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Advection-enhanced heat and mass transport from a single droplet neutrally suspended in a simple shear 

flow has been studied using high-fidelity numerical simulation. The capillary number ranges from 0.01 to 0.5, 

which encompasses the entire range of small deformation, large deformation, and breakup of the droplets. The 

Reynolds number is from 0.01 to 1, including regions of both weak and strong advection. The temperature and 

mass concentration are modeled as the concentration of a passive scalar released at the droplet surface. Two 

Schmidt numbers, 10 and 100, are considered, for which flow advection plays a role in the transport of passive 

scalar. For unbroken droplets, the interaction between the carrier fluid and the suspended droplet leads to 

several different flows around the droplet. The fluid motions together with scalar diffusion constitute a coupled 

transport mechanism for passive scalar. The dependence of scalar release rate on Reynolds and Peclet numbers 

can be roughly described by the correlation for a rigid sphere. For broken droplets, the basic flow features 

around the droplet during the process of elongation and breakup are the similar to those of an unbroken droplet. 

The variation of scalar release rate can be decomposed into several stages, corresponding to the process of 

droplet elongation and breakup. The variation of scalar release rate exhibits a high correlation with the capillary, 

Reynolds, and Peclet numbers. This suggests that it is feasible to develop an empirical model that incorporates 

the effects of the number and size distributions of child droplets after breakup. 
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1. Introduction 

Micro droplets ranging from tens to hundreds of microns in diameter provide an ideal platform for micro 

reaction, synthesis, mixing, and bioassay, due to their fast heat transfer, efficient mixing, and short residence 

time1,2. Flows containing finite numbers of droplets have thus been widely utilized in a diverse range of 

chemical and biological processes, including chemical and biochemical screening3,4, protein crystallization5,6, 

and enzymatic kinetic assays7,8. Larger-scale droplet systems, known as emulsions, have been applied in more 

fields, including energy conversion and storage9,10, liquid extraction of chemical materials11,12, synthesis of 

composite materials13,14, and chip sealing15,16. These applications involve complex heat and mass transport 

between the dispersed droplets and the continuous fluid, and have strict requirements for the transport process. 

A newly emerging area in which droplet mass transfer plays an important role is the development of droplet-

based microscale robots, which offers great promise for diverse biomedical applications, including targeted 

drug delivery17,18 and nanoliter-scale protein crystallization and screening19,20. Precise control of heat and mass 

transport is one of the key considerations in the design and development of these applications, but the current 

understanding of the transport mechanisms of multiphase flows is far from adequate21. 

In multiphase flows, dispersed liquid droplets and gas bubbles have two major types of motion relative to 

the continuous fluid: the vertical movement driven by gravity or buoyancy, and the spinning caused by local 

flow shear. Vertical movement occurs when there is a difference in the densities of the dispersed and 

continuous phases, as in vapor bubbles in a boiling heat transfer system22. Considerable experimental and 

numerical effort has been devoted to this topic23-26. In commonly used liquid-liquid systems, however, the 

droplet density is comparable to that of the continuous liquid, which reduces the buoyancy effect, and the 

enhanced viscous effect at the microscale suppresses translational movement. Therefore, droplet spinning due 

to local flow shear is more important, leading to different mechanisms for heat and mass transport. Typical 

examples include droplet-based drug delivery in blood vessels, and heat transfer using emulsion as transfer 

medium. The droplets in these applications are subjected to strong flow shear26. For a droplet in a simple shear 

flow, the Reynolds number (𝑅𝑒) is defined based on the local flow shear rate and droplet radius, 𝑅𝑒 ≡ 𝑆𝑅2 𝜈⁄ , 
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where 𝑆 is the flow shear rate, 𝑅 the droplet radius, and 𝜈 is the kinematic viscosity of the continuous fluid. 

The Prandtl (𝑃𝑟) and Schmidt (𝑆𝑐) numbers quantifies the ratios of momentum diffusivity to thermal and mass 

diffusivities, respectively. They are defined as 𝑃𝑟 ≡ 𝜈 𝛼⁄  and 𝑆𝑐 ≡ 𝜈 𝐷𝑚⁄ , where 𝛼 is the thermal diffusivity 

and 𝐷𝑚 is the mass diffusivity of the carrier fluid. The effect of flow shear on droplet heat and mass transfer 

can be characterized by Peclet number (Pe), which is defined as the ratio of advective to diffusive transfer 

rates, 𝑃𝑒 ≡ 𝑆𝑅2 𝛼⁄  for heat and 𝑃𝑒 ≡ 𝑆𝑅2 𝐷𝑚⁄  for mass. Pe can also be expressed as the product of 𝑅𝑒 and 

𝑃𝑟 (or 𝑆𝑐). Liquid water is usually used as the main component of the continuous phase. For heat transfer, the 

Prandtl number of water roughly ranges from 1 to 10. For mass transfer, the Schmidt number for the diffusion 

of drug molecules in water can be up to O(104) 27. A simple estimation of the Peclet number of a droplet at the 

inner wall of a micro channel suggests that 𝑃𝑒 may be much greater than 1, indicating that flow shear has a 

significant impact on the heat and mass transfer of dispersed droplets in many applications.  

In the presence of flow shear, interface tension at the surface of a droplet constrains droplet shearing and 

generates droplet-scale recirculating flows inside and outside the droplet28-29. We found that the local flow 

recirculation acts as a micro mixer, which may enhance the heat and mass exchange between dispersed droplets 

and the continuous fluid that surrounds them. When the droplet size is large or the droplet surface tension is 

small, however, the droplet's surface tension cannot resist the tearing of flow shear stress, and the droplet will 

deform or even break up28-29. Deformation and breakup not only increase the droplet surface area, which 

enhances the diffusive heat and mass transfer, but also create spatial anisotropy in the material properties of 

the mixture. We discovered that the deformation and breakup of a droplet, in particular, impose a complex 

transient hydrodynamic effect on heat and mass transfer around it.  

Addressing the heat and mass transport of a single droplet is the key to revealing the transport mechanism 

of multi-droplet systems. Over recent decades, numerous theoretical, experimental, and computational studies 

have been performed with the intent of understanding the behaviors of a single droplet in a shear flow28-40. The 

pioneering work of Taylor28,29 indicates that two nondimensional parameters govern the behavior of a single 

droplet in a Stokes flow, the capillary number (𝐶𝑎) which characterizes the relative effect of viscous force 

versus surface tension force, and the viscosity ratio (𝛾) which is defined as the ratio of dynamic viscosities of 
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the droplet to the carrier fluid. Above a critical capillary number 𝐶𝑎𝑐𝑟𝑖𝑡, which depends on 𝛾, the droplet will 

break up. When 𝐶𝑎 < 𝐶𝑎𝑐𝑟𝑖𝑡, the droplet will evolve into a steady elliptical or elongated nonelliptical shape. 

𝐶𝑎𝑐𝑟𝑖𝑡 reaches a minimum for 𝛾 between 0.1 and 1. At very high viscosity ratios, the droplet will not break up. 

Grace30 further discovered through experiments that as 𝛾 goes from 1 to a critical viscosity ratio 𝛾𝑐𝑟𝑖𝑡 (≈ 4), 

𝐶𝑎𝑐𝑟𝑖𝑡 increases asymptotically to infinity. For 𝛾 > 𝛾𝑐𝑟𝑖𝑡, droplets will tumble during the startup of flow until 

an elliptical droplet is obtained. In addition to the capillary number and viscosity ratio, droplet behaviors are 

also governed by the Reynolds number and the confinement ratio which is defined as the ratio of the separation 

of two parallel confining plates to droplet radius. Many studies have shown that an increase in 𝑅𝑒 can cause 

larger droplet deformation and decrease the 𝐶𝑎𝑐𝑟𝑖𝑡 at which the droplet breaks up31-34. On the other hand, a 

decrease in confinement ratio can enhance droplet deformation and breakup35-40. In these studies, the 

characteristics of the flow around the droplet were rarely touched, partially causing the gap in the knowledge 

of droplet heat and mass transport.  

As an initial exploration of the complex transport mechanism in droplet systems, therefore, this paper 

focuses on the heat and mass transport from a single droplet neutrally suspended in a simple shear flow. The 

primary goal is to identify the complex transport mechanisms induced by the fluid dynamics due to the 

interaction of the suspended droplet and the carrier fluid. To this end, we take advantage of the well-developed 

Volume-Of-Fluid (VOF)-based code Gerris41,42, and extensively investigate the process of transport of a 

passive scalar from a single droplet neutrally suspended in a simple shear flow. Gerris is an open-source 

software developed by Stéphane Popinet41,42 for incompressible multi-phase flows. The physical model is 

presented in Section 2. The numerical methods are described in Section 3. The grid independence study is 

given in Section 4. The results are analyzed in Section 5, and conclusions are presented in Section 6. 

2. Physical Model 

In order to reveal the most fundamental transport mechanism under the simplest conditions, this study is 

limited to the case where the droplet density and viscosity are the same as those of the carrier fluid. Figure 1 

shows a schematic of the physical model. An incompressible flow with a single neutrally suspended droplet is 

confined by two parallel plates moving in opposite directions with speed 𝑈0, creating a background shear rate. 
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The droplet is allowed to deform and break up in response to pressure and shear stress exerted by the 

surrounding fluid. The distance between the two plates is 2𝐻, and the length and width of the planes are 2𝐿 

and 2𝑊, respectively. The undisturbed shear rate of the flow is defined as: 

𝑆 =
𝑈0

𝐻
  (1) 

The behaviors of the droplet are primarily determined by capillary number (𝐶𝑎) and viscosity ratio (𝛾). In 

this study, the density and viscosity of the droplet are the same as the carrier fluid. The capillary number is 

defined as, 

𝐶𝑎 ≡
𝜇𝑅𝑆

𝜎
  (2) 

where 𝜇  is the dynamic viscosity of the droplet and the carrier fluid, 𝜎  the interfacial tension, and 𝑅  the 

spherical radius of the droplet without deformation. The droplet behaviors are also influenced by Reynolds 

number, which is defined based on the droplet radius 𝑅 and the background flow shear rate 𝑆,  

𝑅𝑒 ≡
𝑆𝑅2

𝜈
  (3) 

where 𝜈 is the kinematic viscosity of the droplet and the carrier fluid. 

To predict heat and mass transport, temperature and mass concentration are modeled as the concentration 

(𝜙) of a passive scalar released at the droplet surface, where 𝜙 is fixed at 𝜙𝑠 = 1 . The Peclet number, which 

characterizes the effect of flow shear on scalar transport, is defined as  

Fig. 1. Physical model of a single droplet neutrally suspended in a simple shear flow with passive scalar 

released from droplet surface. Zero scalar flux condition is applied on the top and bottom planes. 
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𝑃𝑒 ≡
𝑆𝑅2

𝐷𝑚
= 𝑅𝑒𝑆𝑐  (4) 

where 𝐷𝑚 is the diffusivity of the passive scalar in the carrier fluid, and 𝑆𝑐 is the Schmidt number which is 

defined as.  

𝑆𝑐 ≡ 𝜈 𝐷𝑚⁄   (5) 

The Reynolds number is a parameter related to the motion of fluid and can be modified by changing the 

characteristic fluid velocity and length scale, while the Schmidt number is a parameter of the material 

properties of the fluid. The transport of passive scalar is primarily determined by Peclet number which is the 

product of 𝑅𝑒 and 𝑆𝑐.  

 To compare the scalar release rate of the deformed droplets, it is convenient to use the nondimensional 

release rate, i.e. the Sherwood number (𝑆ℎ), which is defined based on the radius and surface area of the 

spherical radius of the droplet without deformation, 

𝑆ℎ ≡
𝑄𝑅

𝐷𝑚𝐴𝜙𝑠
  (6) 

where 𝑄 is the release rate of the passive scalar from the particle surface, 𝐴 (= 4𝜋𝑅2) the surface area of the 

sphere, and 𝜙𝑠 (= 1) the concentration of passive scalar at the droplet surface. 

A complete description of the problem includes the capillary number (𝐶𝑎), Reynolds number (𝑅𝑒), 

Schmidt number (𝑆𝑐) or Peclet number (𝑃𝑒), and the ratios of the height (2𝐻), width (2𝑊), and length (2𝐿) of 

the computational domain to the radius of the droplet (2𝐻 𝑅⁄ , 2𝑊 𝑅⁄ , and 2𝐿 𝑅⁄ ).  

 

3. Numerical Methods 

 A well-developed VOF-based CFD solver is applied in conjunction with an efficient adaptive mesh 

refinement (AMR) technique to simulate the droplet-scale fluid dynamics and scalar transfer. The conservation 

equations of mass, momentum, and temperature or scalar concentration take the following form, 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝐮) = 0         (7) 



7 
 

𝜕(𝜌𝐮)

𝜕𝑡
+ ∇ ∙ (𝜌𝐮 ⊗ 𝐮) = −∇𝑝 + ∇ ∙ (2μ𝐄) + 𝜎𝜅𝛿𝑠𝐧     (8) 

𝜕(𝜌𝜙)

𝜕𝑡
+ ∇ ∙ (𝜌𝜙𝐮) = ∇ ∙ (𝜌𝐷∇𝜙)        (9) 

where 𝐮 is the velocity vector, 𝜌 the density of the droplet and carrier fluid, 𝑝 the pressure, 𝐄 the strain rate 

tensor, and 𝐧 the unit normal vector pointing outward from the droplet surface. In the momentum equation, 

the surface tension is treated as a continuous body force as 𝜎𝜅𝛿𝑠𝐧, where 𝜎 is the surface tension of the droplet 

in the carrier liquid, 𝜅 the interface curvature, and 𝛿𝑠 the Dirac-delta function. The VOF approach is used to 

capture the time-evolving interface between the droplet and the carrier liquid. The transport equation for 

volume fraction reads 

𝜕𝐹

𝜕𝑡
+ 𝐮 ∙ ∇𝐹 = 0          (10) 

where 𝐹 is the volume fraction of droplet phase in the grid cells. 𝐹 = 1 in the droplet phase and 𝐹 = 0 in the 

carrier fluid phase. The density and dynamic viscosity thus are written as, 

𝜌 = 𝐹𝜌𝑑 + (1 − 𝐹)𝜌𝑐    and     𝜇 = 𝐹𝜇𝑑 + (1 − 𝐹)𝜇𝑐        (11) 

In this study, a simple case is considered, in which the fluid is incompressible in both the droplet and the carrier 

fluid, and the density and viscosity are constant, 

𝜌𝑑 = 𝜌𝑐 = constant    and     𝜇𝑑 = 𝜇𝑐 = constant        (12) 

Equations (7)-(12) constitute the system of governing equations for two-phase flows with scalar transfer in an 

incompressible fluid. 

A time-staggered projection method is used to solve the equations, 

𝜌𝐮∗ − ∆𝑡∇ ∙ (𝜇𝐄∗) = ∆𝑡∇ ∙ (𝜇𝐄𝑛) + ∆𝑡(𝜎𝜅𝛿𝑠𝐧)𝑛+1/2 + 𝜌𝐮𝑛 − ∆𝑡𝜌𝐮𝑛+1/2 ∙ ∇𝐮𝑛+1/2 (13) 

∇ ∙ (
∆𝑡

𝜌
∇𝑝𝑛+1/2) = ∇ ∙ 𝐮∗        (14) 

𝐮𝑛+1 = 𝐮∗ −
∆𝑡

𝜌
∇𝑝𝑛+1/2        (15) 

The transport equation for scalar concentration is discretized by an explicit scheme at each time level, 

𝜙𝑛+1/2 = 𝜙𝑛−1/2 − ∆𝑡∇ ∙ (𝜙𝑛𝐮𝑛) + ∆𝑡𝜙𝑛∇ ∙ 𝐮𝑛 + ∆𝑡∇ ∙ (𝐷∇𝑇𝑛)   (16) 
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The transport equation for volume of fluid is also discretized by an explicit scheme, 

𝐹𝑛+1/2 = 𝐹𝑛−1/2 − ∆𝑡𝐮𝑛 ∙ ∇𝐹𝑛        (17) 

The spatial discretization of Eqns. (13)-(17) is realized through a graded quadtree partitioning. The details 

are given in Popinet41-42. An AMR technique with multiple-level resolution developed by Popinet41, 42 is used 

to resolve the flow and scalar fields. During the simulation, the grid resolution is dynamically adjusted 

according to the deformation of the droplet and the concentration of passive scalar. The grid resolution is 

highest near the droplet and gradually decreases toward the far field. Several refinement criteria are used 

concurrently, depending on the physical conditions encountered, to ensure numerical accuracy and robustness. 

These include gradient-based, value-based, and curvature-based refinements. The gradient-based criterion 

ensures adequate grid refinement in the regions with steep change in the variables of interest, and avoids 

unnecessary refinement in regions with smooth change. The value-based criterion ensures the accurate 

prediction of scalar transport in the regions with higher scalar concentration. The curvature-based criterion 

enables the precise capture of large curvature deformation in a small area.  

 

4. Grid Independence Study 

To examine the grid sensitivity of the results, we conducted simulations of fluid flow and scalar transport 

around a droplet for 𝐶𝑎 = 0.3, 𝑅𝑒 = 1 and 𝑆𝑐 = 100. Three different sets of grids, with 𝑁𝑝 = 25, 50, and 100, 

are used around the droplet, where 𝑁𝑝 is the number of grid points over one diameter of an undeformed droplet. 

Figure 2 shows the three grid systems around the droplet. In Fig. 3 we compare the distributions of streamwise 

velocity, 𝑢𝑥 , and the concentration of passive scalar, 𝜙, along the vertical line through the droplet center, 

among the three grid systems. As shown in the figure, the profiles of 𝑢𝑥 are in good agreement with each other. 

However, as 𝑁𝑝 increases from 25 to 50, the profile of 𝜙 changes obviously near the droplet surface, indicating 

a deviation in the flux of passive scalar released at droplet surface. The larger 𝑁𝑝 produces a more accurate 

result. When 𝑁𝑝 increases from 50 to 100, the maximum relative deviation near the droplet surface decreases 
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to less than 1%. Considering the result accuracy and the computing time requirements, the grid of 𝑁𝑝 = 50 is  

used in the extensive simulations.  

 

5. Results and Discussion 

5.1 Unbroken droplets 

In this section, the fluid dynamics and scalar transport in a system of a single droplet are analyzed. 

Emphasis is placed on the flow characteristics induced by the interaction between the suspended droplet and 

(a) 

(b) (c) 

Fig. 2. Grid resolutions around a droplet, for 𝑅𝑒 = 1 and 𝑆𝑐 = 100. Finer grids are used around the 

droplets according to the gradient-, value-, and curvature-based criteria. (a) 𝑁𝑝 = 25, (b) 𝑁𝑝 = 50, 

and (c) 𝑁𝑝 = 100, where 𝑁𝑝 is the number of grid points over one diameter of an undeformed 

droplet. 

Fig. 3. Effect of grid resolution on streamwise velocity (𝑢𝑥) and concentration of passive scalar (𝜙) along 

the vertical line through the droplet center, for 𝐶𝑎 = 0.3, 𝑅𝑒 = 1 and 𝑆𝑐 = 100. The horizontal line 

roughly indicates the droplet surface.  
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the carrier fluid, and the mechanism of scalar transport from the droplet to the ambient fluid influenced by 

fluid dynamics. The capillary number considered in this study ranges from 0.01 to 0.5, which encompasses the 

entire range of small deformation, large deformation, and breakup of the droplet. The Reynolds number is from 

0.01 to 1, which includes the regions of weak and strong advection. Two Schmidt numbers, 𝑆𝑐 = 10 and 100 

are considered, for which flow advection plays a role in the transport of passive scalar. As shown in Sibillo et 

al.36, the influence of flow boundaries on droplet deformation is negligible when 2𝐻 𝑅⁄ > 10. This study 

focuses on the mechanisms under conditions with little or no boundary effect. The ratios of the length (x 

direction), width (y direction), and height (z direction) of the computational domain to the radius of the 

undeformed droplet are fixed at 2𝐿 𝑅⁄ = 100, 2𝑊 𝑅⁄ = 20, and 2𝐻 𝑅⁄ = 20, respectively. In the cases where 

the droplet does not break up, the flow evolution and scalar transfer eventually reach a steady state, in which 

the droplet shape, flow velocity at each point, and rate of scalar transfer from the droplet no longer change 

with time. The analysis is carried out in the steady state. In the cases with droplet breakup, the analysis is 

carried out throughout the whole process. 

First, we use the case of 𝐶𝑎 = 0.1 to demonstrate the basic flow structure and scalar transport around a 

droplet with a small deformation. At lower Reynolds numbers, the viscous effect is stronger and the streamline 

topology is more pronounced. Figure 4 shows the typical streamlines around a droplet at 𝑅𝑒 = 0.1. In the 

steady state, the streamlines coincide with the trajectories of the fluid particles, so the streamlines depict the 

transport of passive scalar via flow advection. As shown in the figure, the flow is composed of several different 

streamline patterns. On the lateral sides, some fluid originating upstream of the droplet is entrapped into a 

recirculation zone, in which the fluid spirals toward the droplet in a cone-shaped pattern. At the droplet surface 

the fluid splits into two parts. One part spirals inward (decreasing radial coordinate; red lines) along the droplet 

surface toward the axis of rotation, then leaves the droplet around the axis. The other part spirals outward 

(increasing radial coordinate; blue lines) along the droplet surface toward the central x-z plane, then leaves the 

droplet on the central x-z plane. Outside the spiral flows, the fluid passes the droplet and travels downstream 

directly (orange lines), wrapping around the spiral flows. The patterns of the spiral flows are similar to those 

around a rigid sphere or an oblate spheroid43,44, but the spiral is outward on the sides and inward near the 
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equator around a rigid particle. It has been shown by Singh and Sarkar45 that the spirals around a droplet can 

be either the same as those shown in Fig. 4 or the same as those of a solid sphere, depending on the viscosity 

ratio. A rigid sphere can be seen as an extreme case of droplet with an infinite viscosity ratio. When the 

viscosity ratio is much larger than 1, the flow directions around a droplet are the same as those around a rigid 

sphere.  

Fig. 4. Typical 3D streamlines around a droplet for 𝐶𝑎 = 0.1 and 𝑅𝑒 = 0.01. (a) Overall pattern of 

streamlines around the droplet, (b) inward (decreasing radial coordinate) spiral flow on the sides. This 

flow originates upstream of the droplet at some distance from the central x-z plane and leaves the 

droplet near the axis of rotation, (c) outward (increasing radial coordinate) spiral flow on the sides. This 

flow originates upstream of the droplet at some distance from the central x-z plane and leaves the 

droplet near the central x-z plane, (d) outer passing flow enwrapping the spiral flows.  

(a) 

(b) 

(c) 

(d) 
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As the Reynolds number increases, the area of influence of the droplet, which depends on the viscosity of 

the fluid, decreases on the lateral sides. Figure 5 shows the streamlines around a droplet for 𝐶𝑎 = 0.1 and 

𝑅𝑒 = 1. Compared with the streamlines for 𝑅𝑒 = 0.1 shown in Fig. 4, the lateral extension of the spiral flows 

in the cone pattern and around the axis of rotation is significantly reduced. In addition, the increased fluid 

inertia creates a recirculating wake on either side of the oblate spheroid along the flow axis; the fluid 

approaches the droplet near the axis and then turns back before touching the spheroid (purple lines). The 

recirculating wakes are separated from the spiral flows surrounding the droplet by two lines of saddle points. 

The spiral flows and the recirculating wakes are enwrapped by the outer passing flow, which drives the 

recirculating flow inside and outside the droplet, as well as the motion of the recirculating wake. The behaviors 

of these flow components and the interactions among them work as an ensemble to form a complex mechanism 

for the transport of passive scalar. 

Under the action of the surrounding flows, scalar transport exhibits a different pattern from that of diffusion 

transport. Figure 6 shows the scalar concentration (𝜙) together with the 3D streamlines around a droplet for 

𝐶𝑎 = 0.1, 𝑅𝑒 = 1 and 𝑆𝑐 = 100. The capillary and Reynolds numbers are the same as in Fig. 5. On the 

windward sides (upper left and lower right) of the droplet, the impact of the outer flow significantly decreases 

the thickness of scalar boundary layer, through which 𝜙 decreases from 1 at the droplet surface to 0 in the 

Fig. 5. Typical 3D streamlines around a droplet for 𝐶𝑎 = 0.1 and 𝑅𝑒 = 1. (a) Overall pattern of 

streamlines around the droplet, (b) inward (decreasing radial coordinate) and outward (increasing 

radial coordinate) spiral flows on the sides, (c) outer passing flow and recirculating wake flow.  

(a) 

(b) (c) 
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ambient fluid. On the leeward sides (upper right and lower left), the passive scalar released at the droplet 

surface is carried by the passing flow and advected downstream. On the lateral sides, the passive scalar is 

transported laterally from the droplet surface to the ambient fluid through a scalar boundary layer that is thicker 

than that on the windward sides. Compared with pure diffusion, the pattern shown in this figure is the outcome 

of a more complex transport mechanism. It is seen in Fig. 5 that the droplet is surrounded by a flow layer 

consisting of an inward and an outward spiral flow on the lateral sides. The passive scalar released at the 

spheroid surface, therefore, is first transferred to the surrounding spiral flows via pure diffusion. In the extreme 

case of 𝑆𝑐 = ∞, where the molecular diffusivity 𝐷𝑚 = 0, the released passive scalar will be transported away 

from the droplet surface by the surrounding spiral flows via pure advection. The spiral streamlines depict the 

path of scalar transport. In the case of finite Schmidt number (𝑆𝑐), molecular diffusion provides important 

scalar transport across the streamlines. As shown in Figs. 6(c) and (d), the outer passing flow hits the windward 

sides (upper left and lower right sides) of the droplet and then travels downstream along the top and bottom 

surfaces as well as the lateral sides of the droplet. During this process, the passing flow gains passive scalar 

from the spiral flows surrounding the droplet via molecular diffusion across the streamlines. As a result, the 

scalar concentration (𝜙) of the passing flow increases gradually. Since the spiral flows exist only in the thin 

layer on the droplet surface, the spiral flows lose most of their passive scalar to the passing flow when they 

Fig. 6. Patterns of scalar concentration, 𝜙, around a droplet for 𝐶𝑎 = 0.1, 𝑅𝑒 = 1 and 𝑆𝑐 = 100. (a, b) 

3D iso-surfaces of 𝜙 = 0.3 with the typical streamlines, (c, d) iso-contours of 𝜙 on the central x-z and 

y-z planes. 

(d) 

(a) (b) 

(c) 

𝜙 
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leave the droplet, and the outer passing fluid transports most of the passive scalar downstream via flow 

advection.  

To accentuate the diffusion process, we plot the normalized modulus of the gradient of scalar concentration 

(𝑅‖∇𝜙‖) along with the 3D streamlines around the droplet in Figs. 7. It can be seen that the diffusion transport 

occurs primarily in four regions. The first is in the flow layer on the windward droplet surface, where passive 

scalar is transported from the droplet surface to the spiral flows, then to the outer passing flow. The second is 

downstream of the leeward side, where passive scalar is transported from the outer flow just past the droplet 

surface to the flow further outside. The third is in the wake flow near the flow axis (𝑧 = 0), where the passive 

scalar is transported from the passing flow to the downstream part of the spiral flows, and then to the 

recirculating wake flow near the axis. The recirculating wake flows also help transport passive scalar 

downstream. The fourth region is the layer of spiral flows on the lateral sides of the droplet, where the passive 

scalar is transported from the droplet surface to the spiral flows, and then to the outer passing fluid. During 

this process, the spiral flows on droplet surface, the recirculating wake flows on the axis, and the outer passing 

flow together form a coupled transport mechanism for the passive scalar, involving both molecular diffusion 

and flow advection.  

Fig. 7. Mechanism of transport of passive scalar illustrated by the patterns of the magnitude of the 

gradient of scalar concentration, 𝑅‖∇𝜙‖. (a, b) 3D iso-surfaces of 𝑅‖∇𝜙‖ at 0.5, (c, d) iso-

contours of 𝑅‖∇𝜙‖ on the central x-z and y-z planes. 

(d) 

(a) (b) 

(c) 

𝑅‖∇𝜙‖ 



15 
 

The increase in capillary number leads to larger droplet deformation. The droplet is elongated and aligns 

itself toward the flow direction. When 𝐶𝑎 < 𝐶𝑎𝑐𝑟𝑖𝑡, the droplet gradually approaches a stable elliptical or 

elongated shape, and the fluid flow and scalar transport evolve toward a steady state. The deformation not only 

increases the droplet surface area, but also alters the flow pattern around the droplet. Figure 8 shows the typical 

streamlines around a droplet for 𝐶𝑎 = 0.3  and 𝑅𝑒 = 1 . Although the droplet is greatly elongated, the 

streamline pattern is maintained, and looks similar to the case for 𝐶𝑎 = 0.1 shown in Fig. 5. The droplet is 

surrounded by inward and outward spiral flows on each side. Along the flow axis, there is a recirculating wake 

before and after the droplet. The spiral flows and wake flows are enwrapped by the outer passing flow. The 

spiral flows do not extend very far in the lateral direction, due to the larger Reynolds number. 

Figure 9 shows the scalar concentration (𝜙) together with the streamlines around a droplet for 𝐶𝑎 = 0.3, 

𝑅𝑒 = 1, and 𝑆𝑐 = 100. The basic pattern of 𝜙 and the streamlines is similar to that of 𝐶𝑎 = 0.1, as shown in 

Fig. 6. As a result, the deformation of the droplet does not change the mechanism of scalar transport around it. 

An important question to address, however, is whether the deformation of the droplet significantly alters the 

transport efficiency. Table 1 gives the droplet aspect ratio 𝛬 (≡ 𝐿𝑚𝑎𝑥/𝐿𝑚𝑖𝑛 , where 𝐿𝑚𝑎𝑥 and 𝐿𝑚𝑖𝑛 are the 

longest and shortest axes, respectively) and nondimensional scalar release rate 𝑆ℎ at several typical 𝑅𝑒 and 𝐶𝑎. 

For 𝑅𝑒 = 0.01, when 𝐶𝑎 increases from 0.1 to 0.4, 𝛬 increases from 1.25 to 2.70. The aspect ratio is more 

Fig. 8. Typical 3D streamlines around a droplet for 𝐶𝑎 = 0.3 and 𝑅𝑒 = 1. (a) Overall pattern of 

streamlines around the droplet, (b) inward (decreasing radial coordinate), (c) outward (increasing radial 

coordinate) spiral flows on the sides. 

 

(a) 

(b) (c) 
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than doubled, yet 𝑆ℎ only increases from 1.05 to 1.07 for 𝑆𝑐 = 10, and from 1.33 to 141 for 𝑆𝑐 = 100. The 

change is similar for 𝑅𝑒 = 1. That is, the scalar release rate does not increase as much as the aspect ratio. The 

main reason is that the increased elongation of the droplet and its increased inclination in the flow direction 

reduce the effective impact area of the ambient fluid on the droplet surface. 

 

Table 1. Droplet aspect ratio and nondimensional scalar release rate for 𝐶𝑎 = 0.1 and 0.3. 

 

 

 

 

 

Re Ca 𝛬 𝑆ℎ ( 𝑆𝑐 = 10) 𝑆ℎ ( 𝑆𝑐 = 100) 

0.01 
0.1 1.25 1.05 1.33 

0.4 2.70 1.07 1.41 

1 
0.1 1.27 1.94 4.03 

0.3 2.73 2.11 4.49 

Fig. 9. Patterns of scalar concentration, 𝜙, around a droplet for 𝐶𝑎 = 0.3, 𝑅𝑒 = 1 and 𝑆𝑐 = 100. (a, b, d) 

3D iso-surfaces of 𝜙 = 0.3 with typical streamlines, (c, e) iso-contours of 𝜙 on the central x-z and y-z 

planes. 

(a) 

(b) 

(c) 

(d) 
(e) 

𝜙 
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Since Taylor’s pioneering work28,29, the deformation of a droplet is usually quantified by the Taylor 

deformation parameter, 𝐷, which is defined as, 

𝐷 =
𝐿𝑚𝑎𝑥−𝐿𝑚𝑖𝑛

𝐿𝑚𝑎𝑥+𝐿𝑚𝑖𝑛
         (18) 

where 𝐿𝑚𝑎𝑥 and 𝐿𝑚𝑖𝑛 are the longest and shortest axes of the deformed droplet, respectively. For a spherical 

droplet 𝐷 = 0, and for a droplet with large deformation, 𝐷 is close but still less than one. Over the past few 

decades, a lot of theoretical29,35,46, experimental36,38,47-50, and numerical34,39,40,51 work has been done to identify 

the dependence of 𝐷  on the controlling parameters, such as capillary number 𝐶𝑎 , viscosity ratio 𝛾 , and 

confinement ratio 2𝐻/𝑅. Based on these results, a number of theoretical and empirical models have been 

developed29,35,46,47. Figure 10 shows the Taylor deformation parameter of unbroken droplets versus capillary 

number in the stable state. The present numerical results agree well with the predictions of the theoretical 

models and other numerical simulations, and deviation occurs only when both 𝑅𝑒 and 𝐶𝑎 are larger. This is 

because the theoretical models29,35,46,47 and the numerical results of Grounley et al.51 only deal with the case of 

Stokes flow and do not involve the effect of fluid inertia. As shown in the figure, for smaller Reynolds numbers, 

𝐷 is roughly a linear function of 𝐶𝑎 and 𝐷 = 0 when 𝐶𝑎 = 0, so 𝐷/𝐶𝑎 is roughly constant for smaller 𝑅𝑒.  

In Fig. 11 we show the Taylor deformation parameter 𝐷 and the ratio of Taylor deformation parameter to 

capillary number 𝐷/𝐶𝑎 versus Reynolds number 𝑅𝑒. As shown in Fig. 11(a), for each 𝐶𝑎, 𝐷 increases with 

increase in 𝑅𝑒, and 𝐷 is more sensitive to 𝑅𝑒 at larger 𝐶𝑎 and 𝑅𝑒. From Fig. 11(b) it can be seen that 𝐷/𝐶𝑎 is 

Fig. 10. Taylor deformation parameter of unbroken droplets versus capillary numbers in the stable state. 

Symbols represent numerical simulation data. T29: Taylor29, S-H35: Shapira and Haber35, M-M46: 

Maffettone and Minale46, V-V-M47: Vananroye et al. 47, G-B-J-L51: Gounley et al. 51. 
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roughly equal to 1.1 when 𝑅𝑒 ≈ 0.01. As 𝑅𝑒  increases, 𝐷/𝐶𝑎  increases accordingly, and the increase is 

greater for larger 𝐶𝑎. This is consistent with the results of Singh and Sarkar45. 

Figure 12 shows the nondimensional scalar release rate, Sherwood number 𝑆ℎ , versus capillary and 

Reynolds numbers for unbroken droplets for 𝑆𝑐 = 100. It has been shown in Fig. 10 and 11 that droplet 

deformation is primarily determined by 𝐶𝑎 , yet 𝐶𝑎 does not cause significant change in 𝑆ℎ for the same 𝑅𝑒. 

The increase in 𝐶𝑎 only causes a slight increase in 𝑆ℎ, as shown in Fig 12(a); possible reasons have been 

discussed above. The variation of 𝑆ℎ, on the other hand, exhibits a stronger dependence on 𝑅𝑒. The curves of 

𝑆ℎ versus 𝑅𝑒 are close to each other, and the values of 𝑆ℎ increases as 𝑅𝑒 increases, following the same trend. 

This observation enables the development of a simple empirical model of 𝑆ℎ as a function of 𝑅𝑒 and 𝑆𝑐. When 

the effect of 𝐶𝑎 is ignored, that is, when the effect of droplet deformation on scalar release rate is ignored, the 

Fig. 11. Taylor deformation parameter 𝐷 and the ratio of deformation parameter to capillary number 

𝐷/𝐶𝑎 versus Reynolds number 𝑅𝑒. (a) 𝐷 vs. 𝑅𝑒, (b) 𝐷/𝐶𝑎 vs. 𝑅𝑒. 

(a) (b) 

Fig. 12. Sherwood number versus capillary and Reynolds numbers for unbroken droplets. 𝑆𝑐 = 100. 

Symbols represent numerical simulation data. (a) 𝑆ℎ vs. 𝐶𝑎, (b) 𝑆ℎ vs. 𝑅𝑒. 

(a) (b) 



19 
 

model is expected to have a form similar to those of rigid spheres. Several models have been developed for 

rigid spheres43,52-55.  

Figure 13 shows the variation of 𝑆ℎ with Peclet number 𝑃𝑒 for 𝑆𝑐 = 10 and 100, compared with the 

prediction of the Wang and Brasseur’s model43 for a rigid sphere for 𝑅𝑒 = 0. The numerical results for 

deformed droplets agree well with the prediction of the model up to 𝑃𝑒 = 10. Apparent deviation can be 

observed when 𝑃𝑒 > 10. When comparing the data with the model for the same 𝑅𝑒, the deviation remains. 

For brevity, we do not show the comparison here. This deviation is most likely caused by the different effects 

of fluid inertia on a droplet as opposed to a solid sphere. In applications where accuracy is not critical, the 

models for rigid spheres can be used to predict the rate of scalar release from unbroken droplets. 

 

 

 

 

 

 

 

 

 

5.2 Broken droplets  

The increase of capillary and Reynolds numbers enhances the deformation of a droplet. When they exceed 

a certain range, the droplet will break up. At a given 𝑅𝑒, the number of child droplets produced by droplet 

breakup increases with increased 𝐶𝑎; and at a given 𝐶𝑎, the number of child droplets increases with increased 

𝑅𝑒. Figure 14 shows the process of a single droplet breaking up into two larger droplets of roughly the same 

size and a third tiny droplet, as well as the process of scalar transport from the droplets, for 𝐶𝑎 = 0.5, 𝑅𝑒 =

0.01, and 𝑆𝑐 = 100. This is the simplest mode of droplet breakup. The patterns are plotted at several typical 

times in the variation of nondimensional scalar release rate, 𝑆ℎ , with time 𝑡/𝜏𝑠 , where 𝜏𝑠 ≡ 1/𝑆  is the 

characteristic time based on flow shear 𝑆. Figure 15 shows the variation of 𝑆ℎ versus 𝑡/𝜏𝑠 for 𝐶𝑎 = 0.3, 𝑅𝑒 =

Fig. 13. Sherwood number versus Peclet number for unbroken droplets. W-B: Wang and Brasseur43. 
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1, and 𝑆𝑐 = 100. The variation of 𝑆ℎ can be decomposed into four stages. Stage I is from 𝑡/𝜏𝑠 ≈ 5 to 55, in 

which 𝑆ℎ  increases roughly linearly with 𝑡/𝜏𝑠 . From the patterns of droplet deformation and scalar 

concentration at 𝑡/𝜏𝑠 = 5 and ≈55 shown in Fig. 14, it can be seen that the droplet is significantly elongated 

in the flow direction during this period. Therefore, it is the increase in droplet surface area due to elongation 

that causes the increase of 𝑆ℎ. It has been shown in Table 1 and Fig. 12 that for unbroken droplets, the droplet 

elongation does not lead to a significant increase in 𝑆ℎ. Yet for broken droplets, the elongation is much larger, 

which causes an obvious increase in 𝑆ℎ. Stage II is from 𝑡/𝜏𝑠 ≈ 55 to ≈75, in which 𝑆ℎ largely remains 

constant. As shown in Fig. 14, the parent droplet breaks up into two larger and a tiny child droplet in this period. 

The extension of the droplets in flow direction does not increase very much. When 𝑡/𝜏𝑠 ≈ 75, although the 

two larger droplets have separated completely, they are still close. The total scalar release rate is close to that 

before separation. (For the present purposes, we neglect the third tiny droplet.) The two child droplets lie in 

each other’s area of higher scalar concentration, so they reduce each other’s scalar release rate. In Stage III, 

from 𝑡/𝜏𝑠 ≈ 75 to ≈ 100, the two droplets move away from each other and the distance between them 

increases with time, as shown in Fig. 14. The influence of the two child droplets on each other’s scalar release 

gradually diminishes. Therefore, 𝑆ℎ increases with time in Stage III, as shown in Fig. 15. When the distance 

between the two child droplets is far enough that the mutual influence can be ignored, the variation of 𝑆ℎ enters 

Stage IV, which covers the entire regime of 𝑡/𝜏𝑠 ≳ 100. In Stage IV, the two child droplets are independent 

Fig. 14. Patterns of 3D droplet breakup for 𝐶𝑎 = 0.5 and 𝑅𝑒 = 0.01 and scalar concentration 

on the central x-z plane for 𝑆𝑐 = 100. 

t / τS = 5 t / τS = 55 

t / τS = 75 t / τS = 100 

𝜙 
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of each other and they are both in a steady state. The total scalar release rate is the sum of those of the two 

droplets, which remains constant over time.  

In this problem, the characteristic flow time, defined as 𝜏𝑠 ≡ 1/𝑆, is roughly the time it takes for the fluid 

to travel over one droplet radius. The process of droplet breakup shown in Fig. 14 suggests that the time scale 

of the droplet breakup is on the order of 102𝜏𝑠 , which is much larger than the flow time. The flow 

characteristics around the droplets evolve slowly from the case of a single droplet (Figs. 5 and 8) to the case 

of two separate droplets. At each instant, the flow field can be seen to be quasi-static. The instantaneous 

streamlines therefore still describe to some extent the advective transport paths around the droplet. Here we 

are more interested in the streamline structure of the intermediate state through which a single droplet breaks 

up into two droplets. 

Figure 16 shows the streamlines around the droplet after it has elongated into two ellipsoidal structures 

that have not yet separated. On the side of each ellipsoid there is an inward (decreasing radial coordinate) spiral 

flow, similar to that around a single ellipsoid droplet (Figs. 5 and 8). This spiral is entrapped into the 

recirculating flow somewhere upstream of the droplet off-central x-z plane and leaves the droplet around the 

axis of rotation of one of the two ellipsoids, as shown in Fig. 16(b) and (c). There is also an outward (increasing 

radial coordinate) spiral flow, which originates somewhere upstream of the droplet and recirculates around the 

whole system of two droplets, before leaving the droplet on the central x-z plane. This streamline pattern reveals 

the advective transport pattern of passive scalar from the droplet during the process of droplet breakup. 

Fig. 15. Nondimensional scalar release rate from parent droplet and child droplets: Sherwood number 

𝑆ℎ versus time 𝑡/𝜏𝑠 for 𝐶𝑎 = 0.5 and 𝑅𝑒 = 0.01. 
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An increase in Reynolds number can enhance droplet breakup. At larger Reynolds number, droplet breakup 

produces more and smaller child droplets. Figure 17 shows the process of a single droplet breaking up into 

many child droplets, as well as the process of scalar transport from the droplets, for 𝐶𝑎 = 0.5, 𝑅𝑒 = 1, and 

𝑆𝑐 = 100. Due to the increased fluid inertia, the droplet is much elongated before it breaks up, compared to 

the case of 𝑅𝑒 = 0.01 . Although the droplet breaks up into more child droplets, the basic process and 

mechanism of scalar transport are similar to those for 𝑅𝑒 = 0.01, shown in Figs. 15 and 16. The corresponding 

variation of 𝑆ℎ versus 𝑡/𝜏𝑠 is shown in Figure 18. The curve follows a similar trend as that for 𝑅𝑒 = 0.01, 

although Stage IV is not shown in the figure. In Stage I (𝑡/𝜏𝑠 ≲ 35), the droplet elongation makes 𝑆ℎ increase 

linearly with time. In Stage II (35 ≲ 𝑡/𝜏𝑠 ≲ 50), droplet breakup happens and 𝑆ℎ remains roughly constant . 

After that, the variation of 𝑆ℎ enters Stage III (50 ≲ 𝑡/𝜏𝑠 ≲ 𝛤, where 𝛤 is the value separating Stages III and 

IV), where the distances between neighboring droplets increase and their influence on each other’s scalar 

release is reduced. Because it will take a very long time for the child droplets to separate completely, Stage IV 

is not included in the figure. Figures 17 and 18 together reveal the variation in scalar release rate over the 

whole process of droplet breakup.  

Fig. 16. Typical 3D streamlines around a droplet for 𝐶𝑎 = 0.5 and 𝑅𝑒 = 0.01. (a) Overall pattern of 

streamlines around the droplet, (b, c) inward (decreasing radial coordinate), (d, e) outward (increasing 

radial coordinate) spiral flows on the sides.  

(a) 

(b) (c) 

(d) (e) 
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Below, the case of droplet breakup will be discussed together with the nonbreakup case to give an overall 

picture. Figure 19 shows a regime diagram for droplet deformation and breakup in the space of 𝐶𝑎 and 𝑅𝑒, 

based on the results of the present numerical simulation. Note that this diagram only applies when the density 

and viscosity of the droplet are the same as those of the carrier fluid. As shown in the figure, both 𝐶𝑎 and 𝑅𝑒 

can enhance the droplet deformation and breakup. For a given 𝑅𝑒, an increase in 𝐶𝑎 leads to larger deformation 

when 𝐶𝑎 is below a critical value 𝐶𝑎𝑐𝑟𝑖𝑡 where the droplet begins to break up, and an increase in 𝐶𝑎 leads to 

finer breakup when 𝐶𝑎 > 𝐶𝑎𝑐𝑟𝑖𝑡. For a given 𝐶𝑎, increasing 𝑅𝑒 has the same effect. 𝐶𝑎𝑐𝑟𝑖𝑡 is dependent on 

Fig. 18. Nondimensional scalar release rate from droplet: Sherwood number 𝑆ℎ versus time 𝑡/𝜏𝑠 for 

𝐶𝑎 = 0.5 and 𝑅𝑒 = 1. 

Fig. 17. Patterns of 3D droplet breakup for 𝐶𝑎 = 0.5 and 𝑅𝑒 = 1 and scalar concentration on the central 

x-z plane for 𝑆𝑐 = 100. 

t / τS = 10 

t / τS = 20 

t / τS = 30 

t / τS = 40 

t / τS = 50 

𝜙 
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𝑅𝑒, and it decreases with an increase in 𝑅𝑒. This is consistent with the observations in Renardy & Cristini31, 

Wagner et al.32, and Farokhirad et al.34 . 

 

In Fig. 20 we compare the time variation of the amount of passive scalar released from the droplet 𝑀/𝑉𝑑 

for 𝑆𝑐 = 100, where 𝑉𝑑 is the volume of the droplet and 𝑀 is the amount of passive scalar, defined as 𝑀 =

∫ 𝜙𝑑𝑉. The integration is only done in the carrier fluid. Time is normalized with both the characteristic 

diffusive time 𝜏𝐷 and the flow shear time 𝜏𝑆. 𝜏𝐷 is defined as 𝑅2/𝐷𝑚. Using 𝑡/𝜏𝐷 means that the diffusivity 

of passive scalar in the fluid is fixed, and the increase in 𝑅𝑒 represents the increase of flow shear rate. On the 

other hand, using 𝑡/𝜏𝑆 means that the flow shear rate is fixed, and the increase in 𝑅𝑒 represents the decrease 

in diffusivity for a given Schmidt number. The purpose of using 𝑡/𝜏𝐷 is to compare the scalar release under 

shear with that of pure diffusion. When 𝐶𝑎 = 0.1 and 0.3, the droplet is elongated gradually to a stable shape, 

but when 𝐶𝑎 = 0.5, the droplet breaks up into two or more child droplets. The slopes of the curves in the figure 

represent the scalar release rate. Compared with pure diffusion, the flow shear significantly enhances the 

release of passive scalar, and the enhancement is greater for larger 𝑅𝑒, as shown in Fig. 20(a). In this study, 

the Sherwood number is defined as the ratio of scalar release rate under shear condition to that of pure diffusion 

(Eqn. (6)), so the curve slopes in Fig 20(a) are consistent with the Sherwood number shown in Fig. 12 and 13. 

When using 𝑡/𝜏𝑆, passive scalar is released faster at smaller Reynolds numbers, due to the enhanced diffusion 

effect, as shown in Fig. 20(b). For the same 𝑅𝑒, the case with a larger 𝐶𝑎 always has a higher scalar release 

Fig. 19. Regime diagram of droplet deformation and breakup. 
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rate, because of larger deformation or finer breakup. Figure 20 also shows that droplet breakup at 𝐶𝑎 = 0.5 

causes a significant increase in scalar release rate as compared to unbroken deformation at 𝐶𝑎 = 0.1 and 0.3. 

Figure 21 shows Sherwood number versus Reynolds and capillary numbers for both unbroken and broken 

droplets. Two Schmidt numbers, 𝑆𝑐 = 10 and 100 are included. For broken droplets, 𝑆ℎ is calculated when 

breakup is complete and 𝑆ℎ is close to a constant. For unbroken droplets, 𝐶𝑎 does not influence the scalar 

release rate very much and 𝑆ℎ is mainly determined by 𝑅𝑒 and 𝑆c. It has been shown in Fig. 13 that for 

unbroken droplets the dependence of 𝑆ℎ on 𝑃𝑒 can be largely described by the model for a rigid sphere. For 

broken droplets, the problem becomes more complicated. Droplet breakup may be caused by an increase in 𝑅𝑒 

or an increase in 𝐶𝑎. As soon as breakup happens, 𝑆ℎ increases sharply from that of the unbroken droplets, 

except in the cases with much stronger diffusion effect, such as 𝑅𝑒 = 0.01. For broken droplets, 𝑆ℎ changes 

much more sharply with 𝑅𝑒 and 𝐶𝑎 than unbroken droplets. This implies that the increase is caused by the 

finer breakup with more child droplets, rather than enhanced advective transport. Although the variations of 

𝑆ℎ demonstrate a similar trend on 𝑅𝑒 for different 𝐶𝑎, and also demonstrate a similar trend on 𝐶𝑎 for different 

𝑅𝑒, the development of an empirical correlation of 𝑆ℎ will be more difficult than for unbroken droplets, 

because the effects of the number and size distribution of the child droplets after breakup must be considered. 

Figure 22 shows Sherwood number versus Peclet number for both broken and unbroken droplets. As 

observed from Fig. 21, droplet breakup causes a sharp increase in 𝑆ℎ. This sharp change cannot be described 

Fig. 20. Amount of passive scalar released from droplet versus time for typical capillary and Reynolds 

numbers. 𝑆𝑐 = 100. (a) Time is normalized by diffusion time scale, 𝜏𝐷, (b) time is normalized by flow 

shear time scale, 𝜏𝑆. 

(a) (b) 
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by models only involving 𝑅𝑒 and 𝑆𝑐. However, the curves exhibit a similar trend on 𝑃𝑒, which suggests that 

it will be feasible to develop an advanced model in the future, including the effect of droplet breakup 

characterized by capillary and Reynolds numbers.  

Fig. 21. Sherwood number versus Reynolds and capillary numbers. Hollow symbols represent 

unbroken droplets and solid symbols represent broken droplets. (a, b) 𝑆ℎ vs. 𝑅𝑒, (c, d) 𝑆ℎ vs. 𝐶𝑎, (a, 

c) 𝑆𝑐 = 10, (b, d) 𝑆𝑐 = 100. 

(a) (b) 

(c) (d) 

Fig. 22. Sherwood number versus Peclet number. Hollow symbols represent unbroken droplets and 

solid symbols represent broken droplets. (a) Unbroken droplets, (b) unbroken and broken droplets. 
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6.  Conclusion 

Through high-fidelity numerical simulation based on a well-developed VOF-based CFD solver, we have 

conducted an in-depth study of the advection-enhanced heat and mass transport from a single droplet neutrally 

suspended in a simple shear flow. This paper focuses on addressing the following three issues, the complex 

flows caused by the interaction of suspended droplet and carrier fluid, the mechanism of advective 

enhancement of heat and mass transport induced by the complex flows around the droplet, and the effects of 

droplet deformation and breakup on heat and mass transport. In the simulation, the temperature and mass 

concentration are modeled as the concentration of a passive scalar released at droplet surface. The capillary 

number considered in this study ranges from 0.01 to 0.5, which encompasses the entire range of small 

deformation, large deformation, and breakup of the droplets. The Reynolds number is from 0.01 to 1, which 

includes regions of weak and strong advection. Two Schmidt numbers, 10 and 100, are considered, for which 

flow advection plays a role in the transport of passive scalar. 

The evolution of the droplet morphology depends on the combination of capillary and Reynolds numbers. 

An increase in either capillary or Reynolds number can cause larger deformation of unbroken droplets and 

finer breakup. The critical capillary number at which the droplet breaks up decreases with the increase in 

Reynolds number.  

For unbroken droplets, the interaction between the carrier fluid and suspended droplet leads to several 

flows around the droplet, which are characterized by streamlines of four types of patterns. These are: inward 

spiral flows on the lateral side, outward spiral flows near the equator, recirculating wake flows up- and 

downstream of the droplet near the flow axis, and outer passing flow wrapping the spiral and wake flows. The 

passive scalar released at the droplet surface is first transported through the fluid layer of the spiral flows to 

the outer passing flow via diffusion, and then transported downstream by the outer flow via advection. After 

leaving the droplet, the outer fluid passes a portion of the passive scalar to the fluid further outside and the 

fluid in the recirculating wake, which helps transport passive scalar downstream via advection. These flow 

motions, together with scalar diffusion, constitute a coupled transport mechanism for passive scalar from the 
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droplet to the far field. The droplet elongation caused by the increase in capillary number does not significantly 

increase the scalar release rate. The dependence of scalar release rate on Reynolds and Peclet numbers can be 

roughly described by the correlation for a rigid sphere. 

For broken droplets, the basic features of the fluid flow around the droplet during the process of elongation 

and breakup are the same as those of an unbroken droplet in the stable state. There are both inward and outward 

spiral flows on the sides of each elliptical element of the droplet. Droplet breakup can significantly enhance 

the scalar release rate. The process of the variation of scalar release rate can be decomposed into several stages; 

the scalar release rate in each stage is related to the details of the droplet elongation and breakup processes. In 

the first stage, the scalar release rate increases roughly linearly with time, corresponding to the elongation of 

droplet in the flow direction. In the second stage, the release rate remains roughly constant, corresponding to 

the period of droplet breakup in which the extension of the droplet in the flow direction does not increase. In 

the third stage, the scalar release rate increases again, corresponding to the initial period of the separation of 

the child droplets, during which the child droplets influence each other’s scalar release rate. In the last stage, 

the scalar release rate remains constant again, corresponding to the period in which the child droplets have 

completely separated and do not influence each other. The discovery that the release rate can be viewed in 

stages will facilitate the development of empirical models for the entire process of scalar release rate for broken 

droplets. 

Compared with unbroken droplets, scalar release rates after the droplets complete breakup are significantly 

increased and far exceed the prediction range of traditional models for spherical droplets and rigid spheres. 

The variation of scalar release rate exhibits a high correlation with the capillary, Reynolds, and Peclet numbers. 

This suggests that it will in the future be feasible to develop an advanced empirical model, to incorporate the 

effects of the number and size distribution of child droplets after breakup. 
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