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Abstract

The heat and mass transfer characteristics of a simple shear flow over a surface covered
with staggered herringbone structures are numerically investigated using the lattice Boltzmann
method. Two flow motions are identified. The first is a spiral flow oscillation above the
herringbone structures that advects heat and mass from the top plane to herringbone structures.
The second is a flow recirculation in the grooves between the ridges that advects heat and mass
from the area around the tips of the structures to their side walls and the bottom surfaces. These
two basic flow motions couple together to form a complex transport mechanism. The results show
that when advective heat and mass transfer takes effect at relatively large Reynolds and Schmidt
numbers, the dependence of the total transfer rate on Schmidt number follows a power law, with
the exponent being the same as that in the Dittus-Boelter equation for turbulent heat transfer. As
Reynolds number increases, the dependence of the total transfer rate on Reynolds number also

approaches a power law, and the exponent is close to that in the Dittus-Boelter equation.

1. Introduction
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Microfluidics have been the subject of considerable attention in recent decades with the
development of micro fabrication technologies, and they have been widely used in fundamental
and applied studies of physical, chemical, and biological processes.!” In micro channels, due to
their small scale, the flow is highly laminar, and diffusion is usually the primary mechanism for
species transport and mixing. This diffusion takes place on much longer length and time scales
than does convection. Embedded micro-structures on the surface of micro-channels can be used,
however, to generate transverse flow, and chaotic advection can be produced. The transverse flow
advects dissolved substances over the cross section and significantly enhances mixing and
transport efficiency.* > One of the most efficient chaotic micromixers is the Staggered Herringbone
Mixer (SHM) developed by Stroock et al.* Repeated patterns of grooves on the inner surface of
the SHM create helical motion of the fluid in the microchannels, providing a mixing and transport

mechanism through transversal advection.

Due to the simple fabrication and high mixing efficiency of the SHM, numerous studies
have been conducted on it, including analysis of the geometric effects on mixing efficiency,’® the
design and optimization of micro-mixers for different applications,”!* and development of new
designs for specific applications.'* !> Most of these studies, however, focus on the mixing of two
species in T-type SHM mixers; in this configuration, two flows containing different species enter
the mixer through two inlet branches in a T shape,'® generating a helical pattern of flow. Several
studies have shown that SHM can significantly enhance convective and boiling heat transfer inside
microchannels.!” ' The results of these studies suggest that transverse advection generated in
SHM mixer flows might enhance heat and mass transport between the bulk flow and the bottom
wall. This promising mechanism might have broad applications in compact heat exchangers and

microelectromechanical systems (MEMS), and could also be extended to chemistry, biology, and



areas involving micro-scale mass transfer. Surprisingly, the heat and mass transfer capacity of

herringbone-inspired microstructures have gained little attention to date.

In a micro-channel embedded with staggered herringbone structures, a boundary layer with
reduced velocity components and a helical flow pattern is developed over the structures. The
generation of the helical flow pattern is directly related to the shear rate and thickness of the
boundary layer. In this study, we consider a fully developed simple shear flow confined by two
infinitely large planes with staggered herringbone structures embedded on the lower surface. With
lattice Boltzmann method, the heat and mass transfer from the top plane to the bottom plane are
numerically investigated. This study aims to identify the mechanisms for the enhancement of heat
and mass transfer by the transverse flow advection over the staggered herringbone structures. This
study also investigates the dependence of transfer efficiency on the influencing parameters, such
as shear rate, Prandtl number, and Schmidt number. The rest of the paper is organized as follows.
A detailed description of the physical model is presented in Section 2. The numerical method is
described in Section 3. The results are analyzed in Section 4, and concluding remarks are made in

Section 5.

2. Physical Model

As shown in Fig. 1, we model a laminar incompressible simple shear flow enclosed by two
infinitely large parallel planes, with staggered herringbone structures embedded on the bottom
plane. To generate a simple shear flow, the top plane moves at a constant velocity Uy, and the
bottom plane is fixed. The distance between the two planes, H, is three times the height of the
herringbone ridges, h. The width of the herringbone ridges, w, is half of h, and the spacing between

neighboring ridges & is the same as h. The angle between the ridges and the streamwise axis, 8, is



fixed at 45°. The regular arrangement of the ridges forms the periodicity of the surface geometry
in both the streamwise and spanwise directions. The streamwise dimension of each unit containing
a complete herringbone element can be calculated as L, = (6 + w)/sinf . The spanwise
dimension of each unit L,, is 2L,. With these geometric specifications, the flow evolution is
exclusively determined by the shear Reynolds number defined based on the effective shear rate S

and the flow passage height H — h. The effective shear rate is defined as:

— U
S = — (1)
and the shear Reynolds number is defined as
Re. = S(H-h)? @)
S —_—

v

where v is the kinematic viscosity of the working fluid. In this study, the shear Reynolds number

ranges from 20 to 200. Below that range, the diffusive transfer plays a dominant role.

We seek to develop a general understanding of the enhancement of heat and mass transfer
induced by herringbone structures, so the shear Reynolds numbers considered here are higher than
those usual in microfluidic systems. In this study, the temperature and the concentration of
dissolved species are modeled as passive scalars, released at the top plane and absorbed at both
the bottom plane and the surfaces of herringbone ridges. For purposes of generalization, a
nondimensional scalar concentration is utilized, which is fixed at 1 at the top plane and 0 at the
bottom plane and the surfaces of herringbone ridges. The Schmidt number for scalar diffusion in
this study ranges from 1 to 50. The characteristics of scalar transfer from top plane to bottom

surfaces are investigated in both diffusion-dominant and advection-dominant ranges.



The height of the herringbone ridges h and the velocity of top plane U, are used as the

characteristic length and velocity to normalize the spatial coordinates and flow velocity,
X =x/h, 3)
i =u/U, 4

In normalized form, the height of the herringbone ridges is & = 1 and the velocity of the upper

planeis U, = 1.

3. Numerical Methods

The lattice-Boltzmann method (LBM) has particular advantages in its ability to handle,
with relative ease, complex boundaries with heat and mass transfer. In this study we develop a 3-
D numerical model based on the LBM to model continuum-level meso- and micro-scale
incompressible fluid flow in contact with complex surface geometries. A well-established tool,
LBM has been widely used to study the fluid dynamics on surfaces with complex structures. '
LBM is well suited to the present problem because of its powerful capability in dealing with
complex geometries and its high parallelizability. The dependent variable is the particle
distribution function f, (x,t), which quantifies the probability of finding an ensemble of molecules
at position X with velocity e, at time t.2?* In three dimensions, the velocity vector e can be
discretized into 15, 19 or 27 components (referred to as D3Q15, D3Q19 and D3Q27).2° Here we
apply the D3Q15 approach, primarily to minimize computational load, with the recognition that
the Reynolds number is relatively low.

The Boltzmann equation discretized on a lattice with the BGK form of collision operator

25,26 1 22
*

is given for single-phase flow by Chen and Doolen,?! Lallemand and Luo, and Wang et a
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where e, is the elementary velocity vector in direction « , 7 is the relaxation time, and f, 7 is the

equilibrium distribution function in direction «.
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The symbol w,, is the weighting coefficient, ¢, is the sound speed in the lattice, and u is the fluid
velocity. The right-hand side of Eq. (5) describes the mixing, or collision of molecules, that locally
drives the flow to an equilibrium particle distribution, f,; ?(x,t). Macroscopic variables such as

density p and velocity u are calculated from the moments of the distribution functions,

p(x,t) = Yo fa(x,0), p(x,Dulx,t) = Yo fa(X,t)eq (7

As is common, we apply the BGK model for this collision process, through which the

distribution functions f,, (x, t) relax toward £, ?(x,t) with a single lattice relaxation time scale,
T=(6v/(cox)+1)/2 and ¢ = 6x/6t. (8)

In the traditional treatment of solid boundaries, a solid wall is assumed to be located half
way between the lattice nodes, and molecules traveling toward the wall are bounced back at the
wall and return to the same node. Consequently, the distribution function in the left direction is the
same as that in the right direction before streaming. The accuracy of this scheme is only 1% order.
In the present study, we use the 2" order accurate scheme proposed by Lallemand and Luo.?? This
scheme is based on a simple bounce-back treatment and interpolations. If the distance from the
first fluid node to the solid boundary, ¢, is less than half the lattice space, the computational
quantities are interpolated before propagation and bounce-back collision. If g is greater than the

half-lattice space, interpolation is conducted after propagation and bounce-back collision. The



momentum exerted by the moving boundary is treated as an extra term in the bounce-back
distribution function.

t,27 1’28

The moment propagation method developed by Frenkel and Ernst,”’ Lowe and Frenke
and Merks et al.?” is used to solve for temperature. In this method, a scalar quantity T is released

in the lattice and a scalar concentration field variable is propagated at the continuum level for each

scalar using the particle distribution function f, (X, t).

T(x,t+ 6t) =Y, P,(x—e, bt t+t)+AT(x,t) 9)
where
P,(x — e,0t,t + 6t) = [% - waA] T(x — e,0t,t) (10)

f (x — e, 0, is the distribution function of post-collision but before-streaming, whic
- 20t ty the distribut funct f post-coll but befi t g, which

transports scalar from the neighboring nodes x — e, 4t to the node X between t and t + §t, and
A=1-6¢/cdx (11)
and ¢ is the scalar diffusivity.

We first ran the simulation over 5 structural elements in the streamwise direction with cases
with Res = 200. The results demonstrated that the spatial periodicity of flow pattern is the same
as the streamwise length of the structural element. Therefore, in the subsequent large-scale study
we only simulate the flow within the cuboid domain including one structural element (indicated
by dashed lines in Fig. 1(b)). Periodic conditions are used in the streamwise and spanwise
directions. The total number of computational grid cells is 100x200x140, and 24 grid cells are

used to resolve the thickness of the herringbone ridge. The computational domain is decomposed



into 56 subdomains. The Message Passing Interface (MPI) technique is used to enable parallel

computing. Analysis is conducted when the flow has reached steady state.

The LBM solver has been extensively validated in previous studies, as described in Wang
et al.?> 3032 For the present study, we also consider heat transfer in a lid-driven cavity flow in a
cube with side length L as a further validation. The lid moves at a constant velocity, Up;q .
Temperature is fixed at Tj;4; on the moving lid and at 0 on the side and bottom walls. Two
governing nondimensional parameters are the Reynolds number Re 4y, defined as Reqqy ity =
UjiqL/v, where v is the kinetic viscosity of the fluid and the Prandtl number Pr is defined as Pr =
v/a, where a is thermal diffusivity. The case with Re;qy;r, = 1 and Pr = 1 are simulated with
both the present LBM solver and the open-source code Gerris.>*** The grid dimensions are
100 x 100 x 100 in both simulations. Figure 2 shows a comparison of the normalized vertical
velocity (i, = u,/U};q) and temperature (¢ = T/T;4) on the middle xz plane and along the central
streamwise axis. The two results are in good agreement, with a maximum relative error of 3% for

point-to-point comparisons for velocity and temperature.

To examine the grid sensitivity of the results, simulations were conducted with two grids
of different resolutions. The number of grid points over one ridge thickness of the herringbone
structures is 24 and 36, respectively. Figure 3 shows the profiles of the horizontally averaged
streamwise velocity and scalar concentration for Reg = 200 and Sc = 50, respectively. Excellent
agreement between the coarse and fine grid is obtained; the maximum deviation between the two

grids is less than 2%. The present results were obtained, therefore, using the coarse grid.

4. Results and Discussion



Scalar transport from the top plane to the bottom plane relies on both diffusion and the
advection induced by the herringbone structures, and advective transport is dominant when the
Reynolds and Schmidt numbers are large. Our focus is on the identification of the mechanisms for
the enhancement of scalar transfer by herringbone structures. Res = 200 was selected as a

prototypical example to analyze the flow behavior and scalar transfer characteristics.

Figure 4 shows the patterns of flow characteristics for Reg = 200. Taking advantage of the
periodicities in the streamwise and spanwise directions, only the flow within the cuboid domain
including a single structural element was simulated. The patterns containing multiple elements
shown in the figure were generated by concatenating the results from the simulation of a single
element. Typical streamlines over herringbone structures are shown in Fig. 4(a). In the steady state,
the streamlines coincide with the trajectories of fluid particles, illustrating the path of scalar
transport by flow advection. The color represents the level of scalar concentration at Sc = 50. The
red and blue colors indicate higher and lower concentrations, respectively. The streamline pattern
shows how the flow transports a scalar from the bulk flow to the surfaces in the herringbone
grooves for absorption: The fluid with higher scalar concentration flows downward in the area
above the streamwise rows of backward groove tips (BGT). Then the flow is entrapped in the
grooves at the BGT, and recirculates within the grooves. At the forward groove tips (FGT) the
fluid flows upward and leaves the groove with lower scalar concentration. This flow motion
provides the fluid contact with the surfaces of the herringbone ridges and the bottom surface
between ridges, and enhances the heat and mass exchange between the bulk flow and the surface

geometry.

Figure 4(b) shows iso-surfaces of the vertical velocity at @i, = +0.005. Since the flow is

disturbed in the lower region, the magnitude of @, is larger than in the upper region. As shown in



the figure, a region with negative i, is generated above every BGT and a region with positive i,
is generated above every FGT. The iso-surfaces of #i, are consistent with the streamline patterns
in Fig. 4(a). Figure 4(c) shows the corresponding 2D iso-contours of vertical velocity averaged
over the streamwise coordinate, (fi,), on the cross section ((¥, Z) plane). The variable averaged

over the streamwise coordinate is defined as

(@):(,20) = [f; a5, 2)dx (12)

in the streamwise direction. The iso-surfaces of i, in Fig. 4(b) and iso-contours of (ii,), in Fig.
4(c) describe the patterns of vertical velocity of the fluid that has been disturbed by the herringbone
structures. Compared with the velocity at the top plane, the vertical velocity around the
herringbone structures is much smaller. This implies that the pitch of the helix is much larger than
the height of flow passage (H — h). It is well known that each unit of staggered herringbone
structures generates a pair of counter-rotating tubular eddies extending in the streamwise direction
in the upper region, and the fluid particle flows along a helical trajectory in the tubular eddies.> *
The helical pattern can be inferred from the 2D streamlines, based on the streamwise averaged
velocity components, (iiy ), and (ii,),, as shown in Fig. 4(d). The closed streamlines define the
recirculating motions in the (¥, Z) plane of the helix. This continuous upward and downward flow

motion enhances the scalar transport in the vertical direction.

To quantitatively compare the flow characteristics under different conditions, we define

the horizontally averaged quantities as,

B =], By, 2)dxdy (13)
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where B(%,¥,2) is the quantity of interest that varies with spatial coordinates and A is the
horizontal area occupied by fluid at different vertical locations on a herringbone element. The
averaged variable (f) is a function of the vertical coordinate Z only. The horizontally averaged
vertical velocity (fi,) represents the net flux of fluid (flow per unit area) through the horizontal
plane. As a result of mass conservation, (i, ) is zero for the present problem. To quantify the wall-

normal advective transfer capability, we define the effective upward and downward velocity as

0, if i, >0

e {az, if i, >0
i, if i, <0

i, = 0, if i, <0 and uz_z{

(14)

In this study, we use i, to deal with the heat and mass transfer from the bulk flow to the bottom

surface.

Figure 5 plots the profiles of horizontally averaged streamwise velocity (ii,) and the
effective downward velocity (fi; ) at Res = 20 and 200. The horizontal dashed line indicates the
height of the herringbone structures. The curves of (ii,.) shows little difference between Reg = 20
and 200, decreasing roughly linearly above the ridge tips (@i > 1), from 1 at the upper plane to a
small value close to 0 at the ridge tips. In the grooves (@i < 1), (ii,,) remains small. The roughly
linear variation of (i, ) above the grooves suggests that the resistance of the herringbone structures
is close to that of a smooth plane. The effective resistance of the herringbone structures is related
to both structure geometry and fluid behavior. That is, the gaps between the ridges decrease the
horizontal wall area at ridge-tip height, and so decrease the resistance, yet the vertical flow
advection (Fig. 4) increases the flow shear stress on the top surfaces of the ridges. For larger
Reynolds numbers, this increase is larger. In steady state, the resistance caused by the herringbone

structures is the same as the shear force on the tops of the ridges. For the present geometry, the
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ratio of the resistance over the herringbone structures to that over smooth plane at ridge-tip height

1s 0.97 and 1.02 for Res = 20 and 200, respectively.

The effective downward velocity (&i; ) curves (Fig. 5b) are different for Reg = 20 and 200,
which suggests that the influence of Reynolds number primarily occurs with the vertical velocity
component. The curves of (i, ) have two peaks, one above the herringbone ridge tips and the other
below, corresponding to the consecutive upward and downward flow motions in the helix in the
upper region and the flow recirculation in the grooves, respectively. Close to the herringbone
structures, the velocity magnitude is larger, so the upper peak is close to the herringbone tips. The
magnitude of (&, ) largely indicates the advective scalar transport capability of the two flows. As
shown in the figure, the value of [(ii; )| for Reg = 20 is larger at the upper peak and smaller at the
lower peak, suggesting that the upper bulk flow at Res = 20 has greater capability for scalar

transport to the herringbone top surfaces and to the recirculating flow in the grooves.

In the grooves, the situation is just the opposite. The flow at Reg = 200 shows greater
capability for scalar transport to the bottom surface than the flow at Res = 20. This is because the
flow recirculation in the grooves is more active at larger Reynolds numbers, while at smaller
Reynolds number the greater viscous effect in the upper region enables the disturbance from the
herringbone structures to propagate further downstream. The overall heat and mass transfer
process depends on the coupling of these two mechanisms through a complex relationship, but
generally the flows at larger Reynolds numbers have a stronger advective scalar transport

capability.

Scalar transport also depends on Schmidt number. For heat transfer, the corresponding

characteristic number is the Prandtl number. Here we use the flow at Res = 200 to analyze the

12



effect of the Schmidt number. Figure 6 shows the patterns of scalar concentration for Sc = 1 and
50. At Sc = 1, the diffusion effect is so strong that the diffusive scalar transport dominates the
advective scalar transport. The 3D iso-surfaces and 2D contours on two typical cross sections
shown in Fig. 6(a) suggest that the scalar concentration ¢ changes roughly linearly with the vertical
coordinate in the flow above the herringbone structure. The herringbone ridges cause only a slight
disturbance to the distribution of ¢. In the grooves, ¢ is low. This pattern means that the majority
of the scalar is absorbed at the top surface. Further, the advection of the recirculating flow is the
primary means for scalar transport in the grooves, and the reduced advective scalar transport of
the recirculating flow at lower Sc cannot effectively transport a scalar to the bottom surfaces in the

grooves.

At Sc = 50, the diffusive scalar transport is reduced and the advective transport becomes
dominant. A comparison of Fig. 6(b) with Fig. 4 suggests that the flow rises, with lower scalar
concentration, along the streamwise FGT rows, and falls, with higher scalar concentration, along
the streamwise BGT rows. In the grooves, the recirculating flow helps to transport the scalar to the
bottom surfaces and the side walls of the herringbone ridges. In the top region, the flow acquires
the scalar from the top plane through scalar diffusion. These consecutive steps articulate the whole
process of scalar transport from the top plane to the bottom surfaces and ridge surfaces. The
comparison between Figs. 6(a) and 6(b) confirms the conclusion that the advective scalar transfer

primarily takes effect at larger Schmidt numbers.

Figure 7 shows the advective scalar transport flux in the vertical direction ii,¢ for Sc = 1
and 50 at Reg = 200. The 3D iso-surfaces and 2D iso-contours of #i,¢ are consistent with the
patterns of vertical velocity &, shown in Fig. 4. Along the steamwise FGT rows, the values of ii,¢
are positive, indicating an upward advective scalar flux. Along the BGT rows, the values of i,¢

13



are negative, indicating a downward advective scalar flux. At Sc = 1, the stronger diffusion effect
reveals tubular structures in the iso surfaces that extend in the streamwise direction on each row
of the herringbone ridges. At Sc = 50, the enhanced advection effect creates complex fine
structures on the iso-surfaces. A comparison of the 2D contours suggests that at Sc = 1 the value
of i, ¢ in the upward flow is larger and the absolute value of #i,¢ in the downward flow is smaller
compared with the values at Sc = 50. This implies that the net efficiency of advective scalar
transport from the top plane to the bottom region is lower at Sc = 1. As a result, the total scalar

flux is lower.

The scalar transport from the top plane to the bottom region relies on both scalar diffusion
and the flow advection induced by the herringbone structures. In nondimensional form, the

diffusive and advective scalar fluxes, §q;r(Z) and G4, (2), are calculated as,
s s 1 ,0¢
CIdif(Z) = P_e(g) (15)

Gaav(Z) = —(ti, ) (16)
where Pe is the Peclet number. The total flux Gy, is the sum of §g;¢(Z) and Ggq, (2),

~ 1,00\ /- ~ .

Grot = = (32) (2) — (7,00} (2) (17)
Both §gir(2) and §4q,(2) are functions of the vertical coordinate Z, yet the total scalar flux Geo¢
is independent of Z in the steady state due to the conservation of scalar flux.

To quantitatively compare the scalar transport characteristics of the flows at various Sc at
Reg, Figs. 8 and 9 show the profile of the horizontally averaged scalar concentration {(¢), the
gradient of scalar concentration in the vertical direction (d¢p/0Z), and the ratio of advective scalar

flux to total scalar flux |[{fi,®)|/G;o: for various Sc at Reg = 20 and 200, respectively. (d¢/0Z)
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quantifies the diffusive scalar transport in the vertical direction, and |(i,®)|/§o: represents the
fraction of the advective scalar flux in the total scalar flux. For the purposes of comparison, the
curves of scalar transport with pure diffusion are also included. The pure diffusion results were
obtained by simulating the scalar transport in a quiescent fluid using the same numerical method.
For both Reg, the variations of (¢), (0¢/0Z) and |(Ti,@)|/G:or With vertical coordinate Z
demonstrate similar dependence on Sc. As Sc increases, the advection effect gets stronger, and the
curves deviate more from those of pure diffusion. For a given Sc, higher Reg leads to a stronger
advection effect and more deviation amongst the curves. For pure diffusion, (¢) is linearly
dependent on Z, that is, (0¢p/0Z) is a constant above the herringbone structures and so maintains
a constant scalar flux in the vertical direction. The advective scalar flux (fi,¢) is zero everywhere.
At nonzero Reynolds numbers, the disturbances produced by the herringbone structures cause local
mixing above the ridges, which not only decreases the vertical gradient of (¢) in the local area,
but also provides an advective scalar transfer mechanism. With the increase in Sc, the advection

effect becomes stronger and the gradient of (¢) becomes smaller.

For Res = 20, as shown in Fig. 8, with the increase in Sc the curve of (¢p) becomes more
vertical at about Z = 1.5, and the curve of (0¢p/0Z) curves leftward and forms a peak with the
minimum (3¢ /0Z). At the same time, the curve of |(fi,$)|/Gtor curves rightward and forms a
peak with the maximum (@i, ¢)|/G:o¢. This means that the fraction of advective scalar flux of the
total scalar flux increases with Sc. At the top plane (Z = 3), scalar transport occurs by pure
diffusion because the vertical velocity is 0 there. When Sc increases from 1 to 50, the curve slope
of (¢), that is, the value of (0¢p/3Z) at the top plane, also increases. This means that the total scalar
flux increases with Sc as a result of enhanced advective scalar transfer. Since the passive scalar is

absorbed at both the side walls of the herringbone ridges and the bottom surfaces, the curve of (¢)

15



is not a straight line in the grooves (Z < 1) for pure diffusion. At Res = 20, the flow advection is
weak in the grooves, so the curves of (¢) and (d¢/3Z) do not change much with Sc when Z < 1,
yet the curves of |(Ti,¢)|/G;or still show the enhancement of advective scalar transport in the

grooves.

For Res = 200, the curves shown in Fig. 9 demonstrate a strong advection effect due to
the decrease in the kinematic viscosity of the fluid — except the curve for Sc = 1. As shown in the
figure, the curves of (¢), (0¢/0Z), and |(Ti,P)|/Gto: for Sc = 1 almost coincide with those of
pure diffusion. However, when Sc increases to 10, the value of (¢) decreases and the curve of (¢)
is almost vertical above the herringbone structures. Correspondingly, the curve of (0¢/0Z) has a
minimum value close to 0 at about Z = 1.5, and the curve of [{Ti,¢)|/G;o; Shows a maximum
value close to 1 at that point. This means that advective scalar transfer has become the dominant

means of scalar transport.

As Sc increases from 10 to 50, the value of (¢) further decreases above the herringbone
structures, and the area of small (0¢p/0Z) (close to 0) expands both upward and downward.
Correspondingly, the area of large |(@i,¢)|/Gto: (close to 1) also expands. The advective scalar
transfer dominates in the majority of the upper flow. At the top plane, scalar transport relies on
pure diffusion. As Sc increases from 1 to 50, the slope of the curve of (¢), that is, the value of
(0¢p/0Z) at the top plane, also increases, indicating an increase in total scalar flux from the top
plane to the flow. In the grooves, (¢) smoothly decreases from a small value at ridge tips to 0 at
the bottom surface for pure diffusion, and the curve slope of (¢), that is, the value of (9¢p/0Z) is
close to 0 at the bottom surface. This suggests that only a small fraction of scalar is transported to
the bottom surface through pure diffusion. At Sc = 1, the scalar transfer characteristics are almost

the same as those for pure diffusion. When Sc increases to 10, the curve of (¢p) becomes vertical
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below the ridge tips, and the value of (d¢/0Z) decreases toward 0. Correspondingly, the curve of
[{Ti,)|/Gto: Shows apparent increase in |(fi,¢)|/ G, in that area. As Sc further increases, the
flow recirculation in the grooves becomes stronger, further decreasing the value of (d¢p/3Z) and
increasing the value of |{#i,¢)|/§;o: below the ridge tips. At the bottom surface (Z = 0), the
increase in Sc leads to an increase in (d¢/0Z), i.e., the scalar flux transported to the bottom surface

Increases.

To measure the enhancement of scalar transport from the top plane to the herringbone
surfaces and bottom plane, we compare the total scalar flux in the presence of herringbone
structures with that of a smooth bottom plane. Scalar transport in laminar flows between smooth
planes is by pure diffusion. We select two distances Hg,,, between the top and bottom smooth
planes. The first, H,,, = 3h, corresponds to the case in which the top and bottom planes are at
the same positions as those of the cases with herringbone structures. The second, Hyyp,, = 2h,
corresponds to the case in which the top plane is at the same position as that considered in this
study and the bottom plane is at the tips of the herringbone structures. The nondimensional scalar

fluxes between the smooth planes are calculated as,

SN

Gsmo = (¢0 - O)/Hsmo =1/3 when Hsmo =3 (18)

=

Gsmo = (¢0 - O)/Hsmo =1/2 when Hsmo =2 (19)

Figure 10 shows the ratio of total scalar flux with herringbone structures to those with the

smooth bottom wall Gt/ Gsmo Versus Schmidt number Sc in logarithm scales. Compared with the

smooth planes at Hy,,, = 3h, the herringbone structures significantly enhance the scalar transport
by reducing the transfer distance, increasing surface area, and inducing flow advection in the

vertical direction. As a result, G;ot/Gsmo 1S always greater than 1, as shown in Fig. 10(a).

17



For pure diffusion, which is equivalent to Reg = 0, Gro¢/Gsmo denoted as (Geor/ Gsmo) aif»
is independent of Sc and remains at a value about 1.43. This value is determined by the distance
between the top and bottom planes and the geometric parameters of the herringbone structures.
For Res > 0, §tot/Gsmo increases with both Sc and Reg from the pure diffusion value. At Reg =
20, the scalar transport is dominated by diffusion from Sc = 0 to a critical Schmidt number Sc,;;
around 10, after which G;o:/Gsmo increases monotonically with Sc due to the enhancement from
flow advection. It is apparent that Sc.,;; decreases with the increase in Res. At Res = 100 and
200, Geot/Gsmo is close to (Grot/dsmo)air When Sc = 1. After that, Gro¢/Gsmo increases
remarkably with the increase in Sc. Note that in logarithm scale the curves appear as straight lines
and the slopes are almost the same when Sc > 10 for Reg = 100 and 200. This implies that the
variation of G;p¢/Gsmo follows a power law on Sc when advective scalar transport dominates, and

the exponent of Sc is independent of Res.

For the flows considered in this study, it is found that the exponent approaches eventually
to a value close to 0.4 as Sc increases. Figure 10(b) shows the enhancement of scalar transfer by
the herringbone structures compared with the flow over smooth planes with Hy,,, = 2h. In this
comparison, the herringbone structures increase the scalar transport distance from the top plane to
the herringbone surfaces and bottom planes, so G/ Gsmo becomes less than 1 for pure diffusion.
However, with the increase in Sc and Reg, the strengthened advection effect not only offsets the
reduction of scalar transfer caused by increased transport distance, but also causes a significant
increase in Gror/Gsmo - Since Gsm, is independent of Sc and Reg, the enhancement of scalar

transport, Gror/Gsmo» Can be written in a unified form,

qtot/ﬁsmo = f(ReS' Sc, Y) (20)
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where vy is a vector of the geometric parameters, such as the distance between the two planes and
the height of herringbone structures, and f(Reg, Sc,y) is a function of Reg, Sc and y. The
variation of Gio¢/Gsmo With Sc shown in Fig. 10 suggests that Gio¢/Gsmo has a power law
relationship with Sc, with an exponent of 0.4 when advective scalar transport takes effect.

Therefore, Eqn. (20) can be further written as,

Qtot/qsmo = g(ReS» Y)SCOA (21)

where g(Reg,y) is a function of Reg and y. For turbulent heat transfer, it has been found that the
Nusselt number Nu, a nondimensional parameter characterizing the heat transfer rate, can be

expressed as the Dittus-Boelter equation,>?

Nu = 0.023Re?8pro4 (22)
In this expression, the exponent of Pr is 0.4, which is the same as that in Eq. (21).

To further explore the dependence of scalar transfer rate on Reg and Sc, we select the data
points at Sc = 10, 30 and 50 from Fig. 10(a) and plot Gio¢/Gsmo Versus Reg in logarithm scale in
Fig. 11. To compare with the Dittus-Boelter equation, we include G¢or/Gsmo < Re%®. As shown
in the figure, the curves of the three Schmidt numbers exhibit almost the same slopes at every Reg
except in the lower left region around Reg = 20 and Sc = 10, where the scalar transport is
dominated by diffusion. The curve slopes asymptotically approach the slope of §¢or/Gsmo X Re%®
as Reg increases. While the range of Reg considered in this study is limited, it is almost certain that
the dependence of scalar transport on Sc will become a power law as Reg further increases, with

the exponent close to 0.8. Once the power law relationship is reached, the expression of Grot/Gsmo

given in Eqn. (21) could be further decomposed as,

qtot/ﬁsmo = h(Y)RegnSCOA (23)
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where m is a value close to 0.8. This suggests that when Res is large enough, the heat and mass
transfer rates also have a power law relationship with Reg, and the effects of geometric parameters
Y, Reynolds number Reg, and Schmidt number Sc are decoupled. The scalar transfer rate can be

expressed in the general form as,

adv. dom large Reg
dror = f (Res, Sc, ) = g(Res, v)Sc** =—= c(y)Reg"Sc** (24)

where m = 0.8. (‘adv. dom.’ indicates the advection-dominant regime).

If the scalar transfer rates from the numerical simulations are fitted within the finite range

of Reg to the power law relationship with the least square method, we obtain,
Geor = c(Y)Reg*2Sc* (25)
The exponent of Reg is 0.42, smaller than that in the Dittus-Boelter equation.

The Peclet number, which is defined as the product of the Reynolds and Schmidt numbers,
is another important nondimensional parameter characterizing scalar transport. Figure 12 shows
the enhancement of scalar transfer §;o¢/Gsmo versus Peclet number Pe for the two Hgp,,. As
shown in the figure, all the curves demonstrate a power law relationship with Pe in the logarithm
scale when Pe increases above a critical value around 200. The curves at different values of Reg
group together and form a dense cluster of curves. The curve slopes are roughly the same as that
of Pe%*. If we use Eqn. (24) to approximate the scalar transport rate in the range considered in

this study, the expression can be rearranged as

Gtot = C(Y)Reg'ozpeOA (26)
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The term Red°Z, that is, the Reynolds number effect, causes deviation among the curves at
different Reg values, but for the Reg in this study, Red°? ~ 1, the curves are close. Therefore, the

scalar transport rate can be roughly estimated by

Gtot = c(y)PeM (27)

when Reg is not very large. This simplified expression will significantly simplify the estimation

of heat and mass transfer rate for industrial applications.

The mechanisms and conclusions presented here also apply to cases with heat and mass

transfer from the bottom surface to the top plane, with a simple conversion.

5. Conclusion

Focusing a simple shear flow over staggered herringbone structures, we have identified the
mechanisms of heat and mass transfer induced by the transverse flow induced by the repetitive
herringbone structures. Proposing that the herringbone structures enhance heat and mass transfer
through lateral convection, we identify the basic flow characteristics induced by the structures, and
elaborate the power-law dependence of heat or mass transfer rate on Schmidt and Reynolds
numbers. This work provides a new idea for the design and optimization of microfluidic systems
involving heat and mass transfer.

Through high-fidelity numerical simulation, two basic flow motions are identified, which
provide the fundamental mechanisms for heat and mass transfer through flow advection. The first
is a spiral flow oscillation between the top plane and the herringbone structures, which transports
heat and mass from the top plane (or bulk flow) to the regions around herringbone tips. The second

is flow recirculation in the grooves between the ridges, which transports heat and mass from the
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areas around the herringbone tips to the side walls of herringbone ridges and the bottom surfaces.

These two basic flow motions couple together to form a complex transport mechanism.

When advective heat and mass transfer takes effect at relatively larger Reynolds and
Schmidt numbers, the dependence of the total transfer rate on the Schmidt number follows a power
law; the exponent is the same as that in the well-known Dittus-Boelter equation for turbulent heat
transfer. As the Reynolds number increases, the dependence of total transfer rate on the Reynolds
number also approaches a power law, and the exponent is close to that in the Dittus-Boelter
equation. When the power law on Reynolds number is reached, the dependence on geometric
parameters, Reynolds numbers, and Schmidt numbers can be decoupled. This discovery will
facilitate the development of physics-based models for a wide range of fundamental research and

industrial applications.
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(a)

(b)

i«

Fig. 1. Physical model of heat and mass transfer in a simple shear flow with herringbone structures on bottom
wall. (a) 3D view, and (b) top view. The dashed rectangle indicates the domain of numerical simulation.
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(@) (b)

Fig. 2. Vertical velocity (ii,) and temperature (¢) using the present LBM method (solid lines) and the
open-source code Gerris (dashed lines). (a) iso-contours of i, on the middle xz plane, (b) iso-contours of
¢ on the middle xz plane, and (c) profiles of ii, and ¢ along the central streamwise axis.
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Fig. 3. Effect of grid resolution on horizontally
averaged streamwise velocity (ii,) and scalar
concentration (¢) at Reg = 200 and Sc = 50. N,
is the number of grid points over one herringbone
ridge.
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(b)

(d)

Fig. 4. Flow patterns induced by herringbone structures in a simple shear flow at Reg = 200. (a) typical
streamtraces trapped in the grooves of herringbone structures, (b) iso-surfaces of vertical velocity at @i, =
+0.005, (c) 2D contours of vertical velocity averaged over streamwise coordinate (fi,), , and (d) streamline
patterns based on the streamwise averaged velocity components (i, ), and (fi,), on a cross section. Letters B
and F in (c) and (d) indicate the positions of backward and forward connecting points of the grooves.

28



0 05 1 P 00s o

<ijx> <’ﬁ;>
(a) (b)

Fig. 5. Profiles of horizontally averaged velocity
components. (a) streamwise velocity (fi,), and (b)
effective downward velocity (ii; ). The horizontal

dashed line indicates the top of the herringbone ridges.
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Fig. 6. Patterns of scalar concentration ¢ at Res = 200. (a) Sc = 1, and (b) Sc = 50. The sketch shows cross
sections through the backward and forward connecting points of the grooves.
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Fig. 7. Patterns of advective scalar flux in vertical direction fi,¢ at Reg = 200. (a) Sc = 1, and (b) Sc¢ = 50.

The slices are at the cross sections through the backward and forward connecting points of the grooves as
shown in the sketch.
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Fig. 8. Profiles of (a) horizontally averaged scalar concentration {¢), (b) vertical gradient of scalar
concentration (d¢/0Z), and (¢) ratio of advective scalar flux to total scalar flux [(@i,¢}|/Gsor at Reg = 20.
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Fig. 9. Profiles of (a) horizontally averaged scalar concentration {¢), (b) vertical gradient of scalar
concentration (d¢/Z), and (c) ratio of advective scalar flux to total scalar flux [(@i,¢)|/G:or at Res = 200.
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Fig. 10. Ratio of total scalar flux with herringbone structures to that with smooth bottom wall versus
Schmidt number. (a) Hy,,, = 3k, and (b) H,,,, = 2h. “dif’ indicates pure diffusion cases.
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Fig. 11. Ratio of total scalar flux with herringbone structures to that with smooth bottom wall versus
Reynolds number. (a) H,,, = 3h, and (b) H,,,, = 2h.
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Fig. 12. Ratio of total scalar transport flux with herringbone structures to that with smooth
bottom wall versus Peclet number. (a) Hs,,,, = 3h, and (b) Hpp = 2h.
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