
A Deterministic Almost-Linear Time Algorithm for
Minimum-Cost Flow

Jan van den Brand
School of Computer Science

Georgia Tech
Atlanta, USA

vdbrand@gatech.edu

Rasmus Kyng
Department of Computer Science

ETH Zurich
Zurich, Switzerland

kyng@inf.ethz.ch

Sushant Sachdeva
Department of Computer Science

University of Toronto
Toronto, Canada

sachdeva@cs.toronto.edu

Li Chen
School of Computer Science

Georgia Tech
Atlanta, USA

lichen@gatech.edu

Yang P. Liu
Department of Mathematics

Stanford University
Palo Alto, USA

yangpliu@stanford.edu

Aaron Sidford
Department of Management Science & Engineering

and Department of Computer Science
Stanford University

Palo Alto, USA
sidford@stanford.edu

Richard Peng
School of Computer Science

University of Waterloo
Waterloo, Canada

y5peng@uwaterloo.ca

Maximilian Probst Gutenberg
Department of Computer Science

ETH Zurich
Zurich, Switzerland
maxprobst@ethz.ch

Abstract—We give a deterministic m1+o(1)
time algorithm that

computes exact maximum flows and minimum-cost flows on

directed graphs with m edges and polynomially bounded integral

demands, costs, and capacities. As a consequence, we obtain

the first running time improvement for deterministic algorithms

that compute maximum-flow in graphs with polynomial bounded

capacities since the work of Goldberg-Rao [J.ACM ’98].

Our algorithm builds on the framework of Chen-Kyng-Liu-

Peng-Gutenberg-Sachdeva [FOCS ’22] that computes an optimal

flow by computing a sequence of m1+o(1)
-approximate undirected

minimum-ratio cycles. We develop a deterministic dynamic graph

data-structure to compute such a sequence of minimum-ratio

cycles in an amortized mo(1)
time per edge update. Our key

technical contributions are deterministic analogues of the vertex
sparsification and edge sparsification components of the data-

structure from Chen et al. For the vertex sparsification com-

ponent, we give a method to avoid the randomness in Chen et al.

which involved sampling random trees to recurse on. For the edge

Li Chen was supported by NSF Grant CCF-2106444.
The research leading to these results has received funding from the grant

“Algorithms and complexity for high-accuracy flows and convex optimization”
(no. 200021 204787) of the Swiss National Science Foundation.

Yang P. Liu was supported by NSF CAREER Award CCF-1844855, NSF
Grant CCF-1955039, and a Google Research Fellowship.

Richard Peng was partially supported by NSF CAREER Award CCF-
1846218, and the Natural Sciences and Engineering Research Council of
Canada (NSERC) Discovery Grant RGPIN-2022-03207. Part of this work
was done while at the University of Waterloo.

Sushant Sachdeva was supported by an NSERC Discovery Grant RGPIN-
2018-06398, an Ontario Early Researcher Award (ERA) ER21-16-283, and a
Sloan Research Fellowship.

Aaron Sidford was supported in part by a Microsoft Research Faculty
Fellowship, NSF CAREER Award CCF-1844855, NSF Grant CCF-1955039,
a PayPal research award, and a Sloan Research Fellowship.

sparsification component, we design a deterministic algorithm

that maintains an embedding of a dynamic graph into a sparse

spanner. We also show how our dynamic spanner can be applied

to give a deterministic data structure that maintains a fully

dynamic low-stretch spanning tree on graphs with polynomially

bounded edge lengths, with subpolynomial average stretch and

subpolynomial amortized time per edge update.

Index Terms—Maximum flow, Minimum cost flow, Data struc-

tures, Interior point methods, Convex optimization, Derandom-

ization

See https://arxiv.org/abs/2309.16629 for the full version of
this paper.

I. INTRODUCTION

Given a directed, capacitated graph G = (V,E,u) with n =
|V | nodes, m = |E| edges, and integer capacities u 2 ZE

�0,
the maxflow problem asks to send as much flow as possible on
G from a given source vertex s 2 V to a sink vertex t 2 V \
{s} without exceeding the capacity constraints. This problem
is foundational in combinatorial optimization and algorithm
design. It has been the subject of extensive study for decades,
starting from the works [28, 48, 52, 32] and is a key subroutine
for solving a variety of algorithmic challenges such as edge-
connectivity and approximate sparsest cut (e.g., [45, 56]).

In the standard setting where the capacities are polyno-
mially bounded, a line of work on combinatorial algorithms
culminated in a seminal result of Goldberg and Rao in
1998 [42] which showed that the problem can be solved in
eO(m ·min{m1/2, n2/3}) time. The algorithm which achieved

this result was deterministic and combinatorial; the algorithm
consists of a careful repeated computation of blocking-flows
implemented in nearly linear time using dynamic trees. In-
terestingly, despite advances in randomized algorithms for
maxflow ([60, 16, 36, 13]) and deterministic algorithms in
special cases (e.g., unit capacity graphs [68] and planar graphs
[10, 11]), the runtime in [42] has remained the state-of-the-
art among deterministic algorithms in the general case of
polynomially bounded capacities.

This gap between state-of-the-art runtimes for determin-
istic and randomized algorithms for maxflow is particularly
striking in light of recent advances: [19] provided an almost
linear, m1+o(1), time randomized maxflow algorithm and [15]
provided an eO(m + n1.5) time randomized algorithm which
runs in nearly linear time for dense graphs. Unfortunately,
as we discuss in Section I-A, there are key barriers towards
efficiently derandomizing both [19] and [15] as well as prior
improvements [36, 13, 8].

These results raise key questions about the power of ran-
domization in designing flow algorithms. While there is com-
plexity theoretic evidence that randomization does not affect
the polynomial time solvability of decision problems [49] it
is less clear what fine-grained effect randomization has on the
best achievable runtimes or whether or not a problem can be
solved in almost linear time [21]. The problem of obtaining
faster deterministic algorithms for maxflow is of particular
interest given extensive research over the past decade on obtain
faster deterministic algorithms for expander decompositions
and flow problems [24, 58], and applications to connectivity
problems [54, 64, 62].

In this paper we provide a deterministic algorithm that
solves minimum-cost flow and maxflow in m1+o(1) time. We
obtain this result by providing an efficient deterministic imple-
mentation of the recent flow framework of [19] which reduced
the minimum cost flow problem to approximately solving a
sequence of structured minimum ratio cycle problems. We
also obtain the same running time for deterministically finding
flows on graphs that minimize convex edge costs. Further,
the techniques we develop have potential broader utility; for
example, we show that our techniques can be used to design
a deterministic algorithm that dynamically maintains low-
stretch trees under insertions and deletions with polynomially
bounded lengths (see Section I-B)

a) Paper Organization: In the remainder of this intro-
duction we elaborate on randomized maxflow algorithms and
the barriers to their derandomization (Section I-A), present
our results (Section I-B), give a coarse overview of our
approach (Section I-C), and cover additional related work
(Section I-D). We then cover preliminaries in Section II and
give a more technical overview in Section III. We present
the flow framework in Section IV, build the main dynamic
recursive data structure in the full paper.

A. Randomized Maxflow Algorithms
Although the runtime of deterministic algorithms solving

maxflow on graphs with polynomially bounded capacities has

not been improved since [42], there have been significant
advances towards designing randomized maxflow algorithms.
Here we provide a brief survey of these advances and dis-
cuss the difficulty in obtaining deterministic counterparts of
comparable efficiency.

a) Electric Flow Based Interior Point Methods: A num-
ber of randomized algorithms over the past decade have
improved upon the complexity of maxflow by leveraging and
building upon interior point methods (IPMs). IPMs are a broad
class of continuous optimization methods that typically reduce
continuous optimization problems, e.g., linear programming,
to solving a sequence of linear systems. In the special case
of maxflow the linear systems typically correspond to electric
flow or Laplacian system solving and can be solved in nearly
linear time [80].

Combining this approach with improved IPMs, [61] ob-
tained an eO(m

p
n) time maxflow algorithm. Further robusti-

fying this optimization method and using a range of dynamic
data structures for maintaining decompositions of a graph into
expanders, sparsifiers, and more, [15] obtained an improved
eO(m+n1.5) time maxflow algorithm. Incorporating additional
dynamic data structures for maintaining types of vertex spar-
sifiers (and more) then led to runtimes of eO(m3/2�1/328) [36]
and eO(m3/2�1/58) [13].

Unfortunately, despite improved understanding of IPMs (in
particular deterministic robust linear programming methods
[14]) and deterministic Laplacian system solvers [24] it is un-
clear how to obtain deterministic analogs of these maxflow re-
sults. Each result either uses 1/poly(log n)-accurate estimates
of effective resistances [61, 15] or edge or vertex sparsifiers of
similar accuracy [36, 13]. Obtaining deterministic algorithms
for either is an exciting open problem in algorithmic graph
theory (and is left unsolved by this paper).

b) Minimum Ratio Cycle Based Interior Point Methods:
In a recent breakthrough result [19] leveraged a different type
of IPM. This method obtained an almost-linear time algorithm
for maxflow and instead used an `1-counterpart to the more
standard `2-based IPMs that reduce maxflow to electric flow.
Using this IPM, [19] essentially reduced solving maxflow to
solving a dynamic sequence of minimum ratio cycle problems
(e.g., Definition IV.5).

On the one hand, [19] seems to create hope in overcoming
the obstacles of faster deterministic maxflow algorithms. Using
[19] it is indeed known how to deterministically solve each
individual minimum ratio cycle problem to sufficient accuracy
in almost linear time. On the other hand, unfortunately [19]
required a dynamic data structure for solving these problems in
amortized mo(1)-per instance and to obtain their runtime, [19]
made key use of randomization. In Section I-C we elaborate
on the obstacles in avoiding this use of randomization and our
main results, which are new algorithmic tools which remove
this need.

B. Our Results
We give a deterministic algorithm for computing min-cost

flows on graphs.

Theorem I.1 (Min-cost flow). There is a deterministic algo-
rithm that given a m-edge graph with integral vertex demands
and edge capacities bounded by U in absolute value, and
integral edge costs bounded by C in absolute value, computes
an (exact) minimum-cost flow in time m1+o(1) logU logC.

Our algorithm extends to finding flows that minimize convex
edge costs to high-accuracy, for example, for matrix scaling,
entropy-regularized optimal transport, p-norm flows, and p-
norm isotonic regression. See [19, Section 10] for a (de-
terministic) reduction of these problems to a sequence of
minimum ratio cycle problems satisfying the relevant stability
guarantees.

Additionally, the components of our data structure can be
used to deterministically maintain a low-stretch tree under
dynamic updates (see Section II and Theorem II.2 for a formal
definition of edge stretch, and a concrete low-stretch tree
statement). Previously, deterministic algorithms for maintain-
ing a low-stretch tree with subpolynomial update time were
only known for unweighted graphs and those undergoing only
edge deletions, achieved by combining the previous result [17]
with derandomization techniques in [9, 23]. If randomness
is allowed, [33] maintains a low-stretch tree with n1/2+o(1)

update time and subpolynomial stretch. [34] gave an algorithm
that maintains low-stretch probabilistic tree embedding in
subpolynomial update time. Contrary to a conventional low-
stretch tree, low-stretch probabilistic tree embeddings may not
qualify as a spanning tree, possibly including vertices absent
from the input graph. The only way the authors know how to
achieve an algorithm that maintains low-stretch trees on graphs
with polynomially bounded edge lengths in subpolynomial
update time is by adapting the components of [19] to the
setting of low-stretch trees.

Theorem I.2 (Dynamic low stretch tree). There is a deter-
ministic data structure that given a dynamic n-node graph
undergoing insertions and deletions of edges with integral
lengths bounded by exp((log n)O(1)), maintains a low-stretch
tree with average stretch no(1) in worst-case no(1) time per
update. The data structure maintains the tree in memory with
no(1) amortized recourse per update; the data structure can
be be modified to output the changes explicitly with amortized,
rather than worst-case, no(1) time per update.

C. Our Approach
In this paper we obtain an almost linear time algorithm

for maxflow by essentially showing how to eliminate the use
of randomness in each of the places it was used [19]. Here
we elaborate on these uses of randomness and the techniques
we introduce; we provide a more detailed overview of our
approach in Section III.

a) Randomization in [19]: At a high level, [19] treats
minimum ratio cycle as an instance of the more general min-
imum cost transshipment problem on undirected graphs. To
solve this, [19] applies a time-tested technique of recursively
building partial trees (to reduce the number of vertices) and
sparsifying (to reduce the number of edges). This approach

was pioneered by [80], and has since been used in multiple
algorithms [57, 55, 78, 59, 20] and dynamic data structures
[18].

More precisely, for a parameter k the partial trees are a
collection of eO(k) forests with O(m/k) components where
the stretch of every edge in a component is eO(1) on average;
here, the stretch of an edge refers to the ratio of the length of
routing the edge in the forest to the length of the edge itself.
The algorithm uses the partial trees to recursively processes
the graphs resulting from contracting each forest. While the
forests can be computed and even dynamically maintained
deterministically, recursively processing all the partial trees
is prohibitively expensive because the total number of compo-
nents is still eO(k ·m/k) = eO(m), i.e., there is no total size
reduction. Thus, [19] (motivated in part by [67, 37]) showed
that it sufficed to subsample only eO(1) trees to recurse on.
This is the first and, perhaps, most critical use of randomness
in the [19] algorithm. In particular, it initially seems difficult
to design a data structure that maintains all the trees without
having a prohibitive runtime.

The dynamic sparsifier constructed in [19] was a spanner
with explicit embedding, i.e., the algorithm maintained a
subgraph H ✓ G, and for each edge e 2 G, a path in H
with few edges that connected its endpoints. This graph H was
maintained with low recourse under edge insertions, deletions,
and vertex splits, where a vertex becomes two vertices, and
edges are split between them. The spanner was constructed by
maintaining an expander decomposition and uniform sampling
edges in each expander. This is the second use of randomness
in [19], though it is conceptually easier to circumvent due to
recent progress on deterministic expander decomposition and
routings [24, 25].

b) Removing randomness from sampling forests: To un-
derstand how we remove randomness from sampling the
forests, it is critical to discuss how [19] handled the issue
of adaptive adversaries in the dynamic updates to the data
structure (i.e., that the input to the dynamic minimum ratio
cycle data structures could depend on the data structure’s
output). In particular, the future updates to the data structure
may depend on the trees that were randomly sampled. To
handle this, [19] observed that the IPM provided additional
stability on the dynamic minimum ratio cycle problem, in the
sense that there was a (sufficiently good) solution �⇤ to the
minimum ratio cycle problem argminB>�=0 g

>�/kL�k1
which changed slowly.

In a similar way, our deterministic min-ratio cycle data
structure does not work for general dynamic minimum ratio
cycle, and instead heavily leverages the stability of a solution
�⇤. As in [19], our algorithm computes the eO(k) partial trees.
We know that out of these forests, there exists at least one of
them (in fact, at least half of them) that we can successfully
recurse on. [19] chooses eO(1) random forests to recurse on,
leveraging that at least one of these forests is good with high
probability. As discussed, we cannot afford to recurse on all
eO(k) forests as this requires dynamically maintaining ⌦(m)
trees at every step. Consequently, to obtain a deterministic

algorithm we instead show that it suffices to recurse one forest
at a time. We recurse on the first forest until we conclude that
it did not output a valid solution, then we switch to the next
forest, and repeat (wrapping around if necessary). This way,
we only maintain one recursive chain and the corresponding
spanning tree at each point in time. We argue that the runtime
is still acceptable, and more interestingly, that we do not need
to switch between branches very frequently. We formalize this,
we analyze what we call the shift-and-rebuild game in Section
7 of the full paper, and extend the adaptive adversary analysis
of [19] to our new algorithm.

c) Deterministically constructing spanners with embed-
dings: At a high level, [19] gives a deterministic procedure
of reducing dynamic spanners to static spanners with embed-
dings. To construct the static spanner, [19] decomposed G into
expanders, sparsified each expander by random sampling, and
then embedded G into the sparsifier using a decremental short-
est path data structure [25]. The expander decomposition can
be computed deterministically using [24]. Thus, the remaining
randomized component was the construction of the spanner by
subsampling. Instead, we construct the spanner by constructing
a deterministic expander W on each piece of the expander
decomposition, embedding G into W , and then embedding W
back into G (both using the deterministic decremental shortest
path data structure [25]). The set of edges in G used to embed
W forms the spanner. For our overall maxflow algorithm, we
require additional properties of the dynamic spanner algorithm
beyond the embedding; see Theorem 8.2 of the full paper.

D. Additional Related Work
a) Derandomization for flow-related problems: Deter-

ministic algorithms for sparsest cut, balanced cut, and ex-
pander decomposition [24] can be directly applied to give a va-
riety of deterministic algorithms for flow problems, including
solving Laplacian linear systems (electric flows), p-norm flows
on unit graphs [59], and more recently, directed Laplacian
linear systems [58]. While we utilize deterministic expander
decompositions and routings from [24] to give a deterministic
spanner with embeddings, these methods seem unrelated to
the problem of avoiding subsampling the partial trees.

b) Maxflow / Min-cost flow: Over the last several decades
there has been extensive work on the maxflow and minimum
cost flow problems [42, 38, 27, 29, 30, 44, 12, 35, 39, 41,
72, 47, 40, 22, 68, 66, 78, 76, 55, 81, 35, 75, 73, 74, 38, 43,
31, 26, 53, 65, 7, 8, 15, 36, 13]. Some of these algorithms,
primarily in the instance of unit-capacity maxflow [68, 66,
65, 53], can be made deterministic using deterministic flow
primitives from [24].

c) Connectivity problems: There is a long line of work on
applications of maxflow to connectivity problems, including
sparsest cuts, Gomory-Hu trees, and global mincuts [46, 6,
71, 77, 54, 1, 5, 70, 63, 4, 2, 62]. Some of these algorithms
for global mincut can be made deterministic [54, 62], though
the techniques often rely on expander decomposition, which,
again, does not resolve our issue of sampling partial trees.
Since this work was announced, [69] gave a deterministic

reduction from k-vertex-connectivity to computing mo(1)k2

maxflows to achieve a deterministic algorithm for k-vertex-
connectivity running in m1+o(1)k2 time.

II. PRELIMINARIES

a) General notation: We denote vectors by boldface
lowercase letters and matrices by boldface uppercase letters.
Often, we use uppercase letters to denote diagonal matrices
corresponding to vectors with the matching lowercase letter,
e.g., L = diag(`). For vectors x,y we define the vector x�y
as the entrywise product, i.e., (x�y)i = xiyi. We also define
the entrywise absolute value of a vector |x| as |x|i = |xi|. For
positive real numbers a, b we write a ⇡↵ b for some ↵ > 1
if ↵�1b  a  ↵b. For integer h we let [[h]] def

= {0, 1, . . . , h},
and [h]

def
= {1, . . . , h}. For positive vectors x,y 2 Rn

>0, we
say x ⇡↵ y if xi ⇡↵ yi for all i 2 [n].

b) Graphs: We consider multi-graphs G with edge set
E(G) and vertex set V (G). When the graph is clear from
context, we use E for E(G), V for V (G), m = |E|, and
n = |V |. We assume that each edge e 2 E has an implicit
direction and overload the notation slightly by writing e =
(u, v) where u and v are the tail and head of e respectively
(note that technically multi-graphs do not allow for edges to
be specified by their endpoints). We let rev(e) be the edge e
reversed: if e = (u, v) points from u to v, then rev(e) points
from v to u.

A flow vector is a vector f 2 RE . If fe � 0, this means that
fe units flow in the implicit direction of the edge e chosen,
and if fe  0, then |fe| units flow in the opposite direction.
A demand vector is a vector d 2 RV with

P
v2V dv = 0. For

an edge e = (u, v) 2 G we let be 2 RV denote the demand
vector of routing one unit from u to v, i.e., be has a 1 at u,
�1 at v, and 0 elsewhere. Define the edge-vertex incidence
matrix B 2 RE⇥V as the matrix whose rows are be. We say
that a flow f routes a demand d if B>f = d.

We denote by degG(v) the combinatorial degree of v in
G, i.e., the number of incident edges. We let �max(G) and
�min(G) denote the maximum and minimum degree of graph
G. We define the volume of a set S ✓ V as volG(S)

def
=P

v2S degG(v).
Given a set of edges F ✓ E(G), we define G/F to be

the graph where the edges in F are contracted. In this paper,
typically this operations is performed for forests F .

c) Dynamic Graphs: In this paper, we say that G is a
dynamic graph if it undergoes a sequence of updates. In this
paper, the graphs we study will undergo three main types of
updates.

• Edge insertion: an edge e = (u, v) is added to the graph.
The edge is encoded by its endpoints, and when neces-
sary, edge lengths and gradients will also be provided.

• Edge deletion: an edge e = (u, v) is deleted from the
graph. The edge is encoded by its label in the graph.

• Vertex split: a vertex v becomes two vertices v1 and v2,
and the edges adjacent to v are split between v1 and v2.
Precisely, every edge ei = (v, ui) is assigned to either
v1 or v2, becoming edge (v1, ui) or (v2, ui) respectively.

This operation is encoded by listing out the edges moved
to the one of v1, v2 with a smaller degree. Thus the
encoding size is approximately min{deg(v1), deg(v2)}.

In this paper, instead of having our dynamic graphs undergo
a single update at a time, we think of them as undergoing
batches U (1), U (2), . . . of updates, where each batch U (i)

denotes a set of updates to apply.
We let |U (t)| denote the total number of updates in the batch,

i.e., the total number of edge insertions, deletions, and vertex
splits. ENC(u) of an update u 2 U (t) denotes its encoding
size. As mentioned above, each insertion and deletion can be
encoded in size eO(1), while each vertex split can be encoded
in size eO(min{deg(v1), deg(v2)}). Finally, the encoding size
of a batch U (t) is the sum of the encoding sizes of each of its
updates.

Note that ENC(U (t)) = ⌦(|U (t)|), but may be even larger.
However, we can bound the total encoding size using the
following lemma.

Lemma II.1. For a dynamic graph G that undergoes batches
of updates U (1), U (2), . . . if G initially has m edges then
we can bound the total encoding size as

P
t ENC(U (t)) =

eO
�
m+

P
t |U (t)|

�
.

Proof. Each edge insertion/deletion only contributes eO(1)
to the encoding size. Thus, the size of encodings of
edge/insertions deletions is at most eO

�P
t |U (t)|

�
. In order

to account for vertex splits, consider the potential � =P
v deg(v) log deg(v). It is straightforward to verify that an

edge insertion can only increase the potential by O(logm).
When a vertex v is split into u1, u2, the potential decreases
by at least ⌦(min(deg(u1), deg(u2))).

d) Paths, Flows, and Trees: Given a path P in G with
vertices u, v both on P , then we let P [u, v], which is another
path, denote the path segment on P from u to v. We note
that if v precedes u on P , then the segment P [u, v] is in the
reverse direction of P . For a a to b path P and a b to c path Q
we let P �Q denote the a to c path that is the concatenation
of P and Q.

For a forest F , we use F [u, v] to denote the unique simple
path from u to v along edges in the forest F ; we ensure that
u, v are in the same connected component of F whenever
this notation is used. Additionally, we let p(F [u, v]) 2 RE(G)

denote the flow vector which routes one unit from u to v along
the path in F . Thus, |p(F [u, v])| is the indicator vector for the
path from u to v on F . Note that p(F [u, v]) + p(F [v, w]) =
p(F [u,w]) for any vertices u, v, w 2 V .

The stretch of e = (u, v) with respect to a tree T and lengths
` 2 RE

>0 is defined as

strT,`
e

def
= 1 +

h`, |p(T [u, v])|i
`e

= 1 +

P
e02T [u,v] `e0

`e
.

This differs slightly from the more common definition of
stretch because due to the additive 1; we choose this definition
to ensure that strT,`

e � 1 for all e. We define the stretch of an
edge e = (u, v) with respect to a forest F analogously if u, v

are in the same connected component of F . In Section 5 of the
full paper, we introduce a notion of stretch when u, v are not in
the same component of a rooted forest. In this case, the stretch
is instead defined as the total distance of u, v to their respective
roots divided by the length of e. As stated in the following
theorem, it is known how to efficiently construct trees with
polylogarithmic average stretch with respect to underlying
weights; we call these low-stretch spanning trees (LSSTs).

Theorem II.2 (Static LSST [3]). Given a graph G = (V,E)
with lengths ` 2 RE

>0 and weights v 2 RE
>0 there is an

algorithm that runs in time eO(m) and computes a tree T
such that

P
e2E vestrT,`

e  �LSST kvk1 for some �LSST
def
=

O(log n log log n).

In this paper, in contrast to eg., [19, Lemma 6.5], we often
use the cruder upper bound of of �LSST = O(log2 n). We do
this to simplify the presentation as it does not effect the final
asymptotic bounds claimed.

e) Graph Embeddings: Given weighted graphs G and
H with V (G) ✓ V (H), we say that ⇧G�!H is a graph-
embedding from G into H if it maps each edge eG = (u, v) 2
E(G) to a u-v path ⇧G�!H(eG) in H . Let wG be the weight
function of G and wH be the weight function of H . We define
the congestion of an edge eH by

econg(⇧G�!H , eH)
def
=

P
eG2E(G) with eH2⇧G�!H(eG) wG(eG)

wH(eH)

and the congestion of the embedding by econg(⇧G�!H)
def
=

maxeH2E(H) econg(⇧G�!H , eH). Analogously, the conges-
tion of a vertex vH 2 V (H) is defined by

vcong(⇧G�!H , vH)
def
=

X

eG2E(G) with vH2⇧G�!H(eG)

wG(e
G)

and the vertex-congestion of the graph-embedding by

vcong(⇧G�!H)
def
= max

vH2V (H)
vcong(⇧G�!H , vH).

We define the length of the embedding by length(⇧G�!H)
def
=

maxeG2E(G) |⇧G�!H(eG)|.
Given graphs A,B,C and graph-embeddings ⇧B!C from

B into C and ⇧A!B from A to B. We denote by ⇧B!C �
⇧A!B the graph embedding of A into C obtained by mapping
each edge eA = (u, v) 2 E(A) with path ⇧A!B(eA) =
eB1 �eB2 �. . .�eBk in B to the path ⇧B!C(eB1)�⇧B!C(eB2)�
. . .�⇧B!C(eBk). The following useful fact is straightforward
from the definitions.

Fact 1. Given graphs A,B,C and graph-embeddings ⇧B!C

from B into C and ⇧A!B from A to B. Then, vcong(⇧B!C �
⇧A!B)  vcong(⇧B!C) · econg(⇧A!B).

f) Computational Model: For problem instances en-
coded with z bits, all algorithms developed in this pa-
per work in fixed-point arithmetic where words have
O(logO(1) z) bits, i.e., we prove that all numbers stored
are in [exp(� logO(1) z), exp(logO(1) z)]. In particular, The-
orem IV.6 says that the min-ratio cycle problems solved by

our algorithm satisfy Definition IV.4, where item 5 says that
all weights and lengths are bounded by exp(logO(1) m).

III. TECHNICAL OVERVIEW

Our approach for obtaining a deterministic almost-linear
time min-cost flow algorithm follows the framework of the
recent randomized algorithm in [19]. We start by reviewing
the algorithm in [19] and then lay out the challenges in
obtaining deterministic analogs of its randomized components.
By scaling arguments (see [19, Lemma C.1]), we assume that
U,C  mO(1).

A. The Randomized Algorithm in [19]

a) The Outer-Loop: An `1-Interior Point Method:
The starting point for the randomized algorithm in [19]
is a new `1-interior point method (IPM), which is actu-
ally completely deterministic. This method uses a potential
reduction IPM inspired by [51], where in each iteration,
the potential function �(f)

def
= 20m log(c>f � F ⇤) +P

e2E ((u+
e � fe)�↵ + (fe � u�

e)
�↵) is reduced. Here, ↵ =

1/⇥(logm), but the reader can think of the barrier x�↵ as
the more standard � log x for simplicity.

[19] showed that one can assume that an initial feasi-
ble solution f (0) is given that routes the demand and has
�(f (0))  O(m logm) and that the IPM can be terminated
once the potential function value is at most �200m logm, as
at this point, one can round the flow to an exact solution using
an isolation lemma; see [19, Lemma 4.11]. While this step is
randomized, it can easily be derandomized using an alternate
flow rounding procedure, as is explained later at the start of
Section III-B. We next discuss how to achieve a potential
reduction of �(f) in each iteration by m�o(1). This yields
that the IPM terminates within m1+o(1) steps.

To obtain a potential reduction of m�o(1) at each step, given
a current feasible flow f , the update problem involves finding
an update direction � to update the flow to f +� such that
(a) � is a circulation, i.e., adding it to f does not change
the net routed demands and (b) � approximately minimizes
the inner product with a linear function (the gradient of �),
relative to an `1-norm that arises from the second derivatives
of �. Letting g 2 RE denote this gradient and letting ` 2 RE

+

be the edge length (both with respect to the current flow f),
we can write the update problem as

min
�2RE :B>�=0

g>�

kdiag(`)�k 1
. (1)

We refer to this update problem henceforth as the min-ratio
cycle problem, since, by a cycle-decomposition argument,
the optimal value is always realized by a simple cycle. As
shown in [19], the update problem has several extremely useful
properties:

1) At every time step t, the direction from the current solu-
tion f (t) towards the optimal flow f⇤, henceforth called
the witness �(t) def

= f⇤�f (t), achieves g>�(t)

kdiag(`)�(t)k 1


� 1
⇥(logm) .

2) Performing the update with a cycle � with
g>�

kdiag(`)�k 1
= � reduces the potential by ⌦(2).

Thus, even finding an mo(1)-approximate min-ratio
cycle reduces the potential by m�o(1). After m1+o(1)

iterations of updates, the potential becomes small
enough, and we can round the current flow to an exact
solution.

3) The convergence rate is unaffected if we use approxi-
mations bg and b̀of the gradient g and the lengths ` such
that both bg and b̀ are updated only a total of m1+o(1)

times (here, by update we mean that a single entry of bg
and b̀ is changed) throughout the entire algorithm.

In this way, the `1-IPM gives a deterministic reduction of
(exact) min-cost flow to solving a sequence of stable min-ratio
cycle problems.

b) A Data Structure for the Min-Ratio Cycle Problem:
Since when solving min-cost flow by approximately solving a
sequence of min-ratio cycles, the underlying graph remains the
same, and gradient and lengths change sporadically throughout
the algorithm, it is useful to think about the repeated solving
of the min-ratio cycle problem as a data structure problem.
This problem is is formalized in Definition IV.5. [19] designs
a randomized data structure for the min-ratio cycle problem
which supports the following operations:

• INITIALIZE(G, bg(0), b̀(0)): initialize the data structure for
graph G and the initial approximate gradients, bg(0), and
lengths, b̀(0), on the edges of G.

• UPDATE(bg(t), b̀(t)) : the t-th update replaces current
gradient and lengths by bg(t) and b̀(t).

• QUERY() : returns a cycle whose ratio with respect to the
current gradient bg(t) and lengths b̀(t) is within a mo(1)

factor of �(t) = f⇤ � f (t).

In the UPDATE operation, bg(t), b̀(t) are described by their
changes from bg(t�1), b̀(t�1). By the above discussion, there
are mo(1) coordinate changes on average per instance.

Note that the output cycle returned by QUERY() may have
nonzero flow on ⌦(n) edges for each of the ⌦(m) iterations
(this is often referred to as the flow decomposition barrier).
Thus we cannot efficiently, explicitly output the solutions. To
overcome this issue, the data structure in [19] maintains a
s = mo(1) spanning trees T1, T2, . . . , Ts of the graph G. Each
such tree is itself a dynamic object, i.e., these trees undergo
changes over time in the form of edge insertions and deletions.
However, the total number of such edge insertions and dele-
tions is at most m1+o(1) when amortizing over the sequence
of updates generated by the IPM. Using these dynamic trees
T1, T2, . . . , Ts, whenever the operation QUERY() is invoked,
the data structure in [19] finds (with high probability) an
approximate min-ratio cycle that consists of mo(1) subpaths
of a tree Ti and mo(1) additional edges. Using the start and
end points of each tree path, the query operation can encode
each solution efficiently, as desired.

As shown in [19], the data structure can overall be im-
plemented to run in amortized mo(1) time per query and

update, yielding an almost-linear algorithm for the min-cost
flow problem.

c) Maintaining Trees in the Data Structure: It remains to
review how the data structure in [19] efficiently maintains a set
of dynamic trees T = {T1, T2, . . . , Ts} such that one of the
trees yields a cycle with sufficient ratio with high probability,
and how to query this cycle.

To construct the set of trees T , [19] draws on the theory
of low-stretch spanning trees (LSSTs). Let G = G(0) be the
original graph whose edge lengths are given by the vector
b̀(0). [19] applied a standard multiplicative weights argument
[67, 78, 55] to construct a set of k (partial) trees T1, . . . , Tk

such that every edge e had average stretch eO(1) over these
k trees. Thus, if b̀ is the vector of stretches of a random tree
among the Ti, then the witness �(0) = f⇤ � f (0) satisfies in
expectation kdiag(è)�(0)k1  mo(1)kdiag(b̀(0))�(0)k1 By
Markov’s inequality, this same guarantee (up to constants)
must hold with probability at least 1/2. When this occurs, we
say the stretch of the witness with respect to the tree is low.
By sampling O(logm) trees among {T1, . . . , Tk} [19] ensures
that this occurs in at least one tree with high probability. A
basic flow decomposition result then implies that one of the
fundamental cycles formed by an off-tree edge and the tree-
path (in T) between its endpoints yields an mo(1)-approximate
solution.

Now, consider what happens after the current flow solution
is changed from f (0) to f (1) by adding the first update. This
changes the witness from �(0) to �(1) = f⇤ � f (1) and
changes the (approximate) gradient from bg(0) to bg(1), and
lengths from b̀(0) to b̀(1). To solve the next update problem,
the sampled trees have to be updated so that the stretch of the
new witness �(1) is again low with respect to at least one of
the trees (now with respect to b̀(1)).

To update the trees, for each sampled tree T some edges
are removed and then replaced by new edges. To obtain
an efficient implementation, [19] applies the well-established
technique of maintaining a hierarchy of partial trees/forests.
At each level, a partial tree is computed, and the next level
then finds again a partial tree in the graph where edges in
the partial tree at the higher levels are contracted. Let us
illustrate how such a partial tree is found. At the highest level
of the hierarchy, a partial tree/forest F is computed with m/k
connected components for some target value k = mo(1). F is
computed so that it only undergoes edge deletions, and at most
eO(1) per update. Additionally, either a fundamental cycle of
F or a cycle in G/F (the graph where F is contracted) has
ratio within eO(1) factor of the desired min-ratio cycle in G.
This is illustrated in Figure 1. This reduces the problem of
finding a min-ratio cycle mainly to finding such a cycle in the
graph G/F , which has at most m/k vertices.

We refer to the step of maintaining F and contracting to
the graph G/F as the vertex sparsification phase. However,
G/F might still contain almost all edges of G. To reduce
the edge count, [19] computes a spanner G0 of G/F that
yields a reduction in the number of edges to roughly m/k.
We refer to this as edge sparsification, and give a more

detailed overview of the construction in [19] below. The
spanner also allows us to either obtain the solution to the min-
ratio cycle problem directly from the spanner construction,
or approximately preserve the solution quality in G0. The
algorithm then recurses, again building a partial tree (forest)
F 0 on G0, finding a spanner, and so on. The tree T is taken
as the union of the contracted forests F, F 0, and the forests
found in deeper recursion levels.

Whenever lengths and gradients change, updates are han-
dled by making a few adjustments to the forest and then
propagating changes to the deeper levels. By controlling
carefully the propagation, the total number of updates across
levels remains small.

Fig. 1: In (a), we see a graph G and a forest F (the subgraph
shown with red edges). The two non-trivial connected compo-
nents of F are encircled by a dotted border bash. In blue, we
show the witness circulation �(0). In (b), we see the graph
G/F obtained by contracting the components of G and the
circulation �(0) again in blue mapped to G/F . The algorithm
ensures that since each contracted edge is approximated well
by a path in F , either a solution to (1) is formed by one of the
fundamental cycles, or that the mapped circulation in G/F is
a good solution to (1).

d) Edge Sparsification: As the forest F undergoes edge
deletions, the graph G/F undergoes edge deletions and vertex
splits. To design an algorithm to maintain a spanner of G/F ,
[19] gave a deterministic reduction from maintaining a spanner
in an unweighted graph under edge deletions and vertex splits
to statically constructing a spanner with low-congestion edge
embeddings. This means that for a spanner H ✓ G, every edge
e 2 E(G)\E(H) is mapped into a short path ⇧G!H(e) in H
between its endpoints with at most mo(1) edges, such at every
vertex in H has at most mo(1) degG(v) paths through it. Note
that at least degG(v) paths go through v in any embedding, so
having low vertex congestion means that we match this bound
up to the mo(1) factor. It is worth noting that while we only
require a spanner of G/F for the algorithm, the reduction
only works with a low-congestion embedding. Additionally,
our dynamic low-stretch tree data structure makes use of this
additional low-congestion property.

Thus, we focus on statically constructing spanners of un-
weighted graphs with low-congestion embeddings. [19] de-
signed the following algorithm to achieve this. We may assume
that G/F has is unweighted by the standard trick of bucketing
edges in eO(1) groups whose lengths are within a factor
of 2. First, the graph G/F is decomposed into expanders
H1, H2, . . . , H`, where each vertex appears in O(logm) ex-
panders, and each expander is almost-uniform-degree in that

every degree is within an O(logm) factor of the average. Thus,
for each graph Hi, random sampling each edge uniformly with
probability about eO(1) divided by the degree of Hi yields a
graph H 0

i that again is an almost-uniform-degree expander,
except now with polylogarithmic degrees. We let the spanner
G0 of G be the union of all such sampled graphs H 0

i and clearly
G0 is sparse, i.e., has at most eO(|V (G/F)|) edges. This is the
only randomized component of the edge sparsification step.

While proving that G0 is a spanner of G is rather straightfor-
ward, we also must construct a low-congestion embedding of
G into G0. In [19], this is achieved by embedding each graph
Hi into the corresponding down-sampled graph H 0

i for every
i. In [19], this is achieved by a deterministic procedure that
internally uses the decremental shortest paths data structure
on expanders by Chuzhoy and Saranurak [25]. Finally, [19]
takes the embedding from G into G0 to be the union of the
embeddings from Hi to H 0

i for all i.
We conclude our discussion on edge sparsification by

describing how to find a min-ratio cycle from the spanner
construction. Given a spanner G0 of G/F with embedding, a
flow decomposition arguments shows that either some spanner
cycle e � ⇧(G/F)!G0(e) has ratio within mo(1) of �(t), or
the circulation in G0 achieved by routing �(t) along the
paths ⇧(G/F)!G0 into G0 has ratio within mo(1) of �(t). By
maintaining the paths ⇧(G/F)!G0(e) explicitly, and recursing
on G0, our data structure can efficiently query for a min-ratio
cycle. This argument is covered in more detail in Section 6 of
the full paper.

e) A Note on the Interaction Between Data Structure and
Witness: The above description of the data structure is an
oversimplification and hides many key details. Perhaps most
importantly, the proof of correctness for the data structure
in [19] crucially hinges on the existence of the witness
�(t) = f⇤ � f (t) in order to show that the near-optimal
cycle �(t) does not ever incur too much stretch even under
possibly adaptive updates. Put another way, the data structure
does not work against general adaptive adversaries, whose
updates can depend on the randomness of the data structure,
but can be used to solve min-cost flow due to the stability of
the witness solution. Similarly, in this paper we do not design
a deterministic data structure for general min-ratio cycle
instances. Instead, we also require that the update sequence
admits a stable witness; leveraging the stable witness in both
cases require modifications to both the LSST and spanner data
structures, and these are deferred to the main body of the paper.

B. A Deterministic Min-cost Flow Algorithm

Building on the exposition of the algorithm in [19] given in
Section III-A, we are now ready to discuss the key changes
necessary to obtain our deterministic algorithm. Here, we
highlight the parts of [19] that required randomization and
outline strategies to remove the randomness.

a) Derandomizing the IPM Framework: The main chal-
lenge in derandomizing the framework of [19] is in derandom-
izing the vertex and edge sparsification routines and solving

the requisite dynamic min-ratio cycle problem. Indeed, deran-
domizing the remainder of the IPM framework is straightfor-
ward, because both the IPM presented in the last section and
the procedure that maintains the approximate gradient bg and
the lengths b̀ are completely deterministic. The only use of
randomness in the above approach, beyond the min-ratio cycle
data structure, occurred as [19] rounded the solution when
the potential is sufficiently small, i.e. �(f)  �⌦(m logm),
via the Isolation Lemma. However, the use of the Isolation
Lemma can be replaced by a deterministic flow rounding
procedure using Link-Cut trees [79] as was shown in [50]
(see Lemma IV.1).

In the min-ratio cycle data structure of [19], there are two
randomized components:

1) eO(1) forests are sampled at each level of the hierarchy,
and

2) The spanner of G/F is constructed by decomposing
G/F into expanders, and random sampling within each
expander.

Below we discuss how to remove the randomness from the
first vertex sparsification step, and then discuss the second
edge sparsification step.

b) Derandomizing Vertex Sparsification: Recall that the
vertex sparsification construction described above computes
a set of k forests F1, . . . , Fk. Of these, eO(1) are sampled,
and for each sampled forest F , the algorithm recurses on
G/F . A natural approach to derandomize this is to instead
recurse on all k forests in the collection to deterministically
ensure that some forest has low stretch of the witness �(t).
Unfortunately this is too expensive, as it leads to ⌦(m) trees
being maintained overall. Additionally, every update to the
input graph may change every tree, and this approach would
therefore lead to linear time per update which is far more than
we can afford.

However, we show that, somewhat surprisingly, the follow-
ing strategy works: instead of directly recursing on all forests,
and therefore, on all graphs G/F1, G/F2, . . . , G/Fs, we can
recurse only on the first such tree G/F1 and check if we find
a solution to the min-ratio cycle problem. If we do, we do not
need to check G/F2, . . . , G/Fs at that moment. Otherwise,
we move on to G/F2 (we refer to this as a shift), but now
know that G/F1 did at some point not give a solution to the
min-ratio cycle and F1 is therefore not a good forest so that we
never have to revisit it. Carefully shifting through these forests
F1, F2, . . . , Fs, it then suffices to only forward the updates to
G (in the form of updates to b̀) to the forest that is currently
used. When we move to the next forest after failing to identify
a solution to the min-ratio cycle problem, we then apply all
updates that previously happened to G to the contracted graph.
We apply this shifting procedure recursively.

Now we need to understand why this improved the amor-
tized update time to mo(1), and perhaps more interestingly,
why the algorithm finds an approximate min-ratio cycle with-
out cycling through many graphs G/Fi over the course of the
algorithm. At a high level, the runtime is acceptable because
the number of dynamic updates to the forests Fi is at most that

of the randomized case, as we only maintain a single branch
of the recursion at a time. Shifting between forests does not
cause dynamic updates, and thus can be charged to the original
construction cost.

To understand why the algorithm does not have to shift
through several graphs G/Fi every iteration, recall that the
witness �(t) = f⇤ � f (t) is stable in that only eO(1) edges
values change by a constant factor multiplicatively on average
per iteration, and that these edges are passed to the data
structure. This allows us to show that if we find a forest
Fi whose stretch against the witness �(t) was small, then
it stays small until we must rebuild after about m/k updates,
or kdiag(`(t))�(t)k1 decreases by a constant, which can only
happen eO(1) times. This way, over the course of m/k updates,
our algorithm only needs to shift eO(k) total times. The major
challenge towards formalizing this analysis is that the data
structure has multiple levels, which severely complicates the
condition that a forest Fi maintains small stretch for several
iterations, because we do not know which level caused the
failure. We analyze this algorithm through what we call
the shift-and-rebuild game (Section 7 of the full paper), a
generalization of the (simpler) rebuilding game in [19].

c) Derandomizing Edge Sparsification: From the de-
scription given above, the main challenge for derandomization
of the edge sparsification procedure from [19] is to find a
spanner H 0

i of an almost-uniform-degree expander Hi such
that H 0

i consists of few edges and such that we can find a
small vertex congestion short-path embedding of the graph
Hi into H 0

i .
We use the following natural derandomization approach:

given Hi with maximum-degree dmax
i , we first deterministi-

cally construct a constant-degree expander W over the vertex
set of Hi. Using the tools from [19], we then compute an
embedding ⇧W!Hi

from W into the graph Hi with mo(1)

vertex congestion using only short paths. Reusing these tools,
we also compute an embedding ⇧Hi!W from Hi into W with
mo(1) · dmax

i edge congestion using only short paths.
Now consider the embedding given by ⇧W!Hi

� ⇧Hi!W

which maps edges from Hi to paths in W and then back to
paths in Hi. We claim that the graph H 0

i consisting of the
edges in the image of ⇧W!Hi

is a spanner, and ⇧W!Hi
�

⇧Hi!W embeds Hi into H 0
i with low vertex congestion and

short paths. To see this, we first show that H 0
i is sparse, i.e.,

it has at most |V (Hi)|mo(1) edges. This follows because W
has only O(|V (Hi)|) edges by construction, and each edge is
mapped to a path of length at most mo(1). Thus the image
of ⇧W!Hi

consists of at most |V (Hi)|mo(1) edges. Further,
using Fact 1, we immediately obtain that ⇧W!Hi

� ⇧Hi!W

has vertex congestion mo(1) · dmax
i and it is not hard to see

that each embedding path in ⇧W!Hi
�⇧Hi!W is short.

There are some additional side constraints that the spanners
need to satisfy to work in the framework of our overall algo-
rithm, relating to leveraging the stability of the witness �(t).
Ensuring that these constraints are met requires additional
careful analysis, which we give in Section 8 of the full paper.

d) Dynamic Low-Stretch Trees: Our algorithm that dy-
namically maintains low-stretch trees uses a very similar
hierarchical data structure as to our dynamic min-ratio cycle
algorithm. At the top level, we statically compute a low-stretch
tree, and maintain a partial forest F with O(m/k) connected
components under edge updates. We then maintain a spanner
of G/F with explicit edge embeddings by applying the
deterministic edge sparsification algorithm described above.
Finally, we recurse on the spanner of G/F .

IV. FLOW FRAMEWORK

In this section, we discuss our main algorithm for solving
flow problems to high accuracy.

We first note that in order to solve a min-cost flow problem
exactly, it suffices to find a good enough fractional solution.
We use the following result which, as an immediate corollary,
shows that to solve min-cost flow it suffices to find a feasible
fractional flow f with a cost that is within an additive 1/2 of
the optimal cost.

Lemma IV.1 ([50, Section 4]). There is a deterministic
algorithm which when given a feasible fractional flow f in a
m-edge n-vertex mincost flow instance with integer capacities
outputs a feasible integer flow f 0 with cost no larger than f ,
in O(m logm) time.

To find such an approximate min-cost flow, we use the
IPM algorithm introduced in Chen et al. [19] that can find
an almost-optimal fractional solution to the min-cost flow
problem by solving a sequence of min-ratio cycle problems. In
order to state the guarantees of the algorithm, we first define
the min-ratio cycle problem and the dynamic variant of it that
we consider.

Definition IV.2 (Min-Ratio Cycle). Given a graph G(V,E),
gradients g 2 RE , and lengths ` 2 RE

>0, the min-ratio cycle
problem seeks a circulation � satisfying B>� = 0 that
(approximately) minimizes hg,fi

kLfk1
where L = diag(`).

Observe that the minimum objective value of the min-ratio
cycle problem is non-positive since for any circulation �, the
flow �� is also a circulation.

Extending the problem definition to the dynamic setting, a
dynamic min-ratio cycle problem with T instances is described
by a dynamic graph G(t), gradients g(t) 2 RE , and lengths
`(t) 2 RE

>0, where the dynamic graph is undergoing a batch
of updates U (1), . . . , U (T).

The IPM algorithm from [19] requires solving a dynamic
min-ratio cycle problem. The data structure from Chen et al.
for solving the dynamic min-ratio cycle problem requires a
stability condition, roughly requiring that there is a dynamic
witness for the problem instances whose length changes slowly
across iterations. This condition is captured in the following
definitions:

Definition IV.3 (Valid pair). For a graph G = (V,E) with
lengths ` 2 RE

>0, we say that c,w 2 RE are a valid pair if c
is a circulation and |`ece|  we for all e 2 E.

Definition IV.4 (Hidden Stable ↵-Flow Updates). We say that
a dynamic min-ratio cycle instance described by a dynamic
graph G(t), gradients g(t), and lengths `(t) satisfies the hidden
stable ↵-flow chasing property if there are hidden dynamic
circulations c(t) and hidden dynamic upper bounds w(t) such
that the following holds at all stages t:

1) c(t) is a circulation, i.e., B>
G(t)c

(t) = 0.
2) c(t) and w(t) are a valid pair with respect to G(t).
3) c(t) has sufficiently negative objective value relative to

w(t), i.e., hg(t),c(t)i
kw(t)k1

 �↵.
4) For any edge e in the current graph G(t), and any stage

t0  t, if the edge e was not explicitly inserted after
stage t0, then w(t)

e  2w(t0)
e . However, between stage t0

and t, endpoints of edge e might change due to vertex
splits.

5) Each entry of w(t) and `(t) is quasipolynomially lower
and upper-bounded:

logw(t)
e 2 [� logO(1) m, logO(1) m] and

log `(t)e 2 [� logO(1) m, logO(1) m] for all e 2 E(G(t))

Intuitively, Definition IV.4 says that even while g(t) and `(t)

change, there is a witness circulation c(t) that is fairly stable.
In particular, there is an upper bound w(t) on the coordinate-
wise lengths of c(t) that stays the same up to a factor of
2, except on edges that are explicitly updated. Interestingly,
even though both c(t) and w(t) are hidden from the data
structure, their existence is sufficient to facilitate efficient
implementations. For brevity, use the term Hidden Stability
to refer to Definition IV.4 in the rest of the paper.

Definition IV.5. The problem of -approximate Dynamic Min-
Ratio Cycle with Hidden Stability asks for a data struc-
ture that, at every stage t, finds a circulation �(t), i.e.,
B>

G(t)�
(t) = 0 such that hg(t),�i

kL(t)�k1
 �↵. Additionally, we

require that the data structure maintains a flow f 2 RE that
is initialized at 0, and supports the following operations:

1) UPDATE(U (t), g(t), `(t), ⌘). Apply edge inser-
tions/deletions specified in updates U (t) and update
gradients g(t) and lengths `(t) for these edges. Find a
circulation �(t) that approximately solves the min-ratio
problem as noted above. Update f f � ��(t),
where � = ⌘

(g(t))>�(t) .
2) QUERY(e). Returns the value fe.
3) DETECT(). For a fixed parameter ", where �(t) is the

update vector at stage t, returns

S(t) def
=

8
<

:e 2 E : `e
X

t02[last(t)e +1,t]

|�(t0)
e | � "

9
=

; (2)

where last(t)e is the last stage before t that e was returned
by DETECT().

Observe that the approximation ratio holds only with respect
to the quality of the hidden stable witness circulation c(t),
and not with respect to the best possible circulation. As a

sanity check, if the data structure could find and return c(t)

at each iteration, it would achieve a 1-approximation. Thus,
the data structure guarantee can be interpreted as efficiently
representing and returning a cycle whose quality is within
a mo(1) factor of c(t). Eventually, we will add �(t) to our
flow efficiently by using link-cut trees to efficiently implement
UPDATE(·).

The following theorem encapsulates the IPM algorithm
presented in [19] and its interface with the dynamic min-ratio
cycle data structure.

Theorem IV.6 ([19]). Assume we have access to a -
approximate dynamic min-ratio cycle with hidden stability
data structure, for some  2 (0, 1] as in Definition IV.5. Then,
there is a deterministic IPM-based algorithm that given a min-
cost flow problem with integral costs and capacities bounded
by exp((log n)O(1)) in absolute value, solves ⌧ = eO(m�2)
min-ratio cycle instances, and returns a flow with cost within
additive 1/2 of optimal. These eO(m�2) many min-ratio
cycle instances satisfy the hidden stable ↵-flow property for
↵ = 1/⇥(logm).

Over these min-ratio cycle instances, the total sizes of
the updates is

P
t2⌧ |U (t)| = eO(m�2), and the algorithm

invokes UPDATE, QUERY, and DETECT eO(m�2) times.
Furthermore, it is guaranteed that over all these instances,
the total number of edges included in any of the DETECT
outputs is eO(m�2).

The algorithm runs in time eO(m�2) plus the time taken
by the data structure.

The above result can be generalized to arbitrary integer costs
and capacities at the cost of a O(logC logmU) factor in the
running time by cost/capacity scaling [19, Lemma C.1].

In the full paper, we build our new deterministic data struc-
ture for approximate dynamic min-ratio cycles with hidden
stability and prove the following theorem.

Theorem IV.7 (Dynamic Min-Ratio Cycle with Hidden
Stability). There is a deterministic data structure that -
approximately solves the problem of dynamic min-ratio cycle
with hidden stability for  = exp(�O(log17/18 m·log logm)).
Over ⌧ batches of updates U (1), . . . , U (⌧), the algorithm runs
in time mo(1)(m+

P
t2[⌧] |U (t)|).

The data structure maintains a spanning tree T ✓ G(t) and
returns a cycle � represented as mo(1) paths on T (specified
by their endpoints) and mo(1) explicitly given off-tree edges,
and supports UPDATE and QUERY operations in mo(1) amor-
tized time. The running time of DETECT is mo(1)|S(t)|, where
S(t) is the set of edges returned by DETECT.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful com-
ments.

REFERENCES
[1] A. Abboud, R. Krauthgamer, J. Li, D. Panigrahi, T. Saranurak, and

O. Trabelsi. “Breaking the Cubic Barrier for All-Pairs Max-Flow:
Gomory-Hu Tree in Nearly Quadratic Time”. In: FOCS. IEEE, 2022,
pp. 884–895.

[2] A. Abboud, R. Krauthgamer, and O. Trabelsi. “Subcubic algorithms
for Gomory-Hu tree in unweighted graphs”. In: STOC. ACM, 2021,
pp. 1725–1737.

[3] I. Abraham and O. Neiman. “Using petal-decompositions to build a low
stretch spanning tree”. In: SIAM Journal on Computing 48.2 (2019),
pp. 227–248.

[4] K. Ameranis, A. Chen, L. Orecchia, and E. Tani. “Efficient Flow-based
Approximation Algorithms for Submodular Hypergraph Partitioning
via a Generalized Cut-Matching Game”. In: CoRR abs/2301.08920
(2023).

[5] S. Apers and R. de Wolf. “Quantum Speedup for Graph Sparsification,
Cut Approximation, and Laplacian Solving”. In: SIAM J. Comput. 51.6
(2022), pp. 1703–1742.

[6] S. Arora and S. Kale. “A combinatorial, primal-dual approach to
semidefinite programs”. In: STOC. ACM, 2007, pp. 227–236.

[7] K. Axiotis, A. Mądry, and A. Vladu. “Circulation control for faster
minimum cost flow in unit-capacity graphs”. In: 2020 IEEE 61st
Annual Symposium on Foundations of Computer Science (FOCS).
IEEE. 2020, pp. 93–104.

[8] K. Axiotis, A. Mądry, and A. Vladu. “Faster sparse minimum cost flow
by electrical flow localization”. In: 2021 IEEE 62nd Annual Symposium
on Foundations of Computer Science (FOCS). IEEE. 2022, pp. 528–
539.

[9] A. Bernstein, M. P. Gutenberg, and T. Saranurak. “Deterministic
decremental sssp and approximate min-cost flow in almost-linear
time”. In: 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS). IEEE. 2022, pp. 1000–1008.

[10] G. Borradaile and P. Klein. “An O (n log n) algorithm for maximum
st-flow in a directed planar graph”. In: Journal of the ACM (JACM)
56.2 (2009), pp. 1–30.

[11] G. Borradaile, P. N. Klein, S. Mozes, Y. Nussbaum, and C. Wulff-
Nilsen. “Multiple-source multiple-sink maximum flow in directed
planar graphs in near-linear time”. In: SIAM Journal on Computing
46.4 (2017), pp. 1280–1303.

[12] Y. Boykov and V. Kolmogorov. “An Experimental Comparison of
Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision”.
In: IEEE Trans. Pattern Anal. Mach. Intell. 26.9 (2004). Available
at: https://arxiv.org/abs/1202.3367, pp. 1124–1137.

[13] J. van den Brand, Y. Gao, A. Jambulapati, Y. T. Lee, Y. P. Liu, R.
Peng, and A. Sidford. “Faster maxflow via improved dynamic spectral
vertex sparsifiers”. In: Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing. 2022, pp. 543–556.

[14] J. v. d. Brand. “A Deterministic Linear Program Solver in Current
Matrix Multiplication Time”. In: SODA. SIAM, 2020, pp. 259–278.

[15] J. v. d. Brand, Y. T. Lee, Y. P. Liu, T. Saranurak, A. Sidford, Z.
Song, and D. Wang. “Minimum cost flows, MDPs, and `1-regression
in nearly linear time for dense instances”. In: STOC. ACM, 2021,
pp. 859–869.

[16] J. v. d. Brand, Y.-T. Lee, D. Nanongkai, R. Peng, T. Saranurak,
A. Sidford, Z. Song, and D. Wang. “Bipartite matching in nearly-
linear time on moderately dense graphs”. In: 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS). IEEE. 2020,
pp. 919–930.

[17] S. Chechik and T. Zhang. “Dynamic low-stretch spanning trees in
subpolynomial time”. In: Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms. SIAM. 2020, pp. 463–475.

[18] L. Chen, G. Goranci, M. Henzinger, R. Peng, and T. Saranurak. “Fast
dynamic cuts, distances and effective resistances via vertex sparsifiers”.
In: 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS). IEEE. 2020, pp. 1135–1146.

[19] L. Chen, R. Kyng, Y. P. Liu, R. Peng, M. Probst Gutenberg, and
S. Sachdeva. “Maximum flow and minimum-cost flow in almost-linear
time”. In: 2022 IEEE 63rd Annual Symposium on Foundations of
Computer Science (FOCS). https://arxiv.org/abs/2203.00671. IEEE.
2022, pp. 612–623.

[20] L. Chen, R. Peng, and D. Wang. “2-norm Flow Diffusion in Near-
Linear Time”. In: 2021 IEEE 62nd Annual Symposium on Foundations
of Computer Science (FOCS). https://arxiv.org/abs/2105.14629. IEEE.
2022, pp. 540–549.

[21] L. Chen and R. Tell. “Simple and fast derandomization from very
hard functions: eliminating randomness at almost no cost”. In: STOC
’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021. Ed. by S. Khuller and V. V.
Williams. ACM, 2021, pp. 283–291.

[22] P. Christiano, J. A. Kelner, A. Mądry, D. A. Spielman, and S. Teng.
“Electrical flows, Laplacian systems, and faster approximation of
maximum flow in undirected graphs”. In: Proceedings of the 43rd
ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA,
USA, June 6-8 2011. Available at https : / /arxiv.org/abs/1010.2921.
ACM, 2011, pp. 273–282.

[23] J. Chuzhoy. “Decremental All-Pairs Shortest Paths in Deterministic
near-Linear Time”. In: Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing. Available at: https://arxiv.org/
abs /2109 .05621. New York, NY, USA: Association for Computing
Machinery, 2021, pp. 626–639.

[24] J. Chuzhoy, Y. Gao, J. Li, D. Nanongkai, R. Peng, and T. Saranurak.
“A deterministic algorithm for balanced cut with applications to
dynamic connectivity, flows, and beyond”. In: 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS). IEEE. 2020,
pp. 1158–1167.

[25] J. Chuzhoy and T. Saranurak. “Deterministic algorithms for decremen-
tal shortest paths via layered core decomposition”. In: Proceedings
of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA).
SIAM. 2021, pp. 2478–2496.

[26] M. B. Cohen, A. Madry, P. Sankowski, and A. Vladu. “Negative-
Weight Shortest Paths and Unit Capacity Minimum Cost Flow in
eO(m10/7 logW) Time (Extended Abstract)”. In: SODA. SIAM, 2017,
pp. 752–771.

[27] S. I. Daitch and D. A. Spielman. “Faster approximate lossy generalized
flow via interior point algorithms”. In: Proceedings of the fortieth
annual ACM symposium on Theory of computing. 2008, pp. 451–460.

[28] G. B. Dantzig. “Application of the simplex method to a transportation
problem”. In: Activity analysis and production and allocation (1951).

[29] E. Dinic. “Algorithm for solution of a problem of maximum flow in
networks with power estimation”. In: Soviet Mathematics Doklady 11
(1970), pp. 1277–1280.

[30] E. Dinic. “Metod porazryadnogo sokrashcheniya nevyazok i transport-
nye zadachi”. In: Issledovaniya po Diskretnoı̌ Matematike (1973). In
Russian. Title translation: Excess scaling and transportation problems.

[31] R. Duan, S. Pettie, and H. Su. “Scaling Algorithms for Weighted
Matching in General Graphs”. In: ACM Trans. Algorithms 14.1 (2018).
Available at: https://arxiv.org/abs/1411.1919, 8:1–8:35.

[32] S. Even and R. E. Tarjan. “Network Flow and Testing Graph Connec-
tivity”. In: SIAM journal on computing 4.4 (1975), pp. 507–518.

[33] S. Forster and G. Goranci. “Dynamic low-stretch trees via dynamic
low-diameter decompositions”. In: Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing. 2019, pp. 377–
388.

[34] S. Forster, G. Goranci, and M. Henzinger. “Dynamic maintenance of
low-stretch probabilistic tree embeddings with applications”. In: Pro-
ceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM. 2021, pp. 1226–1245.

[35] Z. Galil and É. Tardos. “An O(n2(m+n logn) logn) Min-Cost Flow
Algorithm”. In: J. ACM 35.2 (1988), pp. 374–386.

[36] Y. Gao, Y. P. Liu, and R. Peng. “Fully dynamic electrical flows:
Sparse maxflow faster than goldberg-rao”. In: 2021 IEEE 62nd Annual
Symposium on Foundations of Computer Science (FOCS). IEEE. 2022,
pp. 516–527.

[37] M. Ghaffari, A. Karrenbauer, F. Kuhn, C. Lenzen, and B. Patt-Shamir.
“Near-Optimal Distributed Maximum Flow”. In: SIAM J. Comput. 47.6
(2018), pp. 2078–2117.

[38] A. Goldberg and R. Tarjan. “Solving minimum-cost flow problems by
successive approximation”. In: Proceedings of the nineteenth annual
ACM symposium on Theory of computing. 1987, pp. 7–18.

[39] A. V. Goldberg. “The partial augment–relabel algorithm for the
maximum flow problem”. In: European Symposium on Algorithms.
Springer. 2008, pp. 466–477.

[40] A. V. Goldberg. “Scaling Algorithms for the Shortest Paths Problem”.
In: SIAM J. Comput. 24.3 (1995), pp. 494–504.

[41] A. V. Goldberg, S. Hed, H. Kaplan, P. Kohli, R. E. Tarjan, and
R. F. Werneck. “Faster and More Dynamic Maximum Flow by In-
cremental Breadth-First Search”. In: Algorithms - ESA 2015 - 23rd
Annual European Symposium, Patras, Greece, September 14-16, 2015,
Proceedings. Ed. by N. Bansal and I. Finocchi. Vol. 9294. Lecture
Notes in Computer Science. Available at: https://www.microsoft.com/
en- us/research/wp- content/uploads/2016/11/ghkktw_ESA2015.pdf.
Springer, 2015, pp. 619–630.

[42] A. V. Goldberg and S. Rao. “Beyond the Flow Decomposition Barrier”.
In: Journal of the ACM 45.5 (1998). Announced at FOCS’97, pp. 783–
797.

[43] A. V. Goldberg and R. E. Tarjan. “Finding Minimum-Cost Circulations
by Canceling Negative Cycles”. In: J. ACM 36.4 (1989), pp. 873–886.

[44] D. Goldfarb and M. D. Grigoriadis. “A computational comparison of
the Dinic and network simplex methods for maximum flow”. In: Annals
of Operations Research 13.1 (1988), pp. 81–123.

[45] R. E. Gomory and T. C. Hu. “Multi-terminal network flows”. In:
Journal of the Society for Industrial and Applied Mathematics 9.4
(1961), pp. 551–570.

[46] D. Gusfield. “Very Simple Methods for All Pairs Network Flow
Analysis”. In: SIAM J. Comput. 19.1 (1990), pp. 143–155.

[47] D. S. Hochbaum. “The Pseudoflow Algorithm: A New Algorithm for
the Maximum-Flow Problem”. In: Operations Research 56.4 (2008),
pp. 992–1009.

[48] J. E. Hopcroft and R. M. Karp. “An n
5/2 Algorithm for Maximum

Matchings in Bipartite Graphs”. In: SIAM Journal on Computing 2.4
(Dec. 1973), pp. 225–231.

[49] R. Impagliazzo and A. Wigderson. “P = BPP if E Requires Exponen-
tial Circuits: Derandomizing the XOR Lemma”. In: Proceedings of the
Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El
Paso, Texas, USA, May 4-6, 1997. Ed. by F. T. Leighton and P. W. Shor.
ACM, 1997, pp. 220–229.

[50] D. Kang and J. Payor. “Flow Rounding”. In: CoRR abs/1507.08139
(2015).

[51] N. Karmarkar. “A New Polynomial-Time Algorithm for Linear Pro-
gramming”. In: STOC. ACM, 1984, pp. 302–311.

[52] A. V. Karzanov. “On finding maximum flows in networks with
special structure and some applications”. In: Matematicheskie Voprosy
Upravleniya Proizvodstvom 5 (1973), pp. 81–94.

[53] T. Kathuria, Y. P. Liu, and A. Sidford. “Unit Capacity Maxflow
in Almost O(m4/3) Time”. In: 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020, Durham, NC, USA,
November 16-19, 2020. IEEE, 2020, pp. 119–130.

[54] K. Kawarabayashi and M. Thorup. “Deterministic Edge Connectivity
in Near-Linear Time”. In: J. ACM 66.1 (2019), 4:1–4:50.

[55] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford. “An Almost-
Linear-Time Algorithm for Approximate Max Flow in Undirected
Graphs, and its Multicommodity Generalizations”. In: Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014. Ed. by
C. Chekuri. SIAM, 2014, pp. 217–226.

[56] R. Khandekar, S. Rao, and U. V. Vazirani. “Graph partitioning using
single commodity flows”. In: STOC. ACM, 2006, pp. 385–390.

[57] I. Koutis, G. L. Miller, and R. Peng. “A nearly-m log n time solver
for sdd linear systems”. In: 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science. IEEE. 2011, pp. 590–598.

[58] R. Kyng, S. Meierhans, and M. Probst. “Derandomizing Directed Ran-
dom Walks in Almost-Linear Time”. In: 63rd IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2022, Denver, CO, USA,
October 31 - November 3, 2022. IEEE, 2022, pp. 407–418.

[59] R. Kyng, R. Peng, S. Sachdeva, and D. Wang. “Flows in Almost
Linear Time via Adaptive Preconditioning”. In: Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing. 2019,
pp. 902–913.

[60] Y. T. Lee and A. Sidford. “Efficient Inverse Maintenance and Faster Al-
gorithms for Linear Programming”. In: 56th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
October 17-20, 2015. Available at https://arxiv.org/abs/1503.01752.
IEEE Computer Society, 2015, pp. 230–249.

[61] Y. T. Lee and A. Sidford. “Solving Linear Programs with Sqrt(rank)
Linear System Solves”. In: CoRR abs/1910.08033 (2019). arXiv: 1910.
08033.

[62] J. Li. “Deterministic mincut in almost-linear time”. In: STOC. ACM,
2021, pp. 384–395.

[63] J. Li, D. Nanongkai, D. Panigrahi, T. Saranurak, and S. Yingchareon-
thawornchai. “Vertex connectivity in poly-logarithmic max-flows”. In:
STOC. ACM, 2021, pp. 317–329.

[64] J. Li and D. Panigrahi. “Deterministic Min-cut in Poly-logarithmic
Max-flows”. In: FOCS. IEEE, 2020, pp. 85–92.

[65] Y. P. Liu and A. Sidford. “Faster energy maximization for faster
maximum flow”. In: Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing. 2020, pp. 803–814.

[66] A. Mądry. “Computing Maximum Flow with Augmenting Electrical
Flows”. In: 57th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New
Brunswick, New Jersey, USA. Available at https://arxiv.org/abs/1608.
06016. IEEE Computer Society, 2016, pp. 593–602.

[67] A. Mądry. “Fast Approximation Algorithms for Cut-Based Problems in
Undirected Graphs”. In: 51th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas,
Nevada, USA. IEEE Computer Society, 2010, pp. 245–254.

[68] A. Mądry. “Navigating central path with electrical flows: From flows
to matchings, and back”. In: 2013 IEEE 54th Annual Symposium on
Foundations of Computer Science. IEEE. 2013, pp. 253–262.

[69] C. Nalam, T. Saranurak, and S. Yingchareonthawornchai. “Deter-
ministic k-Vertex Connectivity in k

2 Max-flows”. In: arXiv preprint
arXiv:2308.04695 (2023). Available at https : / / arxiv. org / pdf / 2308 .
04695.pdf.

[70] D. Nanongkai, T. Saranurak, and S. Yingchareonthawornchai. “Break-
ing quadratic time for small vertex connectivity and an approximation
scheme”. In: STOC. ACM, 2019, pp. 241–252.

[71] L. Orecchia, L. J. Schulman, U. V. Vazirani, and N. K. Vishnoi. “On
partitioning graphs via single commodity flows”. In: STOC. ACM,
2008, pp. 461–470.

[72] J. B. Orlin and X.-y. Gong. “A fast maximum flow algorithm”. In:
Networks 77.2 (2021), pp. 287–321.

[73] J. B. Orlin. “A Faster Strongly Polynomial Minimum Cost Flow
Algorithm”. In: Oper. Res. 41.2 (1993), pp. 338–350.

[74] J. B. Orlin. “A Polynomial Time Primal Network Simplex Algorithm
for Minimum Cost Flows”. In: Proceedings of the Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms. SODA ’96. Atlanta,
Georgia, USA: Society for Industrial and Applied Mathematics, 1996,
pp. 474–481.

[75] J. B. Orlin, S. A. Plotkin, and É. Tardos. “Polynomial Dual Network
Simplex Algorithms”. In: Math. Program. 60.1–3 (1993), pp. 255–276.

[76] J. Sherman. “Area-convexity, `1 regularization, and undirected mul-
ticommodity flow”. In: Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing. 2017, pp. 452–460.

[77] J. Sherman. “Breaking the Multicommodity Flow Barrier for
O(

p
logn)-Approximations to Sparsest Cut”. In: FOCS. IEEE Com-

puter Society, 2009, pp. 363–372.
[78] J. Sherman. “Nearly Maximum Flows in Nearly Linear Time”. In:

54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA. IEEE Computer
Society, 2013, pp. 263–269.

[79] D. D. Sleator and R. E. Tarjan. “A data structure for dynamic trees”.
In: Journal of computer and system sciences 26.3 (1983), pp. 362–391.

[80] D. A. Spielman and S. Teng. “Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear systems”.
In: Proceedings of the 36th Annual ACM Symposium on Theory
of Computing, STOC 2004, Chicago, IL, USA, June 13-16, 2004.
Available at https:/ /arxiv.org/abs/0809.3232, https:/ /arxiv.org/abs/
0808.4134, https://arxiv.org/abs/cs/0607105. 2004, pp. 81–90.

[81] É. Tardos. “A Strongly Polynomial Minimum Cost Circulation Algo-
rithm”. In: Combinatorica 5.3 (1985), pp. 247–255.

