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Abstract 

The heat and mass transfer characteristics of a simple shear flow over a surface covered 

with staggered herringbone structures are numerically investigated using the lattice Boltzmann 

method. Two flow motions are identified. The first is a spiral flow oscillation above the 

herringbone structures that advects heat and mass from the top plane to herringbone structures. 

The second is a flow recirculation in the grooves between the ridges that advects heat and mass 

from the area around the tips of the structures to their side walls and the bottom surfaces. These 

two basic flow motions couple together to form a complex transport mechanism. The results show 

that when advective heat and mass transfer takes effect at relatively large Reynolds and Schmidt 

numbers, the dependence of the total transfer rate on Schmidt number follows a power law, with 

the exponent being the same as that in the Dittus-Boelter equation for turbulent heat transfer. As 

Reynolds number increases, the dependence of the total transfer rate on Reynolds number also 

approaches a power law, and the exponent is close to that in the Dittus-Boelter equation. 

1. Introduction 

 
* Corresponding author. 

  Email: yxwang@nmsu.edu 



2 
 

Microfluidics have been the subject of considerable attention in recent decades with the 

development of micro fabrication technologies, and they have been widely used in fundamental 

and applied studies of physical, chemical, and biological processes.1-3 In micro channels, due to 

their small scale, the flow is highly laminar, and diffusion is usually the primary mechanism for 

species transport and mixing. This diffusion takes place on much longer length and time scales 

than does convection. Embedded micro-structures on the surface of micro-channels can be used, 

however, to generate transverse flow, and chaotic advection can be produced. The transverse flow 

advects dissolved substances over the cross section and significantly enhances mixing and 

transport efficiency.4, 5 One of the most efficient chaotic micromixers is the Staggered Herringbone 

Mixer (SHM) developed by Stroock et al.4 Repeated patterns of grooves on the inner surface of 

the SHM create helical motion of the fluid in the microchannels, providing a mixing and transport 

mechanism through transversal advection.  

Due to the simple fabrication and high mixing efficiency of the SHM, numerous studies 

have been conducted on it, including analysis of the geometric effects on mixing efficiency,6-8 the 

design and optimization of micro-mixers for different applications,9-13 and development of new 

designs for specific applications.14, 15 Most of these studies, however, focus on the mixing of two 

species in T-type SHM mixers; in this configuration, two flows containing different species enter 

the mixer through two inlet branches in a T shape,16 generating a helical pattern of flow.   Several 

studies have shown that SHM can significantly enhance convective and boiling heat transfer inside 

microchannels.17, 18 The results of these studies suggest that transverse advection generated in 

SHM mixer flows might enhance heat and mass transport between the bulk flow and the bottom 

wall. This promising mechanism might have broad applications in compact heat exchangers and 

microelectromechanical systems (MEMS), and could also be extended to chemistry, biology, and 
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areas involving micro-scale mass transfer. Surprisingly, the heat and mass transfer capacity of 

herringbone-inspired microstructures have gained little attention to date.  

In a micro-channel embedded with staggered herringbone structures, a boundary layer with 

reduced velocity components and a helical flow pattern is developed over the structures. The 

generation of the helical flow pattern is directly related to the shear rate and thickness of the 

boundary layer. In this study, we consider a fully developed simple shear flow confined by two 

infinitely large planes with staggered herringbone structures embedded on the lower surface. With 

lattice Boltzmann method, the heat and mass transfer from the top plane to the bottom plane are 

numerically investigated. This study aims to identify the mechanisms for the enhancement of heat 

and mass transfer by the transverse flow advection over the staggered herringbone structures. This 

study also investigates the dependence of transfer efficiency on the influencing parameters, such 

as shear rate, Prandtl number, and Schmidt number. The rest of the paper is organized as follows. 

A detailed description of the physical model is presented in Section 2. The numerical method is 

described in Section 3. The results are analyzed in Section 4, and concluding remarks are made in 

Section 5. 

2. Physical Model 

As shown in Fig. 1, we model a laminar incompressible simple shear flow enclosed by two 

infinitely large parallel planes, with staggered herringbone structures embedded on the bottom 

plane. To generate a simple shear flow, the top plane moves at a constant velocity 𝑈0, and the 

bottom plane is fixed. The distance between the two planes, 𝐻, is three times the height of the 

herringbone ridges, ℎ. The width of the herringbone ridges, w, is half of ℎ, and the spacing between 

neighboring ridges 𝛿 is the same as ℎ. The angle between the ridges and the streamwise axis, 𝜃, is 
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fixed at 45o. The regular arrangement of the ridges forms the periodicity of the surface geometry 

in both the streamwise and spanwise directions. The streamwise dimension of each unit containing 

a complete herringbone element can be calculated as 𝐿𝑥 = (𝛿 + 𝑤) 𝑠𝑖𝑛𝜃⁄ . The spanwise 

dimension of each unit 𝐿𝑦  is 2𝐿𝑥 . With these geometric specifications, the flow evolution is 

exclusively determined by the shear Reynolds number defined based on the effective shear rate 𝑆 

and the flow passage height 𝐻 − ℎ. The effective shear rate is defined as:  

𝑆 ≡
𝑈0

𝐻−ℎ
        (1) 

and the shear Reynolds number is defined as 

𝑅𝑒𝑆 ≡
𝑆(𝐻−ℎ)2

𝑣
        (2) 

where 𝑣 is the kinematic viscosity of the working fluid. In this study, the shear Reynolds number 

ranges from 20 to 200. Below that range, the diffusive transfer plays a dominant role.  

We seek to develop a general understanding of the enhancement of heat and mass transfer 

induced by herringbone structures, so the shear Reynolds numbers considered here are higher than 

those usual in microfluidic systems. In this study, the temperature and the concentration of 

dissolved species are modeled as passive scalars, released at the top plane and absorbed at both 

the bottom plane and the surfaces of herringbone ridges. For purposes of generalization, a 

nondimensional scalar concentration is utilized, which is fixed at 1 at the top plane and 0 at the 

bottom plane and the surfaces of herringbone ridges. The Schmidt number for scalar diffusion in 

this study ranges from 1 to 50. The characteristics of scalar transfer from top plane to bottom 

surfaces are investigated in both diffusion-dominant and advection-dominant ranges.  
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The height of the herringbone ridges ℎ and the velocity of top plane 𝑈0 are used as the 

characteristic length and velocity to normalize the spatial coordinates and flow velocity, 

𝑥̃ = 𝑥 ℎ⁄ ,          (3) 

𝐮̃ = 𝐮 𝑈0⁄ ,          (4) 

In normalized form, the height of the herringbone ridges is ℎ̃ = 1 and the velocity of the upper 

plane is 𝑈̃0 = 1. 

3. Numerical Methods 

The lattice-Boltzmann method (LBM) has particular advantages in its ability to handle, 

with relative ease, complex boundaries with heat and mass transfer. In this study we develop a 3-

D numerical model based on the LBM to model continuum-level meso- and micro-scale 

incompressible fluid flow in contact with complex surface geometries. A well-established tool, 

LBM has been widely used to study the fluid dynamics on surfaces with complex structures.19 

LBM is well suited to the present problem because of its powerful capability in dealing with 

complex geometries and its high parallelizability. The dependent variable is the particle 

distribution function 𝑓𝛼(𝐱, 𝑡), which quantifies the probability of finding an ensemble of molecules 

at position 𝐱 with velocity 𝐞𝛼  at time 𝑡 .20-24 In three dimensions, the velocity vector 𝐞 can be 

discretized into 15, 19 or 27 components (referred to as D3Q15, D3Q19 and D3Q27).20 Here we 

apply the D3Q15 approach, primarily to minimize computational load, with the recognition that 

the Reynolds number is relatively low.  

The Boltzmann equation discretized on a lattice with the BGK form of collision operator 

is given for single-phase flow by Chen and Doolen,21 Lallemand and Luo,25, 26 and Wang et al.,22 
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𝑓𝛼(𝐱 + 𝐞𝛼𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝛼(𝐱, 𝑡) = −
1

𝜏
(𝑓𝛼(𝐱, 𝑡) − 𝑓𝛼

𝑒𝑞(𝐱, 𝑡))  (5) 

where 𝐞𝛼 is the elementary velocity vector in direction 𝛼 , 𝜏 is the relaxation time, and  𝑓𝛼
𝑒𝑞

 is the 

equilibrium distribution function in direction 𝛼. 

𝑓𝛼
𝑒𝑞(𝐱, 𝑡) = 𝑤𝛼𝜌 (1 +

𝐞𝛼∙𝐮

𝑐𝑆
2 +

(𝐞𝛼∙𝐮)
2

2𝑐𝑆
4 −

𝐮∙𝐮

2𝑐𝑆
2)     (6) 

The symbol 𝑤𝛼 is the weighting coefficient, 𝑐𝑠 is the sound speed in the lattice, and 𝐮 is the fluid 

velocity. The right-hand side of Eq. (5) describes the mixing, or collision of molecules, that locally 

drives the flow to an equilibrium particle distribution, 𝑓𝛼
𝑒𝑞(𝐱, 𝑡). Macroscopic variables such as 

density 𝜌 and velocity 𝐮 are calculated from the moments of the distribution functions, 

𝜌(𝐱, 𝑡) = ∑ 𝑓𝛼(𝐱, 𝑡)𝛼 ,   𝜌(𝐱, 𝑡)𝐮(𝐱, 𝑡) = ∑ 𝑓𝛼(𝐱, 𝑡)𝐞𝛼𝛼   (7) 

As is common, we apply the BGK model for this collision process, through which the 

distribution functions 𝑓𝛼(𝐱, 𝑡) relax toward 𝑓𝛼
𝑒𝑞(𝐱, 𝑡) with a single lattice relaxation time scale,  

𝜏 = (6𝑣 (𝑐𝛿𝑥)⁄ + 1) 2⁄   and  𝑐 = 𝛿𝑥 𝛿𝑡⁄ .    (8) 

In the traditional treatment of solid boundaries, a solid wall is assumed to be located half 

way between the lattice nodes, and molecules traveling toward the wall are bounced back at the 

wall and return to the same node. Consequently, the distribution function in the left direction is the 

same as that in the right direction before streaming. The accuracy of this scheme is only 1st order. 

In the present study, we use the 2nd order accurate scheme proposed by Lallemand and Luo.23 This 

scheme is based on a simple bounce-back treatment and interpolations. If the distance from the 

first fluid node to the solid boundary, q, is less than half the lattice space, the computational 

quantities are interpolated before propagation and bounce-back collision. If 𝑞 is greater than the 

half-lattice space, interpolation is conducted after propagation and bounce-back collision. The 
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momentum exerted by the moving boundary is treated as an extra term in the bounce-back 

distribution function. 

The moment propagation method developed by Frenkel and Ernst,27 Lowe and Frenkel,28 

and Merks et al.29 is used to solve for temperature. In this method, a scalar quantity 𝑇 is released 

in the lattice and a scalar concentration field variable is propagated at the continuum level for each 

scalar using the particle distribution function 𝑓𝛼(𝐱, 𝑡). 

𝑇(𝐱, 𝑡 + 𝛿𝑡) = ∑ 𝑃𝛼(𝐱 − 𝐞𝛼𝛿𝑡, 𝑡 + 𝛿𝑡)𝛼 + Ʌ𝑇(𝐱, 𝑡)    (9) 

where 

𝑃𝛼(𝐱 − 𝐞𝛼𝛿𝑡, 𝑡 + 𝛿𝑡) = [
𝑓̂𝛼(𝐱−𝐞𝛼𝛿𝑡,𝑡+)

𝜌(𝐱−𝐞𝛼𝛿𝑡,𝑡)
− 𝑤𝛼Ʌ]𝑇(𝐱 − 𝐞𝛼𝛿𝑡, 𝑡)  (10) 

𝑓𝛼(𝐱 − 𝐞𝛼𝛿𝑡, 𝑡+)  is the distribution function of post-collision but before-streaming, which 

transports scalar from the neighboring nodes 𝐱 − 𝐞𝛼𝛿𝑡 to the node 𝐱 between 𝑡 and 𝑡 + 𝛿𝑡, and  

Ʌ = 1 − 6 𝜀 𝑐𝛿𝑥⁄         (11) 

and 𝜀 is the scalar diffusivity. 

We first ran the simulation over 5 structural elements in the streamwise direction with cases 

with 𝑅𝑒𝑆 = 200. The results demonstrated that the spatial periodicity of flow pattern is the same 

as the streamwise length of the structural element. Therefore, in the subsequent large-scale study 

we only simulate the flow within the cuboid domain including one structural element (indicated 

by dashed lines in Fig. 1(b)). Periodic conditions are used in the streamwise and spanwise 

directions. The total number of computational grid cells is 100 200 140  , and 24 grid cells are 

used to resolve the thickness of the herringbone ridge. The computational domain is decomposed 
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into 56 subdomains. The Message Passing Interface (MPI) technique is used to enable parallel 

computing. Analysis is conducted when the flow has reached steady state.  

The LBM solver has been extensively validated in previous studies, as described in Wang 

et al.22, 30-32 For the present study, we also consider heat transfer in a lid-driven cavity flow in a 

cube with side length L as a further validation. The lid moves at a constant velocity, 𝑈𝑙𝑖𝑑 . 

Temperature is fixed at 𝑇𝑙𝑖𝑑  on the moving lid and at 0 on the side and bottom walls. Two 

governing nondimensional parameters are the Reynolds number 𝑅𝑒𝑐𝑎𝑣𝑖𝑡𝑦 defined as 𝑅𝑒𝑐𝑎𝑣𝑖𝑡𝑦 ≡

𝑈𝑙𝑖𝑑𝐿 𝜈⁄ , where 𝜈 is the kinetic viscosity of the fluid and the Prandtl number 𝑃𝑟 is defined as 𝑃𝑟 ≡

𝜈 𝛼⁄ , where 𝛼 is thermal diffusivity. The case with 𝑅𝑒𝑐𝑎𝑣𝑖𝑡𝑦 = 1 and 𝑃𝑟 = 1 are simulated with 

both the present LBM solver and the open-source code Gerris.33,34 The grid dimensions are 

100 × 100 × 100 in both simulations. Figure 2 shows a comparison of the normalized vertical 

velocity (𝑢̃𝑧 ≡ 𝑢𝑧 𝑈𝑙𝑖𝑑⁄ ) and temperature (𝜙̃ ≡ 𝑇 𝑇𝑙𝑖𝑑⁄ ) on the middle xz plane and along the central 

streamwise axis. The two results are in good agreement, with a maximum relative error of 3% for 

point-to-point comparisons for velocity and temperature. 

To examine the grid sensitivity of the results, simulations were conducted with two grids 

of different resolutions. The number of grid points over one ridge thickness of the herringbone 

structures is 24 and 36, respectively. Figure 3 shows the profiles of the horizontally averaged 

streamwise velocity and scalar concentration for 𝑅𝑒𝑆 = 200 and 𝑆𝑐 = 50, respectively. Excellent 

agreement between the coarse and fine grid is obtained; the maximum deviation between the two 

grids is less than 2%. The present results were obtained, therefore, using the coarse grid. 

4. Results and Discussion 
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Scalar transport from the top plane to the bottom plane relies on both diffusion and the 

advection induced by the herringbone structures, and advective transport is dominant when the 

Reynolds and Schmidt numbers are large. Our focus is on the identification of the mechanisms for 

the enhancement of scalar transfer by herringbone structures. 𝑅𝑒𝑆 = 200  was selected as a 

prototypical example to analyze the flow behavior and scalar transfer characteristics. 

Figure 4 shows the patterns of flow characteristics for 𝑅𝑒𝑆 = 200. Taking advantage of the 

periodicities in the streamwise and spanwise directions, only the flow within the cuboid domain 

including a single structural element was simulated. The patterns containing multiple elements 

shown in the figure were generated by concatenating the results from the simulation of a single 

element. Typical streamlines over herringbone structures are shown in Fig. 4(a). In the steady state, 

the streamlines coincide with the trajectories of fluid particles, illustrating the path of scalar 

transport by flow advection. The color represents the level of scalar concentration at 𝑆𝑐 = 50. The 

red and blue colors indicate higher and lower concentrations, respectively. The streamline pattern 

shows how the flow transports a scalar from the bulk flow to the surfaces in the herringbone 

grooves for absorption: The fluid with higher scalar concentration flows downward in the area 

above the streamwise rows of backward groove tips (BGT). Then the flow is entrapped in the 

grooves at the BGT, and recirculates within the grooves. At the forward groove tips (FGT) the 

fluid flows upward and leaves the groove with lower scalar concentration. This flow motion 

provides the fluid contact with the surfaces of the herringbone ridges and the bottom surface 

between ridges, and enhances the heat and mass exchange between the bulk flow and the surface 

geometry.  

Figure 4(b) shows iso-surfaces of the vertical velocity at 𝑢̃𝑧 = ±0.005. Since the flow is 

disturbed in the lower region, the magnitude of 𝑢̃𝑧 is larger than in the upper region. As shown in 
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the figure, a region with negative 𝑢̃𝑧 is generated above every BGT and a region with positive 𝑢̃𝑧 

is generated above every FGT. The iso-surfaces of 𝑢̃𝑧 are consistent with the streamline patterns 

in Fig. 4(a). Figure 4(c) shows the corresponding 2D iso-contours of vertical velocity averaged 

over the streamwise coordinate, 〈𝑢̃𝑧〉𝑥 on the cross section ((𝑦̃, 𝑧̃) plane). The variable averaged 

over the streamwise coordinate is defined as 

〈𝛼̃〉𝑥(𝑦̃, 𝑧̃) ≡
1

𝐿̃𝑥
∫ 𝛼̃(𝑥̃, 𝑦̃, 𝑧̃)𝑑𝑥̃
𝐿̃𝑥

      (12) 

where 𝛼̃(𝑥̃, 𝑦̃, 𝑧̃) is the variable of interest, and 𝐿̃𝑥 is the length of a complete herringbone element 

in the streamwise direction. The iso-surfaces of 𝑢̃𝑧 in Fig. 4(b) and iso-contours of 〈𝑢̃𝑧〉𝑥 in Fig. 

4(c) describe the patterns of vertical velocity of the fluid that has been disturbed by the herringbone 

structures. Compared with the velocity at the top plane, the vertical velocity around the 

herringbone structures is much smaller. This implies that the pitch of the helix is much larger than 

the height of flow passage (𝐻 − ℎ). It is well known that each unit of staggered herringbone 

structures generates a pair of counter-rotating tubular eddies extending in the streamwise direction 

in the upper region, and the fluid particle flows along a helical trajectory in the tubular eddies.2, 4 

The helical pattern can be inferred from the 2D streamlines, based on the streamwise averaged 

velocity components, 〈𝑢̃𝑦〉𝑥 and 〈𝑢̃𝑧〉𝑥, as shown in Fig. 4(d). The closed streamlines define the 

recirculating motions in the (𝑦̃, 𝑧̃) plane of the helix. This continuous upward and downward flow 

motion enhances the scalar transport in the vertical direction. 

To quantitatively compare the flow characteristics under different conditions, we define 

the horizontally averaged quantities as, 

〈𝛽〉(𝑧̃) ≡
1

𝐴
∫ 𝛽(𝑥̃, 𝑦̃, 𝑧̃)𝑑𝑥̃𝑑𝑦̃
𝐴

       (13) 
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where 𝛽(𝑥̃, 𝑦̃, 𝑧̃)  is the quantity of interest that varies with spatial coordinates and 𝐴  is the 

horizontal area occupied by fluid at different vertical locations on a herringbone element. The 

averaged variable 〈𝛽〉 is a function of the vertical coordinate 𝑧̃ only. The horizontally averaged 

vertical velocity 〈𝑢̃𝑧〉 represents the net flux of fluid (flow per unit area) through the horizontal 

plane. As a result of mass conservation, 〈𝑢̃𝑧〉 is zero for the present problem. To quantify the wall-

normal advective transfer capability, we define the effective upward and downward velocity as 

𝑢̃𝑧
+ ≡ {

𝑢̃𝑧 , 𝑖𝑓 𝑢̃𝑧 > 0
0,   𝑖𝑓 𝑢̃𝑧 < 0

    and    𝑢̃𝑧
− ≡ {

0, 𝑖𝑓 𝑢̃𝑧 > 0
𝑢̃𝑧 , 𝑖𝑓 𝑢̃𝑧 < 0

    (14) 

In this study, we use 𝑢̃𝑧
− to deal with the heat and mass transfer from the bulk flow to the bottom 

surface. 

Figure 5 plots the profiles of horizontally averaged streamwise velocity 〈𝑢̃𝑥〉  and the 

effective downward velocity 〈𝑢̃𝑧
−〉 at 𝑅𝑒𝑆 = 20 and 200. The horizontal dashed line indicates the 

height of the herringbone structures. The curves of 〈𝑢̃𝑥〉 shows little difference between 𝑅𝑒𝑆 = 20 

and 200, decreasing roughly linearly above the ridge tips (𝑢̃ > 1), from 1 at the upper plane to a 

small value close to 0 at the ridge tips. In the grooves (𝑢̃ < 1), 〈𝑢̃𝑥〉 remains small. The roughly 

linear variation of 〈𝑢̃𝑥〉 above the grooves suggests that the resistance of the herringbone structures 

is close to that of a smooth plane. The effective resistance of the herringbone structures is related 

to both structure geometry and fluid behavior. That is, the gaps between the ridges decrease the 

horizontal wall area at ridge-tip height, and so decrease the resistance, yet the vertical flow 

advection (Fig. 4) increases the flow shear stress on the top surfaces of the ridges. For larger 

Reynolds numbers, this increase is larger. In steady state, the resistance caused by the herringbone 

structures is the same as the shear force on the tops of the ridges. For the present geometry, the 
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ratio of the resistance over the herringbone structures to that over smooth plane at ridge-tip height 

is 0.97 and 1.02 for 𝑅𝑒𝑆 = 20 and 200, respectively.  

The effective downward velocity 〈𝑢̃𝑧
−〉 curves (Fig. 5b) are different for 𝑅𝑒𝑆 = 20 and 200, 

which suggests that the influence of Reynolds number primarily occurs with the vertical velocity 

component. The curves of 〈𝑢̃𝑧
−〉 have two peaks, one above the herringbone ridge tips and the other 

below, corresponding to the consecutive upward and downward flow motions in the helix in the 

upper region and the flow recirculation in the grooves, respectively. Close to the herringbone 

structures, the velocity magnitude is larger, so the upper peak is close to the herringbone tips. The 

magnitude of 〈𝑢̃𝑧
−〉 largely indicates the advective scalar transport capability of the two flows. As 

shown in the figure, the value of |〈𝑢̃𝑧
−〉| for 𝑅𝑒𝑆 = 20 is larger at the upper peak and smaller at the 

lower peak, suggesting that the upper bulk flow at 𝑅𝑒𝑆 = 20 has greater capability for scalar 

transport to the herringbone top surfaces and to the recirculating flow in the grooves. 

In the grooves, the situation is just the opposite. The flow at 𝑅𝑒𝑆 = 200 shows greater 

capability for scalar transport to the bottom surface than the flow at 𝑅𝑒𝑆 = 20. This is because the 

flow recirculation in the grooves is more active at larger Reynolds numbers, while at smaller 

Reynolds number the greater viscous effect in the upper region enables the disturbance from the 

herringbone structures to propagate further downstream. The overall heat and mass transfer 

process depends on the coupling of these two mechanisms through a complex relationship, but 

generally the flows at larger Reynolds numbers have a stronger advective scalar transport 

capability. 

Scalar transport also depends on Schmidt number. For heat transfer, the corresponding 

characteristic number is the Prandtl number. Here we use the flow at 𝑅𝑒𝑆 = 200 to analyze the 



13 
 

effect of the Schmidt number. Figure 6 shows the patterns of scalar concentration for 𝑆𝑐 = 1 and 

50. At 𝑆𝑐 = 1, the diffusion effect is so strong that the diffusive scalar transport dominates the 

advective scalar transport. The 3D iso-surfaces and 2D contours on two typical cross sections 

shown in Fig. 6(a) suggest that the scalar concentration ϕ changes roughly linearly with the vertical 

coordinate in the flow above the herringbone structure. The herringbone ridges cause only a slight 

disturbance to the distribution of ϕ. In the grooves, ϕ is low. This pattern means that the majority 

of the scalar is absorbed at the top surface. Further, the advection of the recirculating flow is the 

primary means for scalar transport in the grooves, and the reduced advective scalar transport of 

the recirculating flow at lower 𝑆𝑐 cannot effectively transport a scalar to the bottom surfaces in the 

grooves. 

 At 𝑆𝑐 = 50, the diffusive scalar transport is reduced and the advective transport becomes 

dominant. A comparison of Fig. 6(b) with Fig. 4 suggests that the flow rises, with lower scalar 

concentration, along the streamwise FGT rows, and falls, with higher scalar concentration, along 

the streamwise BGT rows. In the grooves, the recirculating flow helps to transport the scalar to the 

bottom surfaces and the side walls of the herringbone ridges. In the top region, the flow acquires 

the scalar from the top plane through scalar diffusion. These consecutive steps articulate the whole 

process of scalar transport from the top plane to the bottom surfaces and ridge surfaces. The 

comparison between Figs. 6(a) and 6(b) confirms the conclusion that the advective scalar transfer 

primarily takes effect at larger Schmidt numbers.  

Figure 7 shows the advective scalar transport flux in the vertical direction 𝑢̃𝑧𝜙 for 𝑆𝑐 = 1 

and 50 at 𝑅𝑒𝑆 = 200. The 3D iso-surfaces and 2D iso-contours of 𝑢̃𝑧𝜙 are consistent with the 

patterns of vertical velocity 𝑢̃𝑧 shown in Fig. 4. Along the steamwise FGT rows, the values of 𝑢̃𝑧𝜙 

are positive, indicating an upward advective scalar flux. Along the BGT rows, the values of 𝑢̃𝑧𝜙 
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are negative, indicating a downward advective scalar flux. At 𝑆𝑐 = 1, the stronger diffusion effect 

reveals tubular structures in the iso surfaces that extend in the streamwise direction on each row 

of the herringbone ridges. At 𝑆𝑐 = 50 , the enhanced advection effect creates complex fine 

structures on the iso-surfaces. A comparison of the 2D contours suggests that at 𝑆𝑐 = 1 the value 

of 𝑢̃𝑧𝜙 in the upward flow is larger and the absolute value of 𝑢̃𝑧𝜙 in the downward flow is smaller 

compared with the values at 𝑆𝑐 = 50. This implies that the net efficiency of advective scalar 

transport from the top plane to the bottom region is lower at 𝑆𝑐 = 1. As a result, the total scalar 

flux is lower. 

The scalar transport from the top plane to the bottom region relies on both scalar diffusion 

and the flow advection induced by the herringbone structures. In nondimensional form, the 

diffusive and advective scalar fluxes, 𝑞̃𝑑𝑖𝑓(𝑧̃) and 𝑞̃𝑎𝑑𝑣(𝑧̃), are calculated as, 

𝑞̃𝑑𝑖𝑓(𝑧̃) =
1

𝑃𝑒
〈
𝜕𝜙

𝜕𝑧
〉         (15) 

𝑞̃𝑎𝑑𝑣(𝑧̃) = −〈𝑢̃𝑧𝜙〉         (16) 

where 𝑃𝑒 is the Peclet number. The total flux 𝑞̃𝑡𝑜𝑡 is the sum of 𝑞̃𝑑𝑖𝑓(𝑧̃) and 𝑞̃𝑎𝑑𝑣(𝑧̃), 

𝑞̃𝑡𝑜𝑡 =
1

𝑃𝑒
〈
𝜕𝜙

𝜕𝑧
〉 (𝑧̃) − 〈𝑢̃𝑧𝜙〉(𝑧̃)       (17) 

Both 𝑞̃𝑑𝑖𝑓(𝑧̃) and 𝑞̃𝑎𝑑𝑣(𝑧̃) are functions of the vertical coordinate 𝑧̃, yet the total scalar flux 𝑞̃𝑡𝑜𝑡 

is independent of 𝑧̃ in the steady state due to the conservation of scalar flux. 

To quantitatively compare the scalar transport characteristics of the flows at various 𝑆𝑐 at 

𝑅𝑒𝑆, Figs. 8 and 9 show the profile of the horizontally averaged scalar concentration 〈𝜙〉, the 

gradient of scalar concentration in the vertical direction 〈𝜕𝜙 𝜕𝑧̃⁄ 〉, and the ratio of advective scalar 

flux to total scalar flux |〈𝑢̃𝑧𝜙〉| 𝑞̃𝑡𝑜𝑡⁄  for various 𝑆𝑐 at 𝑅𝑒𝑆 = 20 and 200, respectively. 〈𝜕𝜙 𝜕𝑧̃⁄ 〉 
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quantifies the diffusive scalar transport in the vertical direction, and |〈𝑢̃𝑧𝜙〉| 𝑞̃𝑡𝑜𝑡⁄  represents the 

fraction of the advective scalar flux in the total scalar flux. For the purposes of comparison, the 

curves of scalar transport with pure diffusion are also included. The pure diffusion results were 

obtained by simulating the scalar transport in a quiescent fluid using the same numerical method. 

For both 𝑅𝑒𝑆 , the variations of 〈𝜙〉 , 〈𝜕𝜙 𝜕𝑧̃⁄ 〉  and |〈𝑢̃𝑧𝜙〉| 𝑞̃𝑡𝑜𝑡⁄  with vertical coordinate 𝑧̃ 

demonstrate similar dependence on 𝑆𝑐. As 𝑆𝑐 increases, the advection effect gets stronger, and the 

curves deviate more from those of pure diffusion. For a given 𝑆𝑐, higher 𝑅𝑒𝑆 leads to a stronger 

advection effect and more deviation amongst the curves. For pure diffusion, 〈𝜙〉  is linearly 

dependent on 𝑧̃, that is, 〈𝜕𝜙 𝜕𝑧̃⁄ 〉 is a constant above the herringbone structures and so maintains 

a constant scalar flux in the vertical direction. The advective scalar flux 〈𝑢̃𝑧𝜙〉 is zero everywhere. 

At nonzero Reynolds numbers, the disturbances produced by the herringbone structures cause local 

mixing above the ridges, which not only decreases the vertical gradient of 〈𝜙〉 in the local area, 

but also provides an advective scalar transfer mechanism. With the increase in 𝑆𝑐, the advection 

effect becomes stronger and the gradient of 〈𝜙〉 becomes smaller.  

For 𝑅𝑒𝑆 = 20, as shown in Fig. 8, with the increase in 𝑆𝑐 the curve of 〈𝜙〉 becomes more 

vertical at about 𝑧̃ = 1.5, and the curve of 〈𝜕𝜙 𝜕𝑧̃⁄ 〉 curves leftward and forms a peak with the 

minimum 〈𝜕𝜙 𝜕𝑧̃⁄ 〉. At the same time, the curve of |〈𝑢̃𝑧𝜙〉| 𝑞̃𝑡𝑜𝑡⁄  curves rightward and forms a 

peak with the maximum |〈𝑢̃𝑧𝜙〉| 𝑞̃𝑡𝑜𝑡⁄ . This means that the fraction of advective scalar flux of the 

total scalar flux increases with 𝑆𝑐 . At the top plane (𝑧̃ = 3), scalar transport occurs by pure 

diffusion because the vertical velocity is 0 there. When 𝑆𝑐 increases from 1 to 50, the curve slope 

of 〈𝜙〉, that is, the value of 〈𝜕𝜙 𝜕𝑧̃⁄ 〉 at the top plane, also increases. This means that the total scalar 

flux increases with 𝑆𝑐 as a result of enhanced advective scalar transfer. Since the passive scalar is 

absorbed at both the side walls of the herringbone ridges and the bottom surfaces, the curve of 〈𝜙〉 
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is not a straight line in the grooves (𝑧̃ < 1) for pure diffusion. At 𝑅𝑒𝑆 = 20, the flow advection is 

weak in the grooves, so the curves of 〈𝜙〉 and 〈𝜕𝜙 𝜕𝑧̃⁄ 〉 do not change much with 𝑆𝑐 when 𝑧̃ < 1, 

yet the curves of |〈𝑢̃𝑧𝜙〉| 𝑞̃𝑡𝑜𝑡⁄  still show the enhancement of advective scalar transport in the 

grooves.  

For 𝑅𝑒𝑆 = 200, the curves shown in Fig. 9 demonstrate a strong advection effect due to 

the decrease in the kinematic viscosity of the fluid – except the curve for 𝑆𝑐 = 1. As shown in the 

figure, the curves of 〈𝜙〉, 〈𝜕𝜙 𝜕𝑧̃⁄ 〉, and |〈𝑢̃𝑧𝜙〉| 𝑞̃𝑡𝑜𝑡⁄  for 𝑆𝑐 = 1 almost coincide with those of 

pure diffusion. However, when 𝑆𝑐 increases to 10, the value of 〈𝜙〉 decreases and the curve of 〈𝜙〉 

is almost vertical above the herringbone structures. Correspondingly, the curve of 〈𝜕𝜙 𝜕𝑧̃⁄ 〉 has a 

minimum value close to 0 at about 𝑧̃ = 1.5, and the curve of |〈𝑢̃𝑧𝜙〉| 𝑞̃𝑡𝑜𝑡⁄  shows a maximum 

value close to 1 at that point. This means that advective scalar transfer has become the dominant 

means of scalar transport.  

As 𝑆𝑐 increases from 10 to 50, the value of 〈𝜙〉 further decreases above the herringbone 

structures, and the area of small 〈𝜕𝜙 𝜕𝑧̃⁄ 〉  (close to 0) expands both upward and downward. 

Correspondingly, the area of large |〈𝑢̃𝑧𝜙〉| 𝑞̃𝑡𝑜𝑡⁄  (close to 1) also expands. The advective scalar 

transfer dominates in the majority of the upper flow. At the top plane, scalar transport relies on 

pure diffusion. As 𝑆𝑐 increases from 1 to 50, the slope of the curve of 〈𝜙〉, that is, the value of 

〈𝜕𝜙 𝜕𝑧̃⁄ 〉 at the top plane, also increases, indicating an increase in total scalar flux from the top 

plane to the flow. In the grooves, 〈𝜙〉 smoothly decreases from a small value at ridge tips to 0 at 

the bottom surface for pure diffusion, and the curve slope of 〈𝜙〉, that is, the value of 〈𝜕𝜙 𝜕𝑧̃⁄ 〉 is 

close to 0 at the bottom surface. This suggests that only a small fraction of scalar is transported to 

the bottom surface through pure diffusion. At 𝑆𝑐 = 1, the scalar transfer characteristics are almost 

the same as those for pure diffusion. When 𝑆𝑐 increases to 10, the curve of 〈𝜙〉 becomes vertical 
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below the ridge tips, and the value of 〈𝜕𝜙 𝜕𝑧̃⁄ 〉 decreases toward 0. Correspondingly, the curve of 

|〈𝑢̃𝑧𝜙〉| 𝑞̃𝑡𝑜𝑡⁄  shows apparent increase in |〈𝑢̃𝑧𝜙〉| 𝑞̃𝑡𝑜𝑡⁄  in that area. As 𝑆𝑐 further increases, the 

flow recirculation in the grooves becomes stronger, further decreasing the value of 〈𝜕𝜙 𝜕𝑧̃⁄ 〉 and 

increasing the value of |〈𝑢̃𝑧𝜙〉| 𝑞̃𝑡𝑜𝑡⁄  below the ridge tips. At the bottom surface (𝑧̃ = 0), the 

increase in 𝑆𝑐 leads to an increase in 〈𝜕𝜙 𝜕𝑧̃⁄ 〉, i.e., the scalar flux transported to the bottom surface 

increases.  

To measure the enhancement of scalar transport from the top plane to the herringbone 

surfaces and bottom plane, we compare the total scalar flux in the presence of herringbone 

structures with that of a smooth bottom plane. Scalar transport in laminar flows between smooth 

planes is by pure diffusion. We select two distances 𝐻𝑠𝑚𝑜 between the top and bottom smooth 

planes. The first, 𝐻̃𝑠𝑚𝑜 = 3ℎ̃, corresponds to the case in which the top and bottom planes are at 

the same positions as those of the cases with herringbone structures. The second, 𝐻̃𝑠𝑚𝑜 = 2ℎ̃, 

corresponds to the case in which the top plane is at the same position as that considered in this 

study and the bottom plane is at the tips of the herringbone structures. The nondimensional scalar 

fluxes between the smooth planes are calculated as, 

𝑞̃𝑠𝑚𝑜 = (𝜙0 − 0) 𝐻̃𝑠𝑚𝑜⁄ = 1 3⁄  when  𝐻̃𝑠𝑚𝑜 = 3ℎ̃    (18) 

𝑞̃𝑠𝑚𝑜 = (𝜙0 − 0) 𝐻̃𝑠𝑚𝑜⁄ = 1 2⁄  when  𝐻̃𝑠𝑚𝑜 = 2ℎ̃    (19) 

Figure 10 shows the ratio of total scalar flux with herringbone structures to those with the 

smooth bottom wall 𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄  versus Schmidt number 𝑆𝑐 in logarithm scales. Compared with the 

smooth planes at 𝐻̃𝑠𝑚𝑜 = 3ℎ̃, the herringbone structures significantly enhance the scalar transport 

by reducing the transfer distance, increasing surface area, and inducing flow advection in the 

vertical direction. As a result, 𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄  is always greater than 1, as shown in Fig. 10(a).  
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For pure diffusion, which is equivalent to 𝑅𝑒𝑆 = 0, 𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄  denoted as (𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄ )𝑑𝑖𝑓, 

is independent of 𝑆𝑐 and remains at a value about 1.43. This value is determined by the distance 

between the top and bottom planes and the geometric parameters of the herringbone structures. 

For 𝑅𝑒𝑆 > 0, 𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄  increases with both 𝑆𝑐 and 𝑅𝑒𝑆 from the pure diffusion value. At 𝑅𝑒𝑆 =

20, the scalar transport is dominated by diffusion from 𝑆𝑐 = 0 to a critical Schmidt number 𝑆𝑐𝑐𝑟𝑖𝑡 

around 10, after which 𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄  increases monotonically with 𝑆𝑐 due to the enhancement from 

flow advection. It is apparent that 𝑆𝑐𝑐𝑟𝑖𝑡 decreases with the increase in 𝑅𝑒𝑆. At 𝑅𝑒𝑆 = 100 and 

200, 𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄  is close to (𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄ )𝑑𝑖𝑓  when 𝑆𝑐 = 1 . After that, 𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄  increases 

remarkably with the increase in 𝑆𝑐. Note that in logarithm scale the curves appear as straight lines 

and the slopes are almost the same when 𝑆𝑐 ≥ 10 for 𝑅𝑒𝑆 = 100 and 200. This implies that the 

variation of 𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄  follows a power law on 𝑆𝑐 when advective scalar transport dominates, and 

the exponent of 𝑆𝑐 is independent of 𝑅𝑒𝑆.  

For the flows considered in this study, it is found that the exponent approaches eventually 

to a value close to 0.4 as 𝑆𝑐 increases. Figure 10(b) shows the enhancement of scalar transfer by 

the herringbone structures compared with the flow over smooth planes with 𝐻̃𝑠𝑚𝑜 = 2ℎ̃. In this 

comparison, the herringbone structures increase the scalar transport distance from the top plane to 

the herringbone surfaces and bottom planes, so 𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄  becomes less than 1 for pure diffusion. 

However, with the increase in 𝑆𝑐 and 𝑅𝑒𝑆, the strengthened advection effect not only offsets the 

reduction of scalar transfer caused by increased transport distance, but also causes a significant 

increase in 𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄ . Since 𝑞̃𝑠𝑚𝑜  is independent of 𝑆𝑐  and 𝑅𝑒𝑆 , the enhancement of scalar 

transport, 𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄ , can be written in a unified form, 

𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄ = 𝑓(𝑅𝑒𝑆, 𝑆𝑐, 𝛄)       (20) 
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where 𝛄 is a vector of the geometric parameters, such as the distance between the two planes and 

the height of herringbone structures, and 𝑓(𝑅𝑒𝑆, 𝑆𝑐, 𝛄)  is a function of 𝑅𝑒𝑆 , 𝑆𝑐  and 𝛄 . The 

variation of 𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄  with 𝑆𝑐  shown in Fig. 10 suggests that 𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄  has a power law 

relationship with 𝑆𝑐 , with an exponent of 0.4 when advective scalar transport takes effect. 

Therefore, Eqn. (20) can be further written as, 

𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄ = 𝑔(𝑅𝑒𝑆, 𝛄)𝑆𝑐
0.4       (21) 

where 𝑔(𝑅𝑒𝑆, 𝛄) is a function of 𝑅𝑒𝑆 and 𝛄. For turbulent heat transfer, it has been found that the 

Nusselt number 𝑁𝑢 , a nondimensional parameter characterizing the heat transfer rate, can be 

expressed as the Dittus-Boelter equation,35  

𝑁𝑢 = 0.023𝑅𝑒0.8𝑃𝑟0.4        (22) 

In this expression, the exponent of 𝑃𝑟 is 0.4, which is the same as that in Eq. (21).  

To further explore the dependence of scalar transfer rate on 𝑅𝑒𝑆 and 𝑆𝑐, we select the data 

points at 𝑆𝑐 = 10, 30 and 50 from Fig. 10(a) and plot 𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄  versus 𝑅𝑒𝑆 in logarithm scale in 

Fig. 11. To compare with the Dittus-Boelter equation, we include 𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄ ∝ 𝑅𝑒0.8. As shown 

in the figure, the curves of the three Schmidt numbers exhibit almost the same slopes at every 𝑅𝑒𝑆 

except in the lower left region around 𝑅𝑒𝑆 = 20  and 𝑆𝑐 = 10 , where the scalar transport is 

dominated by diffusion. The curve slopes asymptotically approach the slope of 𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄ ∝ 𝑅𝑒0.8 

as 𝑅𝑒𝑆 increases. While the range of 𝑅𝑒𝑆 considered in this study is limited, it is almost certain that 

the dependence of scalar transport on 𝑆𝑐 will become a power law as 𝑅𝑒𝑆 further increases, with 

the exponent close to 0.8. Once the power law relationship is reached, the expression of 𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄  

given in Eqn. (21) could be further decomposed as, 

𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄ = ℎ(𝛄)𝑅𝑒𝑆
𝑚𝑆𝑐0.4       (23) 
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where 𝑚 is a value close to 0.8. This suggests that when 𝑅𝑒𝑆 is large enough, the heat and mass 

transfer rates also have a power law relationship with 𝑅𝑒𝑆, and the effects of geometric parameters 

𝛄, Reynolds number 𝑅𝑒𝑆, and Schmidt number 𝑆𝑐 are decoupled. The scalar transfer rate can be 

expressed in the general form as, 

𝑞̃𝑡𝑜𝑡 = 𝑓(𝑅𝑒𝑆, 𝑆𝑐, 𝛄)
𝑎𝑑𝑣.  𝑑𝑜𝑚 
⇒       𝑔(𝑅𝑒𝑆, 𝛄)𝑆𝑐

0.4
𝑙𝑎𝑟𝑔𝑒 𝑅𝑒𝑆
⇒      𝑐(𝛄)𝑅𝑒𝑆

𝑚𝑆𝑐0.4  (24) 

where 𝑚 ≈ 0.8. (‘adv. dom.’ indicates the advection-dominant regime). 

If the scalar transfer rates from the numerical simulations are fitted within the finite range 

of 𝑅𝑒𝑆 to the power law relationship with the least square method, we obtain, 

𝑞̃𝑡𝑜𝑡 = 𝑐(𝛄)𝑅𝑒𝑆
0.42𝑆𝑐0.4        (25) 

The exponent of 𝑅𝑒𝑆 is 0.42, smaller than that in the Dittus-Boelter equation.  

The Peclet number, which is defined as the product of the Reynolds and Schmidt numbers, 

is another important nondimensional parameter characterizing scalar transport. Figure 12 shows 

the enhancement of scalar transfer 𝑞̃𝑡𝑜𝑡 𝑞̃𝑠𝑚𝑜⁄  versus Peclet number 𝑃𝑒  for the two 𝐻̃𝑠𝑚𝑜 . As 

shown in the figure, all the curves demonstrate a power law relationship with 𝑃𝑒 in the logarithm 

scale when 𝑃𝑒 increases above a critical value around 200. The curves at different values of 𝑅𝑒𝑆 

group together and form a dense cluster of curves. The curve slopes are roughly the same as that 

of 𝑃𝑒0.4. If we use Eqn. (24) to approximate the scalar transport rate in the range considered in 

this study, the expression can be rearranged as 

𝑞̃𝑡𝑜𝑡 = 𝑐(𝛄)𝑅𝑒𝑆
0.02𝑃𝑒0.4        (26) 
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The term 𝑅𝑒𝑆
0.02 , that is, the Reynolds number effect, causes deviation among the curves at 

different 𝑅𝑒𝑆 values, but for the 𝑅𝑒𝑆 in this study, 𝑅𝑒𝑆
0.02 ≈ 1, the curves are close. Therefore, the 

scalar transport rate can be roughly estimated by 

𝑞̃𝑡𝑜𝑡 = 𝑐(𝛄)𝑃𝑒
0.4        (27) 

when 𝑅𝑒𝑆 is not very large. This simplified expression will significantly simplify the estimation 

of heat and mass transfer rate for industrial applications. 

The mechanisms and conclusions presented here also apply to cases with heat and mass 

transfer from the bottom surface to the top plane, with a simple conversion. 

5. Conclusion 

Focusing a simple shear flow over staggered herringbone structures, we have identified the 

mechanisms of heat and mass transfer induced by the transverse flow induced by the repetitive 

herringbone structures. Proposing that the herringbone structures enhance heat and mass transfer 

through lateral convection, we identify the basic flow characteristics induced by the structures, and 

elaborate the power-law dependence of heat or mass transfer rate on Schmidt and Reynolds 

numbers. This work provides a new idea for the design and optimization of microfluidic systems 

involving heat and mass transfer. 

Through high-fidelity numerical simulation, two basic flow motions are identified, which 

provide the fundamental mechanisms for heat and mass transfer through flow advection. The first 

is a spiral flow oscillation between the top plane and the herringbone structures, which transports 

heat and mass from the top plane (or bulk flow) to the regions around herringbone tips. The second 

is flow recirculation in the grooves between the ridges, which transports heat and mass from the 
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areas around the herringbone tips to the side walls of herringbone ridges and the bottom surfaces. 

These two basic flow motions couple together to form a complex transport mechanism. 

When advective heat and mass transfer takes effect at relatively larger Reynolds and 

Schmidt numbers, the dependence of the total transfer rate on the Schmidt number follows a power 

law; the exponent is the same as that in the well-known Dittus-Boelter equation for turbulent heat 

transfer. As the Reynolds number increases, the dependence of total transfer rate on the Reynolds 

number also approaches a power law, and the exponent is close to that in the Dittus-Boelter 

equation. When the power law on Reynolds number is reached, the dependence on geometric 

parameters, Reynolds numbers, and Schmidt numbers can be decoupled. This discovery will 

facilitate the development of physics-based models for a wide range of fundamental research and 

industrial applications. 
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(a) (b) 

Fig. 1. Physical model of heat and mass transfer in a simple shear flow with herringbone structures on bottom 

wall. (a) 3D view, and (b) top view. The dashed rectangle indicates the domain of numerical simulation. 
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Fig. 2. Vertical velocity (𝑢̃𝑧) and temperature (𝜙̃) using the present LBM method (solid lines) and the 

open-source code Gerris (dashed lines). (a) iso-contours of 𝑢̃𝑧 on the middle xz plane, (b) iso-contours of 

𝜙̃ on the middle xz plane, and (c) profiles of 𝑢̃𝑧 and 𝜙̃ along the central streamwise axis. 

(a) (b) (c) 
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Fig. 3. Effect of grid resolution on horizontally 

averaged streamwise velocity 〈𝑢̃𝑥〉 and scalar 

concentration 〈𝜙〉 at 𝑅𝑒𝑆 = 200 and 𝑆𝑐 = 50. Np 

is the number of grid points over one herringbone 

ridge. 



28 
 

 

 

 

 

 

 

 

(b) 

B B B F F 

B B B F F 

(a) 

(c) 

(d) 

 

Fig. 4. Flow patterns induced by herringbone structures in a simple shear flow at 𝑅𝑒𝑆 = 200. (a) typical 

streamtraces trapped in the grooves of herringbone structures, (b) iso-surfaces of vertical velocity at 𝑢̃𝑧 =
±0.005, (c) 2D contours of vertical velocity averaged over streamwise coordinate 〈𝑢̃𝑧〉𝑥 , and (d) streamline 

patterns based on the streamwise averaged velocity components 〈𝑢̃𝑦〉𝑥 and 〈𝑢̃𝑧〉𝑥 on a cross section. Letters B 

and F in (c) and (d) indicate the positions of backward and forward connecting points of the grooves. 

 



29 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(a) (b) 

Fig. 5. Profiles of horizontally averaged velocity 

components. (a) streamwise velocity 〈𝑢̃𝑥〉, and (b) 

effective downward velocity 〈𝑢̃𝑧
−〉. The horizontal 

dashed line indicates the top of the herringbone ridges. 
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Slice 1 

Slice 2 

Slice 1 

Slice 2 

Sc = 1 Sc = 50 

(a) (b) 

Fig. 6. Patterns of scalar concentration ϕ at 𝑅𝑒𝑆 = 200. (a) 𝑆𝑐 = 1, and (b) 𝑆𝑐 = 50. The sketch shows cross 

sections through the backward and forward connecting points of the grooves. 

 



31 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Slice 1 Slice 1 

Slice 2 Slice 2 

Sc = 1 Sc = 50 

(b) (a) Fig. 7. Patterns of advective scalar flux in vertical direction 𝑢̃𝑧𝜙 at 𝑅𝑒𝑆 = 200. (a) 𝑆𝑐 = 1, and (b) 𝑆𝑐 = 50. 

The slices are at the cross sections through the backward and forward connecting points of the grooves as 

shown in the sketch. 
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(a) (b) (c) 

Fig. 8. Profiles of (a) horizontally averaged scalar concentration 〈𝜙〉, (b) vertical gradient of scalar 

concentration 〈𝜕𝜙 𝜕𝑧̃⁄ 〉, and (c) ratio of advective scalar flux to total scalar flux |〈𝑢̃𝑧𝜙〉| 𝑞̃𝑡𝑜𝑡⁄  at 𝑅𝑒𝑆 = 20. 
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(a) (b) (c) 

Fig. 9. Profiles of (a) horizontally averaged scalar concentration 〈𝜙〉, (b) vertical gradient of scalar 

concentration 〈𝜕𝜙 𝜕𝑧̃⁄ 〉, and (c) ratio of advective scalar flux to total scalar flux |〈𝑢̃𝑧𝜙〉| 𝑞̃𝑡𝑜𝑡⁄  at 𝑅𝑒𝑆 = 200. 
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(a) (b) 

Fig. 10. Ratio of total scalar flux with herringbone structures to that with smooth bottom wall versus 

Schmidt number. (a) 𝐻𝑠𝑚𝑜 = 3ℎ̃, and (b) 𝐻𝑠𝑚𝑜 = 2ℎ̃. ‘dif’ indicates pure diffusion cases. 
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(a) (b) 

Fig. 11. Ratio of total scalar flux with herringbone structures to that with smooth bottom wall versus 

Reynolds number. (a) 𝐻𝑠𝑚𝑜 = 3ℎ̃, and (b) 𝐻𝑠𝑚𝑜 = 2ℎ̃.  
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Fig. 12. Ratio of total scalar transport flux with herringbone structures to that with smooth 

bottom wall versus Peclet number. (a) 𝐻̃𝑠𝑚𝑜 = 3ℎ̃, and (b) 𝐻̃𝑠𝑚𝑜 = 2ℎ̃. 

 

(a) (b) 


