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an in-depth study on the heat and mass transport from an oblate spheroid neutrally suspended in a simple 

shear flow. In the simulation, the temperature and mass concentration are modeled as a passive scalar 

released at the spheroid's surface. The fluid dynamics induced by the interaction of the carrier fluid and the 

suspended spheroid, as well as the resultant scalar transport process, have been extensively investigated. A 

coupled transport mechanism comprising several components of the flow around the oblate spheroid has 

been identified. The effects of Reynolds number and the aspect ratio of the spheroid on the flow 

characteristics and scalar transport rate are examined. The variation of the nondimensional scalar transport 

rate suggests that the effect of spheroid shape on scalar transfer rate can be decoupled from the effects of 

Peclet and Reynolds numbers, which facilitates the development of a correlation of scalar transfer rate for 

oblate spheroids based on the well-developed correlations for a sphere. 
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1. Introduction 

Heat and mass transport from neutrally suspended solid particles in shear flows have fundamental 

importance in both scientific and industrial applications, from traditional drug delivery1 and metal ore heap 

leaching2 to emerging renewable biomass energy3 and dissolvable microrobots4. At the small Prandtl (Pr) 

and Schmidt (Sc) numbers, heat and mass diffusion play a dominant role in the transport processes. A large 

number of studies on diffusion-based transport processes have been carried out, and many analytical and 

theoretical models have been developed and widely used5-7. In many applications, such as the dissolution 

of drug particles, the Schmidt number for the diffusion of drug molecules in water can be up to O(104)8. 

Under this condition, the diffusive transport of the molecules becomes inefficient, and the effect of 

hydrodynamics becomes important. The interaction between the ambient fluid and the suspended particles 

induces complex hydrodynamics, which in turn create an additional heat and mass transport mechanism. 

The hydrodynamics are composed of the convection due to the relative velocity between the particle and 

the surrounding fluid and the flow shear due to the relative motion of adjacent flow layers. It was found by 

Wang and Brasseur9 that flow shear plays a more important role in mass transport for small particles. The 

particle's spinning motion creates a local recirculating flow, which helps advect dissolved mass away from 

the particle surface. 

In nondimensional form the transfer rates are described by Nusselt number (Nu) for heat and Sherwood 

number (Sh) for mass, which are defined respectively as the ratios of the advective heat and mass transfer 

rates to diffusive transfer rate. In the situations with fixed temperature or species concentration on the 

particle surface, the Nusselt and Sherwood numbers are determined by the Reynolds (Re) and Peclet (𝑃𝑒, 

which is equal to 𝑅𝑒𝑃𝑟 or 𝑅𝑒𝑆𝑐) numbers, defined based on the particle size and flow shear rate. Since the 

1960’s, considerable effort has been put into the characterization of the heat and mass transfer from 

spherical particles, and the construction of the dependence of Nu and Sh on Re and Pe. Frankel and 

Acrivos10 derived an asymptotic formula for the Sherwood number in terms of the Peclet number in the 
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limit of 𝑃𝑒 → 0 at 𝑅𝑒 = 0 as 𝑆ℎ = 1 + 0.257𝑃𝑒1/2. For large Peclet numbers, Acrivos11 took advantage 

of the analogy between the sphere and the cylinder in a simple shear flow, and solved the transfer problem 

using an approximate method. He found that the freely suspended sphere is completely surrounded by a 

region of closed streamlines at 𝑅𝑒 = 0, across which heat and mass can only be transferred by diffusion, 

thereby making the 𝑁𝑢 or 𝑆ℎ asymptotically approach a constant (≈ 4.5) as 𝑃𝑒 goes to infinity. Batchelor12  

followed these important works with an extensive analysis of the transfer rate of heat or mass from a 

suspended particle in a steady flow with linear velocity distribution in the limit of Pe ≪ 1 and Pe ≫ 1. He 

derived the same asymptotic equation as Frankel and Acrivos10, but with a different proportionality constant. 

The theoretical studies mentioned above established the basis for subsequent studies on this subject. Using 

an advanced method of asymptotic interpolation on a prescribed form of the formula for 𝑆ℎ  and 𝑃𝑒 , 

Polyanin and Dil’man13 obtained an approximate formula for the Sherwood number over the entire range 

of Peclet number at 𝑅𝑒 = 0. Subramanian and Koch14, 15 proved that the flow inertia caused by non-zero 

Reynolds number breaks the closed streamlines around the particle in a simple shear flow, and creates an 

additional mechanism of heat and mass transfer from the particle. They derived a correlation of 𝑆ℎ as a 

function of 𝑅𝑒 and 𝑃𝑒, which is applicable in the asymptotic limits of Re ≪ 1 and Re ≫ 1 𝑃𝑒2/5⁄ . Due to 

the intrinsic complexity of transport problems, however, these purely theoretical studies cannot effectively 

deal with the effect of Reynolds number, and do not provide a good prediction of Nusselt and Sherwood 

numbers at finite Reynolds numbers.  

With the rapid development of computational fluid dynamics methods in recent decades, large-scale 

numerical simulation now enables the in-depth study of heat and mass transport around moving particles 

under a wide range of flow conditions. The published studies on flow-shear-driven enhancement of heat 

and mass transport from spherical particles are still, however, very sparse. A numerical model based on the 

lattice Boltzmann method based was developed by Wang and Brasseur9; they extensively analyzed the 

hydrodynamic enhancement of heat and mass release from a spherical particle suspended in a simple shear 

flow, with Reynolds numbers up to 10 and Schmidt numbers up to 100. Based on numerical results, they 
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developed an accurate correlation for shear enhancement of Nusselt or Sherwood number as a function of 

Reynolds and Peclet numbers.  

In realistic applications, more than 70% of solid particles are believed to be non-spherical, and 

morphology plays a key role in particle scale heat and mass transfer characteristics16, 17. Furthermore, non-

spherical particles present some interesting characteristics and behaviors, such as good margination in shear 

flow, that make them broadly useful in bioparticle separation18 and drug delivery19. As a simplified model 

of non-spherical particles, the rotational dynamics of a single spheroidal, i.e. oblate or prolate, particle, 

freely suspended in a shear flow, have been extensively investigated since the 1920’s, and several 

distinctive states have been identified, depending on Reynolds number and particle aspect ratio20-25. In the 

past decade, the effects of fluid and particle inertia have become the focus of research. Using lattice-

Boltzmann-based numerical methods, Mao and Alexeev24 and Rosén et al.25 independently examined the 

effects of fluid inertia and particle rotary inertia on the dynamics and trajectory of spheroid particles at low 

and moderate Reynolds numbers. They found that the particle behaviors are significantly influenced by 

particle inertia which is characterized by Stokes number (𝑆𝑡). Through theoretical analysis, Marath and 

Subramanian26, 27 systematically studied the effects of fluid and particle inertia on the rotational dynamics 

of oblate and prolate spheroids, and analyzed the dependence of particle orientation and rotation period on 

Reynolds and Stokes numbers. 

Despite the considerable efforts devoted to the rotational dynamics of oblate and prolate spheroids, 

however, the mechanisms for heat and mass transport induced by the interaction of carrier fluid and 

suspended non-spherical particles under shear conditions are still not well understood. In the case where 

Peclet number is significantly greater than 1, the fluid and particle dynamics play an important role in 

transporting heat and mass through advection, which combines with diffusion transport to form a coupled 

transport mechanism. Understanding the fluid dynamics of the interaction between the carrier fluid and the 

suspended particles is the key to revealing the advective transport mechanism for heat and mass.  

Compared with prolate spheroids, the motion of oblate spheroids is relatively simple. Qi and Luo22 

found that in the low Reynolds number range 0 < 𝑅𝑒 < 𝑅𝑒𝑐 ≈ 220, the oblate spheroid tends to spin at a 
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constant speed about its minor axis, where 𝑅𝑒𝑐 is a critical Reynolds number. These conclusions have since 

been confirmed by other studies28-30. As an initial exploration of the complex transport mechanisms in non-

spherical particle systems, therefore, this paper focuses on the heat and mass transport from a single oblate 

spheroid neutrally suspended in a simple shear flow. The primary goal is to identify the complex transport 

mechanisms of non-spherical particles. To this end, we develop a high-fidelity numerical model based on 

the multigrid lattice Boltzmann framework, and we extensively examine the transport process of a passive 

scalar from a neutrally suspended oblate spheroid. We consider spheroids of various aspect ratios in the 

ranges of Re ≤ 1 and Pe ≤ 100. The paper is organized as follows. The physical model is presented in 

Section 2. The numerical methods are described in Section 3. The result validation is given in Section 4. 

The results are analyzed in Section 5, and conclusions are presented in Section 6. 

 

2. Physical Model 

The surface of a spheroid is described by 

 
𝑥′2

𝑎2 +
𝑦′2

𝑏2 +
𝑧′2

𝑐2 = 1 (1) 

where a, b and c denote the lengths of three semi-principal axes, and (𝑥′, 𝑦′, 𝑧′) are the surface coordinates 

of the spheroid in the body-fixed system. For an oblate spheroid, 𝑎 = 𝑏 > 𝑐. In this study, the equivalent 

spherical radius of the spheroid is defined as the radius of a sphere of the same volume as the oblate spheroid, 

 𝑅 = (𝑎𝑏𝑐)1/3 (2) 

As shown in Fig. 1, an oblate spheroid is placed symmetrically on the central plane of an incompressible 

flow confined by two parallel planes moving in opposite directions with speed 𝑈0. The distance between 

the two plates is 2𝐻, and the length and width of the planes are 2𝐿 and 2𝑊, respectively. The background 

flow shear rate (𝐺) is adjusted by 𝑈0 and 𝐻. The minor axis of the oblate spheroid is parallel to the vorticity 

vector of the flow, and the particle is allowed to rotate in response to surface pressure and shear stress 
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exerted by the surrounding fluid. The density of the particle is the same as that of the fluid. The outflow 

condition is applied at the streamwise and spanwise boundaries. The undisturbed shear rate of the simple 

shear flow is defined as: 

 𝐺 =
𝑈0

𝐻
 (3) 

For oblate spheroids of different aspect ratios, the Reynolds number is defined uniformly based on the 

equivalent spherical radius R and the background flow shear rate 𝐺, 

 𝑅𝑒 =
𝐺𝑅2

𝜈
 (4) 

where 𝜈 is the kinematic viscosity of the carrier fluid.  

To predict heat and mass transport, temperature and mass concentration are modeled as the 

concentration (𝜙) of a passive scalar released at particle surface, where 𝜙 is fixed at 𝜙𝑠 = 1 . The Peclet 

number, which characterizes the effect of flow shear on scalar transport, is defined as  

 𝑃𝑒 =
𝐺𝑅2

𝐷
= 𝑅𝑒𝑆𝑐 (5) 

Fig. 1. Physical model of an oblate spheroid suspended in a simple shear flow with passive 

scalar released from particle surface. Zero scalar flux condition is applied on the top and bottom 

planes as well as the lateral domain boundaries. The minor axis is parallel to the vorticity vector 

of the background flow. A fine grid of vertical dimension 2h is used in the middle region to 

resolve the detailed fluid and particle dynamics and transport of passive scalar. 
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where 𝑆𝑐 = 𝜈 𝐷⁄  is the Schmidt number of the passive scalar in the fluid and 𝐷 is the mass diffusivity. To 

compare the scalar release rate of oblate spheroids of different aspect ratios, it is convenient to use the 

nondimensional release rate, i.e. the Sherwood number (𝑆ℎ), which is defined based on the radius and 

surface area of the sphere of the same volume, 

 𝑆ℎ =
𝑄𝑅

𝐷𝐴𝜙𝑠
 (6) 

where 𝑄 is the release rate of the passive scalar from the particle surface, 𝐴 (= 4𝜋𝑅2) the surface area of 

the sphere, and 𝜙𝑠 (= 1) the concentration of passive scalar at particle surface.  

 

A complete description of the problem includes the Reynolds number (𝑅𝑒), Schmidt number (𝑆𝑐), 

particle aspect ratio (𝛬 = 𝑎 𝑐⁄ ), and the ratios of the height (2𝐻), width (2𝑊), and length (2𝐿) of the 

computational domain to the radius of sphere of the same volume (2𝐻 𝑅⁄ , 2𝑊 𝑅⁄ , and 2𝐿 𝑅⁄ ). The 

diffusion-controlled transport process was addressed by Wang et al.7, so the focus of this study is the 

advective enhancement of heat and mass transport. Following the parameters of realistic applications, such 

as drug dissolution, the Reynolds number range is O(10-3) to O(1). Considering grid resolution required for 

the simulation of transport process of large 𝑆ℎ, the Schmidt number is limited to the range from O(101) to 

O(102). To minimize the influence of boundaries, the height, width, and length of the computational domain 

are over an order of magnitude larger than the radius of the sphere. 

 

Here we only consider the transport process in the stable state, in which the oblate spheroid spins with 

a constant speed about its minor axis. The minor axis of the spheroid is initially parallel to the vorticity 

vector of the background shear flow, and then the spheroid moves freely, driven by the surround fluid. After 

an initial evolving period, the fluid and particle motion as well as the scalar transport enter a steady state. 

When the scalar release rate is sufficiently close to a constant value, the analysis is conducted.  

3. Numerical Methods 
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We developed a 3D numerical method based on a multigrid strategy within the lattice Boltzmann (LB) 

framework. The LB method is highly parallelizable and highly capable in dealing with stationary and 

moving solid boundaries with complex geometries. The dependent variable is the particle distribution 

function 𝐟(𝐱, 𝑡), which quantifies the probability of finding an ensemble of molecules at position 𝐱 with 

velocity 𝐞 at time 𝑡 31-33. Continuum-level velocity 𝐮(𝐱, 𝑡) and density 𝜌(𝐱, 𝑡) are obtained from moments 

of 𝐟(𝐱, 𝑡) over velocity space. In three dimensions, the velocity vector 𝐞 can be discretized into 15, 19, or 

27 components in what are referred to as the D3Q15, D3Q19 and D3Q27 approaches31. Here we apply the 

D3Q19 approach, largely to minimize computational load, with the recognition that the flow Reynolds 

number is relatively low. 

The LB equation with the Bhatnagar-Gross-Krook34  representation for the collision operator32 is 

written as, 

 𝐟(𝐱 + 𝐞𝛿𝑡 , 𝑡 + 𝛿𝑡) − 𝐟(𝐱, 𝑡) = −
1

𝜏
(𝐟(𝐱, 𝑡) − 𝐟𝑒𝑞(𝐱, 𝑡)) (7) 

where the discretized velocity vector 𝐞 for D3Q19 is,  

 𝐞𝛼 = {

(0,0,0)

(±1,0,0), (0, ±1,0), (0,0, ±1)

(±1, ±1,0), (±1,0, ±1), (0, ±1, ±1)
    

𝛼 = 0
𝛼 = 1,2, ⋯ ,6
𝛼 = 7,8, ⋯ ,18

 (8) 

where α is the index of components of velocity vector 𝐞. The left-hand side (LHS) of Eqn. (7) describes 

“streaming,” the exchange of momentum between neighboring lattice nodes as a result of bulk advection 

and molecular diffusion. The right-hand side (RHS) describes the mixing, or collision of molecules that 

drive the distribution function (𝐟(𝐱, t)) toward the equilibrium distribution function (𝐟eq(𝐱, t)), with a 

relaxation time scale, τ. The relaxation time is linearly related to the fluid kinematic viscosity ν by 

 𝜈 = (2𝜏 − 1)𝑐𝛿𝑥 6⁄  (9) 

where 𝛿𝑥 is the lattice spacing and 𝑐 = 𝛿𝑥 𝛿𝑡⁄  is the basic speed on the lattice. In the low Mach number 

limit, the equilibrium distribution for the D3Q19 model is31 
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 𝐟𝑒𝑞(𝐱, 𝑡) = 𝑤𝛼𝜌(𝐱, 𝑡) [1 + 3
𝐞𝛼∙𝐮

𝑐2 +
9

2

(𝐞𝛼∙𝐮)2

𝑐4 −
3

2

𝐮∙𝐮

𝑐2 ] (10) 

where 𝑤𝛼 are weighting factors, 𝑤0 = 1 3⁄ , 𝑤𝛼 = 1 18⁄  for 𝛼 = 1 − 6, and 𝑤𝛼 = 1 36⁄  for 𝛼 = 7 − 18. 

The continuum-level fluid density 𝜌(𝐱, 𝑡)  and momentum 𝜌𝐮(𝐱, 𝑡)  are obtained from the discretized 

moments of the particle distribution function, 

 𝜌(𝐱, 𝑡) = ∑ 𝑓𝛼(𝐱, 𝑡)𝛼 ,     𝜌(𝐱, 𝑡)𝐮(𝐱, 𝑡) = ∑ 𝑓𝛼(𝐱, 𝑡)𝐞𝛼𝛼   (11) 

In the treatment of moving particle surfaces, we used the 2nd order accurate scheme of Lallemand and 

Luo35. This method is based on the simple bounce-back boundary scheme and interpolations. If the distance 

fraction of the first fluid node from the solid boundary is less than half of one lattice space, the 

computational quantities are interpolated before propagation and bounce-back collision. If the distance 

fraction is greater than a half lattice space, interpolation is performed after propagation and bounce-back 

collision. The momentum exerted by the moving boundary is given by these terms, which were developed 

by Ladd36 and Bouzidi et al.37 

The motion of the particle is obtained by solving Newton’s equations of motion, 

 𝑀 𝑑𝐔(𝑡) 𝑑𝑡⁄ = 𝐅(𝑡)   (12) 

 𝐈 ∙ 𝑑𝛀(𝑡) 𝑑𝑡⁄ + 𝛀(𝑡) × [𝐈 ∙ 𝛀(𝑡)] = 𝐓(𝑡)  (13) 

where M is the mass of a solid particle, I the inertial tensor, U the translational velocity, 𝛀  is the angular 

velocity, and F and T are the total force and torque on the particle, respectively. At each fluid boundary 

node 𝐱𝑏, the force is calculated by the exchange of distribution function between the fluid and solid. 

 𝐅𝑏(𝐱𝑏 , 𝑡) = − ∑ [𝑓𝛼̅(𝐱𝑏, 𝑡 + 𝛿𝑡) − 𝑓𝛼(𝐱𝑏 , 𝑡+)]𝛼   (14) 

where 𝑓𝛼̅ is the distribution transferred from the solid boundary, including the additional momentum due to 

boundary motion, 𝑓𝛼 is the post-collision distribution transferred from the flow to the boundary. According 

to Aidun et al.38, the total force includes three components, the force due to the communication of 

distribution function (𝐅𝑏(𝐱𝑏 , 𝑡)), the force due to momentum transfer from fluid to solid when some grid 
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nodes are covered by solid (𝐅𝑐(𝐱, 𝑡)), and the force due to momentum transfer from solid to fluid when 

some grid nodes are uncovered by solid (𝐅𝑢(𝐱, 𝑡)). The latter two are given as, 

 𝐅𝑐(𝐱𝑐 , 𝑡) = − ∑ [𝑓𝛼(𝐱𝑐, 𝑡)𝐞𝛼]𝛼   (15) 

 𝐅𝑢(𝐱𝑢, 𝑡) = −𝜌(𝐱𝑢, 𝑡)𝐮(𝐱𝑢, 𝑡)  (16) 

The total force and torque are calculated by summing the force and torque at each fluid boundary node and 

each covered and uncovered fluid node, 

 𝐅(𝑡) = ∑ 𝐅𝑏(𝐱𝑏 , 𝑡)𝐹𝐵𝑁 + ∑ 𝐅𝑐(𝐱𝑐 , 𝑡)𝐶𝑁 + ∑ 𝐅𝑢(𝐱𝑢, 𝑡)𝑈𝑁   (17) 

 𝐓(𝑡) = ∑ (𝐱𝑏 − 𝐗𝑜) × 𝐅𝑏(𝐱𝑏, 𝑡)𝐹𝐵𝑁   (18) 

where FBN, CN, and UN denote the fluid boundary nodes, covered, and uncovered nodes. 𝐗𝑜 is the central 

coordinate of the solid particle. 

To solve the process of heat and mass transport, the passive scalar is distributed in the flow field. The 

moment propagation method developed by Frenkel and Ernst39, Lowe and Frenkel40, and Merks et al.41 is 

used to solve the scalar. In this method, a scalar quantity is released in the lattice and a scalar concentration 

field variable is propagated at the continuum level for each scalar using the distribution function. Let 𝜙(𝐱, 𝑡) 

be the continuum-level scalar concentration on the lattice at location 𝐱 at time 𝑡, the advancement of the 

scalar concentration at the next step is given by 

 𝜙(𝐱, 𝑡 + 𝛿𝑡) = ∑ 𝑃𝛼(𝐱 − 𝐞𝛼𝛿𝑡, 𝑡 + 𝛿𝑡)𝛼 + 𝜙(𝐱, 𝑡)∆∗ (19) 

 𝑃𝛼(𝐱 − 𝐞𝛼𝛿𝑡, 𝑡 + 𝛿𝑡) = [
𝑓̂𝛼(𝐱−𝐞𝛼𝛿𝑡,𝑡+)

𝜌(𝐱−𝐞𝛼𝛿𝑡,𝑡)
− 𝑤𝛼∆∗] 𝜙(𝐱 − 𝐞𝛼𝛿𝑡, 𝑡) (20) 

where 𝑓𝛼 denotes the post-collision pre-streamed distribution function in 𝛼-direction, t+ implies a time after 

collision but before streaming, and ∆∗ is the fraction of 𝜙(𝐱, 𝑡) that remains on the lattice node during the 

time advancement.  ∆∗ is related to the molecular diffusivity of the passive scalar as, 

 ∆∗= 1 − 6𝐷 𝑐𝛿𝑥⁄  (21) 
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One advantage of the moment propagation method is that the upper bound of Peclet number is much larger 

than in other methods, and so the calculation is more stable.  

To reduce the computational load imposed by the exceptionally fine full-domain uniform grid required 

by the LB method to appropriately resolve a spheroidal particle, a dual-lattice method developed by 

Filippova and Hanel42 and Yu et al.43 was used. With this approach a fine grid is placed in a subregion 

surrounding the particle, as shown in Fig. 1, and a coarse grid is used in the other subregions. To maintain 

continuity of viscosity across the interface, the relaxation time between the fine and coarse grids must 

therefore satisfy, 

 𝜏𝑓 =
1

2
+ 𝑚 (𝜏𝑐 −

1

2
) (22) 

where 𝑚 = 𝛿𝑥𝑐 𝛿𝑥𝑓⁄  is the ratio of the lattice spacing between the two grid systems, and the subscripts 𝑐 

and 𝑓 indicate the coarse and fine grids, respectively. In the simulations 𝑚 = 5 is used in all cases. 

To maintain continuity of density and momentum across the interface of fine and coarse grids, the 

equilibrium distribution function of the neighboring grid system must be the same at the interface, 

 𝐟𝑒𝑞,𝑐 = 𝐟𝑒𝑞,𝑓 (23) 

To maintain continuity of viscous deviatoric stress at the interface, the transfer of the post-collision 

distribution functions between the two grids is given by 

 𝐟𝑐 = 𝐟𝑒𝑞,𝑓 + 𝑚
𝜏𝑐−1

𝜏𝑓−1
(𝐟𝑓 − 𝐟𝑒𝑞,𝑓) (24) 

 𝐟𝑓 = 𝐟𝑒𝑞,𝑐 +
𝜏𝑓−1

𝑚(𝜏𝑐−1)
(𝐟𝑐 − 𝐟𝑒𝑞,𝑐) (25) 

where 𝐟  is the post-collision distribution function. The multigrid strategy is also implemented in the 

momentum propagation method. The details of this method can be found in Wang et al.33 In the simulation, 

the height of the subregion of fine grid, denoted by 2ℎ, is 8 times the radius of a sphere of the volume of 

the oblate spheroid. 
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In moment propagation method, the continuity of diffusion coefficient across the interface of fine and 

coarse grids gives, 

 ∆𝑓
∗= 1 − 𝑚(1 − ∆𝑐

∗) (26) 

At the interface, the scalar concentration is continuous, 

 𝜙𝑐 = 𝜙𝑓 (27) 

At the boundary of each grid, there is an overlap between the fine and coarse grids with the boundary of 

each grid located in the interior of the other. The scalar concentration is obtained from the other grid, either 

directly or by interpolation. All nodes not on the boundaries are calculated with the moment propagation 

method in the usual way. 

4. Result Validation 

To examine the grid sensitivity of the results, we conducted the simulations of fluid flow and scalar 

transport around an oblate spheroid with 𝑎 = 1.5𝑅, for 𝑅𝑒 = 1 and 𝑆𝑐 = 100. Two different sets of grids, 

with 30 and 40 fine grid points over one major radius, corresponding to 20 and 27 fine grid points over one 

equivalent spherical radius, were used. Figure 2 shows the profiles of streamwise velocity (𝑢𝑥 )  and 

Fig. 2. Effect of grid resolution on streamwise velocity (𝑢𝑥) and concentration of passive scalar (𝜙) 

along the vertical central line of an oblate spheroid with 𝑎 = 1.5𝑅, for 𝑅𝑒 = 1 and 𝑆𝑐 = 100. The 

relative deviation is less than 0.3%. 𝑁𝑝 is the number of grid points over one major radius. 
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concentration of passive scalar (𝜙) along the vertical line through particle center. Excellent convergence 

between the two sets of grids was obtained, with maximum deviation of the quantities of less than 0.3%. 

Therefore, the coarser grid system corresponding to 20 grid points over one equivalent spherical radius was 

used in the simulations. Section 5 presents a detailed discussion of the results. 

 

In order to validate the numerical results, we compare our results with those available in the literature 

as discussed above. According to Jeffery20, when an oblate spheroid spins about its minor axis, which is 

parallel to the vorticity vector, the angular velocity is 𝛺 = 0.5𝐺 when 𝑅𝑒 = 0. In Fig. 3, We compare the 

normalized angular velocities (𝛺 𝐺⁄ ) of the oblate spheroids with 𝑎 = 1.5𝑅 and 2𝑅 for 0.005 ≤ 𝑅𝑒 ≤ 1 

with the prediction of Jeffery’s theory20 for oblate spheroids at 𝑅𝑒 = 0 and the data of Mikulencak and 

Morris44 for circular cylinder. When 𝑅𝑒 < 0.1, the numerical results agree well with Jeffery’s theory, with 

relative error less than 0.1%. When 𝑅𝑒 > 0.1, the effects of Reynolds number and particle aspect ratio 

appear. As 𝑅𝑒  increases, 𝛺 𝐺⁄  decreases for both spheroids. This trend is consistent with the data of 

Mikulencak and Morrris44 for circular cylinder. In addition, larger aspect ratio (Λ = 𝑎/𝑐) leads to larger 

deviation from Jeffery’s prediction. For heat and mass transport, no data have been found for oblate 

spheroids in the literature, so we use the result of a spherical particle, which is a special case of oblate 

Fig. 3. Dependence of angular velocity of oblate spheroids on Reynolds number. Oblate I: 𝑎 =
1.5𝑅, and Oblate II: 𝑎 = 2𝑅. Data of Mikulencak and Morris44 (2004) are for circular cylinder, 

and data of Jeffery’s theory20 are for oblate spheroids at 𝑅𝑒 = 0. 



14 

 

spheroids, for the validation. In Fig. 4 we compare the normalized scalar release rate, i.e., Sherwood number 

(𝑆ℎ), of a spherical particle for 𝑅𝑒 close to zero with the predictions of the asymptotic theories of Frankel 

and Acrivos10, Batchelor12, and Polyanin and Dil’man13 for 𝑅𝑒 = 0.  As shown in the figure, three 

asymptotic theories do not give very close results. Overall, the numerical results compare well with the 

three theories. The deviation decreases apparently as 𝑅𝑒 decreases from 0.01 to 0.001. This comparison 

validates the accuracy of the results to a certain extent. It also shows that the boundary effect is negligible 

when dealing with small Reynolds numbers. 

 

5. Results And Discussion 

In this section, the fluid and particle dynamics and the transport characteristics of passive scalar in a 

system of a single oblate spheroid of various aspect ratios are analyzed. Table 1 summarizes the cases 

considered in terms of particle radii, Reynolds, and Schmidt numbers. The ratios of the length (x direction), 

width (y direction), and height (z direction) of the computational domain to the radius of a sphere of the 

same volume as our oblate spheroid are fixed at 2𝐿 𝑅⁄ = 100, 2𝑊 𝑅⁄ = 20, and 2𝐻 𝑅⁄ = 20, respectively. 

The ratio of the height of the subregion of fine grid to the radius of sphere is 2ℎ 𝑅⁄ = 8. The width and 

Fig. 4. Normalized scalar release rate characterized by Sherwood number (𝑆ℎ) versus Peclet number 

(𝑃𝑒). Symbols: numerical simulation for 𝑅𝑒 close to zero, lines: the asymptotic theories of Frankel 

and Acrivos10, Batchelor12, and Polyanin and Dil’man13 for 𝑅𝑒 = 0. 
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length are the same as that of the computational domain. The ratio of the lattice spacing between the two 

grid systems is fixed at 𝑚 = 5. 

 

Table 1. Cases of different particle radii, Reynolds, and Schmidt numbers. 

 

At the beginning, the motion of the surrounding fluid is set as an undisturbed simple shear flow, and 

the angular velocity of the oblate spheroid is made equal to 0.5𝐺. The concentration of passive scalar in the 

fluid is zero everywhere. After an initial evolving period, the fluid and particle motion as well as the scalar 

transport enter a steady state. Then the analysis is conducted. The steady state is considered to be reached 

a / R ( = b / R ) c / R Re Sc 

1.5 1 / 1.52 0.005, 0.01, 0.05, 0.1, 

0.5, 1 

20, 40, 60, 80, 100 

2 1 / 22 0.005, 0.01, 0.05, 0.1, 

0.5, 1 

20, 40, 60, 80, 100 

1.25, 1.75, 2.5 1/1.252, 1/1.752, 1/2.52 0.1 20, 40, 60, 80, 100 

Fig. 5. Variations of 𝑆ℎ and 𝑑(𝑆ℎ) (𝑆ℎ 𝐺 𝑑𝑡)⁄  with normalized time, 𝐺𝑡, of an oblate spheroid 

with 𝑎 = 1.5𝑅 for 𝑅𝑒 = 1. 
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when the normalized 𝑆ℎ  change rate, 𝑑(𝑆ℎ) (𝑆ℎ 𝐺 𝑑𝑡)⁄ , becomes less than 10−3 . Figure 5 shows the 

variations of 𝑆ℎ and 𝑑(𝑆ℎ) (𝑆ℎ 𝐺 𝑑𝑡)⁄  with normalized time, 𝐺𝑡, of an oblate spheroid with 𝑎 = 1.5𝑅 for 

𝑅𝑒 = 1. Five 𝑆𝑐 are considered. As shown in the figure, all 𝑆ℎ asymptotically approach constant values 

over time, and 𝑑(𝑆ℎ) (𝑆ℎ 𝐺 𝑑𝑡)⁄  approach zero. The cases with smaller 𝑆𝑐 converge faster. 

Here we use the case of 𝑎 = 1.5𝑅 and 𝑅𝑒 = 1 as an example to demonstrate the basic flow structure 

and scalar transport characteristics. Figure 6 shows the typical streamlines around the spheroid. In the steady 

state, the streamlines coincide with the trajectories of the fluid particles, so the streamlines depict the 

transport of passive scalar through flow advection. As shown in the figure, the flow structure is composed 

of several different patterns of streamlines. First, on the lateral sides, the rotating spheroid drives the fluid 

near its surface to rotate with it. The unbalanced centrifugal force pushes the rotating fluid to a larger radial 

direction, forming an outward spiral flow (increasing radial coordinate; red lines) along the spheroid surface. 

This flow originates somewhere near the minor axis and approaches the spheroid, forming a region of spiral 

Fig. 6. Typical 3D streamlines around an oblate spheroid of 𝑎 = 1.5𝑅 for 𝑅𝑒 = 1. (a, b) Perspective 

view, (c) side view, and (d) front view. Red: outward (increasing radial coordinate) spiral flow 

originating from a point transverse to the x-z plane, green: inward (decreasing radial coordinate) spiral 

flow originating from a point on the central x-z plane, purple: recirculating wake flow originating far 

upstream, blue: outer bypassing flow wrapping the spiral and reversal flows. The outer flow (blue) 

shifts laterally when passing by the spheroid, driving the inward spiral flow (green). The outward (red) 

and inward (green) spiral flows converge on a closed line on the spheroid surface and travels 

downstream together. 

(a) (b) 

(c) (d) 

Saddle 

point 
Saddle 

point 
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flows on the lateral sides. This spiral flow region is essentially a variation of the Stewartson layer on a 

rotating flat plate, which has been extensively investigated45-47. The major difference between the spiral 

flow layer in this study and Stewartson layer is that this spiral flow layer appears on a spheroidal surface 

and interacts with the outer simple shear flow. Second, near the equator of the spheroid where 𝑦 ≈ 0, the 

rotating spheroid drives a thin layer of flow on its surface, in which the fluid recirculates with the spheroid 

(green lines). Third, outside this flow layer, the fluid passes the spheroid and flows downstream directly 

(blue lines). The outer passing fluid tends to choose a shorter path, so it shifts laterally to the lateral sides 

as shown in Fig. 6(d). The lateral shift of the outer flow (blue lines) causes the fluid in the flow layer (green 

lines) near the equator to laterally shift along the spheroid surface, forming an inward (decreasing radial 

coordinate) spiral flow. At a certain place on the side surface, the inward flow meets the outward flow 

originating from the lateral area, and they merge, leaving the surface and finally travelling downstream. 

The inward spiral flow originates upstream of the spheroid on the central x-z plane, and leaves the spheroid 

somewhere away from the central x-z plane. Fourth, on either side of the oblate spheroid along the flow 

axis, there is a recirculating wake, in which the fluid approaches the spheroid near the axis and turns back 

before touching the spheroid (purple lines). The recirculating wakes are separated from the spiral flows 

surrounding the spheroid by two lines of saddle points (Figs. 6(a, c)). The spiral flows and the recirculating 

wakes are wrapped by the outer passing flow, which drives the rotation of spheroid and triggers the spiral 

flows and recirculating wakes. Essentially, the flow structure around an oblate spheroid is similar to that 

around a sphere, which has been extensively analyzed14, 15, 44. The behaviors of the flow components and 

the interactions among them work as an ensemble to form a complex mechanism for the transport of passive 

scalar. 

Under the action of the surrounding flows, scalar transport exhibits a different pattern from that of 

diffusion transport. Figure 7 shows the pattern of scalar concentration (𝜙) around an oblate spheroid of 𝑎 =

1.5𝑅 for 𝑅𝑒 = 1 and 𝑆𝑐 = 100. The particle geometry and Reynolds number are the same as that in Fig. 6. 

On the windward (upper left and lower right) sides of the spheroid, the impact of the outer flow significantly 
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decreases the thickness of scalar boundary layer, through which 𝜙 changes from 1 at spheroid surface to 0 

in the ambient fluid. On the leeward (upper right and lower left) sides, the passive scalar released at the 

spheroid surface is carried by the passing flow and advected downstream. On the lateral sides, the passive 

scalar is transported laterally from the spheroid surface to the ambient fluid through a scalar boundary layer 

that is thicker than that on the windward sides. Compared with pure diffusion, the pattern shown in this 

figure is the outcome of a more complex transport mechanism.  

To identify the mechanism of scalar transport from the spheroid surface to the ambient fluid, we plot 

the contours of scalar concentration (𝜙) on the x-z and y-z planes, together with the 3D streamlines, in Figs. 

8(a) and (b). It is seen in Fig. 6 that the spheroid is surrounded by a flow layer consisting of an outward 

spiral flow on the lateral sides and an inward spiral flow near the equator. The passive scalar released at 

spheroid surface, therefore, is first transferred to the surrounding spiral flows through pure diffusion. In the 

limit case of 𝑆𝑐 = ∞, where the molecular diffusivity 𝐷 = 0, the released passive scalar will be transported 

(a) (b) 

Fig. 7. Patterns of scalar concentration (𝜙) around an oblate spheroid of 𝑎 = 1.5𝑅 for 𝑅𝑒 = 1 and 

𝑆𝑐 = 100. (a) and (b) show the 3D iso-surfaces of 𝜙 = 0.3 together with the typical streamlines; (c) 

and (d) show the iso-contours of 𝜙 on the central x-z and y-z planes. 

 

(d) (c) 
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by the surrounding spiral flows away from the spheroid surface through pure advection. The spiral 

streamlines depict the path of scalar transport. In the case of finite Schmidt number (𝑆𝑐), molecular 

diffusion provides important scalar transport across the streamlines. As shown in Figs. 8(a) and (b), the 

outer passing flow hits the windward sides (upper left and lower right sides) of the spheroid and then travels 

downstream along the top and bottom surfaces as well as the lateral sides of the spheroid. During this 

process, the passing flow gains passive scalar from the spiral flows surround the spheroid via molecular 

diffusion across the streamlines. As a result, the scalar concentration (𝜙) of the passing flow increases 

gradually. Since the spiral flows only exist in the thin layer on spheroid surface, the spiral flows lose most 

of their passive scalar to the passing flow after leaving the spheroid, and outer passing flow transports most 

Fig. 8. Transport mechanism of passive scalar illustrated by the patterns of scalar concentration (𝜙) 

and magnitude of the gradient of scalar concentration (ԡ∇𝜙ԡ). (a) and (b) show the iso-contours of 

𝜙 on the central x-z and y-z planes, together with the 3D streamlines surrounding the spheroid; (c) 

and (d) show the iso-contours of ԡ∇𝜙ԡ on the central x-z and y-z planes. 

(a) (b) 

(d) (c) 
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of the passive scalar downstream via flow advection. It is seen from the streamline patterns in Fig. 6 that 

there is a thick flow layer with an outward spiral flow on the lateral side of the spheroid. Since the flow 

spirals towards the spheroid in this layer, the released passive scalar has to be transported against the 

streamlines by molecular diffusion through this layer to the outer passing flow, and then can be transported 

downstream by the outer flow.  

To accentuate the diffusion process, we plot the modulus of the gradient of scalar concentration (ԡ∇𝜙ԡ) 

on the x-z and y-z planes together with the 3D streamlines in Figs. 8(c) and (d). It can be seen that the 

molecular diffusion mainly occurs in four regions. The first is in the flow layer on the windward spheroid 

surface, where passive scalar is transported from spheroid surface to the spiral flows, and then to the outer 

passing flow. The second is downstream of the leeward side, where passive scalar is transported from the 

outer flow just past the spheroid surface to the flow further outside. The third is in the wake flow near the 

flow axis (𝑧 = 0), where the passive scalar is transported from the passing flow to the downstream part of 

the spiral flows, and then to the recirculating wake flow near the axis. The recirculating wake flows also 

help transport passive scalar downstream. The fourth region is the layer of spiral flows on the lateral sides 

of the spheroid, where the passive scalar is transported from the spheroid surface to the spiral flows, and 

then to the outer passing flow. During the process, the spiral flows on the spheroid surface, the recirculating 

wake flows on the axis, and the outer passing flow together form a coupled transport mechanism for the 

passive scalar, involving both molecular diffusion and flow advection. 

According to the coupled transport mechanism, the passive scalar is transported through the fluid layer 

of spiral flows to the outer passing flow, and then transported downstream by the outer flow through 

advection. The thickness of the spiral flow layer is thus an important factor in transport efficiency. In the 

present study, the thickness of the flow layer is determined not only by spatial coordinates, but also by 

Reynolds number and the aspect ratio of the oblate spheroid. Figure 9 shows the profiles of the interface 

between the inner spiral flows and the outer passing flow on the y-z plane through the spheroid center for 

different Reynolds numbers. The major radius is 𝑎 = 1.5𝑅, corresponding to an aspect ratio 𝛬 = 1.53. The 
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profiles of the interface show the spatial variation of the thickness of the spiral flow layers, which extend 

away from the spheroid along its minor axis. The extension of the spiral flow region decreases with the 

increase of 𝑅𝑒. This is because the increase of Reynolds number reduces the viscous diffusion of angular 

momentum of surrounding fluid in the lateral direction. The outward spiral motion of the fluid causes the 

flow layer thickness to decrease with the increase of radial coordinate. When the radial coordinate passes a 

critical value (𝑟𝑐 ≈ 0.8𝑅 ), the trend of dependence on Reynolds number becomes opposite, and the 

thickness increases with the increase of 𝑅𝑒. The reason is that the centrifugal effect is stronger at larger 

Reynolds number, which leads to stronger fluid motion of the outward spiral flow in the radial direction, 

thus increasing the thickness of the spiral flow layer.  

 

It was shown in Wang & Brasseur9 (2019) that in the range of 𝑅𝑒 ≤ 𝑂(1) and 𝑆𝑐 ≤ 𝑂(102), the 

transport rate of passive scalar from a sphere is primarily determined by Peclet number (𝑃𝑒 = 𝑅𝑒𝑆𝑐). The 

difference in fluid velocity caused by Reynolds number has a limited effect on scalar transport. This is also 

the case for oblate spheroids. Although Reynolds number causes some deviation in flow velocity, it does 

not significantly influence the scalar transport. This can be seen from the comparison of iso-contours of 

scalar concentration (𝜙) between 𝑅𝑒 = 0.1 and 1 shown in Fig. 10. The Peclet number is 𝑃𝑒 = 10, for both 

cases. The iso-contours of these two Reynolds numbers demonstrate similar distribution of 𝜙 in the figure. 

The scalar transfer rate shown in Fig. 15 confirms this conclusion. 

Fig. 9. Profiles of the interface between the outer bypassing flow and the inner spiral flows of an 

oblate spheroid of 𝑎 = 1.5𝑅. 
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In addition to Reynolds number, the aspect ratio of the oblate spheroid also plays an important role in 

flow evolution and scalar transport. Figure 11 shows the profiles of the interface between the inner spiral 

flows and the outer passing flow on the y-z plane through spheroid center for different major radii. The 

Reynolds number is 𝑅𝑒 = 0.1. As shown in the figure, the interface profiles of spheroids of different major 

radii have similar shapes. A spheroid of larger major radius has a larger area of spiral flow, corresponding 

to a thicker flow layer. The thicker flow layer does not, however, mean that the efficiency of scalar transport 

is lower; in fact, although diffusive transport dominates the spiral flows on the spheroid surface, advective 

transport still plays a role.  

It is shown in Fig. 3 that the angular velocity of the spheroid is close to 0.5𝐺. The velocity difference 

between the rotating oblate spheroid and the ambient fluid at each vertical position can be roughly estimated 

as, 

 ԡ𝐮𝑟ԡ ≈ |0.5𝐺𝑧| (28) 

Fig. 10. Comparison of iso-contours of scalar concentration on x-z and y-z planes for 𝑃𝑒 = 10. (a) 

𝑅𝑒 = 0.1, 𝑆𝑐 = 100, and (b) 𝑅𝑒 = 1, 𝑆𝑐 = 10. 

 

(a) 

(b) 



23 

 

where z is the vertical coordinate. The oblate spheroid with a larger major radius has a larger velocity 

difference, leading to thinner flow and scalar boundary layer on the surface of oblate spheroid. This can be 

seen in the following analysis.  

 

Figure 12 shows the iso-contours of the modulus of flow velocity relative to a rotating oblate spheroid 

with major radii 𝑎 = 1.5𝑅 and 2.5𝑅 for 𝑅𝑒 = 0.1. 𝐮𝑟 is defined as, 

 𝐮𝑟 = 𝐮 − 𝛀 × 𝐫 (29) 

where 𝛀 is the vector of angular velocity of the spheroid, and 𝐫 the coordinate vector in a polar coordinate 

system. As shown in the figure, ԡ𝐮𝑟ԡ changes more sharply near the spheroid surface when 𝑎 = 2.5𝑅 than 

when 𝑎 = 1.5𝑅 on both the x-z and y-z planes. This suggests that the boundary layer is thinner on the 

spheroid with larger major radii, which will lead to higher scalar transfer rate. On the x-z plane, the contour 

lines present an interesting square distribution near the spheroid. This is caused by the velocity field in the 

rotating system. Figure 13 shows the streamline patterns on the x-z plane in the frame of reference rotating 

with the oblate spheroids with 𝑎 = 1.5𝑅  and 2.5𝑅  for 𝑅𝑒 = 0.1 . In the range of Reynolds number 

considered in this study (𝑅𝑒 ≤ 1), the streamline distribution demonstrates a roughly symmetrical square 

pattern.  

Fig. 11. Profiles of the interface between the outer bypassing flow and the inner spiral flows of 

oblate spheroids with different radius for 𝑅𝑒 = 0.1. 
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Figure 14 shows the patterns of scalar concentration around oblate spheroids with 𝑎 = 1.5𝑅  and 

2.5𝑅 for 𝑅𝑒 = 0.1 and 𝑆𝑐 = 100. Due to the sharper variation of ԡ𝐮𝑟ԡ around the spheroid of 𝑎 = 2.5𝑅, 

as shown in Fig. 12, 𝜙 changes more sharply near the spheroid surface, leading to an increased scalar 

transfer rate from the spheroid surface to the ambient fluid. In addition, the spheroid with a larger major 

radius has a larger surface area, which also enhances the scalar transfer rate. 

The coupled transport mechanism leads to the complex dependence of scalar transport rate on the 

controlling parameters. In this study, we focus on the effects of Reynolds number, Schmidt number, and 

the aspect ratio of spheroids. In a study of mass transfer from a neutrally buoyant sphere in a simple shear 

(a) 

(b) 

Fig. 12. Iso-contours of ԡ𝐮𝑟ԡ on the central x-z and y-z planes in the frame of reference rotating with 

the oblate spheroids with 𝑎 = 1.5𝑅 and 2.5𝑅 for 𝑅𝑒 = 0.1. (a) 𝑎 = 1.5𝑅, (b) 𝑎 = 2.5𝑅. Left 

column: x-z plane, right column: y-z plane. 

Fig. 13. Streamline patterns on the x-z plane in the frame of reference rotating with the oblate 

spheroids with 𝑎 = 1.5𝑅 and 2.5𝑅 for 𝑅𝑒 = 0.1. (a) 𝑎 = 1.5𝑅, (b) 𝑎 = 2.5𝑅. 

(b) (a) 
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flow9, it was shown that in the range of 𝑅𝑒 ≤ 𝑂(1) and 𝑆𝑐 ≤ 𝑂(102), the nondimensionalized transfer rate, 

Sherwood number (𝑆ℎ), is mainly determined by the Peclet number (𝑃𝑒), which is defined as the product 

of 𝑅𝑒 and 𝑆𝑐. Reynolds number plays a minor role. This is also found in the results for oblate spheroids. In 

Fig. 15 we plot 𝑆ℎ against 𝑃𝑒 in both linear and log scales for the cases simulated in this work. For the 

purposes of comparison, the results for a sphere are also included. For each major radius, 𝑆ℎ increases with 

increase in 𝑃𝑒, with 𝑆ℎ being more sensitive at smaller 𝑃𝑒. For each 𝑃𝑒, the increase in 𝑅𝑒 causes a slight 

increase in 𝑆ℎ. The shape of the spheroid, i.e. the major radius or the aspect ratio, has a significant effect 

on 𝑆ℎ. The increase in the major radius of the spheroid from 𝑅 to 1.5𝑅 and from 1.5𝑅 to 2𝑅 leads to an 

overall increase in 𝑆ℎ. In the log scale, the curves of the oblate spheroid show patterns similar to those of 

the sphere, which suggests that the effect of particle shape on scalar transfer rate may be decoupled from 

the effects of 𝑃𝑒, 𝑅𝑒 and 𝑆𝑐. Thus, the relationship of 𝑆ℎ to the other parameters can be written as,  

 𝑆ℎ𝑜𝑏𝑙𝑎𝑡𝑒(𝑃𝑒, 𝑅𝑒, 𝑎/𝑅) = 𝑆ℎ𝑠𝑝ℎ𝑒𝑟𝑒(𝑃𝑒, 𝑅𝑒)𝑓(𝑎/𝑅) (30) 

Fig. 14. Patterns of scalar concentration (𝜙) around oblate spheroids with 𝑎 = 1.5𝑅 and 2.5𝑅 for 

𝑅𝑒 = 0.1 and 𝑆𝑐 = 100. (a) 𝑎 = 1.5𝑅, (b) 𝑎 = 2.5𝑅. Left column: x-z plane, right column: y-z 

plane. 

 

(a) 

(b) 
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where 𝑆ℎ𝑜𝑏𝑙𝑎𝑡𝑒  is the Sherwood number of scalar release from an oblate spheroid, 𝑆ℎ𝑠𝑝ℎ𝑒𝑟𝑒  is the 

Sherwood number of a sphere, and 𝑓(𝑎/𝑅) is a function of the major radius of the oblate spheroid. Here 

we use the major radius of the spheroid instead of aspect ratio as the parameter, because when the major 

radius is large, the flow and scalar concentration patterns as well as heat and mass transfer rate are close to 

that of a flat plate. 𝑆ℎ is more related to the major radius than the aspect ratio. In normalized form, the 

aspect ratio of an oblate spheroid is written as 𝛬 = (𝑎 𝑅⁄ )3, which is the cube of major radius. In log-

log scales, the shape of the curve of 𝑆ℎ vs. 𝛬 is the same as that of 𝑆ℎ vs. 𝑎 𝑅⁄ . However, the 

relationship between 𝑆ℎ and 𝛬 is indirect. 

A correlation of 𝑆ℎ𝑠𝑝ℎ𝑒𝑟𝑒 for a sphere in a simple shear flow as a function of 𝑃𝑒 and 𝑅𝑒 was developed 

in Wang & Brasseur9. A key step to develop an analogous correlation of 𝑆ℎ for oblate spheroids of the form 

of Eqn. (30) is to find the dependence of 𝑆ℎ on the major radius 𝑎/𝑅. Since function 𝑓(𝑎/𝑅) in Eqn. (30) 

is assumed to be the same for all Reynolds and Peclet numbers, we choose the data of 𝑅𝑒 = 0.1 to develop 

the correlation. Figure 16 shows the variation of 𝑆ℎ with 𝑎/𝑅 in a log-log scale. The numerical data are 

represented by open circles. The strong similarity of the curves for different 𝑃𝑒 confirms the conclusion 

that the effect of spheroid shape can be decoupled from the other effects. As shown in the figure, 𝑆ℎ 

increases with an increase of 𝑎 𝑅⁄ . At the same time, 𝑆ℎ tends to follow a linear relationship with 𝑎 𝑅⁄ . A 

likely reason is that as 𝑎 𝑅⁄  increases, the shape of the spheroid approaches a flat plate and the flow 

(a) (b) 

Fig. 15. Sherwood number (𝑆ℎ) versus Peclet number (𝑃𝑒) for oblate spheroids of different major 

radii. (a) linear scales, and (b) log-log scales. The symbols indicate the results of numerical 

simulation. Oblate I: 𝑎 = 1.5𝑅, Oblate II: 𝑎 = 2.5𝑅. 
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characteristics and scalar transport around the spheroid approach the result for a flat plate, which may have 

some linear nature in log-log space. According to this observation, it is reasonable to assume that the 

relationship between log(𝑆ℎ𝑜𝑏𝑙𝑎𝑡𝑒) − log (𝑆ℎ𝑠𝑝ℎ𝑒𝑟𝑒)  and log (𝑎/𝑅)  follows a modified hyperbola 

equation, 

 (log(𝑆ℎ𝑜𝑏𝑙𝑎𝑡𝑒) − log(𝑆ℎ𝑠𝑝ℎ𝑒𝑟𝑒) + 1)2 − 𝐶(log(𝑎/𝑅))2 = 1 (31) 

where 𝐶 is a coefficient to be determined. Using the standard linear least squares method, the coefficient is 

found to be 𝐶 = 2.42. Substituting Eqn. (31) into (30) gives, 

 𝑓(𝑎/𝑅) = exp (√1 + 𝐶(log(𝑎/𝑅))2 − 1) (32) 

The prediction of 𝑆ℎ𝑜𝑏𝑙𝑎𝑡𝑒  of Eqn. (31) is shown in Fig. 16 as solid lines, which agrees well with the 

numerical data. A slight deviation can be noticed when 𝑎/𝑅 > 2. Yet the aspect ratio of the oblate spheroid 

corresponding to 𝑎/𝑅 = 2  is Λ = (𝑎/𝑅)3 = 8 , which is far beyond the range of usual applications. 

Therefore, the empirical correlation can be used with confidence in most scientific and industrial 

applications. 

  

6. Conclusion 

Through high-fidelity numerical simulation based on the lattice Boltzmann method, we have conducted 

an in-depth study on the heat and mass transport from an oblate spheroid neutrally suspended in a simple 

Fig. 16. Sherwood number (𝑆ℎ) versus the major radius (𝑎) of an oblate spheroid for 𝑅𝑒 = 0.1. 

Symbols: numerical data, lines: correlation. 
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shear flow. In the simulation, the temperature and mass concentration are modeled as the concentration of 

a passive scalar released at spheroid surface. The interaction between the carrier fluid and suspended 

spheroid results in several flows around the spheroid, which are characterized by streamlines of different 

patterns. These are: outward spiral flows on the lateral side, inward spiral flows near the equator, 

recirculating wake flows near the flow axis, and the outer passing flow wrapping the spiral and wake flows. 

The passive scalar released at spheroid surface is first transported through the flow layer of the spiral flows 

to the outer passing flow through diffusion, and then transported downstream by the outer flow through 

advection. After leaving the spheroid, the outer flow passes a portion of the passive scalar to the flow further 

outside and the flow in the recirculating wake, which helps transport the passive scalar downstream through 

advection. These flow motions constitute a coupled transport mechanism for passive scalar from the oblate 

spheroid to the far field. The flow behaviors around the spheroid depend on both the Reynolds number of 

the flow and the aspect ratio of the spheroid. The changes in flow behaviors cause changes in the transport 

efficiency of the passive scalar. The results suggest that the effect of spheroid shape on scalar transfer rate 

can be decoupled from the effects of Peclet and Reynolds numbers, and this enables the development of a 

correlation of nondimensional scalar transfer rate, i.e. Sherwood number, for oblate spheroids, based on the 

well-developed correlations for a sphere. 
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