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Through high-fidelity numerical simulation based on the lattice Boltzmann method, we have conducted
an in-depth study on the heat and mass transport from an oblate spheroid neutrally suspended in a simple
shear flow. In the simulation, the temperature and mass concentration are modeled as a passive scalar
released at the spheroid's surface. The fluid dynamics induced by the interaction of the carrier fluid and the
suspended spheroid, as well as the resultant scalar transport process, have been extensively investigated. A
coupled transport mechanism comprising several components of the flow around the oblate spheroid has
been identified. The effects of Reynolds number and the aspect ratio of the spheroid on the flow
characteristics and scalar transport rate are examined. The variation of the nondimensional scalar transport
rate suggests that the effect of spheroid shape on scalar transfer rate can be decoupled from the effects of
Peclet and Reynolds numbers, which facilitates the development of a correlation of scalar transfer rate for

oblate spheroids based on the well-developed correlations for a sphere.
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1. Introduction

Heat and mass transport from neutrally suspended solid particles in shear flows have fundamental
importance in both scientific and industrial applications, from traditional drug delivery! and metal ore heap
leaching? to emerging renewable biomass energy® and dissolvable microrobots*. At the small Prandtl (Pr)
and Schmidt (Sc) numbers, heat and mass diffusion play a dominant role in the transport processes. A large
number of studies on diffusion-based transport processes have been carried out, and many analytical and
theoretical models have been developed and widely used®’. In many applications, such as the dissolution
of drug particles, the Schmidt number for the diffusion of drug molecules in water can be up to O(10%)>.
Under this condition, the diffusive transport of the molecules becomes inefficient, and the effect of
hydrodynamics becomes important. The interaction between the ambient fluid and the suspended particles
induces complex hydrodynamics, which in turn create an additional heat and mass transport mechanism.
The hydrodynamics are composed of the convection due to the relative velocity between the particle and
the surrounding fluid and the flow shear due to the relative motion of adjacent flow layers. It was found by
Wang and Brasseur? that flow shear plays a more important role in mass transport for small particles. The
particle's spinning motion creates a local recirculating flow, which helps advect dissolved mass away from
the particle surface.

In nondimensional form the transfer rates are described by Nusselt number (Nu) for heat and Sherwood
number (S#) for mass, which are defined respectively as the ratios of the advective heat and mass transfer
rates to diffusive transfer rate. In the situations with fixed temperature or species concentration on the
particle surface, the Nusselt and Sherwood numbers are determined by the Reynolds (Re) and Peclet (Pe,
which is equal to RePr or ReSc) numbers, defined based on the particle size and flow shear rate. Since the
1960’s, considerable effort has been put into the characterization of the heat and mass transfer from
spherical particles, and the construction of the dependence of Nu and S# on Re and Pe. Frankel and

Acrivos'® derived an asymptotic formula for the Sherwood number in terms of the Peclet number in the
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limit of Pe — 0 at Re = 0 as Sh = 1 + 0.257Pe/2. For large Peclet numbers, Acrivos'' took advantage
of the analogy between the sphere and the cylinder in a simple shear flow, and solved the transfer problem
using an approximate method. He found that the freely suspended sphere is completely surrounded by a
region of closed streamlines at Re = 0, across which heat and mass can only be transferred by diffusion,
thereby making the Nu or Sh asymptotically approach a constant (= 4.5) as Pe goes to infinity. Batchelor!?
followed these important works with an extensive analysis of the transfer rate of heat or mass from a
suspended particle in a steady flow with linear velocity distribution in the limit of Pe << 1 and Pe > 1. He
derived the same asymptotic equation as Frankel and Acrivos'®, but with a different proportionality constant.
The theoretical studies mentioned above established the basis for subsequent studies on this subject. Using
an advanced method of asymptotic interpolation on a prescribed form of the formula for Sh and Pe,
Polyanin and Dil’man'® obtained an approximate formula for the Sherwood number over the entire range
of Peclet number at Re = 0. Subramanian and Koch!# !* proved that the flow inertia caused by non-zero
Reynolds number breaks the closed streamlines around the particle in a simple shear flow, and creates an
additional mechanism of heat and mass transfer from the particle. They derived a correlation of Sh as a
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function of Re and Pe, which is applicable in the asymptotic limits of Re <« 1 and Re > 1/Pe
the intrinsic complexity of transport problems, however, these purely theoretical studies cannot effectively
deal with the effect of Reynolds number, and do not provide a good prediction of Nusselt and Sherwood
numbers at finite Reynolds numbers.

With the rapid development of computational fluid dynamics methods in recent decades, large-scale
numerical simulation now enables the in-depth study of heat and mass transport around moving particles
under a wide range of flow conditions. The published studies on flow-shear-driven enhancement of heat
and mass transport from spherical particles are still, however, very sparse. A numerical model based on the
lattice Boltzmann method based was developed by Wang and Brasseur’; they extensively analyzed the

hydrodynamic enhancement of heat and mass release from a spherical particle suspended in a simple shear

flow, with Reynolds numbers up to 10 and Schmidt numbers up to 100. Based on numerical results, they



developed an accurate correlation for shear enhancement of Nusselt or Sherwood number as a function of
Reynolds and Peclet numbers.

In realistic applications, more than 70% of solid particles are believed to be non-spherical, and
morphology plays a key role in particle scale heat and mass transfer characteristics'® 7. Furthermore, non-
spherical particles present some interesting characteristics and behaviors, such as good margination in shear
flow, that make them broadly useful in bioparticle separation'® and drug delivery'®. As a simplified model
of non-spherical particles, the rotational dynamics of a single spheroidal, i.e. oblate or prolate, particle,
freely suspended in a shear flow, have been extensively investigated since the 1920’s, and several
distinctive states have been identified, depending on Reynolds number and particle aspect ratio®?*. In the
past decade, the effects of fluid and particle inertia have become the focus of research. Using lattice-

Boltzmann-based numerical methods, Mao and Alexeev?* and Rosén et al.?’

independently examined the
effects of fluid inertia and particle rotary inertia on the dynamics and trajectory of spheroid particles at low
and moderate Reynolds numbers. They found that the particle behaviors are significantly influenced by
particle inertia which is characterized by Stokes number (St). Through theoretical analysis, Marath and

Subramanian?% 2’

systematically studied the effects of fluid and particle inertia on the rotational dynamics
of oblate and prolate spheroids, and analyzed the dependence of particle orientation and rotation period on

Reynolds and Stokes numbers.

Despite the considerable efforts devoted to the rotational dynamics of oblate and prolate spheroids,
however, the mechanisms for heat and mass transport induced by the interaction of carrier fluid and
suspended non-spherical particles under shear conditions are still not well understood. In the case where
Peclet number is significantly greater than 1, the fluid and particle dynamics play an important role in
transporting heat and mass through advection, which combines with diffusion transport to form a coupled
transport mechanism. Understanding the fluid dynamics of the interaction between the carrier fluid and the
suspended particles is the key to revealing the advective transport mechanism for heat and mass.

Compared with prolate spheroids, the motion of oblate spheroids is relatively simple. Qi and Luo?

found that in the low Reynolds number range 0 < Re < Re, = 220, the oblate spheroid tends to spin at a
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constant speed about its minor axis, where Re, is a critical Reynolds number. These conclusions have since
been confirmed by other studies?®*. As an initial exploration of the complex transport mechanisms in non-
spherical particle systems, therefore, this paper focuses on the heat and mass transport from a single oblate
spheroid neutrally suspended in a simple shear flow. The primary goal is to identify the complex transport
mechanisms of non-spherical particles. To this end, we develop a high-fidelity numerical model based on
the multigrid lattice Boltzmann framework, and we extensively examine the transport process of a passive
scalar from a neutrally suspended oblate spheroid. We consider spheroids of various aspect ratios in the
ranges of Re < 1 and Pe < 100. The paper is organized as follows. The physical model is presented in
Section 2. The numerical methods are described in Section 3. The result validation is given in Section 4.

The results are analyzed in Section 5, and conclusions are presented in Section 6.

2. Physical Model
The surface of a spheroid is described by

x1? ylz z1?
a? b2 c?

=1 (1)
where a, b and ¢ denote the lengths of three semi-principal axes, and (x', y’, z') are the surface coordinates

of the spheroid in the body-fixed system. For an oblate spheroid, a = b > c. In this study, the equivalent

spherical radius of the spheroid is defined as the radius of a sphere of the same volume as the oblate spheroid,
R = (abc)'/3 )

As shown in Fig. 1, an oblate spheroid is placed symmetrically on the central plane of an incompressible
flow confined by two parallel planes moving in opposite directions with speed U,. The distance between
the two plates is 2H, and the length and width of the planes are 2L and 2W, respectively. The background
flow shear rate (G) is adjusted by Uy and H. The minor axis of the oblate spheroid is parallel to the vorticity

vector of the flow, and the particle is allowed to rotate in response to surface pressure and shear stress



exerted by the surrounding fluid. The density of the particle is the same as that of the fluid. The outflow
condition is applied at the streamwise and spanwise boundaries. The undisturbed shear rate of the simple

shear flow is defined as:
G=— A3)
For oblate spheroids of different aspect ratios, the Reynolds number is defined uniformly based on the

equivalent spherical radius R and the background flow shear rate G,

2
Re = & 4)

v

where v is the kinematic viscosity of the carrier fluid.
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Fig. 1. Physical model of an oblate spheroid suspended in a simple shear flow with passive
scalar released from particle surface. Zero scalar flux condition is applied on the top and bottom
planes as well as the lateral domain boundaries. The minor axis is parallel to the vorticity vector

of the background flow. A fine grid of vertical dimension 24 is used in the middle region to

resolve the detailed fluid and particle dynamics and transport of passive scalar.

To predict heat and mass transport, temperature and mass concentration are modeled as the
concentration (¢) of a passive scalar released at particle surface, where ¢ is fixed at ¢ = 1. The Peclet

number, which characterizes the effect of flow shear on scalar transport, is defined as

2
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where Sc = v/D is the Schmidt number of the passive scalar in the fluid and D is the mass diffusivity. To
compare the scalar release rate of oblate spheroids of different aspect ratios, it is convenient to use the
nondimensional release rate, i.e. the Sherwood number (Sh), which is defined based on the radius and

surface area of the sphere of the same volume,

R
Sh=-2 o (6)

where Q is the release rate of the passive scalar from the particle surface, A (= 4wR?) the surface area of

the sphere, and ¢; (= 1) the concentration of passive scalar at particle surface.

A complete description of the problem includes the Reynolds number (Re), Schmidt number (Sc),
particle aspect ratio (A = a/c), and the ratios of the height (2H), width (2W), and length (2L) of the
computational domain to the radius of sphere of the same volume (2H/R, 2W /R, and 2L/R). The
diffusion-controlled transport process was addressed by Wang et al.’”, so the focus of this study is the
advective enhancement of heat and mass transport. Following the parameters of realistic applications, such
as drug dissolution, the Reynolds number range is O(10) to O(1). Considering grid resolution required for
the simulation of transport process of large Sh, the Schmidt number is limited to the range from O(10") to
0O(10%). To minimize the influence of boundaries, the height, width, and length of the computational domain

are over an order of magnitude larger than the radius of the sphere.

Here we only consider the transport process in the stable state, in which the oblate spheroid spins with
a constant speed about its minor axis. The minor axis of the spheroid is initially parallel to the vorticity
vector of the background shear flow, and then the spheroid moves freely, driven by the surround fluid. After
an initial evolving period, the fluid and particle motion as well as the scalar transport enter a steady state.

When the scalar release rate is sufficiently close to a constant value, the analysis is conducted.

3. Numerical Methods



We developed a 3D numerical method based on a multigrid strategy within the lattice Boltzmann (LB)
framework. The LB method is highly parallelizable and highly capable in dealing with stationary and
moving solid boundaries with complex geometries. The dependent variable is the particle distribution
function f(x, t), which quantifies the probability of finding an ensemble of molecules at position X with
velocity e at time t *'*. Continuum-level velocity u(x, t) and density p(X, t) are obtained from moments
of f(x, t) over velocity space. In three dimensions, the velocity vector e can be discretized into 15, 19, or
27 components in what are referred to as the D3Q15, D3Q19 and D3Q27 approaches?®!. Here we apply the
D3Q19 approach, largely to minimize computational load, with the recognition that the flow Reynolds

number is relatively low.

The LB equation with the Bhatnagar-Gross-Krook®* representation for the collision operator®? is

written as,

f(x +ed,t +6,) —f(x,t) = — % (F(x,t) — £°9(x, 1)) (7)

where the discretized velocity vector e for D3Q19 is,

(0,0,0) a=0
ea = (il'O'O)' (O' il,O), (OJOJ il) a = 1,2, te ,6 (8)
(ill ilJO)J (illol il)J (O' ill il) a = 7’8'“.’18

where a is the index of components of velocity vector e. The left-hand side (LHS) of Eqn. (7) describes
“streaming,” the exchange of momentum between neighboring lattice nodes as a result of bulk advection
and molecular diffusion. The right-hand side (RHS) describes the mixing, or collision of molecules that
drive the distribution function (f(x,t)) toward the equilibrium distribution function (f®4(x,t)), with a

relaxation time scale, T. The relaxation time is linearly related to the fluid kinematic viscosity v by
v=021—1)cbdx/6 9)

where 6x is the lattice spacing and ¢ = 6x/6t is the basic speed on the lattice. In the low Mach number

limit, the equilibrium distribution for the D3Q19 model is*!
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. )2 .
£29(x,£) = wep(x,£) [1+ 325" + e (10)

2 c?

where w,, are weighting factors, wo = 1/3, w, = 1/18fora =1 -6, andw, = 1/36 fora =7 — 18.
The continuum-level fluid density p(X,t) and momentum pu(x,t) are obtained from the discretized

moments of the particle distribution function,

,D(X, t) = Zafa(x; t), p(X: Hu(x, t) = Zafa(x’ t)ea (11)

In the treatment of moving particle surfaces, we used the 2" order accurate scheme of Lallemand and
Luo™®. This method is based on the simple bounce-back boundary scheme and interpolations. If the distance
fraction of the first fluid node from the solid boundary is less than half of one lattice space, the
computational quantities are interpolated before propagation and bounce-back collision. If the distance
fraction is greater than a half lattice space, interpolation is performed after propagation and bounce-back
collision. The momentum exerted by the moving boundary is given by these terms, which were developed

by Ladd*® and Bouzidi et al.*’

The motion of the particle is obtained by solving Newton’s equations of motion,
M dU(t)/dt = F(t) (12)
I-dQ(t)/dt + Q) X [I- Q)] = T(¢) (13)
where M is the mass of a solid particle, I the inertial tensor, U the translational velocity, Q is the angular

velocity, and F and T are the total force and torque on the particle, respectively. At each fluid boundary

node X, the force is calculated by the exchange of distribution function between the fluid and solid.

Fp(Xp, t) = —Za[fc—z(xb» t+6) — fa(Xp, t+)] (14)

where f3 is the distribution transferred from the solid boundary, including the additional momentum due to
boundary motion, f,, is the post-collision distribution transferred from the flow to the boundary. According
to Aidun et al.*®, the total force includes three components, the force due to the communication of

distribution function (Fp (X, t)), the force due to momentum transfer from fluid to solid when some grid



nodes are covered by solid (F.(x,t)), and the force due to momentum transfer from solid to fluid when

some grid nodes are uncovered by solid (F, (x,t)). The latter two are given as,
Fe(Xo,t) = — Xalfa(Xco t)eq] (15)
F,(Xy, t) = —p(Xy, Hu(xy, t) (16)

The total force and torque are calculated by summing the force and torque at each fluid boundary node and

each covered and uncovered fluid node,
F(t) = Xren Fp(Xp, ) + Xen Fe (X, 1) + Zyn Fu (X, £) (17)
T(t) = Xran(Xp — X,) X Fp(Xp, 1) (18)

where FBN, CN, and UN denote the fluid boundary nodes, covered, and uncovered nodes. X,, is the central

coordinate of the solid particle.

To solve the process of heat and mass transport, the passive scalar is distributed in the flow field. The
moment propagation method developed by Frenkel and Ernst*, Lowe and Frenkel*’, and Merks et al.*! is
used to solve the scalar. In this method, a scalar quantity is released in the lattice and a scalar concentration
field variable is propagated at the continuum level for each scalar using the distribution function. Let ¢ (X, t)
be the continuum-level scalar concentration on the lattice at location X at time t, the advancement of the

scalar concentration at the next step is given by

B(X,t + 6t) = X Py(x — €48, t + 8t) + Pp(x, £)A* (19)
Aa — a5 ) *
P,(x — e,8t,t + 8t) = fp((%a;;;) — w,A ] H(x — e,5t,t) (20)

where f,, denotes the post-collision pre-streamed distribution function in a-direction, ¢, implies a time after
collision but before streaming, and A* is the fraction of ¢ (X, t) that remains on the lattice node during the

time advancement. A* is related to the molecular diffusivity of the passive scalar as,

A*=1—6D/cSx 21)
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One advantage of the moment propagation method is that the upper bound of Peclet number is much larger

than in other methods, and so the calculation is more stable.

To reduce the computational load imposed by the exceptionally fine full-domain uniform grid required
by the LB method to appropriately resolve a spheroidal particle, a dual-lattice method developed by
Filippova and Hanel** and Yu et al.** was used. With this approach a fine grid is placed in a subregion
surrounding the particle, as shown in Fig. 1, and a coarse grid is used in the other subregions. To maintain
continuity of viscosity across the interface, the relaxation time between the fine and coarse grids must

therefore satisfy,

1

7 =2+m (1. —3) (22)

where m = 6x./8x is the ratio of the lattice spacing between the two grid systems, and the subscripts ¢

and f indicate the coarse and fine grids, respectively. In the simulations m = 5 is used in all cases.
To maintain continuity of density and momentum across the interface of fine and coarse grids, the

equilibrium distribution function of the neighboring grid system must be the same at the interface,
feac = feas (23)

To maintain continuity of viscous deviatoric stress at the interface, the transfer of the post-collision

distribution functions between the two grids is given by

fc — feqf Tl (ef _ geqf
fc=f + ‘mTf_1 (f f ) (24)
¢f _ geqc 4 UL rec _ ceqc
f/ =f + D (f f ) (25)

where f is the post-collision distribution function. The multigrid strategy is also implemented in the

1.3% In the simulation,

momentum propagation method. The details of this method can be found in Wang et a
the height of the subregion of fine grid, denoted by 2h, is 8 times the radius of a sphere of the volume of

the oblate spheroid.
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In moment propagation method, the continuity of diffusion coefficient across the interface of fine and

coarse grids gives,
Ar=1-m(1-A47) (26)
At the interface, the scalar concentration is continuous,
b = ¢ (27)

At the boundary of each grid, there is an overlap between the fine and coarse grids with the boundary of
each grid located in the interior of the other. The scalar concentration is obtained from the other grid, either
directly or by interpolation. All nodes not on the boundaries are calculated with the moment propagation

method in the usual way.

4. Result Validation

To examine the grid sensitivity of the results, we conducted the simulations of fluid flow and scalar
transport around an oblate spheroid with a = 1.5R, for Re = 1 and Sc = 100. Two different sets of grids,
with 30 and 40 fine grid points over one major radius, corresponding to 20 and 27 fine grid points over one

equivalent spherical radius, were used. Figure 2 shows the profiles of streamwise velocity (u,) and
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Fig. 2. Effect of grid resolution on streamwise velocity (u,) and concentration of passive scalar (¢)
along the vertical central line of an oblate spheroid with a = 1.5R, for Re = 1 and Sc = 100. The
relative deviation is less than 0.3%. N, is the number of grid points over one major radius.
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concentration of passive scalar (¢p) along the vertical line through particle center. Excellent convergence
between the two sets of grids was obtained, with maximum deviation of the quantities of less than 0.3%.
Therefore, the coarser grid system corresponding to 20 grid points over one equivalent spherical radius was

used in the simulations. Section 5 presents a detailed discussion of the results.
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Fig. 3. Dependence of angular velocity of oblate spheroids on Reynolds number. Oblate I: a =
1.5R, and Oblate II: a = 2R. Data of Mikulencak and Morris* (2004) are for circular cylinder,
and data of Jeffery’s theory®® are for oblate spheroids at Re = 0.

In order to validate the numerical results, we compare our results with those available in the literature
as discussed above. According to Jeffery?®, when an oblate spheroid spins about its minor axis, which is
parallel to the vorticity vector, the angular velocity is £2 = 0.5G when Re = 0. In Fig. 3, We compare the
normalized angular velocities (£2/G) of the oblate spheroids with a = 1.5R and 2R for 0.005 < Re < 1
with the prediction of Jeffery’s theory? for oblate spheroids at Re = 0 and the data of Mikulencak and
Morris* for circular cylinder. When Re < 0.1, the numerical results agree well with Jeffery’s theory, with
relative error less than 0.1%. When Re > 0.1, the effects of Reynolds number and particle aspect ratio
appear. As Re increases, £2/G decreases for both spheroids. This trend is consistent with the data of
Mikulencak and Morrris* for circular cylinder. In addition, larger aspect ratio (A = a/c) leads to larger
deviation from Jeffery’s prediction. For heat and mass transport, no data have been found for oblate

spheroids in the literature, so we use the result of a spherical particle, which is a special case of oblate
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spheroids, for the validation. In Fig. 4 we compare the normalized scalar release rate, i.e., Sherwood number
(Sh), of a spherical particle for Re close to zero with the predictions of the asymptotic theories of Frankel
and Acrivos'’, Batchelor'?, and Polyanin and Dil’'man'® for Re = 0. As shown in the figure, three
asymptotic theories do not give very close results. Overall, the numerical results compare well with the
three theories. The deviation decreases apparently as Re decreases from 0.01 to 0.001. This comparison
validates the accuracy of the results to a certain extent. It also shows that the boundary effect is negligible

when dealing with small Reynolds numbers.

1.4
[ O Re=0.001
O Re=0.005
13F 0 Re=0.01 $
Frankel & Acrivos (1968) Q
— — Batchelor (1979) !
= 1.2 | -=-= Polyanin & Dil'man (1985) Qp- ’

1 L L el L " L L L
107 10" 10°
Pe

Fig. 4. Normalized scalar release rate characterized by Sherwood number (Sh) versus Peclet number
(Pe). Symbols: numerical simulation for Re close to zero, lines: the asymptotic theories of Frankel
and Acrivos'?, Batchelor'?, and Polyanin and Dil’man'? for Re = 0.

5. Results And Discussion

In this section, the fluid and particle dynamics and the transport characteristics of passive scalar in a
system of a single oblate spheroid of various aspect ratios are analyzed. Table 1 summarizes the cases
considered in terms of particle radii, Reynolds, and Schmidt numbers. The ratios of the length (x direction),
width (y direction), and height (z direction) of the computational domain to the radius of a sphere of the
same volume as our oblate spheroid are fixed at 2L/R = 100, 2W /R = 20, and 2H/R = 20, respectively.

The ratio of the height of the subregion of fine grid to the radius of sphere is 2h/R = 8. The width and

14



length are the same as that of the computational domain. The ratio of the lattice spacing between the two

grid systems is fixed at m = 5.

Table 1. Cases of different particle radii, Reynolds, and Schmidt numbers.

a/R(=b/R) c¢/R Re Sc
1.5 1/1.52 0.005, 0.01, 0.05, 0.1, 20, 40, 60, 80, 100
0.5,1
2 1/22 0.005, 0.01, 0.05, 0.1, 20, 40, 60, 80, 100
0.5,1
1.25,1.75,2.5 1/1.25%,1/1.75%, 1/2.5% 0.1

20, 40, 60, 80, 100

At the beginning, the motion of the surrounding fluid is set as an undisturbed simple shear flow, and
the angular velocity of the oblate spheroid is made equal to 0.5G. The concentration of passive scalar in the
fluid is zero everywhere. After an initial evolving period, the fluid and particle motion as well as the scalar

transport enter a steady state. Then the analysis is conducted. The steady state is considered to be reached

10.1

S o
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Fig. 5. Variations of Sh and d(Sh)/(Sh G dt) with normalized time, Gt, of an oblate spheroid
with a = 1.5R for Re = 1.
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when the normalized Sh change rate, d(Sh)/(Sh G dt), becomes less than 1073, Figure 5 shows the
variations of Sh and d(Sh)/(Sh G dt) with normalized time, Gt, of an oblate spheroid with a = 1.5R for
Re = 1. Five Sc are considered. As shown in the figure, all Sh asymptotically approach constant values
over time, and d(Sh)/(Sh G dt) approach zero. The cases with smaller Sc converge faster.

Here we use the case of a = 1.5R and Re = 1 as an example to demonstrate the basic flow structure
and scalar transport characteristics. Figure 6 shows the typical streamlines around the spheroid. In the steady
state, the streamlines coincide with the trajectories of the fluid particles, so the streamlines depict the
transport of passive scalar through flow advection. As shown in the figure, the flow structure is composed
of several different patterns of streamlines. First, on the lateral sides, the rotating spheroid drives the fluid
near its surface to rotate with it. The unbalanced centrifugal force pushes the rotating fluid to a larger radial
direction, forming an outward spiral flow (increasing radial coordinate; red lines) along the spheroid surface.

This flow originates somewhere near the minor axis and approaches the spheroid, forming a region of spiral

NS=

Lo ° KoV ] b
© (a) (b)

Saddle
pOlI‘lt (C) ( d)

Fig. 6. Typical 3D streamlines around an oblate spheroid of a = 1.5R for Re = 1. (a, b) Perspective
view, (c) side view, and (d) front view. Red: outward (increasing radial coordinate) spiral flow
originating from a point transverse to the x-z plane, green: inward (decreasing radial coordinate) spiral
flow originating from a point on the central x-z plane, purple: recirculating wake flow originating far
upstream, blue: outer bypassing flow wrapping the spiral and reversal flows. The outer flow (blue)
shifts laterally when passing by the spheroid, driving the inward spiral flow (green). The outward (red)
and inward (green) spiral flows converge on a closed line on the spheroid surface and travels
downstream together.
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flows on the lateral sides. This spiral flow region is essentially a variation of the Stewartson layer on a
rotating flat plate, which has been extensively investigated**’. The major difference between the spiral
flow layer in this study and Stewartson layer is that this spiral flow layer appears on a spheroidal surface
and interacts with the outer simple shear flow. Second, near the equator of the spheroid where y = 0, the
rotating spheroid drives a thin layer of flow on its surface, in which the fluid recirculates with the spheroid
(green lines). Third, outside this flow layer, the fluid passes the spheroid and flows downstream directly
(blue lines). The outer passing fluid tends to choose a shorter path, so it shifts laterally to the lateral sides
as shown in Fig. 6(d). The lateral shift of the outer flow (blue lines) causes the fluid in the flow layer (green
lines) near the equator to laterally shift along the spheroid surface, forming an inward (decreasing radial
coordinate) spiral flow. At a certain place on the side surface, the inward flow meets the outward flow
originating from the lateral area, and they merge, leaving the surface and finally travelling downstream.
The inward spiral flow originates upstream of the spheroid on the central x-z plane, and leaves the spheroid
somewhere away from the central x-z plane. Fourth, on either side of the oblate spheroid along the flow
axis, there is a recirculating wake, in which the fluid approaches the spheroid near the axis and turns back
before touching the spheroid (purple lines). The recirculating wakes are separated from the spiral flows
surrounding the spheroid by two lines of saddle points (Figs. 6(a, ¢)). The spiral flows and the recirculating
wakes are wrapped by the outer passing flow, which drives the rotation of spheroid and triggers the spiral
flows and recirculating wakes. Essentially, the flow structure around an oblate spheroid is similar to that
around a sphere, which has been extensively analyzed'* '> *. The behaviors of the flow components and
the interactions among them work as an ensemble to form a complex mechanism for the transport of passive

scalar.

Under the action of the surrounding flows, scalar transport exhibits a different pattern from that of
diffusion transport. Figure 7 shows the pattern of scalar concentration (¢p) around an oblate spheroid of a =
1.5R for Re = 1 and Sc = 100. The particle geometry and Reynolds number are the same as that in Fig. 6.

On the windward (upper left and lower right) sides of the spheroid, the impact of the outer flow significantly
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decreases the thickness of scalar boundary layer, through which ¢ changes from 1 at spheroid surface to 0
in the ambient fluid. On the leeward (upper right and lower left) sides, the passive scalar released at the
spheroid surface is carried by the passing flow and advected downstream. On the lateral sides, the passive

scalar is transported laterally from the spheroid surface to the ambient fluid through a scalar boundary layer

0 01 02 03 04 05 06 07 08 09 1

Fig. 7. Patterns of scalar concentration (¢) around an oblate spheroid of a = 1.5R for Re = 1 and
Sc = 100. (a) and (b) show the 3D iso-surfaces of ¢p = 0.3 together with the typical streamlines; (c)
and (d) show the iso-contours of ¢ on the central x-z and y-z planes.

that is thicker than that on the windward sides. Compared with pure diffusion, the pattern shown in this

figure is the outcome of a more complex transport mechanism.

To identify the mechanism of scalar transport from the spheroid surface to the ambient fluid, we plot
the contours of scalar concentration (¢) on the x-z and y-z planes, together with the 3D streamlines, in Figs.
8(a) and (b). It is seen in Fig. 6 that the spheroid is surrounded by a flow layer consisting of an outward
spiral flow on the lateral sides and an inward spiral flow near the equator. The passive scalar released at
spheroid surface, therefore, is first transferred to the surrounding spiral flows through pure diffusion. In the
limit case of Sc = oo, where the molecular diffusivity D = 0, the released passive scalar will be transported
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by the surrounding spiral flows away from the spheroid surface through pure advection. The spiral
streamlines depict the path of scalar transport. In the case of finite Schmidt number (Sc), molecular
diffusion provides important scalar transport across the streamlines. As shown in Figs. 8(a) and (b), the
outer passing flow hits the windward sides (upper left and lower right sides) of the spheroid and then travels
downstream along the top and bottom surfaces as well as the lateral sides of the spheroid. During this
process, the passing flow gains passive scalar from the spiral flows surround the spheroid via molecular
diffusion across the streamlines. As a result, the scalar concentration (¢) of the passing flow increases
gradually. Since the spiral flows only exist in the thin layer on spheroid surface, the spiral flows lose most

of their passive scalar to the passing flow after leaving the spheroid, and outer passing flow transports most
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Fig. 8. Transport mechanism of passive scalar illustrated by the patterns of scalar concentration (¢)

and magnitude of the gradient of scalar concentration (||V¢||). (a) and (b) show the iso-contours of

¢ on the central x-z and y-z planes, together with the 3D streamlines surrounding the spheroid; (c)
and (d) show the iso-contours of ||V¢|| on the central x-z and y-z planes.
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of the passive scalar downstream via flow advection. It is seen from the streamline patterns in Fig. 6 that
there is a thick flow layer with an outward spiral flow on the lateral side of the spheroid. Since the flow
spirals towards the spheroid in this layer, the released passive scalar has to be transported against the
streamlines by molecular diffusion through this layer to the outer passing flow, and then can be transported

downstream by the outer flow.

To accentuate the diffusion process, we plot the modulus of the gradient of scalar concentration (||Ve||)
on the x-z and y-z planes together with the 3D streamlines in Figs. 8(c) and (d). It can be seen that the
molecular diffusion mainly occurs in four regions. The first is in the flow layer on the windward spheroid
surface, where passive scalar is transported from spheroid surface to the spiral flows, and then to the outer
passing flow. The second is downstream of the leeward side, where passive scalar is transported from the
outer flow just past the spheroid surface to the flow further outside. The third is in the wake flow near the
flow axis (z = 0), where the passive scalar is transported from the passing flow to the downstream part of
the spiral flows, and then to the recirculating wake flow near the axis. The recirculating wake flows also
help transport passive scalar downstream. The fourth region is the layer of spiral flows on the lateral sides
of the spheroid, where the passive scalar is transported from the spheroid surface to the spiral flows, and
then to the outer passing flow. During the process, the spiral flows on the spheroid surface, the recirculating
wake flows on the axis, and the outer passing flow together form a coupled transport mechanism for the

passive scalar, involving both molecular diffusion and flow advection.

According to the coupled transport mechanism, the passive scalar is transported through the fluid layer
of spiral flows to the outer passing flow, and then transported downstream by the outer flow through
advection. The thickness of the spiral flow layer is thus an important factor in transport efficiency. In the
present study, the thickness of the flow layer is determined not only by spatial coordinates, but also by
Reynolds number and the aspect ratio of the oblate spheroid. Figure 9 shows the profiles of the interface
between the inner spiral flows and the outer passing flow on the y-z plane through the spheroid center for

different Reynolds numbers. The major radius is @ = 1.5R, corresponding to an aspect ratio 4 = 1.53. The
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profiles of the interface show the spatial variation of the thickness of the spiral flow layers, which extend
away from the spheroid along its minor axis. The extension of the spiral flow region decreases with the
increase of Re. This is because the increase of Reynolds number reduces the viscous diffusion of angular
momentum of surrounding fluid in the lateral direction. The outward spiral motion of the fluid causes the
flow layer thickness to decrease with the increase of radial coordinate. When the radial coordinate passes a
critical value (7, = 0.8R), the trend of dependence on Reynolds number becomes opposite, and the
thickness increases with the increase of Re. The reason is that the centrifugal effect is stronger at larger
Reynolds number, which leads to stronger fluid motion of the outward spiral flow in the radial direction,

thus increasing the thickness of the spiral flow layer.

Fig. 9. Profiles of the interface between the outer bypassing flow and the inner spiral flows of an
oblate spheroid of a = 1.5R.

It was shown in Wang & Brasseur® (2019) that in the range of Re < 0(1) and Sc < 0(10%), the
transport rate of passive scalar from a sphere is primarily determined by Peclet number (Pe = ReSc). The
difference in fluid velocity caused by Reynolds number has a limited effect on scalar transport. This is also
the case for oblate spheroids. Although Reynolds number causes some deviation in flow velocity, it does
not significantly influence the scalar transport. This can be seen from the comparison of iso-contours of
scalar concentration (¢p) between Re = 0.1 and 1 shown in Fig. 10. The Peclet number is Pe = 10, for both
cases. The iso-contours of these two Reynolds numbers demonstrate similar distribution of ¢ in the figure.

The scalar transfer rate shown in Fig. 15 confirms this conclusion.
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Fig. 10. Comparison of iso-contours of scalar concentration on x-z and y-z planes for Pe = 10. (a)
Re = 0.1, Sc = 100, and (b) Re = 1, Sc = 10.

In addition to Reynolds number, the aspect ratio of the oblate spheroid also plays an important role in
flow evolution and scalar transport. Figure 11 shows the profiles of the interface between the inner spiral
flows and the outer passing flow on the y-z plane through spheroid center for different major radii. The
Reynolds number is Re = 0.1. As shown in the figure, the interface profiles of spheroids of different major
radii have similar shapes. A spheroid of larger major radius has a larger area of spiral flow, corresponding
to a thicker flow layer. The thicker flow layer does not, however, mean that the efficiency of scalar transport
is lower; in fact, although diffusive transport dominates the spiral flows on the spheroid surface, advective

transport still plays a role.

It is shown in Fig. 3 that the angular velocity of the spheroid is close to 0.5G. The velocity difference
between the rotating oblate spheroid and the ambient fluid at each vertical position can be roughly estimated

as,

llu"[| =~ [0.5Gz| (28)
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where z is the vertical coordinate. The oblate spheroid with a larger major radius has a larger velocity
difference, leading to thinner flow and scalar boundary layer on the surface of oblate spheroid. This can be

seen in the following analysis.

Fig. 11. Profiles of the interface between the outer bypassing flow and the inner spiral flows of
oblate spheroids with different radius for Re = 0.1.

Figure 12 shows the iso-contours of the modulus of flow velocity relative to a rotating oblate spheroid

with major radii @ = 1.5R and 2.5R for Re = 0.1. u” is defined as,
u=u—-Qxr (29)

where Q is the vector of angular velocity of the spheroid, and r the coordinate vector in a polar coordinate
system. As shown in the figure, ||u”|| changes more sharply near the spheroid surface when a = 2.5R than
when a = 1.5R on both the x-z and y-z planes. This suggests that the boundary layer is thinner on the
spheroid with larger major radii, which will lead to higher scalar transfer rate. On the x-z plane, the contour
lines present an interesting square distribution near the spheroid. This is caused by the velocity field in the
rotating system. Figure 13 shows the streamline patterns on the x-z plane in the frame of reference rotating
with the oblate spheroids with a = 1.5R and 2.5R for Re = 0.1. In the range of Reynolds number
considered in this study (Re < 1), the streamline distribution demonstrates a roughly symmetrical square

pattern.
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Fig. 12. Iso-contours of ||u”|| on the central x-z and y-z planes in the frame of reference rotating with
the oblate spheroids with a = 1.5R and 2.5R for Re = 0.1. (a) a = 1.5R, (b) a = 2.5R. Left
column: x-z plane, right column: y-z plane.

Fig. 13. Streamline patterns on the x-z plane in the frame of reference rotating with the oblate
spheroids with a = 1.5R and 2.5R for Re = 0.1. (a) a = 1.5R, (b) a = 2.5R.

Figure 14 shows the patterns of scalar concentration around oblate spheroids with a = 1.5R and

2.5R for Re = 0.1 and Sc = 100. Due to the sharper variation of ||u”|| around the spheroid of a = 2.5R,

as shown in Fig. 12, ¢p changes more sharply near the spheroid surface, leading to an increased scalar

transfer rate from the spheroid surface to the ambient fluid. In addition, the spheroid with a larger major

radius has a larger surface area, which also enhances the scalar transfer rate.

The coupled transport mechanism leads to the complex dependence of scalar transport rate on the

controlling parameters. In this study, we focus on the effects of Reynolds number, Schmidt number, and

the aspect ratio of spheroids. In a study of mass transfer from a neutrally buoyant sphere in a simple shear
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Fig. 14. Patterns of scalar concentration (¢) around oblate spheroids with a = 1.5R and 2.5R for
Re = 0.1 and Sc = 100. (a) a = 1.5R, (b) a = 2.5R. Left column: x-z plane, right column: y-z
plane.

flow?, it was shown that in the range of Re < 0(1) and Sc < 0(10?), the nondimensionalized transfer rate,
Sherwood number (Sh), is mainly determined by the Peclet number (Pe), which is defined as the product
of Re and Sc. Reynolds number plays a minor role. This is also found in the results for oblate spheroids. In
Fig. 15 we plot Sh against Pe in both linear and log scales for the cases simulated in this work. For the
purposes of comparison, the results for a sphere are also included. For each major radius, Sh increases with
increase in Pe, with Sh being more sensitive at smaller Pe. For each Pe, the increase in Re causes a slight
increase in Sh. The shape of the spheroid, i.e. the major radius or the aspect ratio, has a significant effect
on Sh. The increase in the major radius of the spheroid from R to 1.5R and from 1.5R to 2R leads to an
overall increase in Sh. In the log scale, the curves of the oblate spheroid show patterns similar to those of
the sphere, which suggests that the effect of particle shape on scalar transfer rate may be decoupled from

the effects of Pe, Re and Sc. Thus, the relationship of Sh to the other parameters can be written as,

Shopiate(Pe, Re, a/R) = Shsphere (Pe, Re)f(a/R) (30)
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where Shopigre i the Sherwood number of scalar release from an oblate spheroid, Sheppere is the
Sherwood number of a sphere, and f(a/R) is a function of the major radius of the oblate spheroid. Here
we use the major radius of the spheroid instead of aspect ratio as the parameter, because when the major
radius is large, the flow and scalar concentration patterns as well as heat and mass transfer rate are close to

that of a flat plate. Sh is more related to the major radius than the aspect ratio. In normalized form, the
aspect ratio of an oblate spheroid is written as A = (a/R)3, which is the cube of major radius. In log-
log scales, the shape of the curve of Sh vs. A is the same as that of Sh vs. a/R. However, the

relationship between Sh and A is indirect.

Fig. 15. Sherwood number (Sh) versus Peclet number (Pe) for oblate spheroids of different major
radii. (a) linear scales, and (b) log-log scales. The symbols indicate the results of numerical
simulation. Oblate I: a = 1.5R, Oblate II: a = 2.5R.

A correlation of Shgy,pere for a sphere in a simple shear flow as a function of Pe and Re was developed
in Wang & Brasseur’. A key step to develop an analogous correlation of Sh for oblate spheroids of the form
of Eqn. (30) is to find the dependence of Sh on the major radius a/R. Since function f(a/R) in Eqn. (30)
is assumed to be the same for all Reynolds and Peclet numbers, we choose the data of Re = 0.1 to develop
the correlation. Figure 16 shows the variation of Sh with a/R in a log-log scale. The numerical data are
represented by open circles. The strong similarity of the curves for different Pe confirms the conclusion
that the effect of spheroid shape can be decoupled from the other effects. As shown in the figure, Sh
increases with an increase of a/R. At the same time, Sh tends to follow a linear relationship with a/R. A

likely reason is that as a/R increases, the shape of the spheroid approaches a flat plate and the flow
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characteristics and scalar transport around the spheroid approach the result for a flat plate, which may have
some linear nature in log-log space. According to this observation, it is reasonable to assume that the
relationship between log(Shopiate) — 108 (Shspnere) and log (a/R) follows a modified hyperbola

equation,
(log(Shoblate) - log(Shsphere) + 1)2 - C(log(a/R))z =1 (1)

where C is a coefficient to be determined. Using the standard linear least squares method, the coefficient is

found to be C = 2.42. Substituting Eqn. (31) into (30) gives,

f(a/R) = exp (1 + C(log(a/R))? — 1) (32)

The prediction of Sh,piqte 0f Eqn. (31) is shown in Fig. 16 as solid lines, which agrees well with the
numerical data. A slight deviation can be noticed when a/R > 2. Yet the aspect ratio of the oblate spheroid
corresponding to a/R = 2 is A = (a/R)® = 8, which is far beyond the range of usual applications.
Therefore, the empirical correlation can be used with confidence in most scientific and industrial

applications.

I Num. Corr. Pe

1 1.5 2 2.5
a/R

Fig. 16. Sherwood number (Sh) versus the major radius (a) of an oblate spheroid for Re = 0.1.
Symbols: numerical data, lines: correlation.

6. Conclusion

Through high-fidelity numerical simulation based on the lattice Boltzmann method, we have conducted

an in-depth study on the heat and mass transport from an oblate spheroid neutrally suspended in a simple
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shear flow. In the simulation, the temperature and mass concentration are modeled as the concentration of
a passive scalar released at spheroid surface. The interaction between the carrier fluid and suspended
spheroid results in several flows around the spheroid, which are characterized by streamlines of different
patterns. These are: outward spiral flows on the lateral side, inward spiral flows near the equator,
recirculating wake flows near the flow axis, and the outer passing flow wrapping the spiral and wake flows.
The passive scalar released at spheroid surface is first transported through the flow layer of the spiral flows
to the outer passing flow through diffusion, and then transported downstream by the outer flow through
advection. After leaving the spheroid, the outer flow passes a portion of the passive scalar to the flow further
outside and the flow in the recirculating wake, which helps transport the passive scalar downstream through
advection. These flow motions constitute a coupled transport mechanism for passive scalar from the oblate
spheroid to the far field. The flow behaviors around the spheroid depend on both the Reynolds number of
the flow and the aspect ratio of the spheroid. The changes in flow behaviors cause changes in the transport
efficiency of the passive scalar. The results suggest that the effect of spheroid shape on scalar transfer rate
can be decoupled from the effects of Peclet and Reynolds numbers, and this enables the development of a
correlation of nondimensional scalar transfer rate, i.e. Sherwood number, for oblate spheroids, based on the

well-developed correlations for a sphere.
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