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Abstract

Large-scale pre-trained Vision & Language (VL) mod-
els have shown remarkable performance in many applica-
tions, enabling replacing a fixed set of supported classes
with zero-shot open vocabulary reasoning over (almost ar-
bitrary) natural language prompts. However, recent works
have uncovered a fundamental weakness of these models.
For example, their difficulty to understand Visual Language
Concepts (VLC) that go ‘beyond nouns’ such as the mean-
ing of non-object words (e.g., attributes, actions, relations,
states, etc.), or difficulty in performing compositional rea-
soning such as understanding the significance of the or-
der of the words in a sentence. In this work, we investi-
gate to which extent purely synthetic data could be lever-
aged to teach these models to overcome such shortcomings
without compromising their zero-shot capabilities. We con-
tribute Synthetic Visual Concepts (SyViC) - a million-scale
synthetic dataset and data generation codebase allowing to
generate additional suitable data to improve VLC under-
standing and compositional reasoning of VL models. Addi-
tionally, we propose a general VL finetuning strategy for
effectively leveraging SyViC towards achieving these im-
provements. Our extensive experiments and ablations on
VL-Checklist, Winoground, and ARO benchmarks demon-
strate that it is possible to adapt strong pre-trained VL mod-
els with synthetic data significantly enhancing their VLC
understanding (e.g. by 9.9% on ARO and 4.3% on VL-
Checklist) with under 1% drop in their zero-shot accuracy.

1. Introduction
There have been impressive advances in the performance

of zero-shot recognition through the use of large-scale pre-
trained Vision & Language (VL) models [45, 20, 50, 28,
15, 57, 29, 13]. However, these VL models still face
some important challenges in understanding Visual Lan-
guage Concepts (VLC) beyond object nouns (e.g., recog-
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†Work partially done while interning at the MIT-IBM Watson AI Lab.

Diversify human 
interactions:

a) Use synthetic data to teach a model new relationships:

b) Generate complex and meaningful image/text pairs by
incorporating human interactions:

b) Add human interactions to generate complex scenes: 

+ synthetic humans

+ textured humans

+ enabling physics

+ adding objects

+ diversifying poses

+ different views

Figure 1. Overview of our proposed synthetic set: we place differ-
ent objects in a scene and change their position, color, size, and
material. We further emphasize on human-level interactions, sam-
pling a wide set of body poses and behaviors to cover transitive
and intransitive human actions.

nizing attributes, relations, states) and in terms of com-
positional reasoning capabilities (i.e.., understanding sub-
tle changes in meaning due to small changes in word or-
der). Recently, several benchmark tests have been devised
to demonstrate the extent to which these models lack these
capabilities [51, 62, 59] 1. As noted in several recent
works [59, 62, 9], this behavior of VL models is likely due
to the contrastive pre-training prevalent for all of them and
likely inducing ‘bag-of-objects’ kind of representations (for
both images and text alike). Indeed, for (even large) random
batches of paired image-text samples, the collection of ob-
jects (nouns) in the image (or text) is likely to uniquely de-
termine the image (or text) in the batch, making contrastive
batch losses focus on the objects (nouns) while regarding

1Please also see supplementary material for the expanded set of results
of [62] including results for all the most recent open-sourced VL models,
all exhibiting poor VLC understanding performance.
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other details (attributes, relations, states, word order, etc.)
as unnecessary. Intuitively, this impairs VLC understand-
ing and compositional reasoning of the resulting model.

Given the above, a natural question to ask is what is the
most effective way to ‘fix’ the VL models to improve their
VLC understanding and compositional reasoning perfor-
mance? An approach proposed in concurrent works [9, 59],
advocates for the use of text augmentation, using language
tools to teach a model the importance of non-noun words by
manipulating them (e.g., replacing them with incorrect al-
ternatives) and adding the resulting texts to the same batch.
Although effective, such augmentation techniques are only
easy on the text side and are much harder and prohibitively
expensive on the image side. Indeed, finding, collecting, or
generating real image samples sharing the objects but dif-
fering in their composition, attributes, relations, or states
is very difficult. Although significant progress has been
achieved with text-based editing [16, 21, 37, 5, 23, 3, 38],
these methods are relatively slow (leveraging diffusion) and
not sufficiently stable to allow effective use for augmenta-
tion in training pipelines. In this work, therefore, we pro-
pose an orthogonal route – VL data synthesis for fixing VL
models by targeted demonstration. Specifically, we pro-
pose enhancing the VLC and compositionality aspects of
the generated visual and text data, in turn using this data
for finetuning VL models teaching them to pay closer atten-
tion to these aspects. Moreover, besides being largely free
and infinitely scalable, synthetic data has an additional ad-
vantage – it can also be free from privacy concerns always
accompanying real data.

Besides the inherent challenges of realistic data simula-
tion, building synthetic data that can be effectively used to
improve VLC and compositionality aspects of VL models
pre-trained on massive real data poses additional technical
challenges. Unlike the majority of prior work focusing on
synthetic visual data generation, we need not only to gen-
erate images, but also the text that describes compositional
items in a scene. We generate synthetic videos that lever-
age realistic physical 3D simulation [11] including diverse
3D environments and different 3D objects, human motions,
and actions assets [1, 35, 41, 44], added interaction with ob-
jects, and different camera viewpoints. Every frame of these
videos is accompanied by rich metadata, allowing using lan-
guage grammar for generating detailed descriptive captions
of any instantaneous scene in each video. These captions, in
turn, allow collecting diverse image-text pairs samples con-
trasting which one to another highlights to the model the
importance of the compositional items in the text captions
(e.g. different viewpoints or different frames in the same
video share objects but may strongly differ in the VLC and
other compositional items). While motion assets were used
by previous works to generate synthetic data [55, 54], the vi-
sual data was not accompanied by textual captions and was
not designed with the need to highlight compositionality in
mind. We contribute Synthetic Visual Concepts (SyViC) –

a large (million-scale) generated synthetic VL dataset with
rich textual captions, easily extensible through our data syn-
thesis code together with all the already generated million-
scale synthetic data used in this paper (Figure 1).

In addition to the data synthesis pipeline, we also of-
fer a strategy for effectively leveraging the generated syn-
thetic data, while avoiding forgetting real data alignment
and losing the strong a-priori zero-shot capabilities of the
model. We propose and extensively ablate a combination of
domain adaptation by stylization [63], parameter efficient
fine-tuning [17], long captions handling, and model averag-
ing methods [56] to reduce forgetting, as well as examine
the effect of different aspects of data synthesis and fine-
tuning choices on the gains in VLC and compositionality
understanding.

Our contributions can be summarized as follows: (i) we
contribute SyViC – a million-scale synthetic dataset with
rich textual captions, intended for improving VLC under-
standing and compositional reasoning in VL models, as
well as the methodology and the generation codebase 2

for its synthesis and potentially extensibility; (ii) an effec-
tive general VL model finetuning strategy enabling effective
leveraging of SyViC data for enhancing the aforementioned
aspects of strong pre-trained VL models without sacrificing
their zero-shot capabilities; (iii) experimental results and
extensive ablation study showing significant (over 10% in
some cases) improvement in VLC understanding and com-
positional reasoning respectively, measured on all the recent
VL-Checklist, ARO, and Winoground benchmarks and val-
idated on the most popular CLIP [45] model and its deriva-
tives (e.g. the most recent CyCLIP [15]).

For supplemental materials, readers are referred to the
associated arXiv document at [arXiv:2303.17590].

2. Related Work
Large-scale Vision&Language (VL) Models: Large-scale
pre-trained VL models such as CLIP [45] or ALIGN [20]
show remarkable success in many zero-shot recognition
tasks such as image classification or detection [60]. Despite
the continued advancements made in this direction [15, 57,
29, 13], recent studies (e.g., [62, 51, 59]) show that exist-
ing VL models exhibit limited comprehension of structured
vision language concepts (VLC). Yuksekgonul et al. [59]
argue that contrastive learning for image-retrieval learns
shortcuts and does not learn compositional information. To
address this limitation, some approaches investigate how to
augment the text captions or images in contrastive learning
to enhance the ability of VLC [9, 59]. Smith et al. [48]
learn VLC concepts with additional supervised datasets in a
continual learning setup. In contrast, we use 3D graphic
engines to generate realistic synthetic videos with differ-
ent compositions and generate corresponding text captions,

2We release our code together with all million-scale synthetic data used
in this paper here: https://github.com/uvavision/SyViC
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which allows a VL model to learn compositionality and
non-object words such as attributes, actions, relations, etc.
Learning from Synthetic Data. There has been a lot of
work on learning from synthetic data in image classifica-
tion [11, 40, 36], semantic segmentation [47, 46], human
pose estimation [55, 22], action recognition [54], etc. Syn-
thetic data is easy to generate and particularly useful for
providing dense annotation such as semantic segmentation
and depth estimation since these are prohibitively expensive
to annotate manually. Some of the work relies on graphics
engines to generate realistic data. Mishra et al. [36] propose
a method to learn how to generate task-adaptive synthetic
data with the 3D simulation engine. For human-related
problems, parametric body models (e.g., SMPL [32]) can be
leveraged, along with motion assets [53], to generate syn-
thetic human videos for low-level body analysis tasks [55]
or action recognition [7, 54]. Similar to our work, [7, 54]
seek to associate semantic labels to synthetic images, but
different from symbolic action categories, our focus is to
assign rich textual descriptions to our generated images.

Since synthetic data suffers from a domain gap such
as textures, visual styles, or colors from real images, do-
main adaptation, and generalization have been proposed to
address this issue. Adversarial learning [52, 12, 49] can
be used to generate real-like images or feature alignment
between synthetic and real data. Additionally, stylization
methods [64, 63] are proposed as a style augmentation to
make a model robust to diverse styles. In contrast, we man-
ually randomize the visual content including different 3D
objects, materials, and color attributes in graphics engines.
Then we generate realistic synthetic videos from different
domains with corresponding text captions. The generated
data can be served as a hard negative augmentation and en-
hance the ability of VLC.

3. Method
We first present our synthetic data generation pipeline

(Sec. 3.1), then describe how we leverage it for significant
gains in VLC understanding and compositional reasoning
capabilities of strong pre-trained VL models (Sec. 3.2). Our
entire approach is illustrated in detail in Fig. 2.

3.1. Synthetic Data Generation

In this section, we outline the components and the
pipeline of our approach used to generate the proposed
Synthetic Visual Concepts (SyViC) synthetic VL dataset
for improving VLC understanding and compositional rea-
soning of VL models. Our contributed dataset includes
767,738 image-text pairs, 598K sampled from 1,680 di-
verse synthetic videos, and the remaining 169K generated
as individual static synthetic scenes. Example samples from
SyViC are provided in Supplementary.
3D physics-based simulation platform: ThreeDWorld
(TDW) [11], which is built on top of Unity3D, is a multi-

modal simulation platform that enables realistic physical in-
teractions. TDW contains 2304 objects, 585 unique mate-
rials subdivided in metal, cardboard, wood, ceramic, and
glass, and over 30 indoor and 9 outdoor scenes (3D envi-
ronments). For generating synthetic VL data, we start with
placing random objects in a scene following the workflow
proposed by [6]. We also use their camera positions and
configurations to place objects visible inside good empty
room perspectives. We group the available 3D object mod-
els by assigning dimension-related labels to each object and
use the ImageNet category labels available for each object
model as its associated text for later caption synthesis.
Camera Viewpoints: To further augment the set of plau-
sible object placements and relations, we simultaneously
place 4 to 12 cameras around a specific point of an empty
room, and randomly place n ≥ 1 objects in the scene,
allowing us to render images from different views of the
same scene further strengthening the compositional aspects
of the data as discussed in the introduction (Sec. 1). For
each scene (frame), TDW cameras are able to capture RGB
images, the corresponding object instance and category se-
mantic segmentation masks, and a depth map. We use these,
as well as a range of sensor and physics data representing
the state of the world returned by TDW’s API, to enable
dense annotations and supervision for each scene (frame)
as part of our metadata generation process. We collect all
of this information in our metadata and use it to estimate the
position of the objects in the scene instead of relying on the
3D coordinates of each object and the camera position.
Digital humans: As we focus on compositionality aspects
of images and text pairs, having people in our images is
important. However, people models (especially animatable
ones) are usually not present in common collections of 3D
assets. Existing large-scale synthetic datasets often focus
on realistically placing objects in a scene, but typically hu-
mans and animals are not included. We first inspected what
libraries were available for realistic human synthesis. Peo-
pleSansPeople [10], a library with 28 human 3D models
and 39 unique actions, allows only random human place-
ment, not allowing for humanoid customization or integra-
tion of human-object interactions. We leverage TDW sup-
port for Skinned Multi-Person Linear Model [33] (SMPL)
humanoids. SMPL is a parametric body model that enables
a realistic representation of the shape and pose of arbitrary
(non-clothed) 3D human bodies with diverse genders and
shapes. SMPL models can be easily animated using motion
capture data. The pose of the SMPL model is defined by a
set of joint angles that determine the position of the corre-
sponding body parts in the 3D space. The extended SMPL-
X [39] additionally allows controlling hand articulation and
face expressions. Given the available library asset in TDW
that enables placing these SMPLs in a scene, we create a
stand-alone module to automatically incorporate arbitrary
custom animations and 514 unique human textures from the
SURREAL [55] and Multi-Garment [4] datasets for cloth-
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o bj e ct a n d h u m a n oi d i n t h e s c e n e ( o bj e ct p h ysi c al attri b ut es
i n cl u d e c ol or, si z e, a n d m at eri al; h u m a n attri b ut es i n cl u d e
t h e p er-fr a m e a cti o n l a b el t h at c h a n g es o v er ti m e a n d cl ot h-
i n g d es cri pti o n). (iii) R e n d er e d d e pt h i m a g es, i nst a n c e s e g-
m e nt ati o n m as ks, a n d c at e g or y s e g m e nt ati o n m as ks. Usi n g
t h e m et a d at a, w e c o m p ut e t h e p ositi o n al r el ati o ns b et w e e n
e a c h p air of o bj e cts a n d/ or h u m a ns b y c o m p ari n g t h e pi x els
c o v er e d b y t h eir s e g m e nt ati o n m as ks as w ell as t h eir c a m-
er a c o or di n at es. T h e n, w e us e a si m pl e gr a m m ar t h at d et er-
mi nisti c all y m a ps p ositi o n al r el ati o ns hi ps, o bj e ct attri b ut es,
h u m a n attri b ut es a n d a cti o n d es cri pti o ns, a n d s c e n e d es cri p-
ti o ns t o a w ell-f or m e d c a pti o n. M or e d et ails o n t h e gr a m-
m ar ar e pr o vi d e d i n S u p pl e m e nt ar y.

3. 2. Fi n et u ni n g l a r g e-s c al e p r e-t r ai n e d V L m o d els
usi n g s y nt h eti c d at a

I n t his s e cti o n, w e pr o p os e a m et h o d ol o g y f or eff e cti v el y
l e v er a gi n g t h e S y Vi C s y nt h eti c V L d at a pr o d u c e d as e x-
pl ai n e d i n S e c. 3. 1 . We will us e t h e f oll o wi n g n ot ati o n. L et
(T, I ) b e t h e t e xt & i m a g e p air a d mitt e d b y a V L m o d el.
T h e m o d el ( e. g., C LI P [ 4 5 ], C y C LI P [1 5 ]) c o m p o n e nts ar e
d e n ot e d as: (i) i m a g e e n c o d er e I = E I (I ); (ii) t e xt e n c o d er
e T = E T (T ). I n t his n ot ati o n, t h e t e xt-t o-i m a g e si mil arit y
s c or e is c o m p ut e d as:

S (T, I ) = c o s (E T (T ), E I (I ))) = c o s (e T , eI ), ( 1)

w h er e c o s is t h e c osi n e si mil arit y (i n n er pr o d u ct of n or m al-
i z e d v e ct ors). We n e xt d es cri b e i n d et ail t h e c o m p o n e nts of
o ur fi n et u ni n g str at e g y. T h eir m erit a n d tr a d e offs ar e t h or-
o u g hl y i n v esti g at e d i n S e c. 4. 4 , arri vi n g at t h e c o n cl usi o n
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t h at p ar a m et er ef fi ci e nt fi n et u ni n g + d o m ai n a d a pti v e st yl-
i z ati o n + pr o p os e d c a pti o n s plitti n g t e c h ni q u e ar e t h e m ost
eff e cti v e c o m bi n ati o n. We als o c o n fir m i n S e c. 4. 4 , t h at
m o d el a v er a gi n g c a n pr o vi d e e x p e ct e d tr a d e- offs b et w e e n
V L C u n d erst a n di n g a n d c o m p ositi o n al r e as o ni n g g ai ns a n d
m ai nt ai ni n g z er o-s h ot p erf or m a n c e.
A v oi di n g f o r g etti n g t h r o u g h p a r a m et e r ef fi ci e nt fi n e-
t u ni n g: I ns pir e d b y [9 , 4 8 ], w e us e L o R A [1 7 ] f or V L
fi n e-t u ni n g wit h r e d u c e d f or g etti n g of b as e m o d el p erf or-
m a n c e. We a p pl y L o R A [ 1 7 ] t o a d a pt t h e e n c o d ers (E T , E I )
of a pr e-tr ai n e d V L m o d el b y p ar a m et eri zi n g t h e a d a pt e d
w ei g hts W ∗

k c orr es p o n di n g t o t h e ori gi n al m o d el w ei g hts
W k f or e a c h l a y er k as:

W ∗
k = W k + A k · Bk ( 2)

w h er e f or W k of si z e m × l, A k a n d B k ar e r a n k- r m atri c es
of si z es m × r a n d r × l r es p e cti v el y. T h es e l o w-r a n k r esi d-
u al a d a pt ers c a n b e a p pli e d ef fi ci e ntl y d uri n g tr ai ni n g a n d
c oll a ps e d at i nf er e n c e ti m e r es ulti n g i n z er o c ost i n t er ms of
i nf er e n c e s p e e ds or p ar a m et er c o u nts [1 7 ]. D uri n g fi n et u n-
i n g all t h e b as e m o d el p ar a m et ers ∀ k, { W k } ar e fr o z e n a n d
o nl y t h e L o R A a d a pt ers ∀ k, { (A k , B k )} ar e b ei n g l e ar n e d.
K e e pi n g r a n k r l o w, t h e n u m b er of e xtr a p ar a m et ers a d d e d
b y all t h e L o R A a d a pt ers is l o w, c o ns e q u e ntl y l e a di n g t o
si g ni fi c a ntl y r e d u c e d f or g etti n g i n t er ms of l ar g el y m ai n-
t ai ni n g t h e z er o-s h ot p erf or m a n c e of t h e ori gi n al V L m o d el.
F u rt h e r r e d u ci n g f o r g etti n g vi a m o d el a v e r a gi n g: [5 6 ]
i ntr o d u c e d a n el e g a nt t e c h ni q u e t o miti g at e f or g etti n g i n
fi n et u n e d m o d els. All t h e p ar a m et ers of t h e s o ur c e m o d el
( b ef or e fi n et u n e) a n d t h e fi n al m o d el ( aft er fi n et u n e) ar e a v-
er a g e d b et w e e n t h e t w o m o d els (t y pi c all y wit h α = 0 .5
w ei g ht). We e v al u at e t h e eff e ct of t his o n S y Vi C fi n et u n e d
m o d els i n o ur a bl ati o n S e c. 4. 4 .
D o m ai n a d a pti o n usi n g st yl e t r a nsf e r: I n a d diti o n, t o mit-
i g at e t h e d o m ai n g a p i ntr o d u c e d b y t h e us e of s y nt h eti c d at a,
w e e x p eri m e nt wit h t w o st yl e tr a nsf er t e c h ni q u es t h at ali g n
t h e c o nt e nt a n d f e at ur e st atisti cs of t h e i n p ut fr a m es wit h
r a n d o ml y-s el e ct e d r e al-lif e i m a g es. A pr e-tr ai n e d A d a p-
ti v e I nst a n c e N or m ali z ati o n ( A d aI N) [1 8 ] e n a bl e d e n c o d er-
d e c o d er m o d el w as us e d t o ali g n t h e c h a n n el- wis e st atis-
ti cs of e a c h s y nt h eti c fr a m e wit h a r a n d o ml y-s a m pl e d i m a g e
fr o m t h e H u m a n M oti o n D at a b as e ( H M D B 5 1) [2 6 ] d at as et
t h us g e n er ati n g a st yli z e d s y nt h eti c i m a g e. We us e A d aI N
wit h a n i nt er p ol ati o n f a ct or α = 0 .5 . I n a d diti o n, i n or d er t o
pr es er v e t h e c ol or i nf or m ati o n i n t h e s y nt h eti c fr a m es, w e
first m at c h t h e c ol or distri b uti o n of t h e s a m pl e d st yl e i m a g e
t o t h at of t h e s y nt h eti c fr a m e [1 4 ]. We a d diti o n all y e x p er-
i m e nt e d wit h Mi x St yl e [6 5 ] ( usi n g I m a g e N et as a s o ur c e
of r e al st yl e i m a g es) as a n e xt e nsi o n of t h e D A st yli z ati o n
pi p eli n e wit h o ut o bs er vi n g si g ni fi c a nt g ai ns o v er A d aI N.
H a n dli n g a r bit r a r y c a pti o n l e n gt h wit h c a pti o n s plit-
ti n g: T h e c a pti o ns g e n er at e d f or S y Vi C ar e c o m pr e h e nsi v e:
t h e y c o nt ai n d es cri pti o ns of e v er y o bj e ct a n d/ or h u m a n oi d
visi bl e i n t h e fr a m e as w ell as t h e p air wis e p ositi o n al r el a-
ti o ns hi p b et w e e n o bj e cts. I nt uiti v el y, i n cl u di n g t h es e m or e

el a b or at e ( d e ns e) d es cri pti o ns i n o ur c a pti o ns gi v es a cl e ar
a d v a nt a g e i n t er ms of pr o m oti n g V L C u n d erst a n di n g a n d
c o m p ositi o n alit y f oll o wi n g t h e fi n et u ni n g of a V L m o d el
o n S y Vi C . H e n c e, c a pti o ns n e e d t o b e s uf fi ci e ntl y l o n g t e xts
t h at c a n n ot b e f ull y pr o c ess e d b y c o m m o n V L m o d els ( e. g.
C LI P) t e xt e n c o d ers ( E T ) d uri n g tr ai ni n g, as t h os e ar e c a p e d
b y r el ati v el y s h ort m a x s e q u e n c e c o nt e xt l e n gt h ( e. g. 7 7 f or
C LI P). T h er ef or e, i ns pir e d b y C LI P m ulti- c a pti o n str at e g y
f or i nf er e n c e [4 5 ], d uri n g tr ai ni n g, w e h a n dl e ar bitr ar y c a p-
ti o n l e n gt hs b y s plitti n g a gi v e n c a pti o n i nt o s u b- c a pti o ns
t h at c a n e a c h b e e n c o d e d s e p ar at el y a n d a v er a gi n g t h e t e xt
f e at ur es o bt ai n e d fr o m e a c h s u b- c a pti o n. I n p arti c ul ar, t h e
f e at ur es of a c a pti o n of ar bitr ar y l e n gt h t e xt T is:

E T (T ) =
1

n

n

i

E T (T i ) ( 3)

w h er e T i is a s u b- c a pti o n c o m pris e d of o n e or m or e s e n-
t e n c es t h at fit i nt o t h e t e xt e n c o d er m a x c o nt e xt si z e.
L oss es: We e m pl o y t h e ori gi n al m o d els ( e. g. C LI P [ 4 5 ] a n d
C y C LI P [ 1 5 ]) c o ntr asti v e a n d ot h er l oss es w h e n tr ai ni n g o n
S y Vi C wit h t h e af or e m e nti o n e d ar c hit e ct ur al a n d tr ai ni n g
pr ot o c ol c h a n g es as e x pl ai n e d a b o v e.

4. E x p e ri m e nts

4. 1. I m pl e m e nt ati o n d et ails

F or C LI P, w e us e t h e ori gi n al O p e n AI C LI P i m pl e m e nt a-
ti o n a n d c h e c k p oi nts. We m o dif y t h eir c o d e b as e t o i n cl u d e
L o R A a d a pt ers ( S e c. 3. 2), a n d us e r a n k 1 6 i n all o ur e x-
p eri m e nts. F or C y C LI P, w e a d a pt t h e i m pl e m e nt ati o n us e d
i n [9 ] 3 . F or b ot h C LI P a n d C y C LI P, w e us e a 5 e- 7 i niti al
l e ar ni n g r at e f or fi n et u ni n g a n d f oll o w a c osi n e a n n e ali n g
l e ar ni n g r at e s c h e d ul e [3 4 ] usi n g a n A d a m [2 4 ] o pti mi z er.
F or all e x p eri m e nts, w e us e Vi T/ 3 2- B as t h e m o d el ar c hit e c-
t ur e a n d fi n e-t u n e it f or si x e p o c hs o n o n e A 1 0 0 G P U wit h
a t ot al b at c h si z e of 4 0 0 i m a g e- c a pti o n p airs. I n a d diti o n t o
t h e ori gi n al C LI P d at a a u g m e nt ati o n tr a nsf or ms, w e a p pl y
h e a v y r a n d o m a u g m e nt ati o n p oli ci es i n cl u di n g m a ni p ul a-
ti o ns i n i m a g e i n v ersi o n, c o ntr ast, s h ar p n ess, e q u ali z ati o n,
p ost eri z ati o n, c ol ori z ati o n, bri g ht n ess, a n d s ol ari z ati o n.

4. 2. D at as ets

T o t est t h e eff e cti v e n ess of o ur pr o p os e d S y Vi C s y nt h eti c
d at as et a n d t h e a c c o m p a n yi n g fi n et u ni n g a p pr o a c h f or i m-
pr o vi n g V L m o d els’ V L C u n d erst a n di n g a n d c o m p ositi o n al
r e as o ni n g c a p a biliti es w e h a v e e v al u at e d o n 3 b e n c h m ar ks
( Wi n o gr o u n d [5 1 ], V L- C h e c klist [6 2 ], a n d A R O [5 9 ]) c o n-
sist e d of 7 d at as ets t ot al.
V L- C h e c klist [ 6 2 ] – is a l ar g e-s c al e d at as et c o m pris e d
of: Vis u al G e n o m e [ 2 5 ], S Wi G [4 3 ], V A W [4 2 ], a n d
H A K E [ 3 0 ]. E a c h i m a g e of t h es e d at as ets is ass o ci at e d wit h
t w o c a pti o ns, a p ositi v e a n d a n e g ati v e. T h e p ositi v e c a p-
ti o n c orr es p o n ds t o t h e i m a g e a n d is t a k e n fr o m t h e s o ur c e

3 C o d e a n d c h e c k p oi nts ki n dl y s h ar e d b y t h e a ut h ors.
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VL Checklist ARO Zero-Short
Relation Attribute Average VG-Rel. VG-Att. Flickr30k COCO Average (21 tasks)

CLIP 63.57 67.51 65.54 58.84 63.19 47.20 59.46 57.17 56.07
CyCLIP 61.15 66.96 64.06 59.12 65.41 20.82 29.54 43.72 55.99

syn-CLIP 69.39 (+5.82) 70.37 (+2.86) 69.88 (+4.34) 71.40 (+12.56) 66.94 (+3.75) 59.06 (+11.86) 70.96 (+11.5) 67.09 (+9.9) 55.27 (-0.8)
syn-CyCLIP 65.73 (+4.58) 68.06 (+1.1) 66.89 (+2.83) 69.02 (+9.9) 63.65 (-1.76) 49.17 (+28.35) 59.36 (+29.82) 60.30 (+16.58) 55.40 (-0.6)

Table 1. Performance of syn-<model>s – finetuned on SyViC using our proposed recipe, measured on VL-Checklist [62] and ARO [59].
Gains and losses are highlighted in green and red respectively.

Winoground Winoground†

Text Image Group Text Image Group

CLIP 31.25 10.50 8.00 31.58 10.53 8.19

syn-CLIP 30.00 11.50 9.50 (+1.50) 29.82 12.28 9.94 (+1.75)

Table 2. Winoground [51] performance of syn-CLIP – finetuned on
SyViC. The syn-CyCLIP results on Winoground are provided in
the Supplementary. † ‘clean’ (no-tag) subset of valid Winoground
samples from [8]

dataset. The negative caption is made from the positive cap-
tion by changing one word, so the resulting sentence no
longer corresponds to the image. Depending on the word
that was changed, VL-Checklist evaluates 7 types of VLC
that can be divided into two main groups: (1) Attributes
– color, material, size, state, and action, and (2) Relations
– spatial or action relation between two objects and/or hu-
mans. In the following, we report average results for each
of the main (Rel. and Attr.) groups on the combined VL-
Checklist dataset. We also detail the individual improve-
ments on all 7 VLC types in Fig. 3 (left).
Winoground [51] – is a small dataset that evaluates the
ability of VL models for compositional reasoning, specif-
ically understanding the meaning of the sentence after
changing the order of its words. The dataset has 400 sam-
ples, each comprised of two images and two texts. The texts
have the same words in a different order, each text corre-
sponding to one image in the sample. The Winoground met-
rics include (a) image score - percent of samples where the
model picks the correct text for each image; (b) text score -
percent of samples where the model picks the correct image
for each text; (c) group score - percent of samples where
both text and image score conditions are satisfied jointly.
Recently, [8] has analyzed Winoground for the source of its
difficulty and found that only 171 of its 400 samples are
a valid subset. Other samples are not compositional, am-
biguous, related to invisible details, have highly uncommon
images or text, or require complex reasoning beyond com-
positionality. We report results on both the full Winoground
and the ‘clean’ 171 images subset from [8].
ARO [59] – or the Attribution, Relation, and Order bench-
mark, is a large dataset designed to evaluate the ability of
VL models to understand four different types of skills. It
consists of Visual Genome Attribution and Visual Genome
Relation, which leverages the Visual Genome [25] dataset
along with the GQA [19] annotations to test the understand-

objects with attr. humans VL Checklist
randomization Relation Attribute Average

CLIP 63.57 67.51 65.54

✗ ✓ 64.03 67.09 65.56
✓ ✗ 65.00 68.15 65.95
✓ ✓ 69.39 70.37 69.88

Table 3. Importance of human avatars, objects, and object attribute
variations, evaluated on VL-Checklist and CLIP

ing of properties and relational understanding of objects
in complex natural scenes. VG-Relation includes 48 dis-
tinct relations with 23937 test cases, and VG-Attribution
includes 117 unique attribute pairs with 28748 test cases. It
also leverages the COCO [31] and Flickr30k [58] datasets to
evaluate the model sensitivity to select the right caption af-
ter applying four different shuffling perturbations (e.g., ex-
changing nouns and adjectives, or by shuffling trigrams).
These tests are performed on the 5000 and the 1000 images
from the respective COCO and Flickr30k test splits.

4.3. Results

The main results of finetuning CLIP [45], CyCLIP [15]
– one of CLIP’s most recent improvements are summa-
rized in Tables 1 and 2. All models were finetuned using
our proposed approach and SyViC synthetic data to obtain
their syn-<model> variants. Each model is compared to
its respective source model pre-trained on large-scale real
data before finetuning on SyViC. As we can observe, our
SyViC synthetic data and the proposed finetuning recipe on
this data demonstrate significant improvements over their
source baselines. E.g. for CLIP obtaining 1.75%, 4.34%,
and 9.9% average absolute improvement in Winoground
group score (most difficult average metric), VL-Checklist
and ARO respectively. In addition, we illustrate the indi-
vidual VLC metrics improvements obtained for CLIP in
VL-Checklist and ARO benchmarks in Fig. 3 showing up
to 9.1% and 12.6% respective absolute improvements. This
underlines the effectiveness and promise of our method and
SyViC synthetic data towards improving VLC understand-
ing and compositional reasoning in VL models. Impor-
tantly, as we can see from Table 1, these strong gains come
at a very small (under 1%) cost in the zero-shot performance
of the respective VL models measured using the standard
Elevater [27] benchmark using 21 diverse zero-shot tasks.
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SURREAL Multi-Garment VL Checklist
Relation Attribute Average

CLIP 63.57 67.51 65.54

✗ ✗ 67.56 68.73 68.15
✓ ✗ 67.56 67.26 67.41
✗ ✓ 69.39 70.37 69.88

Table 4. Importance of human avatar clothing choices between
SURREAL, Multi-Garment, and simple color textures (corre-
sponding to none), evaluated on VL-Checklist and CLIP

4.4. Ablations

We extensively ablate our SyViC synthetic data and the
proposed VL models finetuning approach on this data ac-
cording to the following points. We use the most popular
CLIP model finetuned on our SyViC synthetic dataset eval-
uated on the largest of the benchmarks - the VL-Checklist
to perform our ablations.
SyViC - objects, humans, object attribute randomiza-
tion – we evaluate the major components that comprise our
SyViC synthetic data, namely the importance of the syn-
thetic data to contain humans performing various motions
and actions, the importance of having objects with random-
ized attributes (Sec. 3.1), and the final result of having all
types of data combined. The results of this ablation are sum-
marized in Tab. 3. As expected, humans alone cannot teach
the model the needed skills only improving relations VLC
by a small margin. Additionally, having only objects with
randomized attributes improves attribute VLC, yet only im-
proves relations by 1.4% which is also expected, as many
of the relations involve human actions. The best result is
observed on the combined dataset with all the components.
SyViC - human clothing – we evaluate the diversity of hu-
man clothing comparing 3 levels of diversity: (i) none - us-
ing only a uniform color for human models; (ii) basic - us-
ing less diverse texture maps from SURREAL [55]; and (iii)
most diverse - using texture maps from Multi-Garment [4],
enriched with clothing colors, human age, and hair color
annotations (manually done by us for the textures) which
increase captions’ expressivity. Results are presented in Ta-
ble 4. As expected, the most diverse human textures deliver
the best result underlining the importance of this factor. Sur-
prisingly, better human textures improve VL-Checklist Re-
lations metric performance, likely due to the significantly
better realism of the Multi-Garment textures.
SyViC - types of object attributes to randomize – Ta-
ble 5 examines how randomizing different object attributes
affects performance. Specifically, we evaluate the random-
ization of size, material, and color. Interestingly, we find
that the best performance is achieved without color random-
ization. We suspect it is due to unnatural color-object com-
binations that arise under such randomization, which teach
the model wrong beliefs on real objects’ color distributions
and go against true object-color associations existing in the
VL model following pre-training on the original VL data.

color size material VL Checklist
Relation Attribute Average

CLIP 63.57 67.51 65.54

✓ ✗ ✗ 67.71 64.61 66.16
✗ ✓ ✗ 68.58 68.23 68.40
✗ ✗ ✓ 65.23 67.01 66.12
✓ ✓ ✓ 66.67 65.97 66.32
✗ ✓ ✓ 69.39 70.37 69.88

Table 5. Importance of different kinds of object attributes random-
ization, evaluated on VL-Checklist and CLIP

SyViC - types of captioning – we have investigated sev-
eral variants of ways to obtain textual captions from SyViC
metadata (Sec. 3.1). Results are summarized the Supple-
mentary. We compared our proposed metadata grammar-
based approach to two cascade methods that paraphrase
the captions resulting from the grammar using zero-shot
LLM inference (in-context learning). The paraphrased cap-
tion is then appended to the original grammar-based cap-
tion and consumed through our caption-splitting module (as
standalone, open LLM-based paraphrasing is not very high
quality). As can be seen, currently paraphrasing has mini-
mal effect, but we posit it will become an important tool as
stronger LLMs will become openly available.
SyViC - importance of physics and number of humans
in the scene – we also looked into to which extent reli-
able physical simulation (made available in SyViC through
TDW and Unity capabilities) and human-human positional
and other relations are important for the observed VL model
improvements. In Table 6 we evaluate the effects of remov-
ing the physics (resulting in humans or objects floating in
space) or removing the multi-human scenes (thus prevent-
ing all human-human relations from appearing in the data).
As expected, both reliable physics simulation and human-
human relations (interactions of sorts) are mostly important
to the gains in the Relations metric.
SyViC - number of models and number of samples – for
lack of space, this is explored in the Supplementary.
SyViC - finetuning recipe components – in Table 7 we ex-
tensively evaluate the different components of the proposed
finetuning approach on SyViC that leads to significant im-
provements on VL-Checklist, ARO, and Winoground VLC
and compositional reasoning metrics. We start with vanilla
CLIP finetuning on SyViC (row #1), already showing some
improvement in VL-Checklist relations metrics, and on the

physics multi-human VL Checklist
Relation Attribute Average

CLIP 63.57 67.51 65.54

✓ ✗ 67.66 69.24 68.45
✗ ✓ 65.91 69.01 67.46
✓ ✓ 69.39 70.37 69.88

Table 6. Importance of physics simulation and multi-human rela-
tions in SyViC, evaluated on VL-Checklist and CLIP
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# LoRA freezing model DA Caption VL Checklist ARO ZS
EI averaging styl. split emb. Rel. Attr. Avg. Avg. (21 tasks)

CLIP 63.57 67.51 65.54 57.17 56.07

1 ✗ ✗ ✗ ✗ ✗ 67.10 65.45 66.28 62.83 53.84
2 ✗ ✗ ✗ ✗ ✓ 67.76 67.51 67.64 59.27 53.87
3 ✓ ✗ ✗ ✗ ✓ 69.32 69.46 69.39 64.34 53.16

4 ✓ ✗ ✗ ✓ ✓ 69.39 70.37 69.88 67.09 55.27

5 ✓ ✓ ✗ ✓ ✓ 63.54 68.20 65.87 60.29 54.54
6 ✓ ✗ ✓ ✓ ✓ 66.70 69.62 68.16 63.76 55.72
7 ✓ ✓ ✗ ✓ ✗ 65.16 66.88 66.02 57.55 52.69

Table 7. Importance of the finetuning recipe components, evaluated on VL-Checklist and CLIP

ARO benchmark, yet losing to base CLIP on VL-Checklist
attributes metrics. Adding our caption splitting module
(Sec. 3.2) allows handling long (arbitrary size) texts out-
putted by our metadata-driven grammar and consequently
utilizes all the caption information re-gaining the attributes
performance (row #2). Adding parameter-efficient fine-
tuning (LoRA, Sec. 3.2) regularizes finetuning by forcing
smaller (low-rank, low-parameters) updates of the large-
scale pre-trained CLIP model, consequently somewhat han-
dling the expected domain gap between the synthetic data
of SyViC and the downstream evaluation (real data) tasks.
Notably, LoRA does not add any additional parameters to
the model, all LoRA adapters are collapsed into the model
weights after finetuning. Consequently, we observed signif-
icant improvements from adding LoRA in all metrics (row
#3) with only minor degradation (0.7%) in ZS evaluation.
With adding domain stylization (Sec. 3.2) we observe the
best results in all VLC and compositional reasoning met-
rics improving ARO by 2.8% and keeping (even slightly
improving) the advantages on VL-Checklist. Next, we in-
vestigate the variations of our best approach (LoRA + do-
main stylization + caption splitting). First, we investigate a
strategy inspired by the LiT [61] approach (row #5). Freez-
ing the visual encoder EI as expected provides a (small)
boost in ZS performance, but the reduced plasticity of the
model comes at the price of observing smaller (only 3.1%)
improvements on ARO and almost no improvements on the
VL-Checklist. This leads us to conclude, that freezing the
visual encoder is not a good strategy for SyViC finetun-
ing. Next, we check the model averaging strategy (Sec. 3.2)
inspired by [56] (row #6). This does a better job of miti-
gating ZS forgetting, while at the same time keeping more
of the gains on VL-Checklist and ARO. We conclude that
model averaging is a good strategy to complement SyViC
finetuning, allowing a soft trade-off between mitigating ZS
forgetting and VLC and compositionality metrics gains. Fi-
nally, we again explore the importance of caption splitting
for the best finetuning configuration of SyViC (row #7) and
re-confirm its significance as performance drops without it.

5. Summary & Conclusions
Large vision and language models have dictated the sta-

tus quo in computer vision and multimodal perception,

A-Color

A-Material

A-Size

A-State A-Action

R-Action

R-Spatial69.31

66.65

63.6

65.47

72.53

55.85

71.35

74.39

69.72

65.69

62.59

74.27

64.9

75.66

CLIP
Syn-CLIP

VG-Relation

VG-Attribution

Flickr30k-PRC

   COCO-PRC

58.84

63.19
47.2

59.46

71.4

66.94

59.06

70.96

CLIP
Syn-CLIP

Figure 3. (left) detailed evaluation of syn-CLIP on the 7 sepa-
rate VL-Checklist [62] metrics; (right) detailed evaluation of syn-
CLIP on all the Compositional Tasks proposed in ARO [59].

achieving state-of-the-art results in a number of challenging
benchmarks. However, existing models struggle with com-
positional reasoning and understanding concepts beyond
object nouns, such as attributes and relationships. Our work
has investigated, for the first time, whether synthetic data
can be leveraged to mitigate these shortcomings. We pro-
posed a data generation pipeline, used to create a million-
scale dataset of synthetic images and accompanying cap-
tions, and an effective fine-tuning strategy with compre-
hensive analysis to enhance the compositional and concept
understanding capabilities of multimodal models, without
compromising their zero-shot classification performance.
Limitations. While we have achieved quite promising re-
sults in three different benchmarks, our work has limita-
tions. As an example, our graphics simulator has a simpli-
fied model of lighting, sensor noise, and reflectance func-
tions compared to the real world, which may impact ro-
bustness to color constancy. We believe more advanced do-
main adaptation and rendering techniques are likely needed
to further improve our results. We also think a more de-
tailed study of the scaling laws for synthetic data is a great
research direction to fully unlock the potential of our work.
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