiguity set with two layers of robustness
based on the decision rule structure. The resulting distributionally robust model admits an attractive out-of-
sample performance guarantee that provides valuable guidance in choosing the robustness parameters in appli-
cations. We reformulated the model as a convex copositive program, which is amenable to tractable semidefinite
programming approximations. We further developed a decomposition algorithm that can significantly speed up
the solution time. This method enables us to efficiently solve the more difficult problem instances with integer
first-stage decisions. Through a variety of numerical studies, we demonstrated that our solution method exhibits
near-optimal out-of-sample performance with reasonable computational effort, even under limited sample sizes.
We see at least three opportunities for further investigation. First, it would be interesting to explore other parti-
tioning schemes than the Voronoi regions for the piecewise decision rules, which may lead to solutions with dif-
ferent optimality and scalability properties. Second, the decomposition algorithm can naturally be implemented
in a parallel computing environment because the subproblems can be solved independently. Investigating the
computational implications of this approach could be an interesting avenue of exploration. Third, it would be
beneficial to extend the proposed approach to address DRO problems with more than two stages, which can
attain the theoretical performance guarantee while maintaining similar scalability in its solution algorithm.
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