ReSQueing Parallel and Private
Stochastic Convex Optimization

Yair Carmon
Tel Aviv University
ycarmon @tauex.tau.ac.il

Arun Jambulapati
University of Washington
jmblpati@uw.edu

Daogao Liu
University of Washington
dgliu@uw.edu

Abstract—We introduce a new tool for stochastic convex
optimization (SCO): a Reweighted Stochastic Query (ReSQue)
estimator for the gradient of a function convolved with a
(Gaussian) probability density. Combining ReSQue with recent
advances in ball oracle acceleration [CJJ'20], [ACJ21], we
develop algorithms achieving state-of-the-art complexities for
SCO in parallel and private settings. For a SCO objective
constrained to the unit ball in R?, we obtain the following results
(up to polylogarithmic factors).

1) We give a parallel algorithm obtaining optimization er-

ror eope with a3 2? gradient oracle query depth and

opt
-2/3 | — . - .
d*/ 3eom/ + eop? gradient queries in total, assuming access

to a bounded-variance stochastic gradient estimator. For
€opt € [d™1,d™'/4], our algorithm matches the state-of-the-
art oracle depth of [BJL"19] while maintaining the optimal
total work of stochastic gradient descent.

2) Given n samples of Lipschitz loss functions, prior works
[BFTT19], [BFGT20], [AFKT21], [KLL21] established that
if n > degpz, (eap, 0)-differential privacy is attained at
no asymptotic cost to the SCO utility. However, these
prior works all required a superlinear number of gradient
queries. We close this gap for sufficiently large n > d> ed_lf,
by using ReSQue to design an algorithm with near-linear
gradient query complexity in this regime.

Index Terms—stochastic optimization, parallel computation,
differential privacy

I. INTRODUCTION

Stochastic convex optimization (SCO) is a foundational
problem in optimization theory, machine learning, theoretical
computer science, and modern data science. Variants of the
problem underpin a wide variety of applications in machine
learning, statistical inference, operations research, signal pro-
cessing, and control and systems engineering [Sha07], [SB14].
Moreover, SCO provides a fertile ground for the design and
analysis of scalable optimization algorithms such as the cele-
brated stochastic gradient descent (SGD), which is ubiquitous
in machine learning practice [Bot12].

SGD approximately minimizes a function f : R? — R by
iterating x;11 < x; — ng(x;), where g(x;) is an unbiased
estimator to a (sub)gradient of f at iterate z;. When f is
convex, E|lg(z)||> < 1 for all 2 and f is minimized at

x* in the unit ball, SGD finds an ey,-optimal point (ie.

Aaron Sidford
Stanford University
sidford @stanford.edu

Yin Tat Lee
Microsoft Research
yintatlee @ microsoft.com

Yujia Jin
Stanford University
yujiajin @stanford.edu

Kevin Tian
Microsoft Research
tiankevin @microsoft.com

satisfying Ef(z) < f(z*) + €op) using O(e;p%) stochastic
gradient evaluations [Bub15]. This complexity is unimprovable
without further assumptions [Ducl18]; for sufficiently large d,
this complexity is optimal even if g is an exact subgradient of
f [DG19].

Although SGD is widely-used and theoretically optimal
in this simple setting, the algorithm in its basic form has
natural limitations. For example, when parallel computational
resources are given (i.e., multiple stochastic gradients can
be queried in batch), SGD has suboptimal sequential depth
in certain regimes [DBW12], [BJL*19]. Furthermore, stan-
dard SGD is not differentially private, and existing private'
SCO algorithms are not as efficient as SGD in terms of
gradient evaluation complexity [BST14], [BFTT19], [FKT20],
[BFGT20], [AFKT21], [KLL21]. Despite substantial advances
in both the parallel and private settings, the optimal complexity
of each SCO problem remains open (see Sections I-A and I-B
for more precise definitions of problem settings and the state-
of-the-art rates, and Section I-C for a broader discussion of
related work).

Though seemingly disparate at first glance, in spirit par-
allelism and privacy impose similar constraints on effective
algorithms. Parallel algorithms must find a way to query the
oracle multiple times (possibly at multiple points) without
using the oracle’s output at these points to determine where
they were queried. In other words, they cannot be too reliant
on a particular outcome to adaptively choose the next query.
Likewise, private algorithms must make optimization progress
without over-relying on any individual sample to determine
the optimization trajectory. In both cases, oracle queries must
be suitably robust to preceding oracle outputs.

In this paper, we provide a new stochastic gradient estima-
tion tool which we call Reweighted Stochastic Query (ReSQue)
estimators (defined more precisely in Section I-D). ReSQue
is essentially an efficient parallel method for computing an
unbiased estimate of the gradient of a convolution of f with
a continuous (e.g. Gaussian) kernel. These estimators are

"Throughout this paper, when we use the description “private” without
further description we always refer to differential privacy [DR14]. For formal
definitions of differential privacy, see Section IV-A.

particularly well-suited for optimizing a convolved function
over small Euclidean balls, as they enjoy improved stability
properties over these regions. In particular, these local sta-
bility properties facilitate tighter control over the stability of
SGD-like procedures. We show that careful applications of
ReSQue in conjunction with recent advances in accelerated
ball-constrained optimization [CJI*20], [ACJT21] yield com-
plexity improvements for both parallel and private SCO.

a) Paper organization.: In Sections I-A and I-B respec-
tively, we formally describe the problems of parallel and
private SCO we study, stating our results and contextualizing
them in the prior literature. We then cover additional related
work in Section I-C and, in Section I-D, give an overview
of our approach to obtaining these results. In Section I-E, we
describe the notation we use throughout.

In Section II-A we introduce our ReSQue estimator and
prove some of its fundamental properties. In Section II-B
we describe our adaptation of the ball acceleration frame-
works of [ACJT21], [CH22], reducing SCO to minimizing
the objective over small Euclidean balls, subproblems which
are suitable for ReSQue-based stochastic gradient methods.
Finally, in Sections III and IV, we prove our main results
for parallel and private SCO (deferring problem statements to
Problem 1 and Problem 2), respectively, by providing suitable
implementations of our ReSQue ball acceleration framework.

A. Parallelism

In Section III we consider the following formulation of the
SCO problem, simplified for the purposes of the introduction.
We assume there is a convex function f : R? — R which can
be queried through a stochastic gradient oracle g, satisfying
Eg € 0f and E ||g||* < 1. We wish to minimize the restriction
of f to the unit Euclidean ball to expected additive error €qp.
In the standard sequential setting, SGD achieves this goal
using roughly eo_p? queries to g; as previously mentioned, this
complexity is optimal. A generalization of this formulation is
restated in Problem 1 with a variance bound L? and a radius
bound R, which are both set to 1 here.

In settings where multiple machines can be queried simul-
taneously, the parallel complexity of an SCO algorithm is
a further important measure for consideration. In [Nem94],
this problem was formalized in the setting of oracle-based
convex optimization, where the goal is to develop iterative
methods with a number of parallel query batches to g. In each
batch, the algorithm can submit polynomially many queries
to g in parallel, and then perform computations based on the
outputs of g. The query depth of a parallel algorithm in the
[Nem94] model is the number of parallel rounds used to query
g, and was later considered in stochastic algorithms [DBW12].
Ideally, a parallel SCO algorithm will also have bounded total
queries (the number of overall queries to g), and bounded
computational depth, e.g., the parallel depth used by the
algorithm treating the depth of each oracle query as O(1).
We discuss these three complexity measures more formally in
Section III-A.

Method g query depth computational depth # g queries
[Nes18] €2 €2 €2
[DBW12] diet die? diel 42
1 _2 4 _ 8 4 _ 8
[BJILT19] d3e” 3 d3e” s d3e™3
[KTES88] d d d
1 _2 1 _2 1 _2
Theorem 1 d3e 3 d3e 3 +¢2 d3e 3 4¢ 2
Theorem 2 dse 3 d3se 3 + die ! dse 3 +e2

Table T
COMPARISON OF PARALLEL SCO RESULTS. THE COMPLEXITY OF
FINDING A POINT WITH EXPECTED ERROR € := €gpt IN PROBLEM 1, WHERE
L = R = 1. WE HIDE POLYLOGARITHMIC FACTORS IN d AND e~ 1.

In the low-accuracy regime ey > d~'/4, recent work

[BJL*19] showed that SGD indeed achieves the optimal oracle
query depth among parallel algorithms.> Moreover, in the
high-accuracy regime e, < d~!, cutting plane methods
(CPMs) by e.g. [KTE88] (see [JLSW20] for an updated
overview) achieve the state-of-the-art oracle query depth of
d, up to logarithmic factors in d, €qp.

In the intermediate regime eqy € [d71,d1/4], [DBWI12],
[BJL*19] designed algorithms with oracle query depths that
improved upon SGD, as summarized in Table 1. In par-
ticular, [BJLT19] obtained an algorithm with query depth
6(d1/ 360_[)%/ 3), which they conjectured is optimal for inter-
mediate e, However, the total oracle query complexity of
[BJLT19] is 5(d4/ 36(;,?/ 3), a (fairly large) polynomial factor
worse than SGD.

a) Our results.: The main result of Section III is a pair of
improved parallel algorithms in the setting of Problem 1. Both
of our algorithms achieve the “best of both worlds” between
the [BJL"19] parallel algorithm and SGD, in that their oracle
query depth is bounded by O(d"/3¢;;?) (as in [BILT19]),
but their total query complexity matches SGD’s in the regime
€opt < d71/%. We note that epy < d~/4 is the regime where
a depth of O(d/ 36;;/ %) improves upon [DBW12] and SGD.
Our guarantees are formally stated in Theorems 1 and 2, and
summarized in Table I.

Our first algorithm (Theorem 1) is based on a batched SGD
using our ReSQue estimators, within the “ball acceleration”
framework of [ACJ™21] (see Section I-D). By replacing SGD
with an accelerated counterpart [GL12], we obtain a further
improved computational depth in Theorem 2. Theorem 2
simultaneously achieves the query depth of [BJLT19], the
computational depth of [DBW12], and the total query com-
plexity of SGD in the intermediate regime e, € [d~, d™1/4].

B. Differential privacy

Differential privacy (DP) is a mathematical quantification
for privacy risks in algorithms involving data. When perform-
ing stochastic convex optimization with respect to a sampled

2We omit logarithmic factors when discussing parameter regimes through-
out the introduction.

dataset from a population, privacy is frequently a natural
practical desideratum [BST14], [EPK14], [Abol6], [Appl7].
For example, the practitioner may want to privately learn a
linear classifier or estimate a regression model or a statistical
parameter from measurements.

In this paper, we obtain improved rates for private SCO
in the following model, which is standard in the literature
and restated in Problem 2 in full generality. Symmetrically
to the previous section, in the introduction, we only discuss
the specialization of Problem 2 with L = R = 1, where L
is a Lipschitz parameter and R is a domain size bound. We
assume there is a distribution P over a population S, and
we obtain independent samples {s;};c[n) ~ P. Every element
s € S induces a 1-Lipschitz convex function f(-;s), and the
goal of SCO is to approximately optimize the population loss
PP :=Esp[f(;s)]. The setting of Problem 2 can be viewed
as a specialization of Problem 1 which is more compatible with
the notion of DP, discussed in more detail in Section IV-A.

The cost of achieving approximate DP with privacy loss
parameter eq, (see Section IV-A for definitions) has been
studied by a long line of work, starting with [BST14]. The
optimal error (i.e., excess population loss) given n samples
scales as (omitting logarithmic factors)

L, vd ()

Né€dp ’

Vn
with matching lower and upper bounds given by [BST14] and
[BFTT19], respectively. The n~'/2 term is achieved (without
privacy considerations) by simple one-pass SGD, i.e., treating
sample gradients as unbiased for the population loss, and
discarding samples after we query their gradients. Hence, the
term /d - (neqp) "t can be viewed as the “cost of privacy” in
SCO. Assuming that we have access to n > dchPQ samples
is then natural, as this is the setting where privacy comes
at no asymptotic cost from the perspective of the bound (1).
Moreover, many real-world problems in data analysis have
low intrinsic dimension, meaning that the effective number
of degrees of freedom in the optimization problem is much
smaller than the ambient dimension [SSTT21], [LLH*22],
which can be captured via a dimension-reducing preprocessing
step. For these reasons, we primarily focus on the regime when
the number of samples n is sufficiently large compared to d.

An unfortunate property of private SCO algorithms achiev-
ing error (1) is they all query substantially more than
n sample gradients without additional smoothness assump-
tions [BST14], [BFTT19], [FKT20], [BFGT20], [AFKT21],
[KLL21], which can be viewed as a statistical-computational
gap. For example, analyses of simple perturbed SGD variants
result in query bounds of ~ n? [BFGT20]. In fact, [BFGT20]
conjectured this quadratic complexity was necessary, which
was disproven by [AFKT21], [KLL21]. The problem of ob-
taining the optimal error (1) using n gradient queries has been
repeatedly highlighted as an important open problem by the
private optimization community, as discussed in [BFGT20],
[AFKT21], [KLL21], [ACJ*21] as well as the recent research
overview [Tal22].

Qualitatively, optimality of the bound (1) shows that there is
no statistical cost of privacy when the number of samples 7 is
large enough, as the solver relies less on any specific sample.
A natural first step towards developing optimal private SCO al-
gorithms is to ask a similar qualitative question regarding their
computational guarantees. Concretely, given enough samples
n, can we develop statistically-optimal SCO algorithms which
only query ~ n sample gradients?

a) Our results.: In Section IV, we develop the first
private SCO algorithm with this aforementioned computational
guarantee. Our algorithm achieves the error bound (1) up to
logarithmic factors, as well as a new gradient query complex-
ity. Our result is formally stated in Theorem 4 and summarized
in Table II and Figure 1. Up to logarithmic factors, our gradient
query complexity is

2.2 2
. n edp . (nd)3 4 %
min | n, d + min yn3ey | -
€dp

Theorem 4 improves upon the prior state-of-the-art gradient
query complexity by polynomial factors whenever d < n*/3
(omitting eqp, dependencies for simplicity). As with prior recent
SCO advancements, our result has the appealing property that
it achieves the optimal n~'/2 error for SCO when n > ded_pz.

Moreover, given n 2, d26d_p3 samples, the gradient query
complexity of Theorem 4 improves to 6(11), the first near-
linear query complexity for a statistically-optimal private SCO
algorithm in any regime. In Table II and Figure 1, we compare
our bounds with the prior art.

While there remains a gap between the sample complexity at
which our algorithm is statistically optimal, and that at which
it is computationally (nearly)-optimal, we find it promising
that our result comes within logarithmic factors of achieving
the best-of-both-worlds for sufficiently large n. This is a key
step towards optimal algorithms for the fundamental problem
of private SCO. It is an interesting open question to refine
current algorithmic techniques for private SCO to remove this
gap, and we are optimistic that the tools developed in this
paper will be fruitful in this endeavor.

=
S
T
|

=
[N
T
|

Result in [KLL21]
~#~ Result in [AFKT21]
-— Our result

B : gradient complexity o n®

—
T
|

I I I
0 0.5 1 1.5 2

« : dimension d o< n®

Figure 1. Comparison among our gradient complexity and previous results in
[AFKT21], [KLL21] for the non-trivial regime d < n?. We omit dependencies
on €gp (treated as ©(1) in this figure) and logarithmic terms for simplicity.

Method excess fPOP loss # sample gradient queries
4\/3105; n Vidlog? 2 2
[BST14] Tn s+ P 3 n
dlog 1 9
1 5
[BFTT19] NG + n2
dlog 1
1) 2
[FKT20] NG + n
dlog 1
1 5 2
[BFGT20] o=t n
[AFKT21] L Ydlogd n3 A e
Vn ne Vd
dlog § 5 .1 3
[KLL21] Fe nids e nd?é
2
1 ,/dlog%log2'5% (nd)3 2 2 4 1
Theorem 4 ﬁ+ — n+ /\%-Q—nggs
Table IT

COMPARISON OF PRIVATE SCO RESULTS. THE EXCESS LOSS AND
GRADIENT COMPLEXITY OF (€ := €gp, §)-DP IN PROBLEM 2, WHERE
L = R = 1. WE HIDE POLYLOGARITHMIC FACTORS IN d,n,6 1, e~ 1IN
THE THIRD COLUMN. THE OPTIMAL LOSS [BST14], [SU15] IS ACHIEVED
BY ROWS 2-6.

C. Related work

a) Stochastic convex optimization.: Convex optimization
is a fundamental task with numerous applications in computer
science, operations research, and statistics [BV14], [Bub15],
[Nes18], and has been the focus of extensive research over the
past several decades. This paper’s primary setting of interest
is non-smooth (Lipschitz) stochastic convex optimization in
private and parallel computational models. Previously, [Gol64]
gave a gradient method that used O(e~2) gradient queries to
compute a point achieving e error for Lipschitz convex mini-
mization. This rate was shown to be optimal in an information-
theoretic sense in [NYS83]. The stochastic gradient descent
method extends [Gol64] to tolerate randomized, unbiased
gradient oracles with bounded second moment: this yields
algorithms for Problem 1 and Problem 2 (when privacy is
not a consideration).

b) Acceleration.: Since the first proposal of accelerated
(momentum-based) methods [Pol64], [Nes83], [Nes03], ac-
celeration has become a central topic in optimization. This
work builds on the seminal Monteiro-Svaiter acceleration
technique [MS13] and its higher-order variants [GDGT19],
[BJL*19]. More specifically, our work follows recent devel-
opments in accelerated ball optimization [CJI*20], [CJJS21],
[ACJT21], which can be viewed as a limiting case of high-
order methods. Our algorithms directly leverage error-robust
variants of this framework developed by [ACJ*21], [CH22].

¢) Parallel SCO.: Recently, parallel optimization has re-
ceived increasing interest in the context of large-scale machine
learning. Speeding up SGD by averaging stochastic gradi-
ents across mini-batches is extremely common in practice,
and optimal in certain distributed optimization settings; see
e.g. [DGBSX12], [DRY 18], [WBSS21]. Related to the setting
we study are the distributed optimization methods proposed
in [SBB™ 18], which also leverage convolution-based random-
ized smoothing and apply to both stochastic and deterministic

gradient-based methods (but do not focus on parallel depth
in the sense of [Nem94]). Finally, lower bounds against the
oracle query depth of parallel SCO algorithms in the setting
we consider have been an active area of study, e.g. [Nem94],
[BS18], [DG19], [BJL*T19].

d) Private SCO.: Both the private stochastic convex
optimization problem (DP-SCO) and the private empirical risk
minimization problem (DP-ERM) are well-studied by the DP
community [CMO8], [RBHT12], [CMS11], [JT14], [BST14],
[KJ16], [FTS17], [ZZMW17], [Wan18], [INS*19], [BFTT19],
[FKT20]. In particular, [BST14] shows that the exponential
mechanism and noisy stochastic gradient descent achieve the
optimal loss for DP-ERM for (eqp,0)-DP and (egp,d)-DP.
In follow-up works, [BFTT19], [FKT20] show that one can
achieve the optimal loss for DP-SCO as well, by a suitable
modification of noisy stochastic gradient descent. However,
these algorithms suffer from large (at least quadratic in n)
gradient complexities. Under an additional assumption that
the loss functions are sufficiently smooth (i.e., have Lipschitz
gradient), [FKT20] remedies this issue by obtaining optimal
loss and optimal gradient complexity under differential privacy.
In a different modification of Problem 2’s setting (where sam-
ple function access is modeled through value oracle queries
instead of subgradients), [GLL22] designs an exponential
mechanism-based method that uses the optimal value oracle
complexity to obtain the optimal SCO loss for non-smooth
functions.

Most directly related to our approach are the recent
works [KLL21] and [ACJ*21]. Both propose methods im-
proving upon the quadratic gradient complexity achieved by
noisy SGD, by using variants of smoothing via Gaussian
convolution. The former proposes an algorithm that uses noisy
accelerated gradient descent for private SCO with subquadratic
gradient complexity. The latter suggests a ball acceleration
framework to solve private SCO with linear gradient queries,
under a hypothetical algorithm to estimate subproblem so-
lutions. Our work can be viewed as a formalization of the
connection between ball acceleration strategies and private
SCO as suggested in [ACJT21], by way of ReSQue estimators,
which we use to obtain improved query complexities.

D. Our approach

Here we give an overview of our approach towards obtain-
ing the results outlined in Section I-A and Section I-B. To
illustrate and situate our approach, we first briefly discuss prior
approaches, their insights that we leverage, and obstacles that
we overcome. Then we discuss a common framework based
on a new stochastic gradient estimation tool we introduce and
call Reweighted Stochastic Query (ReSQue) estimators which
enables our results on parallel and private SCO. Our new
tool is naturally compatible with ball-constrained optimization
frameworks, where an optimization problem is localized to
a sequence of constrained subproblems (solved to sufficient
accuracy), whose solutions are then stitched together. We
exploit this synergy, as well as the local stability properties
of our ReSQue estimators, to design our SCO algorithms.

We discuss the different instantiations of our framework for
parallel and private SCO at the end of this section.

a) Convolutions and prior approaches.: All new results
on parallel and private SCO in this paper use the convolution of
a function of interest f : R? — R with a Gaussian density Yo
(with covariance p2I,), which we denote by fp. Such Gaussian
convolutions have a longer history of facilitating algorithmic
advances for SCO. All previous advances on parallel SCO
and Lipschitz convex function minimization used Gaussian
convolutions, i.e., [DBW12], [BILT19], as did a state-of-the-
art (in some regimes) private SCO algorithm [KLL21]. Each
of [DBW12], [KLL21] leverage that f, is a smooth, additive
approximation to f, and [BJL*19] further used that the higher
derivatives of f, are bounded, as well as the fact that its
gradients can be well-approximated within small balls.

As one of our motivating problems, we seek to move beyond
the reliance on (high-order) smoothness properties of f,, and
achieve total work bounds improving upon [BJL*19]. Unfor-
tunately, doing so while following the strategy of [BJL'19]
poses an immediate challenge. Though [BJL'19] achieves
improved parallel depth bounds for Lipschitz convex optimiza-
tion, it comes at a cost. Tlleir approach, which relies on the pth-
order Lipschitzness of f,, would naively involve computing
pM derivatives of the objective, and their approach to gradient
approximation involves estimating the gradient everywhere
inside a ball of sufficient radius. Naively, either of these
approaches would involve making €2(d) queries per parallel
step. Removing this cost is one of our main contributions to
parallel SCO, and our corresponding development is key to
enabling our private SCO results.

b) ReSQue estimators and ball acceleration.: To over-
come this bottleneck to prior approaches, we introduce a new
tool that capitalizes upon a different property of Gaussian
convolutions: the fact that the Gaussian density is locally stable
in a small ball around its center. This property is arguably
closely related to how [BJLT19] are able to prove that they
can approximate the gradients of f, inside a ball. However,
rather than building such a complete model of fp, we instead
use only use this property to suitably implement independent
stochastic gradient queries to f,.

Given a reference point T and a query point x, our proposed
estimator for V f,(z) is

draw € ~ N (0, 1),

Vp(fﬂ—f—f)g(j+§)7 2

V(&)
where ¢(z) is an unbiased estimate for a subgradient of f,
ie, Eg(z) € Of(2). That is, to estimate the gradient of
fp,» we simply reweight (stochastic) gradients of f that were
queried at random perturbations of reference point . This
reweighted stochastic query (ReSQue) estimator is unbiased
for Vf,(x), regardless of z. However, when |z — Z| < p,
i.e., x is contained in a small ball around Z, the reweighting
factor "’”(Li)_f) is likely to be close to 1. As a result, when g
is bounded and x is near z, the estimator (2) enjoys regularity

and output estimate

properties such as moment bounds. Crucially, the stochastic
gradient queries performed by ReSQue (at points of the form
T + &) do not depend on the point x at which we eventually
estimate the gradient.

We develop this theory in Section II, but mention one
additional property here, which can be thought of as a “rel-
ative smoothness” property. We show that when ||z — z/| is
sufficiently smaller than p, the difference of estimators of the
form (2) has many bounded moments, where bounds scale
as a function of ||z — 2’||. When we couple a sequence of
stochastic gradient updates by the randomness used in defining
(2), we can use this property to bound how far sequences drift
apart. In particular, initially nearby points are likely to stay
close. We exploit this property when analyzing the stability
of private stochastic gradient descent algorithms later in the
paper.

To effectively use these local stability properties of (2),
we combine them with an optimization framework called
ball-constrained optimization [CJJT20]. It is motivated by
the question: given parameters 0 < r < R, and an oracle
which minimizes f : R? in a ball of radius r around an
input point, how many oracles must we query to optimize
f in a ball of larger radius R? It is not hard to show that
simply iterating calls to the oracle gives a good solution in
roughly ? queries. In recent work, [CJJT20] demonstrated
that the optimal number of calls scales (up to logarithmic
factors) as (£)2/3, and [ACJ*21] gave an approximation-
tolerant variant of the [CJJT20] algorithm. We refer to these
algorithms as ball acceleration. Roughly, [ACJT21] shows that
running stochastic gradient methods on ~ (§)2/ 3 subproblems
constrained to balls of radius r obtains total gradient query
complexity comparable to directly running SGD on the global
function of domain radius R.

Importantly, in many structured cases, we have dramatically
more freedom in solving these subproblems, compared to the
original optimization problem, since we are only required to
optimize over a small radius. One natural form of complexity
gain from ball acceleration is when there is a much cheaper
gradient estimator, which is only locally defined, compared
to a global estimator. This was the original motivation for
combining ball acceleration with stochastic gradient methods
in [CJJS21], which exploited local smoothness of the softmax
function; the form of our ReSQue estimator (2) is motivated
by the [CJJS21] estimator. In this work, we show that using
ReSQue with reference point Z significantly improves the
parallel and private complexity of minimizing the convolution
f, inside a ball of radius r ~ p centered at Z.

¢) Parallel subproblem solvers.: A key property of the
ReSQue estimator (2) is that its estimate of Vf,(x) is a
scalar reweighting of g(Z + £), where ¢ ~ N(0, p?1;) and
Z is a fixed reference point. Hence, in each ball subproblem
(assuming r = p), we can make all the stochastic gradient
queries in parallel, and use the resulting pool of vectors
to perform standard (ball-constrained) stochastic optimization
using ReSQue. Thus, we solve each ball subproblem with a
single parallel stochastic gradient query, and — using ball

acceleration — minimize fp with query depth of roughly
p~2/3. To ensure that f, is a uniform eqy-approximation of
the original f, we must set p to be roughly eqp/ V/d, leading
to the claimed d'/ 360;3/ % depth bound. Furthermore, the ball
acceleration framework guarantees that we require no more
than roughly p—2/% + eo_p% stochastic gradient computations
throughout the optimization, yielding the claimed total query
bound. However, the computational depth of the algorithm
described thus far is roughly e;p%, which is no better than SGD.
In Section III we combine our approach with the randomized
smoothing algorithm of [DBW12] by using an accelerated
mini-batched method [GL12] for the ball-constrained stochas-
tic optimization, leading to improved computational depth as
summarized in Table I. Our parallel SCO results use the
ReSQue/ball acceleration technique in a simpler manner than
our private SCO results described next and in Section IV, so
we chose to present them first.

d) Private subproblem solvers.: To motivate our im-
proved private SCO solvers, we make the following connec-
tion. First, it is straightforward to show that the convolved
function f, is 1_smooth whenever the underlying function f is
Lipschitz. Further, recently [FKT20] obtained a linear gradient
query complexity for SCO, under the stronger assumption
that each sample function (see Problem 2) is < /n-smooth
(for L = R = 1 in Problem 2). This bound is satisfied by
the result of Gaussian convolution with radius in; however,
two difficulties arise. First, to preserve the function value
approximately up to €qp, we must take a Gaussian convolution
of radius p ~ f}"di. For €y in (1), this is much smaller than ﬁ
in many regimes. Second, we cannot access the exact gradients
of the convolved sampled functions. Hence, it is natural to ask:
is there a way to simulate the smoothness of the convolved
function, under stochastic query access?

Taking a step back, the primary way in which [FKT20] used
the smoothness assumption was through the fact that gradient
steps on a sufficiently smooth function are contractive. This
observation is formalized as follows: if ' + = — nV f(z)
and v < y — nVf(y), when f is O(%)-smooth, then
|l —¢'|| < |lx—y|. As alluded to earlier, we show that
ReSQue estimators (2) allow us to simulate this contractivity
up to polylogarithmic factors. We show that by coupling the
randomness £ in the estimator (2), the drift growth in two-
point sequences updated with (2) is predictable. We give a
careful potential-based argument (see Lemma 5) to bound
higher moments of our drift after a sequence of updates
using ReSQue estimators, when they are used in an SGD
subroutine over a ball of radius < p. This allows for the use
of “iterative localization™ strategies introduced by [FKT20],
based on iterate perturbation via the Gaussian mechanism.

We have not yet dealt with the fact that while this “smooth-
ness simulation” strategy allows us to privately solve one
constrained ball subproblem, we still need to solve K =~
(1)2/3 ball subproblems to optimize our original function,
where r < p is the radius of each subproblem. Here we
rely on arguments based on amplification by subsampling,

a common strategy in the private SCO literature [ACG™16],
[BBG18]. We set our privacy budget for each ball subproblem
to be approximately (egp,d) (our final overall budget), before
subsampling. We then use solvers by suitably combining the
[FKT20] framework and our estimator (2) to solve these ball
subproblems using ~ n- K ~1/2 gradient queries each. Finally,
our algorithm obtains the desired

query complexity: ~

{5

gradient queries per subproblem
K =nVvV K, and
number of subproblems
- 3)
privacy: =~ €dp
~—~
privacy budget per subproblem
1
- . VK
/K ~—~
~——

subsampling

= €dp-

advanced composition

Here we used the standard technique of advanced composition
(see e.g. Section 3.5.2, [DR14]) to bound the privacy loss over
K consecutive ball subproblems.

Let us briefly derive the resulting complexity bound and
explain the bottleneck for improving it further. First, the ball
radius 7 must be set to =~ p (the smoothing parameter) for
our ReSQue estimators to be well-behaved. Moreover, we
have to set p =~ i;%, otherwise the effect of the convolution
begins to dominate the optimization error. For €y ~ ﬁ +
Vid(negy) ™t (see (1)), this results in 1 min(v/nd, negp).
Next, K ~ (1)2/3 is known to be essentially tight for
ball acceleration with R = 1 [CJJT20]. For the subprob-
lem accuracies required by the [ACJT21] ball acceleration
framework,> known lower bounds on private empirical risk
minimization imply that ~ # gradients are necessary for
each subproblem to preserve a privacy budget of eg, [BST14].
As subsampling requires the privacy loss before amplification
to already be small (see discussion in [Smi09], [BBG18]), all
of these parameter choices are optimized, leading to a gradient
complexity of ny/K. For our lower bound on %, this scales
as ~ min(n*/3, (nd)?/?) as we derive in Theorem 4.* To go
beyond the strategies we employ, it is natural to look towards
other privacy amplification arguments (for aggregating ball
subproblems) beyond subsampling, which we defer to future
work.

Our final algorithm is analyzed through the machinery of
Rényi differential privacy (RDP) [Mirl7], which allows for
more fine-grained control of the effects of composition and
subsampling. We modify the standard RDP machinery in two
main ways. We define an approximate relaxation and control
the failure probability of our relaxation using high moment

3These subproblem accuracy requirements cannot be lowered in general,
because combined they recover the optimal gradient complexities of SGD
over the entire problem domain.

“In the low-dimensional regime d < ne?ip, the gradient queries used per

Vnd

subproblem improves to .
P p Vi

bounds on our drift (see Section IV-B). We also provide an
analysis of amplification under subsampling with replacement
by modifying the truncated CDP (concentrated DP) tools
introduced by [BDRS18], who analyzed subsampling without
replacement. Sampling with replacement is crucial in order
to guarantee that our ReSQue estimators are unbiased for
the empirical risks we minimize when employing a known
reduction [FKT20], [KLL21] from private SCO to private
regularized empirical risk minimization.

E. Notation

Throughout O hides polylogarithmic factors in problem
parameters. For n € N, we let [n] := {i | 1 < i < n}. For
x € RY we let ||z|| denote the Euclidean norm of x, and let
B, (r) := {2’ € R?| ||z’ — z|| < r} denote a Euclidean ball
of radius r centered at x; when x is unspecified we take it to be
the origin, i.e., B(r) := {2’ € R? | ||2'|| < r}. We let N'(u,)
denote a multivariate Gaussian distribution with mean p € R¢
and covariance ¥ € R?*? and I, is the identity matrix in
R4, For K C R?, we define the Euclidean projection onto
K by I (x) := argmin,, i ||z — 2'||. For p € [0,1], we let
Geom(p) denote the geometric distribution with parameter p.

a) Optimization.: We say a function f : R? — R is
L-Lipschitz if for all 2,2’ € R? we have |f(x) — f(2')] <
L ||z — 2'||. We say f is A-strongly convex if for all z, 2" € R?
and t € [0, 1] we have

(1 —t)

o — ||
2

fltz+(A=t)y) <tf(z)+1-1)f(y)—

We denote the subdifferential (i.e., set of all subgradients) of a
convex function f : R? — R at z € R? by df(x). Overloading
notation, when clear from the context we will write 9f(x) to
denote an arbitrary subgradient.

b) Probability.: Let p, v be two probability densities f,
v on the same probability space 2. We let Dry(u,v) =
1 [|m(w) — v(w)|dw denote the total variation distance. The
following fact is straightforward to see and will be frequently
used.

Fact 1. Let £ be any event that occurs with probability at
least 1 — & under the density p. Then Dry(p,p | €) < 6,
where | € denotes the conditional distribution of 1 under E.

For two densities u, v, we say that a joint distribution
I'(u, v) over the product space of outcomes is a coupling of
u,v if for (z,2") ~ T'(u,v), the marginals of = and 2’ are
w1 and v, respectively. When p is absolutely continuous with
respect to v, and o > 1, we define the a-Rényi divergence by

s o] (2) i),

D,, is quasiconvex in its arguments, i.e. if 1 = E¢pe and v =
E¢ve (where is a random variable, and ¢, v¢ are distribution
families indexed by &), then D, (p||v) < maxe Do (pellve).

II. FRAMEWORK

We now outline our primary technical innovation, a new gra-
dient estimator for stochastic convex optimization (ReSQue).
We define this estimator in Section II-A and prove that it
satisfies several local stability properties in a small ball around
a “centerpoint” used for its definition. In Section II-B, we then
give preliminaries on a “ball acceleration” framework devel-
oped in [CJJT20], [ACJT21]. This framework aggregates so-
lutions to proximal subproblems defined on small (Euclidean)
balls, and uses these subproblem solutions to efficiently solve
an optimization problem on a larger domain. Our algorithms in
Sections III and IV instantiate the framework of Section II-B
with new subproblem solvers enjoying improved parallelism
or privacy, based on our new ReSQue estimator.

A. ReSQue estimators

Throughout we use 7, RY — Rs to denote the
probability density function of N (0, p?1,), ie., 7,(z) =
(27p)~ % exp(—ﬁ |z]|?). We first define the Gaussian con-

volution operation.

Definition 1 (Gaussian convolution). For a function f : R? —
R we denote its convolution with a Gaussian of covariance

p*Ly by [, = f 7, ie,

~

fo(x) == Eyno,p21) f(x +y) = /ER flx =) (y)dy.
y n
(5)

Three well-known properties of fp are that it is differen-
tiable, that if f is L-Lipschitz, so is fp for any p, and that
\f, — f| < Lpv/d pointwise (Lemma 8, [BJLT19]). Next,
given a centerpoint Z and a smoothing radius p, we define the
associated reweighted stochastic query (ReSQue) estimator.

Definition 2 (ReSQue estimator). Let Z € R¢ and let f :
R? — R be convex. Suppose we have a gradient estimator
g : RY — RY satisfying Eg € Of. We define the ReSQue
estimator of radius p as the random vector

Ve (z—z2-¢
V(&)
where we first sample &, and then independently query g at

T +§&. When g is deterministically an element of Of, we drop
the superscript and denote the estimator by Vz f,,.

Ve, (@) = 9@ +€) where € ~ N(0, pL).

When g is unbiased for df and enjoys a variance bound, the
corresponding ReSQue estimator is unbiased for the convolved
function, and inherits a similar variance bound.

Lemma 1. The estimator in Definition 2 satisfies the following
properties, where expectations are taken over both the random-
ness in & and the randomness in g.
1) Unbiased: E%gfp(m) = V[, (x).
2) Bounded variance: If E||g||” < L? everywhere, and x €
Bs(p), then B[V f,(x)|* < 3L%.

Proof. The first statement follows by expanding the expecta-
tion over £ and g:

g)g(

'Yp(m - - 7
_ 'Yp(x -z —¢) 7
/ =Sy + (e

— [0r@+ Onla -2 - d = V(o).

The last equality used that the integral is a subgradient of fp,
and f, is differentiable.
For the second statement, denote v := z — z for simplicity.
Since f is L-Lipschitz,
2
B9 = By [P g(e 4 612 ag
Yp(§)

< L(2mp)”%
lo— €1 llEl®
: ——— + | d&.
/exp(7 + 202 3
Next, a standard calculation for Gaussian integrals shows
2(0,6) — eI’
€xp o £
lo]* / 1€ — v|)®
= —————|d 6
exp (202 exp 5,2 3 (6)
2
B A WY
= exp 5,7 mp)Z.
The statement then follows from (6), which yields
lo— €1 lI€l®
———+ 5| d
/exp(E + 507 3
2 2
4 _
= exp (HU|2|) /exp <<v,5>2§||> g
p 2p

2 2
= (27p) % exp <”1}2”> <3 (2mp)*
p

and completes the proof of the second statement. O

When the gradient estimator g is deterministically a sub-
gradient of a Lipschitz function, we can show additional
properties about ReSQue. The following lemma will be used in
Section IV both to obtain higher moment bounds on ReSQue,
as well as higher moment bounds on the difference of ReSQue
estimators at nearby points, where the bound scales with the
distance between the points.

Lemma 2. [f z,2’ € Bf(g)forp > 2 then

Yoz =2 —&) — (e =2 = §)
’Yp(f)

|
< (2elz=1Y”
p

We defer a proof to Appendix A, where a helper calculation
(Fact 3) is used to obtain the result.

E¢n(0,0210) [

B. Ball acceleration

We summarize the guarantees of a recent “ball acceleration”
framework originally proposed by [CJJ*20]. For specified
parameters 0 < r < R, this framework efficiently aggregates
(approximate) solutions to constrained optimization problems
over Euclidean balls of radius r to optimize a function over
a ball of radius R. Here we give an approximation-tolerant
variant of the [CJJT20] algorithm in Proposition 1, which
was developed by [ACJ*21]. Before stating the guarantee, we
require the definitions of three types of oracles. In each of the
following definitions, for some function F' : R? — R, scalars
A, 7, and point T € R? which are clear from context, we will
denote

* . A _
sha = argmin) { @) 4 5 ool f. - ®

We mention that in the non-private settings of prior work
[ACJ™21], [CH22] (and under slightly different oracle ac-
cess assumptions), it was shown that the implementation of
line search oracles (Definition 3) and stochastic proximal
oracles (Definition 5) can be reduced to ball optimization
oracles (Definition 4). Indeed, such a result is summarized
in Proposition 2 and used in Section III to obtain our parallel
SCO algorithms. To tightly quantify the privacy loss of each
oracle for developing our SCO algorithms in Section IV (and
to implement these oracles under only the function access
afforded by Problem 2), we separate out the requirements of
each oracle definition separately.

Definition 3 (Line search oracle). We say Oy is a (A, M)-line
search oracle for F' : R? — R if given & € R%, O returns
x € RY with

ol <A

Definition 4 (Ball optimization oracle). We say Oy, is a
(¢, \)-ball optimization oracle for F : RY — R if given
zZ € R, O, returns x € R with

A A
E|F(e)+ 5 e —2l®| < Flaky) + 5 [ler s — 2|+

Definition 5 (Stochastic proximal oracle). We say O, is a
(A, o, \)-stochastic proximal oracle for F': R? — R if given
Z e R4, Oyp returns x € R with

o2

A
[Ee 22, < 50 Elle —a2a]" < 55

Leveraging Definitions 3, 4, and 5, we state a variant of the
main result of [ACJT21]. Roughly speaking, Proposition 1
states that to optimize a function F' over a ball of radius
R, it suffices to query ~ (75)% oracles which approximately
optimize a sufficiently regularized variant of F' over a ball of
radius . We quantify the types of approximate optimization
of such regularized functions in Proposition 1, and defer
a detailed discussion of how to derive this statement from
[ACJ*21] in Appendix A, as it is stated slightly differently in

the original work.’

Proposition 1. Let F : R? — R be L-Lipschitz and
convex, and let x* € B(R). There is an algorithm BallAccel
(Algorithm 4, [ACJT21]) taking parameters r € [0, R] and
€opt € (0, LR] with the following guarantee. Define

R\ 3 K2
€opt

K:=— A = 2

(> ’ R

r

LR

K ,
€opt

For a universal constant Cy, > 0, BallAccel runs in at most
Cva K log k iterations and produces x € RY such that

EF(z) < F(x*) + €op.

Moreover, in each iteration BallAccel requires the following
oracle calls (all for F).
1) At most Cyylog(££) calls to a (cos A)-line search

Ay Cbz\L]
Cha? €opt '

, A)-ball optimization oracle

oracle with values of \ € |

. Ar?
2) A single call to (A5
with \ € [)‘* M}

Cha”’ €opt :
. €opt €opl\/I(
3) A single call to (CMR, w3

oracle with \ € [é‘: , Sk,
a opt

, A)-stochastic proximal

The optimization framework in Proposition 1 is naturally
compatible with our ReSQue estimators, whose stability prop-
erties are local in the sense that they hold in balls of radius
=~ p around the centerpoint = (see Lemma 2). Conveniently,
BallAccel reduces an optimization problem over a domain of
size R to a sequence of approximate optimization problems
on potentially much smaller domains of radius 7. In Sec-
tions III and IV, by instantiating Proposition 1 with r ~ p,
we demonstrate how to use the local stability properties of
ReSQue estimators (on smaller balls) to solve constrained
subproblems, and consequently design improved parallel and
private algorithms.

Finally, as mentioned previously, in settings where privacy
is not a consideration, Proposition 1 of [CH22] gives a
direct implementation of all the line search and stochastic
proximal oracles required by Proposition 1 by reducing them
to ball optimization oracles. The statement in [CH22] also
assumes access to function evaluations in addition to gradi-
ent (estimator) queries; however, it is straightforward to use
geometric aggregation techniques (see Lemma 11) to bypass
this requirement. We give a slight rephrasing of Proposition 1

5In particular, we use an error tolerance for the ball optimization oracles,
which is slightly larger than in [ACJT21], following a tighter error analysis
given in Proposition 1 of [CH22].

in [CH22] without the use of function evaluation oracles, and
defer further discussion to Appendix Od where we prove the
following.

Proposition 2. Let F R? — R be L-Lipschit; and
convex, and let x* € B(R). There is an implementation of
BallAccel (see Proposition 1) taking parameters r € [0, R]
and eqy € (0, LR] with the following guarantee, where we
define k, K, A\ as in Proposition 1. For a universal constant
Cha > 0, BallAccel runs in at most Cy, K log k iterations and
produces x € R? such that EF (z) < F(2*) + €opt.
Rk

1) Each iteration makes at most Ch, log2(7) calls to

(%,A)-ball optimization oracle with values of A €
[Af" Chal|
Cha’ €opt .
2) For each j € [[loga K + Chl], at most CZ -
. 2
279 K log(£2) iterations query a (A -log_Q(%)7 A)-

Cha27
o Ar CnL
ball optimization oracle for some X € [&, v]-

III. PARALLEL STOCHASTIC CONVEX OPTIMIZATION

In this section, we present our main results on parallel
convex optimization with improved computational depth and
total work. We present our main results below in Theorems 1
and 2, after formally stating our notation and the SCO problem
we study in this section.

A. Preliminaries

In this section, we study the following SCO problem, which
models access to an objective only through the stochastic
gradient oracle.

Problem 1. Let f : RY — R be convex. We assume there
exists a stochastic gradient oracle g : R? — RY satisfying for
all z € RY, Bg(z) € 0f(z), E||g(x)||* < L2 Our goal is to
produce x € R? such that Ef (z) < ming.ep(r) f(2*) + €op.
We define parameter

LR

€opt

(©))

K

When discussing a parallel algorithm which queries a
stochastic gradient oracle, in the sense of Problem 1, we
separate its complexity into four parameters. The query depth
is the maximum number of sequential rounds of interaction
with the oracle, where queries are submitted in batch. The
total number of queries is the total number of oracle queries
used by the algorithm. The computational depth and work
are the sequential depth and total amount of computational
work, treating each oracle query as requiring O(1) depth and
work. For simplicity we assume that all d-dimensional vector
operations have a cost of d when discussing computation.

B. Proofs of Theorems 1 and 2

Theorem 1 (Parallel EpochSGD-based solver). BallAccel
(Proposition 2) using parallel EpochSGD (Algorithm 1) as a

ball optimization oracle solves Problem 1 with expected error
€opt» With

(0] (d%,‘i% logg(dﬂ)) query depth

and O (d%ﬁ)% log® (dk) + K2 log* (d/i)) total queries,
and an additional computational cost of

0 (d%m% log? (dk) + K% log* (dn)) depth

and O ((d%li% log? (dk) + K2 log* (dﬁ)) . d) work.

Theorem 2 (Parallel AC-SA-based solver). BallAccel (Propo-
sition 2) using parallel AC-SA (Algorithm 2) as a ball op-
timization oracle solves Problem 1 with expected error €y,
with

O (d%fi% log KZ) query depth
and O ((d%fc% +dik+ KZZ) log* (dﬁ)) total queries,
and an additional computational cost of
) (d%I{% log® (dk) + d7 klog? (dn)) depth
and O ((d%li% +dik+ Ii2) -dlog* (dli)) work.

The query depth, total number of queries, and total work
for both of our results are the same (up to logarithmic fac-
tors). The main difference is that AC-SA attains an improved
computational depth for solving SCO, compared to using
EpochSGD. Our results build upon the BallAccel framework
in Section II-B, combined with careful parallel implemen-
tations of the required ball optimization oracles to achieve
improved complexities.

We begin by developing our parallel ball optimization ora-
cles using our ReSQue estimator machinery from Section II-A.
First, Proposition 2 reduces Problem 1 to implementation of
a ball optimization oracle. Recall that a ball optimization
oracle (Definition 4) requires an approximate solution x of
a regularized subproblem. In particular, for some accuracy
parameter ¢, and defining 27 , as in (8), we wish to compute
a random z € Bz (r) such that

~ A ~ A
E|fo@)+ 5 e — ol | < Foazn) + 5 lleia -2l + 6.

Note that such a ball optimization oracle can satisfy the
requirements of Proposition 2 with ' < f,, r < p. In
particular, Lemma 1 gives a gradient estimator variance bound
under the setting r = p.

a) EpochSGD.: We implement EpochSGD [HKI14],
[ACJ™21], a variant of standard stochastic gradient descent on
regularized objective functions, in parallel using the stochastic
ReSQue estimator constructed in Definition 2. Our main
observation is that the gradient queries in Definition 2 can
be implemented in parallel at the beginning of the algorithm.
We provide the pseudocode of our parallel implementation of
EpochSGD in Algorithm 1 and state its guarantees in Propo-
sition 3.

Algorithm 1: EpochSGD(f, g, Z, 7, p, A, ¢)

1 Input: f:R? = R and g : RY — R satisfying the
assumptions of Problem 1, Z € R?, 7, p, A\, > 0

LTy 16, T« [8L2
2771<;4>\9 1 B <;|VA¢—‘
3 Sample & ~ N(0, p?1,), i € [2T)] independently
4 Query g(Z + &;) for all ¢ € [2T] (in parallel)
520« 7, k1
¢ while Zje[k] T, <T do
7 | oz} +
. A _
argmin, e, () { 25l — 72 + o — a2 |
8 | forte [T, —1] do
9 P Dgep-n i+
10 g L) (3 + &)
1 A 1alrg:r>mi11wemgi(r) (Mkgs,) + ’\%Hx —
| + 3lle — i |?
12 end
13 :Zingl <— Tik Zte[Tk] CCZ, Tk+1 < 2Tk, Ng+1 < %“,
k+—k+1
14 end

15 return z)

Proposition 3 (Proposition 3, [ACIT21]). Let f, g satisfy the
assumptions of Problem 1. When p = r, Algorithm 1 is_a
(¢, X)-ball optimization oracle for f, which makes O(é—i)
total queries to g with constant query depth, and an additional
computational cost of O(%\) depth and work.

b) AC-SA.: We can also implement AC-SA [GL12], a
variant of accelerated gradient descent under stochastic gra-
dient queries, in parallel using stochastic ReSQue estimators.
We provide the pseudocode of our parallel implementation of
AC-SA in Algorithm 2 and state its guarantees in Lemma 4.

Proposition 4 (Special case of Theorem 1, [GL12]). Let f, g
satisfy the assumptions of Problem 1. When p = r, Algorithm 2
is a (¢, \)-ball optimization oracle for f, which makes

L Ar? L?
0] 1+ —1lo (> + — | total queries
(V AN A¢> 1

with constant query depth, and an additional computational

cost of
L Ar?
o,h+b() depth
L Ar? L?
and O 1+ —1lo () + — | work.
(V PR A¢>

Because the statement of Proposition 4 follows from specific
parameter choices in the main result in [GL12], we defer
a more thorough discussion of how to obtain this result to
Appendix Of.

Algorithm 2: AC-SA(f,Z,r, p, A, d)

1 Input: f:R? = R, g: R? = R satisfying the
assumptions of Problem 1, Z € R?, r, p, X, ¢ > 0

K+ [logy(22)], T« [4,/ 5 + 1],

Ni « [48- 2% okor | for b € [K]
Sample & ~ N(0, p?1,), i € [N] independently, for

N =T (ke V)

N

w

4 Query g(Z +&;) for all i € [N] (in parallel)
5 X8 — T, 10+ T
6 for k € [K] do
7 | forte[T]do
L
8 < H’%’ Yt %
o || ot e SRR e+ Rt e
10 NT,[k—l] HT'Zk’E[k‘,—l] Ny
11 Vf(zrd)
Vo (@ —T—ENg 1 itn)
NL}« ZnE[Nk] ’Yp(ﬁNTy[k.,T;][inl)] 9(z +
fNT,[k—l]Jrn)
12 Ty ¢ argmingep () V¢(z), where
Wi (o) 1= 00V F (@) + AP — 7,0 —) +
2z o gy 2 + 38 o — a2
13 T8 — apre + (1 — ay)zi®,
14 end
15 | agf < af, xo « aF
16 end

17 Return: z3#

¢) Main results.: We now use our parallel ball optimiza-
tion oracles to prove Theorems 1 and 2.

Proofs of Theorems 1 and 2. We use Proposition 2 with r =
p= % on F' < f,, which approximates f to additive €qp,
and z* := argmingcp(g) f(x). Rescaling ey, by a constant
from the guarantee of Proposition 2 gives the error claim. For
the oracle query depths, note that each ball optimization oracle
(whether implemented using Algorithm 1 or Algorithm 2)
has constant query depth, and at most O(log®(dr)) ball
optimization oracles are queried per iteration on average. Note
that (see Proposition 1)

LR R\? 12
K= K= — = d3K3,
eopt T
2 4
€0ptK2 2 Eoptd§ K3

)*: R2 IOg H:T

For the total oracle queries, computational depth, and
work, when implementing each ball optimization oracle with
EpochSGD, we have that for jmax := [logy K + Ch,], these

are all

K log (dr)

1 (L?-271log?(dk) L? 9
o 2 5 (2) ()

F€imax] *

2
=0 <K log* (dk) - ASTQ) = O (k*log* (dr))
due to Proposition 3. The additional terms in the theorem
statement are due to the number of ball oracles needed. For the
computational depth when implementing each ball optimiza-
tion oracle with AC-SA we have that (due to Proposition 4),
it is bounded by

O (K log®(dk) - ri* log(d/-e))

-0 <K log* (dk) - [\f) -0 (d%nlog‘*(dn)) .

4

Finally, for the total oracle queries and work bounds, the bound
2 .

due to the f— term is as was computed for Theorem 1, and

the bound due to the other term is the same as the above

display. O

IV. PRIVATE STOCHASTIC CONVEX OPTIMIZATION

We now develop our main result on an improved gradi-
ent complexity for private SCO. First, in Section IV-A, we
introduce several variants of differential privacy including
a relaxation of Rényi differential privacy [Mirl7], which
tolerates a small amount of total variation error. Next, in Sec-
tions IV-B, IV-C, and IV-D, we build several private stochas-
tic optimization subroutines which will be used in the ball
acceleration framework of Proposition 1. Specifically, these
subroutines will be called as the oracles in Definitions 3, 4,
and 5 with the parameters required by Proposition 1 in the
proof of our main result (see (32), (33), and (34)). Finally, in
Sections IV-E and IV-F, we give our main results on private
ERM and SCO respectively, by leveraging the subroutines we
develop. Finally, in Sections IV-E and IV-F, we give our main
results on private ERM and SCO respectively, by leveraging
the subroutines we develop.

A. Preliminaries

In this section, we study the following specialization of
Problem 1 naturally compatible with preserving privacy with
respect to samples, through the formalism of DP (to be defined
shortly).

Problem 2. Let P be a distribution over S, and suppose there
is a family of functions indexed by s € S, such that f(-;s) :
R? — R is convex for all s € S. Let D := {s;};c[n] consist
of n i.i.d. draws from P, and define the empirical risk and
population risk by

Fma) = 1 S flasss) and f(r) = Bap f(a:5).

i€[n]

We denote f' := f(-;s;) for all i € [n], and assume that for all
s €S, f(+;8) is L-Lipschitz. We are given D, and can query
subgradients of the “sampled functions” f!. Our goal is to
produce x € R? such that E f*°P(z) < ming.ep(r) fPP(x*) +
€opt- We again define k = fo as in (9).

In the “one-pass” setting where we only query each 9f% a
single time, we can treat each O f* as a bounded stochastic
gradient of the underlying population risk fP°P. We note the
related problem of empirical risk minimization, i.e., optimizing
f™ (in the setting of Problem 2), can also be viewed as a
case of Problem 1 where we construct g by querying Of°
for i ~unir. [n]. We design (eqp, d)-DP algorithms for solving
Problem 2 which obtain small optimization error for fe™
and fP°P. To disambiguate, we will always use €qp to denote
an optimization error parameter, and g, to denote a privacy
parameter. Our private SCO algorithm will require querying
Jf* multiple times for some i € [n], and hence incur bias for
the population risk gradient. Throughout the rest of the section,
following the notation of Problem 2, we will fix a dataset
D € 8™ and define the empirical risk f™ and population risk
fP°P accordingly. We now move on to our privacy definitions.

We say that two datasets D = {s;}ic[) € S" and D’ =
{si}icm) € S™ are neighboring if |{i | s; # s;}| = 1. We
say a mechanism (i.e., a randomized algorithm) M satisfies
(€dp, 0)-differential privacy (DP) if, for its output space 2 and
all neighboring D, D’, we have for all S C ,

Pr[M(D) € S] < exp(eqgp) PrIM(D') € S|+ 4. (10)
We extensively use the notion of Rényi differential privacy
(RDP) due to its compatibility with the subsampling arguments
we will use, as well as an approximate relaxation of its
definition which we introduce. While it is likely that our
results can be recovered (possibly up to logarithmic terms)
by accounting for privacy losses via approximate differential
privacy, we present our privacy accounting via RDP to simplify
calculations.

We say that a mechanism M satisfies («, €)-Rényi differ-
ential privacy if for all neighboring D, D’ € 8", the a-Rényi
divergence (4) satisfies

Do (M(D)|M(D')) <. (11)

RDP has several useful properties which we now summarize.

Proposition 5 (Propositions 1, 3, and 7, [Mirl7]). RDP has
the following properties.

1) (Composition): Let My : 8" — Q satisfy («, €1)-RDP
and My : 8™ x Q — Q' satisfy (a, €2)-RDP for any
input in Q. Then the composition of Ms and My,
defined as Mz(D, M1(D)) satisfies (c, €1 + €2)-RDP.

2) (Gaussian — mechanism): For S R,
Da(N (11, L IN (1, 071) < 2 1 — |

3) (Standard DP): If M satisfies (c, €)-RDP, then for all
6 €(0,1), M satisfies (¢ + 5 log 5,8)-DP.

We also use the following definition of approximate Rényi
divergence:
min Do (1 ||V).

D =
ao(illv) Drv (1) <8, Drv (v) <6

12)

We relax the definition (11) and say that M satisfies
(v, €,6)-RDP if for all neighboring D, D’ € 8", recalling
definition (12),

Do s(M(D)|M(D)) < e.

The following is then immediate from Proposition 5, and
our definition of approximate RDP, by coupling the output
distributions with the distributions realizing the minimum (12).

Corollary 1. If M satisfies («,€,0)-RDP, then for all §' €
(0,1), M satisfies (egp, 6" + (1 + exp(eap))d)-DP for egy =
e+ L5 log 5.

a—1

Proof. Let p, v be within total variation 6 of M(D) and
M(D’), such that D, (u||v) < e and hence for any event
S7

Pr [w € S] < exp(eqp) Pr[we S|+ 4.

W~

Combining the above with

Pr weS|—-6d< Priweds|,

w~M(D) W
PrlweS|< Pr [weS]+9,
wrw W M(D')

we have

p < p !
wwj\/lr(D)[w € S] < exp(eqp) riV[w €S|+ +¢

<explen) Pr

+ 6" + (1 + exp(eqp))d.

[w e S|

O

Finally, our approximate RDP notion enjoys a composition
property similar to standard RDP.

Lemma 3. Let My : 8" — Q satisfy («,€1,01)-RDP and
My : 8" x Q — Q satisfy (a,é€a,02)-RDP for any input
in Q. Then the composition of My and M, defined as
My (D, M1 (D)) satisfies (v, €1 + €2,1 + d2)-RDP.

Proof. Let D, D' be neighboring datasets, and let u, p’' be
distributions within total variation §; of M (D), M;(D’)
realizing the bound D, (u||p) < €;. For any w € (), similarly
let v,, v/, be the distributions within total variation d2 of
Mz (D, w) and M2 (D', w) realizing the bound D,, (v, ||v),) <
€2. Finally, let P, be the distribution of w € {2 according to
M; (D), and @, to be the distribution of M (D’); similarly,
let Py, Q2. be the distributions of w’ € ' according to

Algorithm 3: Subsampled ReSQued ERM solver, con-
Vex case

1 Input: = € R4, ball radius, convolution radius, and
privacy parameter r, p, 5 > 0, dataset D € ",
iteration count 7' € N

T llog, T') T T min(-L. B
2T<—2_ ,k<—10g2T,n<—Lmln(ﬁ,\/E)
Ty T
3 for i € [k] do
4 | T; 27T, n; 470, 0f Lg"
5 Yo < Ti—1
6 | for j €[T;] do
7 Zi,7 "unif. [TL}
o fFid .
8 yj < g,) (yj—1 —:iVafo' (yj-1))
> PSGD step using ReSQue (See Definition 2) for a
subsampled function. Lemma 5 denotes the random
Gaussian sample by &; ;.
9 end
= 1
10 Ui T Xjerm) Yi
11 T; < Zj@ + Ci, for CZ ~ (0 o; Id)
12 end

13 return z;

My (D,w) and My(D’,w). We first note that by a union
bound,

D ([t o, [PP

S 61 + 527
Drv (/ V&(w’)u’(w)dwdw',/Ql(w)Qgﬁw(w’)dwdw)
Finally, by Proposition 1 of [Mirl7], we have

<61+ do.
D, </ v (W p(w)dwdw’ /VL(w’)p'(w)dwdw')

S €1 + €2.
Combining the above two displays yields the claim. O

B. Subsampled smoothed ERM solver: the convex case

We give an ERM algorithm that takes as input a dataset
D € &, parameters T' € N and r, p, 5 > 0, and a center point
7 € R? Our algorithm is based on a localization approach
introduced by [FKT20] which repeatedly decreases a domain
size to bound the error due to adding noise for privacy. In
particular we will obtain an error bound on f§™ with respect
to the set Bz (r), using at most 7" calls to the ReSQue estimator
in Definition 2 with a deterministic subgradient oracle. Here
we recall that f*™ is defined as in Problem 2, and fe““ is
correspondingly defined as in Definition 1. Importantly, our
ERM algorithm developed in this section attains RDP bounds
improving with the subsampling parameter % when T' < n,
due to only querying 7" random samples in our dataset.

We summarize our optimization and privacy guarantees on
Algorithm 3 in the following. The proof follows by combining
Lemma 4 (the utility bound) and Lemma 7 (the privacy
bound).

Proposition 6. Let 27 € argmin,p_(,.\f5™(z). Algorithm 3
uses at most T gradients and produces x € Bz (r) such that,
for a universal constant Ciyy,

E [f5m(x)] f/;?ﬂ(xmsccvxu(” !)

R + N

BT VT

Moreover, there zs a universal constant Cpsy > 1, such

that if T < oo B2log(5) < g 6 € (0,5). and
riv priv

2 > Cpiylog (logT) Algorithm 3 satisfies (o, at,d)-RDP

for

1\ 7T\? 1
= C [B1 - d ,— .
T:=Cy ([3 og<5> n) and o € (Cprivﬂ210g2(<13)>

a) Utility analysis.: We begin by proving a utility guar-
antee for Algorithm 3, following [FKT20].

Lemma 4. Let z7 := argmin,cp_, f5™(x). We have, for a
universal constant Cpyy,

. o vd 1
E[J5m ()| = Fi™(@3) < Conlr (ﬁT + f)

Proof. Denote F := f;?“, Yo = x%, and (o := T — x, where
by assumption ||(o|| < . We begin by observing that in each
run of Line 8, by combining the first property in Lemma 1 with
the definition of ™, we have thatE[V f,, (yj-1) | yj— 1}
OF(y;—1). Moreover, by the second property in Lemma 1 and
the fact that f##7 is L-Lipschitz,

- 2
EHvif/fi)j(yj—l)H < 3L%.
We thus have

E[F(x)] - F(z}) = Y E[F(5:) - F(gi-1)]
i€ k]
+E[F(zr) — F(Ur)]
E |:||Ii—1 - ?Ji—l”z] 3n. L2
Un
<
o Z 2n;T;; * 2
i€ k]
+ LE [[|zx — gx|l]
8r2 o2d
<44 Z i@
T i€lk—1] T
3n; L?
+ Z L + Lak\/&.
i€ k]

(13)
In the third line, we used standard regret guarantees on pro-
jected stochastic gradient descent, e.g. Lemma 7 of [HK14],
where we used that all g; € Bz(r); in the fifth line, we used

Bl ~ 5el] < | & [l — 5007] = B [1G617] = 04va

by Jensen’s mequahty Contmumg, we have by our choice of

i L*n
<27 zﬁzT hence
82 4L%*pd 3nL?
E|F —F(z}) < — =
[F (o) u&>_.nT<+ 7t
LQU\[1
612
_ (8Lr | 8LrVd) | 8LiVd
VT pT AT
LI
T VT

Here we used that 27 > T and T2 > /T, forall T € N. [

b) Privacy analysis.: We now show that our algorithm
satisfies a strong (approximate) RDP guarantee. Let D' =
{si}icpny € S™ be such that D = {s;};cn) and D’ are
neighboring, and without loss of generality assume s # 7.
Define the multiset

T:=A{z;liclk,jeln]} (14)

to contain all sampled indices in [n] throughout Algorithm 3.
We begin by giving an (approximate) RDP guarantee condi-
tioned on the number of times “1” appears in Z. The proof
of Lemma 5 is primarily based on providing a potential-based
proof of a “drift bound,” i.e., how far away iterates produced
by two neighboring datasets drift apart (coupling all other
randomness used). To carry out this potential proof, we rely
on the local stability properties afforded by Lemma 2.

Lemma 5. Define Z as in (14) in one call to Algorithm 3.
Let T be deterministic (i.e., this statement is conditioned on
the realization of Z). Let b be the number of times the index
1 appears in I. Let u be the distribution of the output of
Algorithm 3 run on D, and /' be the distribution when run on
D', such that D and D' are neighboring and differ in the first
entry, and the only randomness is in the Gaussian samples
used to deﬁne ReSQue estimators and on Line 11. Suppose
2 > 1728log (k’gT) Then we have for any o > 1,

Do s(pllp') < 150008%b°.

Proof. Throughout this proof we treat 7 as fixed with b
occurrences of the index 1. Let b; be the number of times
1 appears in Z; := {z;; | j € [Ti]}, such that 3, bi = .
We first analyze the privacy guarantee of one loop, and then
analyze the privacy of the whole algorithm.

We begin by fixing some i € [k], and analyzing the RDP of
the i outer loop in Algorithm 3, conditioned on the starting
point yg. Consider a particular realization of the 7; Gaussian
samples used in implementing Line 8, Z; := {& ;}jem)
where we let & ; ~ N(0, p?I;) denote the Gaussian sample
used to define the update to y;_;. Conditioned on the values
of Z;, Z;, the i™ outer loop in Algorithm 3 (before adding (;
in Line 11) is a deterministic map. For a given realization of
Z; and E;, we abuse notation and denote {y; }]e] to be the
iterates of the i outer loop in Algorithm 3 using the dataset

D starting at yo, and {y}};c|7,) similarly using D’. Finally,

define
logT
1 .
e (5

In the following parts of the proof, we will bound for this p the
quantity E®7. , to show that with high probability it remains
small at the end of the loop, regardless of the location of the
1 indices.

Potential growth: iterates with z; ; # 1. We first bound the
potential growth in any iteration j € [T;] where z; ; # 1. Fix
Y0, Yo and {&; + }re[j—1)» so that @;_; is deterministic. We have
(taking expectations over only &; ;),

®; =y —yi||* po=

Ee ;@ <E(®j1+4;+B))", (15)
where
Aj = —-2n,Z < FPI(Z+ &), yi—1 — y;._1>7
Bj =i Z; |of*](117 +&)I7,
g vp(yjfl —&ig) = vp(yj_l T —&ij)
! Yp(&ij)

The inequality in (15) follows from expanding the definition
of the update to ®; before projection, and then using the fact
that Euclidean projections onto a convex set only decrease
distances. By the second part of Lemma 2, for all ¢ € [2,p],
if \/®;_1 < % (which is always satisfied as /®;_1 < 7),

By Lipschitzness of f*:7 and Cauchy-Schwarz (on A;), we
thus have

48n;Lq®;_1*?
8nqjl> for all ¢ € [2, p],
p

Ef%,g |A]|q S <
(16)

48n;Lq \ >
Ee, B! < (’7p q) ®?_, for all g € [1, p].

Next, we perform a Taylor expansion of (15), which yields
Eﬁi,j (I)§ < (I)§—1 +p®§:iE§i,j [Aj + Bj]
+p(p—1)
1
0B (@ ey)7 4 B
0
a7

By monotonicity of convex gradients and the first part of
Lemma 1, we have

Eii,j [AJ] <0. (18)
By applying (16), we have
_ asn; L\
p®1E¢, By <p (Z) P (19)

Next we bound the second-order terms. For any ¢ € [0,1] we
have denoting C; := A; + Bj,

Ee, [(‘I’j—1 +1C;)" CJQ}

p—2 _9
- (p . ><I>§’_qu&,j [t%chﬂ
0
2

p—2 9
2 (72)eriome (1]

p—2

P—2\ p—2- 2
+4224(,)@;?_1 “Ee,, [B}™]

q=0

A8, Lp\ 2222 — 92\ [48n;Lq*?
§4<I>§1< 81 p) 22q<p) (81 q)
p q p

q=0

—2 2q+2
48mLp* "=, (P — 2\ (48mL(2+q)*
e () 2 A8nL(2+q)
= >

P 7=0 P
48n; Lp \ 2 sLp\ P2
§8<p§1< 81 p) <1+9677P>
p p
48mLp>2

(20)
The first inequality used (a + b)? < 2P(aP + bP) for any
nonnegative a,b and 0 < ¢ < 1, the second inequality used
(16), and the third and fourth inequalities used
48n; L(2 4 q) < 1
p ~2p
for our choices of ;L < 7 and p. Finally, plugging (18), (19),
and (20) into (17),

48n; Lp 2
Ee, , @) < ®F (1 + 16p* (p)

P
48n:Lp
<@, <1+16p< p;)

Finally, using (1;L)* < 157 < 12—; and our assumed bound
on Z, which implies 13 (481; Lp)? < 4, taking expectations

over {&;}iepj—1 yields

<1607, (

1
T;>

1 p
E®? < E®Y_, (1 + T) when z; £ 1. (1)

Potential growth: iterates with z; ; = 1. Next, we handle
the case where z; ; = 1. We have that conditional on fixed
values of {&; ¢ }1e[;—1]» Yo and yp,

Eﬁi,j (bf < E&,.g‘ (q)j—l + Dj + Ej)p

1 P (22)
SEe, ((1+ | P +26iE5)
where overloading f <+ f(-;s1), h + f(-; 1),
Dj = —2n, <%fp(yj71) — Vahp(W)_1),yj-1 — y}71> ;

~ o~ ~ o~ 2
Ej:=n} vifp(yj—l)_vihp(y;—l)H :

and we use D; < ®; 1 + b;E; by Cauchy-Schwarz and
Young’s inequality. Next, convexity of ||-||*? implies that

5

Next, we note that since f is Lipschitz, the first part of

Lemma 2 implies for all ¢ < p,
(Vp(yj—l -7 - §)>2q
’Yp(f)

and a similar calculation holds for h. Here we used our
assumed bound on % to check the requirement in Lemma 2 is
satisfied. By linearity of expectation, we thus have

E&t,jE;'] < (977iL)2q .

. 2q ~ o~
EJq S 771'2q22q71 <vafp(y]_1)H -+ Hv:ihp(y;—l)

~ o~ 2q
E|[Vafolwsn)|| < 27E

< 2(L)*,

(23)

Finally, expanding (22) and plugging in the moment bound
(23),

p q
p 1 - -
Ee, , @7 <) () (1+ b) | (2b:)P IR, , [EVT]

2 q
. . - 2(p—
= Z() <1+ bi) O (20;)P79(9n; L))

q=0 q

p
((1 + b1> D, 4+ 2bi(9mL)2) :

Taking expectations over {; ;};c[;—1]» and using Fact 4 with
7 (1 + %)q)jfl and C + Qbi(gniL)2, when Zij = 1,

. p
EQ? < <<1 + bl) E[®7_,]7 + 2bi(977iL)2> - @4

One loop privacy. We begin by obtaining a high-probability
bound on ®,. Define
W; == E[@"]7.
By using (21) and (24), we observe
14) Wi s A1

W; < :
1 + %) ijl + 2b1(9771L)2 Zi,j =1

Hence, regardless of the b; locations of the 1 indices in Z;,
we have

T bi
1 2 1 T

Wr, < (1 + T_) (1 + b_) (267 (9n;L)%) < 12000 (n; L)>.

Thus, by Markov’s inequality, with probability at least 1— &

over the randomness of =; = {&; j},e[r,], we have using our

choice of p,

logT
)

1
) < 150067 (n; L)*.
(25
In the last inequality, we used our choice of p. Call &, the
event that the sampled Z; admits a deterministic map which
yields the bound in (25). By the second part of Proposition 35,

lyr, — v, ||* < 120002 (n;L)? - (

the conditional distribution of the output of the i" outer loop
under &; satisfies («, 15003%b2)-RDP, where we use the value
of o; in Line 4 of Algorithm 3. We conclude via Fact 1 with
£ < &; that the i outer loop of Algorithm 3 satisfies

(a, 150003267, 5) -RDP.

logT
All loops privacy. By applying composition of RDP (the third
part of Proposition 5), for a given realization of 7 = U;c1)Z;
with b occurrences of 1, applying composition over the log T
outer iterations (Lemma 3), Algorithm 3 satisfies

(c, 150003°b°, §) -RDP:

Here, we used Ziem b? < b%. This is the desired conclusion.
O

We next apply amplification by subsampling to boost the
guarantee of Lemma 5. To do so, we use the following key
Proposition 7, which was proven in [BDRS18]. The use case
in [BDRSI18] involved subsampling with replacement and
was used in a framework they introduced termed truncated
CDP, but we will not need the framework except through the
following powerful fact.

Proposition 7 (Theorem 12, [BDRSI8]). Ler 7 < 1, s €
(0,45). Let P, Q, R be three distributions over the same

probability space, such that for each pair Py, P, € {P,Q, R},
we have D, (P1||P:) < at for all « > 1. Then for all
a € (1, %)

Do (sP+ (1 —8)R||sQ + (1 — s)R) < 13s%ar.

We also require a straightforward technical fact about bino-
mial distributions.

|~

Consider the
with at most

Lemma 6. Let m,n € N satisfy % <
following partition of the elements T € [n
b copies of 1:
So:={Z € [n]™ | Z; # 1 for all i € [m]},
S1:={Z € [n]™|Z; =1 for k many i € [m]}, k € [1,b].

D

0"
m

Let mg and w1 be the uniform distributions on Sy and S
respectively. Then there exists a coupling T'(mg, 71) such that
Sor all (Z,T') in the support of T,

il Zi # L} < b.

Proof. Define a probability distribution p on elements of [b]
such that

(™) (n —1)me
Daepy (o) (n—1)m=e

Clearly, > ,cPa = 1. Our coupling I' :=
defined as follows.

Do i= for all a € [b].

F(’IT(),ﬂ'1) is

1) Draw Z ~ my and a ~ p independently.
2) Let Z’ be Z with a uniformly random subset of « indices
replaced with 1. Return (Z,Z").
This coupling satisfies the requirement, so it suffices to verify
it has the correct marginals. This is immediate for Sy by

definition. For Z' € S, suppose Z' has a occurrences of the
index 1. The total probability Z’ is drawn from T" is then indeed

(n—1)* Pa _ 1 1
(n—1)m >acip) (o) (n = 1)m=e

1811

The first equality follows as the probability we draw Z ~

which agrees with Z’ on all the non-1 locations is (n—1)*"™,
and the probability Z’ is drawn given that we selected Z is

-1
pa-(q) =

Finally, we are ready to state our main privacy guarantee
for Algorithm 3.

Lemma 7. There is a universal constant Cyiy € [1,00), such
o T 1 27271 1 1
that if 5 < & B?log™(5) < Tt 6 € (0,5), and £ >

Chriv logZ(loiT), Algorithm 3 satisfies (a, at,§)-RDP for

1\ T\? 1
= O (Blog (=) Z) ,ae(t,—n .
e (ﬁ Og(é) n) ¢ (Opmﬁ%og?(;))

Proof. Let D, D' be neighboring, and without loss of gener-
ality, suppose they differ in the first entry. Let Cpyiy > 60, and

let Z be defined as in (14). Let £ be the event that Z contains
at most b copies of the index 1, where

b:=2log <§) .
s

By a Chernoff bound, £ occurs with probability at least 1 — 5
over the randomness of Z. We define P to be the distribution
of the output of Algorithm 3 when run on D, conditioned
on £ and Z containing at least one copy of the index 1 (call
this total conditioning event &1, i.e., there are between 1 and
b copies of the index 1). Similarly, we define @ to be the
distribution when run on D’ conditioned on £;, and R to be
the distribution conditioned on £ N EY (when run on either D
or D). We claim that for all Py, P, € {P,Q, R}, we have

D, s (Pi]|P2) < 150005%°, foralla > 1. (26)

To see (26) for P = P and P, = ((or vice versa),
we can view P, () as mixtures of outcomes conditioned on
the realization Z. Then, applying quasiconvexity of Renyi
divergence (over this mixture), and applying Lemma 5 (with
6 «— g), we have the desired claim. To see (26) for the
remaining cases, we first couple the conditional distributions
under £ and £ N &F by their index sets, according to the
coupling in Lemma 6. Then applying quasiconvexity of Rényi
divergence (over this coupling) again yields the claim, where
we set m <— T — 1 < T. Finally, let

-y

1-LL o7
<l-__—n < 7
B l—g - n

Note that conditional on £ and the failure event in Lemma 5
not occurring, the distributions of Algorithm 3 using D and
D’ respectively are sP+ (1 —s)R and sQ + (1 — s)R. Hence,

union bounding with £¢ (see Fact 1), the claim follows from
Proposition 7 with 7 < 600032 log®(2). O

¢) Regularized extension.: We give a slight extension to
Algorithm 3 which handles regularization, and enjoys similar
utility and privacy guarantees as stated in Proposition 6. Let

T\ i= argmingcp - {ferm(x) + % ||z — :?2} .2
Our extension Algorithm 4 is identical to Algorithm 3, except
it requires a regularization parameter A, allows for an arbitrary
starting point with an expected distance bound (adjusting the
step size accordingly), and takes composite projected steps
incorporating the regularization.

Algorithm 4: Subsampled ReSQued ERM solver, reg-
ularized case, convex rate

1 Input: z € RY, ball radius, convolution radius, privacy
parameter, and regularization parameter r, p, 5, A > 0,
dataset D € S™, iteration count T € N, distance
bound ' € [0, 2r], initial point z¢ € Bz (r) satisfying
Ellzo — 2% \]1* < (r)?

T + 2le:T) |k + og,

3 for i € [k] do

1

1L

T, n+« %min(

[
Q=

o | T 27T, m 4, oy - B

5 Yo < Ti—1

6 for j € [T;] do

7 Zi,5 "unif. [n}

8 yj — argmmye]R (r){(mv fp (Y1),) +
2y =yl + %2 lly — 2II°}

9 end

10 Ui < % Zje[m Yj

1 z; < §i + G, for ¢ ~ N(0,071y)

12 end
13 return z;

Corollary 2. Let 7, , be defined as in (27). Algorithm 4 uses
at most T gradients and produces x € Bz (r) such that, for a
universal constant Ceyy,

A _ . A 2
3 Nl = wnﬂ - (fzfmww,n + 5 Mz -2l)

Vd 1
< Copx L1’ <5T \F) .

Moreover, there zs a universal constant Cpm, >
T 2 1
that if £ < B log?(L) <

Cpnv priv

€ (0,
2 > Cpm, log (logT) Algorithm 4 satzsﬁes (o, T

for

(0 (5)) = (1
7:=Cyu (Blo —), « — .
P &e\s) n Cpriv 32 logQ(%)

E f/ga‘(as)—i—

such

1,
%)
,0)-R

Proof. The proof is almost identical to Proposition 6, so
we only discuss the differences. Throughout this proof, for
notational convenience, we define

FMNz) = fom(x) +

Utility. Standard results on composite stochastic mirror
descent (e.g. Lemma 12 of [CJST19]) show the utility bound
in (13) still holds with F* in place of F. In particular each
term E[F(y;) — FMN(gi_1)] as well as E[F*(z,) — F* ()]
enjoys the same bound as its counterpart in (13). The only
other difference is that, defining (y := x¢ — 2% , in the proof
of Lemma 4, we have EC& < (r")? in place of the bound 72,
and we appropriately changed 7 to scale as ' instead.

Privacy. The subsampling-based reduction from Lemma 7
to Lemma 5 is identical, so we only discuss how to obtain an
analog of Lemma 5 for Algorithm 4. In each iteration j € [T}],
by completing the square, we can rewrite Line 8 as

A 12
2w — 2.

) 1 2
yj ¢ argmingep, iy ¢ 5 ly =l

1 + WA _
= i xr —
T+ 27T T 1+m

Now consider our (conditional) bounds on IEgw ®; in (15) and
(22). We claim these still hold true; before projection, the same
arguments used in (15) and (22) still hold (in fact improve by
(1 +n;A)?), and projection only decreases distances. Finally,
note that the proof of Lemma 5 only used the choice of step
size 7 through nL\/T < r and used the assumed bound on %
to bound the drift growth. As we now have nL\/T <7 <2,
we adjusted the assumed bound on % by a factor of 2. The
remainder of the proof of Lemma 5 is identical. O

V f M(Yj-1)-

Without loss of generality, Cy, is the same constant in
Proposition 6 and Corollary 2, since we can set both to be
the maximum of the two. The same logic applies to the
following Proposition 8§ and Lemma 10 (which will also be
parameterized by a Cjyy) so we will not repeat it. Finally, the
following fact about initial error will also be helpful in the
following Section IV-C.

Lemma 8. We have

o o A 212
@) - (i) + 5 ot —al) < 2

Proof. By strong convexity and Lipschitzness of ™, we have

3 ot =)
2 J),)\

JFSF“(JJ%,,\) < L||las\ -z

A __ _
5 75— z|)* < fom(z) — (f;fm(a:;k) +
< Jgm(z) -

Rearranging gives ||z} , — 7| < 2L "which can be plugged in
above to yield the conclusion. O

We also state a slight extension to Lemma 8 which will be
used in Section IV-E.

Lemma 9. Define $x poa = argmingeg {f ™(z) +

3 — 2/||*}, where &/ € R? is not necessarlly in Bz (r).
Let x¢ := Il (v (2'). We have

_ A
(75w + 5 oo = 1)
A 2 2
~ (et + 3 latara =) < 5

Proof The groof is
! A
3 llzo = 2'|I” < §lz}

identical to Lemma &, where we use
[IHQ' O
C. Subsampled smoothed ERM solver: the strongly convex
case

We next give an ERM algorithm similar to Algorithm 4,
but enjoys an improved optimization rate. In particular, it
again attains RDP bounds improving with the subsampling
parameter %, and we obtain error guarantees against 7

defined in (27) at a rate decaying as = or better.

Algorithm 5: Subsampled ReSQued ERM solver,
strongly convex case

1 Input: = € R4, ball radius, convolution radius, privacy
parameter, and regularization parameter r, p, 5, A > 0,
dataset D € S™, iteration count 7" € N

2 k<« [loglogT|,xog < &

3 for i € [k] do
B, ri—1 < min(2r, \/QD%) (see

4 51 1 < 2
(28)), Tj_q + 271k

5 x; < output of Algorithm 4 with inputs
(@7, p, Bic1, A\ D, Ty—1, 751, Ti—1)

¢ end

7 return Ty

kz+

We now give our analysis of Algorithm 5 below. The proof
follows a standard reduction template from the strongly convex
case to the convex case (see e.g. Lemma 4.7 in [KLL21]).

Proposition 8. Let x} , be defined as in (27). Algorithm 5
uses at most T gradients and produces x such that, for a
universal constant Ci,

— A _ — A _
B |50 + 3l —alP| - (s - 3lleta - al?

_CeL? (d L
=X \przT)

Moreover there is a universal constant Cpgy > 1, such that
log log T 1 1

if L < Cm 82 log (%) < oo 6 €(0,5) and & >

Chriv log (logT) Algorithm 5 satisfies (a, at,0)-RDP for

loglogT\ T\
T:=C priv <51 <g6g>n>)

1
ae |l
(Copriv 32 log” (W)>

Proof. We analyze the utility and privacy separately.

Utility. Denote for simplicity F*(z) : f;rm(z)+3lz—z|?,
F} = FXa},), and A; := E[F*(z;) — F)]. Moreover,
define for all 0 < i < k,

2
o 203, <\/& L)
. A BiT; T,)’
VI (28)

.Jor2
D; = 4AE; } —
By 4E0’

where we define Tj, = T and [y,
0<i<k—-1E =

= (. By construction, for all
%El-, and so

Diyq D;

1By, VB —

D;E; =D;y;. (29)
We claim inductively that for all 0 < ¢ < k, A; < D;.
The base case of tf;e induction follows because by Lemma 8,
we have Ay < % = Dy. Next, suppose that the inductive
hypothesis is true up to iteration ¢. By strong convexity,

2A; 2D,
E|:H$i_$;,)\H2:|§ I

where we used the inductive hypothesis. Hence, the expected
radius upper bound (defined by r;) is valid for the call to
Algorithm 4. Thus, by Corollary 2,

A1 =E [FMai) — F)

Vd 1
< | — RN
< Ceyx Ly (BT, + N

2D; (Vd
ot () -

Here we used (29) in the last equation, which completes

the induction. Hence, iterating (29) for k = [log,log, T']
2

iterations, where we use Ey > 2%7 so that D, < 8FE, we

have

B202,L° (d_ 1
A gT? " T

VvVD,E; =

Di+1.

A <8E, <

Privacy. The privacy guarantee follows by combining the
privacy guarantee in Corollary 2 and composition of approxi-
mate RDP (Lemma 3), where we adjusted the definition of §
by a factor of k. In particular, we use that the privacy guarantee
in each call to Corollary 2 is a geometric sequence (i.e., 52717
is doubling), and at the end it is %ﬂZTQ. O

D. Private stochastic proximal estimator

In this section, following the development of [ACJT21],
we give an algorithm which calls Algorithm 5 with several
different iteration counts and returns a (random) point Z which
enjoys a substantially reduced bias for x7 , defined in (27)
compared to the expected number of gradient queries.

Algorithm 6: Bias-reduced ReSQued stochastic prox-
imal estimator

1 Input: = € R4, ball radius, convolution radius, privacy
parameter, and regularization parameter r, p, 5, A > 0,
dataset D € S™, iteration count 7' € N with
T < |58 Cpan

2 Thax Lﬁj,jmw —

3 for k € [jmax] do

[log, Zyex)

4 Draw J ~ Geom(%)
5 xq ¢ output of Algorithm 5 with inputs
(Z,r,p,8,\,D,T)

6 if J < jmax then

7 xj < output of Algorithm 5 with inputs
(Z,7,p,27 25,1\, D,27T)

8 xj—1 < output of Algorithm 5 with inputs
(z,7,p,27 72 B,\,D,2771T)

9 §k<—$0+2‘](mj—xj_1)

10 end

11 else

12 ‘ EE;C — X

13 end

14 end

15 Return: 7 < ——

Zke[ﬂnmx}

.7max

Proposition 9. Let 7 , be defined as in (27). We have, for a
universal constant Chys:

N L (vVd 1
— rx < . | — 4+ —
HEx xa:7/\|| = Cblas <>\ (5” + ﬁ)))

and, for a universal constant Cly,

2

< CyarL d n 1 .

=2 gT2 T

Proof. We begin by analyzing the output T of a single loop
k € [jmax). For J ~ Geom(}), we have Pr[J = j] = 277 if
J € [jmax]), and Pr[.J = j] = 0 otherwise. We denote x; to be

the output of Algorithm 3 with privacy parameter 272 3 and
gradient bound 27T First,

E|Z - a3,

Ezy =Exo+ » Pr[J=

J€[max]

]]2J(E$j — Exj,l) = ijmax.

Since T-29max > Tmax > 58—
gives

applymg Jensen’s inequality

JE e = 25 Al < /BN — 5517

\/20@ Vid b 1
— Y ﬁn f ’
where the last inequality follows from Proposition 8 and

strong convexity of the regularized function to convert the
function error bound to a distance bound. This implies the

first conclusion, our bias bound. Furthermore, for our variance
bound, we have

E||Zkr — EZy||* < E||Zk — 2557
< 2E|&) — zol® + 2E|lzo — o} |-
By Proposition 8 and strong convexity, E|lzg — x%AHZ <

2

3 PrlJ = j12%E|a; — x|

J€[Jmax]

= Y VE|z;— x|

J€[Jmax]

E||Zx — ol =

Note that
Elz; - zj-1]* < 2E|z; — a3 ,|* + 2Ellzj—1 — a5 5
6C;. L2 d L 1
A2 p2T2 T)’
and hence combining the above bounds yields
14Cycjmax L? d n 1
A2 p2T? T)

Now, averaging jma.x independent copies shows that

Sz—j.

E % — EZk

E[7 - a5l = 17 - B2 + |EZ - 23,

1 14C jmax L2 d 1
< . . + —
~ Jmax A? pgrr? T

2
()

where we used our earlier bias bound. The conclusion follows
by letting Cyor = CZ, + 14C. O

We conclude with a gradient complexity and privacy bound,
depending on the sampled J.

Lemma 10. There is a universal constant Cyiy > 1, such

that if (?log?(*ealeen) < Cll § € (0,%), and 2 >

Chriv log (log L, the following holds. Consider one loop in-
dexed by k € [jmax), and let J be the result of the Geom(3)
draw. If J € [jmax), loop k of Algorithm 6 uses at most 27 1T
gradients. Furthermore, the loop satisfies (o, at,d)-RDP for

loglogn\ T 2
e Gy (1 (257) T

1
prw/BQ 1og (loglogn>

If J & [jmax), Algorithm 6 uses at most T gradients, and the
loop satisfies (o, at,§)-RDP for

loglogn\ T2
T:=C priv (61 (g(5g>n))

1
prlvﬁ 1og (loglogn>

ae€ |1,

a€ |1,

Proof. This is immediate by Proposition 8, where we applied
Lemma 3 and set § < % (taking a union bound over the at

most 3 calls to Algorithm 5, adjusting Cpy as necessary). [

E. Private ERM solver

In this section, we give our main result on privately solving
ERM in the setting of Problem 2, which will be used in a
reduction framework in Section I'V-F to solve the SCO problem
as well. Our ERM algorithm is an instantiation of Proposi-
tion 1. We first develop a line search oracle (see Definition 3)
based on the solver of Section IV-C (Algorithm 5), which
succeeds with high probability. To do so, we leverage the
following geometric lemma for aggregating independent runs
of our solver.

Lemma 11 (Claim 1, [KLL122]). There is an algorithm
Aggregate which takes as input (S,A) € (RH)* x Ry,
and returns z € R? such that ||z —y| < A, if for some
unknown point y € R? satisfying at least 0.51k points x € S,
|z —y| < %. The algorithm runs in time O(dk?).

Algorithm 7: High probability ReSQued ERM solver,
strongly convex case

1 Input: z € RY, ball radius, convolution radius, privacy
parameter, regularization parameter, and failure
probability =, p, 3, A, ¢ > 0, dataset D € S™, iteration
count I' € N

2 k < 20log(¢)

3 for i € [k] do

4 x; < output of Algorithm 5 with inputs

(@,7,p,8,\,D,T)

5 end

6 Return:

x' « Aggregate({; }ic(x), : QAC““L(BQ‘%,Q + %)%)

Proposition 10. Ler z7 , be defined as in (27). Algorithm 7
uses at most 18T log(%) gradients and produces ' such that
with probability at least 1 — (, for a universal constant Cl,

C\sL Vd 1
x|l < = =)

Moreover, there exists a universal constant Cprw 2 1 such

that T < L5 € (0,%) and £ > Cpylog®(3log(%)),

Algorithm 7 satisfies («, o,) RDP for

2
(1) (D) 2

1

Clriv/3% log? (% log (%))

ae |1,

Proof. For each x;, by Proposition 8,
— A o
E | fo, (2:) + 5 l2i — a

_fermT(;)\)
Cy.L?
<
A

iy -2l

d n 1
8212 " T)"
Further, by strong convexity and Jensen’s inequality we have

_ V2L < d 1)5

Ellle — 3l < 5 (5 * 7

Hence, by Markov’s inequality, for each i € [k] we have

_ 3V2CLL (d 1)5

Pr|[[z; — xrf,)\” = \ 3272 + T

1
_3'

Hence by a Chernoff bound, with probability > 1 — (, at least
0.51k points = € {x;};c[k) satisfy

8V20.L (d 1)}
Noo\pre)

Hence the precondition of Lemma 11 holds, giving the dis-
tance guarantee with high probability. The privacy guarantee
follows from Proposition 8 and the composition of approx-
imate RDP, where we adjusted Cpiy by a constant and the
definition of & by a factor of k. O

e — a7 5\l <

Now we are ready to prove our main result on private ERM.

Theorem 3 (Private ERM). In the setting of Problem 2, let
eap € (0,1) and & € (0, §). There is an (eay, §)-DP algorithm
which takes as input D and outputs T € R% such that

B0 - i o)
€B(R
1 1/dlog%log‘ (%)logn
<O|LR- | —=+
\/’77, T€dp

Moreover, with probability at least 1—46, the algorithm queries
at most the following number of gradients:

. nd% n2e2 4 1 n
@) <m1n <n+ (GdZ’ po +nae(§’p> log® (5>> .

Proof. Throughout this proof, set for a sufficiently large

constant C,
1 ,/dlog%logl"r’(%)logn
€opt +— CLR % + nedp ’
LR €0Pl P
Ki=——, pi= , (30)
€opt Lf JélogQ(g)
41
o= o8 5 , Bi= Cdp

€dp Clog(%),/log%.

Note that for the given parameter settings, for sufficiently large
C, we have

T€dp

\/dlog Llog"®(%)logn
E < nlog? <logn> .
r 1)

Our algorithm proceeds as follows. We apply Proposition 1
with 2% < argmingepg) f"(z) and F' <« fg&™, and
instantiate the necessary oracles as follows for Cp, K logx
iterations.

1) We use Algorithm 7 with 7, p, 8 defined in (30), and

d 2
Tl =vC K/f 2 + Z’: n)
vVKplog®k Klog”rlog¥ (32)
1

¢:=

\/ﬁv

< l
len
3D

kCpa K log K’

as a (#—, A)-line search oracle Oj.

C 9’
2) We use Algorithm 5 with r, p, 8 defined in (30), and
kVd K2
Ty :=C + , 33
? <\/?ﬁ\/log/§ Klogn) (33)
as a (ﬁ A)-ball optimization oracle Op,.

3) We use Algonthm 6 with r, p, 8 defined in (30), and

Ty = VO (m + ”) (34)

VES K

o enVI \) cochastic proximal oracle Oyp.

as a (g7g “Gum
We split the remainder of the proof into four parts. We first
show that the oracle definitions are indeed met. We then bound
the overall optimization error against f°™. Finally, we discuss
the privacy guarantee and the gradient complexity bound.
Oracle correctness. For the line search oracle, by Proposi-
tion 10, it suffices to show

CoL [Vd 1 r
Aot = | <
A BTy Ty Cha

This is satisfied for 73 in (32), since Proposition 1 guarantees

A> 75""”; éfl’)g’ " Hence,
ClsL f Cha <O CQ H\/E 1 i < 1
XN BT TN Blog’k VK Ty~ 2
CsL 1 Gy s K 1 1 1
. <CCE - — = —=< =,
A VT T b log’k VK VT1 ~ 2
E

for a sufficiently large C, where we used K'?® = to
simplify. By a union bound, the above holds with probab1l1ty
at least 1 — Z"}’% over all calls to Algorithm 7, since there are
at most Cy, K log k iterations. For the remainder of the proof,
let & be the event that all line search oracles succeed. For the

ball optimization oracle, by Proposition 8, it suffices to show

CSCL2 (d + 1))\7“2
A B2T: Ty Chalog® i

This is satisfied for our choice of 75 in (33), again with A >
eole log K

20, . Hence,

2 3 2
CieL? 2d2'0balog HSCscCSa' 2/-;d 1 LZ
A BTG Ar B?loge K Tj
<L
-2’
Col? 1 Cpylog® 2 1 1
sc S baOgH_Oschaiii
A Ty A2 logr K Ty
<L
-2

again for large C'. Finally, for the proximal gradient oracle, by
Proposition 9, it suffices to show
€opt

L (Vd 1
Cbias ((ﬁTl—’_\/ﬁ)) S Cba)\R,

Cowl? (d 1 ol
+
A2 ,BQTQ T 02 A2R2°

>

The first inequality is clear. The second is satisfied for our
choice of T3 in (34), which implies

Cwl? d CENR? k3 1 1 1

el A el N i)
3 opt 3

Cowrl? 1 CEN'R? s o 1 1 1

L — CC2 K2 = — <=

N T K S T D)

Optimization error. By Proposition 1, the expected opti-
mization error against f;rm is bounded by eq, whenever &
occurs. Otherwise, the optimization error is never larger than
LR as long as we return a point in B(R), since the function
is L-Lipschitz. Further, we showed Pr[&;] > 1 — Z"}’%, so the
total expected error is bounded by 2¢,p,. Finally, the additive
error between fefm and f™ is bounded by pL\d = €opt- The
conclusion follows by setting the error bound to 3éqp.

Privacy. We first claim that each call to Oy, and Oy, used
by Proposition 1 satisfies

€dp d RDP
6C’baKlog Kk’ 18Ch K log k '

We first analyze Oj. The preconditions of Proposition 10
are met, where log(wlog(%)) < 2log % for our
parameter settings. Moreover, our « is in the acceptable range.

Finally, by Proposition 10 it suffices to note
8aCpiy 3T log® (%) 128C Cpriy 3% log® (%) log +
n? n2eqp

k2d n K
KpB%logr K2log’k

€dp
= 6CpKlogk’

where the second inequality follows for sufficiently large C'
due to (31). Next, we analyze the privacy of Oy,. The precon-
ditions of Proposition 8 are met, where log(M) <log%

for our parameter settings, and our « is again acceptable.
Finally, by Proposition 8 it suffices to note

aCiy32T3 log” () _ 16C Clpiy 2 log® (%) log %
n? - n2egp

k2d n K
Kp?logrk K2logk
< G
= 6CpKlogk’

again for sufficiently large C' from (31). Hence, by applying
Lemma 3, all of the at most Cy, K log x calls to O and Oy,
used by the algorithm combined satisfy

Edp 1)
—, - | -RDP.
(o)

Finally, we analyze the privacy of Og,. Let

Jmax = {10& <z{3 MZJ)J

be the truncation parameter in Algorithm 6. The total number

of draws from Geom(%) in Algorithm 6 over the course of the

algorithm is Cp, K 10g K - jmax. It is straightforward to check
that the expected number of draws where J = j for all j €

[jmax] is

) T:
2_Jmaxcbaf<§ IOgK/ . jmax = Q <3 . Klogl{ . jmax> s
n

which is superconstant. By Chernoff and a union bound, with
probability > 1 — %, there is a constant C’ such that for all
J € |Jjmax), the number of times we draw J = j is bounded
by

279C'K log k log %

Similarly, the number of times we draw J ¢ [jmax] is bounded
by C'K log rlog % . This implies by Lemma 3 that all calls to
Osp used by the algorithm combined satisfy

Edp 5
¢ 9) RDP.
(O" 6 ’18)

Here, we summed the privacy loss in Lemma 10 over 0 <
J < Jmax, Which gives

. CriV 21 *(% T2 '
(2] oGy B (;g; (%) 3) (Q—JC’Klogﬁlogﬁ)
Z - 1)

0<j<Jmax
16CC" Cpriv K 32 log3(%) log % log K
n2€dp

(Kk2d K) €dp
e = < 2
Kp2 K2~ 6’
for sufficiently large C, where we use log k, jmax < logn, and
K >log % for our parameter settings. Finally, combining these
bounds shows that our whole algorithm satisfies (v, <, g)-
RDP, and applying Corollary 1, gives the desired privacy
guarantee.

Gradient complexity. We have argued that with probability

at least 1 — §, the number of times we encounter the J = j

< (Jmax +1)

case of Lemma 10 for all 0 < j < jmax is bounded by
277C'K log k log 5. Under this event, Proposition 10, Propo-
sition 8, and Lemma 10 imply the total gradient complexity
of our algorithm is at most

Cra K log K

1
18T log = + o+ Y
¢ 0<j<Jmax

(2_jC’ log %) (29173)

< 36Ch,C' K logn (T1 logn + Ty + Ty log n log %) ,

where we use ¢ > n72, jmax < logn, and k < n. The
conclusion follows from plugging in our parameter choices
from (32), (33), and (34). O]

Finally, we note that following the strategy of Section IV-C,
it is straightforward to extend Theorem 3 to the strongly
convex setting. We state this result as follows.

Corollary 3 (Private regularized ERM). In the setting of
Problem 2, let egy € (0,1), 6 € (0, %), A >0, and 2’ € B(R).
There is an (€ap,0)-DP algorithm which outputs T € B(R)
such that

A
B| @) + 5 o -2
A
{£mi@)+ 3117}
dlogglog?’(g)log?n))

2.2
nedp

— min
z€B(R)

L? 1
< S el
o(A <n+

Moreover, with probability at least 1—90, the algorithm queries
at most the following number of gradients:

. (nd)3 n263p 4 1 6 (M
O(mm(n+ w | d +ndey, | log (5> .

Proof. We first note that similar to Corollary 2 (an extension
of Proposition 6), it is straightforward to extend Theorem 3
to handle both regularization and an improved upper bound
on the distance to the optimum, with the same error rate and
privacy guarantees otherwise. The handling of the improved
upper bound on the distance follows because the convergence
rate of the [ACJT21] algorithm scales proportionally to the
distance to the optimum, when it is smaller than R. The
regularization is handled in the same way as Corollary 2,
where regularization can only improve the contraction in the
privacy proof. One subtle point is that for the regularized
problems, we need to obtain starting points for Algorithm 5
when the constraint set is Bz (r), but the regularization in the
objective is centered around a point not in Bz (r) (in our case,
the centerpoint will be a weighted combination of Z and z/).
However, by initializing Algorithm 5 at the projection of the
regularization centerpoint, the initial function error guarantee
in Lemma 8 still holds (see Lemma 9).

The reduction from the claimed rate in this corollary
statement to the regularized extension of Theorem 3 then

proceeds identically to the proof of Proposition 8, which calls
Corollary 2 repeatedly. O

E. Private SCO solver

Finally, we give our main result on private SCO in this
section. To obtain it, we will combine Corollary 3 with a
generic reduction in [FKT20], [KLL21], which uses a private
ERM solver as a black box. The reduction is based on the
iterative localization technique proposed by [FKT20] (which
is the same strategy used by Section IV-C), and derived in
greater generality by [KLL21].

Proposition 11 (Modification of Theorem 5.1 in [KLL21]).
Suppose there is an (eqp, 0)-DP algorithm Acym with expected
excess loss

1 3/n 2
0 E l_‘_dlogglog (;)log n 7
A n n26dp

using N(n, eqp, 0) gradient queries, for some function N, when
applied to an L-Lipschitz empirical risk (with n samples,
constrained to B(R) C R%) plus a \-strongly convex reg-
ularizer. Then there is an (eqp,6)-DP algorithm Agco using
Yicnogn) N (3 Se. L) gradient queries, with expected ex-
cess population loss

1.5/n
1 \/dlog tlog'” (%) logn
o|zLr. + ° d

Néqp

Vn

Theorem 5.1 in [KLL21] assumes a slightly smaller risk
guarantee for Ag,, (removing the extraneous 10g3(%) log®n
factor), but it is straightforward to see that the proof extends to
handle our larger risk assumption. Combining Proposition 11
and Corollary 3 then gives our main result.

Theorem 4 (Private SCO). In the setting of Problem 2, let
eap € (0,1) and & € (0, }). There is an (eap,8)-DP algorithm
which takes as input D and outputs T € R? such that

E [fp“f’(f) - iy ()

1) \/dlog Llog'®(%)logn

nedp

<O|LR-

Vn

Moreover, with probability at least 1—46, the algorithm queries
at most the following number of gradients:

N T
O<m1n<n+ | d +n3eg, | log (6) .

ACKNOWLEDGMENT

We thank Vijaykrishna Gurunathan for helpful conversations
on parallel convex optimization that facilitated initial insights
regarding ReSQue. We also thank the anonymous reviewers for
their feedback. YC was supported in part by the Israeli Science
Foundation (ISF) grant no. 2486/21 and the Len Blavatnik and
the Blavatnik Family foundation. AS was supported in part
by a Microsoft Research Faculty Fellowship, NSF CAREER

Award CCF-1844855, NSF Grant CCF-1955039, a PayPal
research award, and a Sloan Research Fellowship.

[Abol6]

[ACGT16]

[ACTT21]

[AFKT21]

[Appl7]

[BBG18]

[BDRS18]

[BFGT20]

[BFTT19]

[BIL*19]

[Bot12]

[BS18]

[BST14]

[Bubl5]

[BV14]

[CH22]

[CIIT20]

[CJIS21]

[CIST19]

[CMO8]

[CMS11]

REFERENCES

John M. Abowd. The challenge of scientific reproducibility
and privacy protection for statistical agencies. Technical report,
Census Scientific Advisory Committee, 2016.

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMa-
han, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security,
2016.

Hilal Asi, Yair Carmon, Arun Jambulapati, Yujia Jin, and Aaron
Sidford. Stochastic bias-reduced gradient methods. In Advances
in Neural Information Processing Systems, NeurIPS, 2021.
Hilal Asi, Vitaly Feldman, Tomer Koren, and Kunal Talwar.
Private stochastic convex optimization: Optimal rates in 11
geometry. In International Conference on Machine Learning,
ICML, 2021.

Differential Privacy Team Apple. Learning with privacy at scale.
Technical report, Apple, 2017.

Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy
amplification by subsampling: Tight analyses via couplings and
divergences. In Advances in Neural Information Processing
Systems, NeurIPS, 2018.

Mark Bun, Cynthia Dwork, Guy N. Rothblum, and Thomas
Steinke. Composable and versatile privacy via truncated CDP.
In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, STOC, 2018.

Raef Bassily, Vitaly Feldman, Cristébal Guzman, and Kunal
Talwar. Stability of stochastic gradient descent on nonsmooth
convex losses. Advances in Neural Information Processing
Systems, 33:4381-4391, 2020.

Raef Bassily, Vitaly Feldman, Kunal Talwar, and
Abhradeep Guha Thakurta. Private stochastic convex
optimization with optimal rates. In Advances in Neural
Information Processing Systems, NeurIPS, 2019.

Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, and
Aaron Sidford. Complexity of highly parallel non-smooth con-
vex optimization. In Advances in Neural Information Processing
Systems, NeurIPS, 2019.

Léon Bottou. Stochastic gradient descent tricks. In Grégoire
Montavon, Genevieve B. Orr, and Klaus-Robert Miiller, editors,
Neural Networks: Tricks of the Trade - Second Edition, volume
7700 of Lecture Notes in Computer Science, pages 421-436.
Springer, 2012.

Eric Balkanski and Yaron Singer. Parallelization does not
accelerate convex optimization: Adaptivity lower bounds for
non-smooth convex minimization. arXiv.: 1808.03880, 2018.
Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private
empirical risk minimization: Efficient algorithms and tight error
bounds. In IEEE 55th Annual Symposium on Foundations of
Computer Science, FOCS, 2014.

Sébastien Bubeck. Convex optimization: Algorithms and com-
plexity. Found. Trends Mach. Learn., 8(3-4):231-357, 2015.
Stephen P. Boyd and Lieven Vandenberghe. Convex Optimiza-
tion. Cambridge University Press, 2014.

Yair Carmon and Danielle Hausler. Distributionally robust
optimization via ball oracle acceleration. arXiv:2203.13225,
2022.

Yair Carmon, Arun Jambulapati, Qijia Jiang, Yujia Jin, Yin Tat
Lee, Aaron Sidford, and Kevin Tian. Acceleration with a
ball optimization oracle. In Advances in Neural Information
Processing Systems, NeurIPS, 2020.

Yair Carmon, Arun Jambulapati, Yujia Jin, and Aaron Sidford.
Thinking inside the ball: Near-optimal minimization of the
maximal loss. In Conference on Learning Theory, COLT, 2021.
Yair Carmon, Yujia Jin, Aaron Sidford, and Kevin Tian. Vari-
ance reduction for matrix games. In Advances in Neural
Information Processing Systems, NeurIPS, 2019.

Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving
logistic regression. In Advances in Neural Information Process-
ing Systems, NeurIPS, 2008.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate.
Differentially private empirical risk minimization. Journal of
Machine Learning Research, 12(3), 2011.

[DBW12]

[DG19]

[DGBSX12]

[DR14]

[DRY18]

[Ducl8]

[EPK14]

[FKT20]

[FTS17]

[GDGT19]

[GL12]

[GLL22]

[Gol64]

[HK14]

[INSt19]

[JLSW20]

[JT14]

[KJ16]

[KLL21]

[KLL*22]

[KTES8]

[LLHT22]

John C Duchi, Peter L Bartlett, and Martin J Wainwright.
Randomized smoothing for stochastic optimization. SIAM
Journal on Optimization, 22(2):674-701, 2012.

Jelena Diakonikolas and Cristébal Guzman. Lower bounds for
parallel and randomized convex optimization. In Conference on
Learning Theory, COLT, 2019.

Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao.
Optimal distributed online prediction using mini-batches. Jour-
nal of Machine Learning Research, 13(1), 2012.

Cynthia Dwork and Aaron Roth. The algorithmic foundations
of differential privacy. Found. Trends Theor. Comput. Sci., 9(3-
4):211-407, 2014.

John Duchi, Feng Ruan, and Chulhee Yun. Minimax bounds
on stochastic batched convex optimization. In Conference On
Learning Theory, COLT, 2018.

John C Duchi. Introductory lectures on stochastic optimization.
The Mathematics of Data, pages 99-186, 2018.

Ulfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rap-
por: Randomized aggregatable privacy-preserving ordinal re-
sponse. In Proceedings of the 2014 ACM SIGSAC conference
on computer and communications security, 2014.

Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private
stochastic convex optimization: optimal rates in linear time. In
Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC, 2020.

Kazuto Fukuchi, Quang Khai Tran, and Jun Sakuma. Differen-
tially private empirical risk minimization with input perturba-
tion. In International Conference on Discovery Science, 2017.
Alexander Gasnikov, Pavel Dvurechensky, Eduard Gorbunov,
Evgeniya Vorontsova, Daniil Selikhanovych, César A Uribe,
Bo Jiang, Haoyue Wang, Shuzhong Zhang, Sébastien Bubeck,
et al. Near optimal methods for minimizing convex functions
with lipschitz p-th derivatives. In Conference on Learning
Theory, COLT, 2019.

Saeed Ghadimi and Guanghui Lan. Optimal stochastic approx-
imation algorithms for strongly convex stochastic composite
optimization i: A generic algorithmic framework. SIAM Journal
on Optimization, 22(4):1469-1492, 2012.

Sivakanth Gopi, Yin Tat Lee, and Daogao Liu. Private convex
optimization via exponential mechanism. arXiv:2203.00263,
2022.

A. A. Goldstein. Convex programming in hilbert space.
70(5):709—710, 1964.

Elad Hazan and Satyen Kale. Beyond the regret minimization
barrier: optimal algorithms for stochastic strongly-convex opti-
mization. J. Mach. Learn. Res., 15(1):2489-2512, 2014.
Roger Iyengar, Joseph P Near, Dawn Song, Om Thakkar,
Abhradeep Thakurta, and Lun Wang. Towards practical dif-
ferentially private convex optimization. In /EEE Symposium on
Security and Privacy (SP), 2019.

Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai
Wong. An improved cutting plane method for convex op-
timization, convex-concave games, and its applications. In
Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC, 2020.

Prateek Jain and Abhradeep Guha Thakurta. (near) dimension
independent risk bounds for differentially private learning. In
International Conference on Machine Learning, ICML, 2014.
Shiva Prasad Kasiviswanathan and Hongxia Jin. Efficient private
empirical risk minimization for high-dimensional learning. In
International Conference on Machine Learning, ICML, 2016.
Janardhan Kulkarni, Yin Tat Lee, and Daogao Liu. Private
non-smooth erm and sco in subquadratic steps. In Advances
in Neural Information Processing Systems, NeurIPS, 2021.
Jonathan A. Kelner, Jerry Li, Allen Liu, Aaron Sidford, and
Kevin Tian. Semi-random sparse recovery in nearly-linear time.
arXiv:2203.04002, 2022.

Leonid G. Khachiyan, Sergei Pavlovich Tarasov, and I. I. Erlikh.
The method of inscribed ellipsoids. Soviet Math. Dokl., 37:226—
230, 1988.

Xuechen Li, Daogao Liu, Tatsunori Hashimoto, Huseyin A
Inan, Janardhan Kulkarni, Yin Tat Lee, and Abhradeep Guha
Thakurta. When does differentially private learning not suffer
in high dimensions? arXiv:2207.00160, 2022.

[Mirl7]

[MS13]

[Nem94]

[Nes83]

[Nes03]

[Nes18]
[NY83]

[Pol64]

[RBHTI2]

[SB14]

[SBBT18]

[Sha07]

[Smi09]

[SSTT21]

[SUL5]

[Tal22]

[Wan18]

[WBSS21]

[ZZMW17]

Ilya Mironov. Rényi differential privacy. In [EEE 30th
Computer Security Foundations Symposium, CSF, 2017.
Renato DC Monteiro and Benar Fux Svaiter. An accelerated
hybrid proximal extragradient method for convex optimization
and its implications to second-order methods. SIAM Journal on
Optimization, 23(2):1092-1125, 2013.

Arkadi Nemirovski. On parallel complexity of nonsmooth
convex optimization. Journal of Complexity, 10(4):451-463,
1994.

Yu E Nesterov. A method for solving the convex programming
problem with convergence rate o(1/k?). In Dokl. Akad. Nauk
SSSR,, 1983.

Yurii Nesterov. Introductory lectures on convex optimization: A
basic course, volume 87. Springer Science & Business Media,
2003.

Yurii Nesterov. Lectures on convex optimization, volume 137.
Springer, 2018.

Arkadi S. Nemirovski and David B. Yudin. Problem complexity
and method efficiency in optimization. 1983.

Boris T. Polyak. Some methods of speeding up the convergence
of iteration methods. USSR Computational Mathematics and
Mathematical Physics, 4(5):1-17, 1964.

Benjamin IP Rubinstein, Peter L Bartlett, Ling Huang, and Nina
Taft. Learning in a large function space: Privacy-preserving
mechanisms for svm learning. Journal of Privacy and Confi-
dentiality, 4(1):65-100, 2012.

Shai Shalev-Shwartz and Shai Ben-David. Understanding
Machine Learning - From Theory to Algorithms. Cambridge
University Press, 2014.

Kevin Scaman, Francis Bach, Sébastien Bubeck, Laurent Mas-
soulié, and Yin Tat Lee. Optimal algorithms for non-smooth
distributed optimization in networks. In Advances in Neural
Information Processing Systems, NeurIPS, 2018.

Shai Shalev-Shwartz. Online learning: Theory, algorithms, and
applications. PhD thesis, Hebrew University, 2007.

Adam Smith. Differential privacy and the secrecy of the
sample. https://adamdsmith.wordpress.com/2009/09/02/sample-
secrecy/, 2009. Accessed: 2022-11-06.

Shuang Song, Thomas Steinke, Om Thakkar, and Abhradeep
Thakurta. Evading the curse of dimensionality in unconstrained
private glms. In International Conference on Artificial Intelli-
gence and Statistics, AISTATS, 2021.

Thomas Steinke and Jonathan Ullman. Between pure and
approximate differential privacy. arXiv:1501.06095, 2015.
Kunal Talwar. Ppml workshop talk: Open ques-
tions in differentially private machine learning.
https://machinelearning.apple.com/video/open-questions,

2022. Accessed: 2022-11-06.

Yu-Xiang Wang. Revisiting differentially private linear re-
gression: optimal and adaptive prediction & estimation in un-
bounded domain. arXiv:1803.02596, 2018.

Blake E Woodworth, Brian Bullins, Ohad Shamir, and Nathan
Srebro. The min-max complexity of distributed stochastic
convex optimization with intermittent communication. In Con-
ference on Learning Theory, COLT, 2021.

Jiaqi Zhang, Kai Zheng, Wenlong Mou, and Liwei Wang.
Efficient private erm for smooth objectives. In International
Joint Conference on Artificial Intelligence, 1JCAI, 2017.

APPENDIX

Fact 2. Let p € N. For any integer r such that 0 <r <p—1,
Yo<qp(—D1(}) " =0.

Proof. We recognize the formula as a scaling of the Stirling
number of the second kind with r objects and p bins, i.e., the
number of ways to put r objects into p bins such that each
bin has at least one object. When r < p there are clearly no

such ways. O
Fact 3. Let p € N be even and p > 2. Let ||z|, |yl < %.
Then for 9(q) == ((p — 9)* = (0 — @) l|=|* + (@ = a) ly* +

2q(p — q) (z,y),

5 v (%) e (ato)

0<g<p
< (2p |z —yl)*.

Proof. Fix some x. Let f;(y) be the left-hand side displayed
above, and let

fi(y) == exp (;g(q)> :

We will perform a p™ order Taylor expansion of f, around z,
where we show that partial derivatives of order at most p — 1
are all zero at z, and we bound the largest order derivative
tensor.

Derivatives of fI. Fix some 0 < g < p, and define

Cq = q*—q, Fy = fi(y), vg = (*—a)y+a(p—q)z. (35)

Note that for fixed ¢, Fi, and v, are functions of y, and we
defined them such that Vv, = C 14, V, Iy = v, Fy. Next, in
the following we use Zsym to mean a symmetric sum over all
choices of tensor modes, e.g. Zsym vt‘IX’Q ® I; means we will
choose 2 of the 4 modes where the action is vg?z. To gain some
intuition for the derivatives of 7, we begin by evaluating the

first few via product rule:
VIiy) = Fyug,
VQfa{cI(y) = qugzm + CyFyly,
V3 fi(y) = qu;@?) + Gy I qu ® la,

sym

V() = Fudt + CoFy Y 02 @1+ 3C2F I 9 1.

sym

For any fixed 0 < r < p, we claim that the ™ derivative
tensor has the form

V' ()

36
(Cq)s Z,Ug{)(rfle) ® I?s 7 (36)

sym

Nr,s
(QTS)

where the N, , are nonnegative coefficients which importantly
do not depend on q. To see this we proceed by induction; the
base cases are computed above. Every time we take the deriva-
tive of a “monomial” term of the form F,(C,)*v$" " @19

:Fq

>

0<s<l3]

via product rule, we will have one term in which F, becomes
vgF, (and hence we obtain a FqC’;v?(rH_QS) ® I9° mono-
mial), and r — 2s many terms where a v, becomes C,I; (and
hence we obtain a FquSvab(r_l_Qs) ® Ig(sﬂ) monomial).
For fixed 0 < s < L%J we hence again see that N, s has
no dependence on gq.

Next, note ZOSsSL% | N, s has a natural interpretation
as the total number of “monomial” terms of the form
Fy(C)s oS) I$® when expanding V" f(y). We claim
that forall 0 < g<pand 0<r<p-1,

2o<s<izpt) Vs
2o<s<|g) Nrs

To see this, consider taking an additional derivative of
(36) with respect to y. Each monomial of the form
Fy(C)*o) g I$® contributes at most 7 — 2s + 1 < p
monomials to the next derivative tensor via product rule,
namely one from F, and one from each copy of v,. Averaging
this bound over all monomials yields the claim (37), since
each contributes at most p.

<p (37

Taylor expansion at x. Next, we claim that for all 0 < r <
p—1
V' ful(x) = 0. (38)
To see this, we have that ((p — ¢)?> — (p — q)) + (¢* — q) +
2q(p — q) = p? — p is independent of ¢, and hence all of
the [y are equal to some value F' when y = x. Furthermore,
when y = z we have that v, = ¢(p — 1)x. Now, from the
characterization (36) and summing over all ¢, any monomial
of the form z®("=2%) @ If?s has a total coefficient of

PN, Y <—1>Q(§)<cq>8<q<p—1>>T-2S

0<q<p

= FNr,s(p — 1)7"—23 Z (_1)(1 (2) ngr—2s.

0<q<p

Since C, is a quadratic in ¢, each summand (C,)*q" 2% is
a polynomial of degree at most » < p — 1 in ¢, so applying
Fact 2 to each monomial yields the claim (38).

Taylor expansion at y. Finally, we will bound the injective
tensor norm of V? f,(y), where the injective tensor norm of a
degree-p symmetric tensor T is the maximum value of T[v®?]
over unit norm v. We proceed by bounding the injective tensor
norm of each monomial and then summing.

First, for any 0 < p < g, under our parameter settings it is
straightforward to see ||vg|| < p and F, < 2. Also, for any
0 < s < L we have C; < p?®, and by repeatedly applying
(37), we have ZOSsSL%J Np.s < pP. In other words, each
of the monomials of the form F,(C,)*vS" > @ 19* has
injective tensor norm at most 2p” (since each C,; contributes
two powers of p, and each v, contributes one power of p),
and there are at most p” such monomials. Hence, by triangle
inequality over the sum of all monomials,

VP £)y —)P < 2p7 ||y — ="

By summing the above over all ¢ (reweighting by (—1)¢(1)),

and using that the unsigned coefficients sum to o, , (Z) =
2P, we have

VP 2 (9)[(y — 2)®P]| < 4PpP [l — yl|".

The conclusion follows by a Taylor expansion from z to y of
order p, and using pP < 3Ppl. O

Proof of Lemma 2. For the first claim,

(ple=3 =P o s
/ @yt %=)

[oo (=557 (vl =2l 2060 - 2.6+ 1617))

2
p-—Dp 2
:exp< 5 |z — Z|| > <2,

where the second equality used the calculation in (6), and the
inequality used the assumed bound on ||z — Z||. We move onto
the second claim. First, we prove the statement for all even
p € N. Denote v := z — T and v’ := ¢’ — Z for simplicity.
Explicitly expanding the numerator yields that

arppt [Clt= O Oy 5~ (e(?),

CAGI DoAY

where we define h(§) = (p — ¢q) ||U||2 + QHU/HQ -
20 — @) (0,8 — 2q(.& + [l¢° and H, =

((p—)%= (0= 9) IloI* + (@ =) IIV'[[* +2a(p— g) (v, "),
and compute

— (9 d [(v = &)y (v —)
S,:= er) | (@) d

_ / exp (—;th(g)) de
= (2mp)% exp <222Hq> :

In the last line, we again used (6) to compute the integral.
When p > 2 and is even, a strengthening of the conclusion
then follows from Fact 3 (where we overload x <— %, Y %
in its application). In particular, this shows the desired claim
where the base of the exponent is % ||z — || instead of

% ||z — 2’||. We move to general p > 2. Define the random
variable

. %(ﬂr—x—é)—%(m’—ﬂf—ﬁ)‘
’Yp(g)
Recall that we have shown for all even p > 2,
A p
- (12p||x z ||> |
p

Now, let p > 2 be sandwiched between the even integers ¢
and ¢ + 2. Holder’s inequality and the above inequality (for
p < q and p < q + 2) demonstrate

— p
EzP < (EZ9) %" (BZ9+2) 7 < (12(6./ +2) ||z — x’) 7
p

where we use ¢(¢+2—p)+(¢+2)(p—q) = 2p. The conclusion
follows since q + 2 < 2p. O

Fact 4. Let Z be a nonnegative scalar random variable, let
C > 0 be a fixed scalar, and let p € N and p > 2. Then

(E[(Z +C)P])? <E[27]" +C.

Proof. Denote A :=E [Zp]%
we have the conclusion if

. Taking p'" powers of both sides,

(A+CY —E[(Z+C)"] >0

~ 5 (e

q€[p—1]

~E[29]) > 0.

Here we use that the ¢ = 0 and ¢ = p terms cancel. We
conclude since Jensen’s inequality yields

E[Z7] > E[Zq]g = A?>E[Z9], forall g € [p—1].

O

In this section, we discuss how to obtain Proposition 1 from
the analysis in [ACJT21]. We separate the discussion into
four parts, corresponding to the iteration count, the line search
oracle parameters, the ball optimization oracle parameters, and
the proximal gradient oracle parameters. We note that Propo-
sition 2 in [ACJT21] states that they obtain function error
€opt With constant probability; however, examining the proof
shows it actually yields an expected error bound. Additionally,
Proposition 2 in [ACJT21] is stated for z* (the comparison
point in the error guarantee) defined to be the minimizer of F,
but examining the proof shows that the only property about

* it uses is that z* € B(R).

a) Iteration count.: The bound Cy, K log k on the num-
ber of iterations follows immediately from the value K .x
stated in Proposition 2 of [ACJT21], where we set A\yi, < Ax
and € < €op.

b) Line search oracle parameters.: The line search or-
acle is called in the implementation of Line 2 of Algorithm
4 in [ACJT21]. Our implementation follows the development
of Appendix D.2.3 in [ACJ*21], which is a restatement of
Proposition 2 in [CJJS21]. The bound Cy, log(¥) on the
number of calls to the oracle is immediate from the statement
of Proposition 2. For the oracle parameter A = C— we note
that the proof of Proposition 2 of [CJJS21] only requires that
we obtain points at distance at most 7= from z7 ,, although it
is stated as requiring a function error guarantee ThlS is evident
where the proof applies Lemma 3 of the same paper.

c) Ball optimization oracle parameters.: The ball op-
timization oracle is called in the implementation of Line 5
of Algorithm 4 in [ACJ™21]. In iteration k of the algorithm,
the error requirement is derived through the potential bound
in Lemma 5 of [ACJT21]. More precisely, Lemma 5 shows

that (following their notation), conditioned on all randomness
through iteration £,

E |[Ags1 (F(@rs1) = F(@) + fonsn — 2]
(A (Faw) = F)) + o — 2|

1 ,\
< *EAkHAkH |Zh+1 — vl + Arr10m41
+a3410%41 + 2Rag 10541,

where the terms ai +1O’,2€ ot 2Rag110k+1 are handled iden-
tically in [ACJ*21] and our Proposition 1 (see the following
discussion). For the remaining two terms, Proposition 4 of
[ACJT21] guarantees that as long as the method does not
terminate, one of the following occurs.
D [Fes — well® = Q02).
2) Apt1 = O(\).
In the first case, as long as ¢4 (the error tolerance to the
ball optimization oracle) is set to be L” for a sufficiently
large Cp, (Which it is smaller than by logarlthmlc factors), up
to constant factors the potential proof is unaffected. The total
contributions to the potential due to all Aji1¢x+1 losses from
the iterations of the second case across the entire algorithm is
bounded by
2 2
9, ((Klogn) . Ag) =0 (RY).
€opt log” K

Here, the first term is the iteration count, the second term is
due to an upper bound on Ay 1, and the third term is bounded
since Ap+1 = O(A,). The initial potential in the proof of
Proposition 2 of [ACJ*21] is R?, so the final potential is
unaffected by more than constant factors. For a more formal
derivation of the same improved error tolerance, we refer the
reader to [CH22], Lemma 8.

d) Stochastic proximal oracle parameters.: Our stochas-
tic proximal oracle parameters are exactly the settings of dy, o,
required by Proposition 2 of [ACJT21], except we simplified
the bound on o} = O(i) (note we use € in place of €). In
particular, following notation of [ACJT21], we have

aik i\/ﬁ; Q< @.ég)_ﬂ(e;flogn).

The first equality used Apai = Ay, for the parameter choices
of Algorithm 4 in [ACJT21]. The second equality used that all
A = Q(A,) and all Ak = O() in Algorithm 4 in [ACJ+21]
where we chose A\, =
in this bound on A, and 51mp11ﬁed Hence, obtaining a variance
as declared in Proposition 1 suffices to meet the requirement.

In this section, we discuss how to obtain Proposition 2
(which is based on Proposition 1 in [CH22]) from the analysis
in [CH22]. The iteration count discussion is the same as in Ap-
pendix A. We separate the discussion into parts corresponding
to the two requirements in Proposition 2. Throughout, we will
show how to use the analysis in [CH22] to guarantee that
with probability at least 1 — (%), the algorithm has expected

function error O(€qp); because the maximum error over B(R)
is < LR, this corresponds to an overall error O (e), and we
may adjust Cy, by a constant to compensate.

e) Per-iteration requirements.: The ball optimization er-
ror guarantees are as stated in Proposition 1 of [CH22],
except we dropped the function evaluations requirement. To
see that this is obtainable, note that [CH22] obtains their line
search oracle (see Proposition 1) by running O(log(££)) ball
optimization oracles to O(Ar?) expected error, querying the
function value, and applying Markov’s inequality to argue
at least one will succeed with high probability. We instead
execute O(log(£%)) independent runs and app]y a Chernoff
bound to argue that with probability O(r—ic=rery polylog Kﬁf.l the
preconditions of Aggregate in Lemma 11 are met with A =
O(r), as required by the line search oracle (see Algorithm 7).
Finally, applying a union bound over all iterations implies that
the overall failure probability due to these line search oracles
is O(2) as required by our earlier argument.

f) Additional requirements.: The error requirements of
the queries which occur every ~ 277 iterations are as stated
in [CH22]. The only difference is that we state the complexity
deterministically (Proposition 1 of [CH22] implicitly states an
expected gradient bound). The stochastic proximal oracle is
implemented as Algorithm 2, [CH22]; it is also adapted with
slightly different parameters as Algorithm 6 of this paper. The
expected complexity bound is derived by summing over all j €
[[logy K + Cha 1], the probability j is sampled in each iteration
of Algorithm 2 of [CH22]. For all j a Chernoff bound shows
that the number of times in the entire algorithm j is sampled is
O(277 K log(£%)) (within a constant of its expectation), with
probability 1 — Q(poly(4-)). Taking a union bound over all j
shows the failure probability of our complexity bound is O(%)
as required.

In this section, we discuss how to obtain Proposition 4 using
results in [GL12]. We first state the following helper fact on
the smoothness of a convolved function f, (see Definition 1).

Fact 5 (Lemma 8, [BJL+19). If f: R — R is L-Lipschitz,
fp (see Definition 1) is f-smooth

The statement of Proposition 4 then follows from recur-
sively applymg Proposmon 9 of [GLI12] on the obJectlve
U= fp 2 — Z||?, which is A-strongly convex and(+2)-
smooth, together with the divergence choice of V(:co,)=
|lwo — x*||?, which satisfies » = 1. Our parameter choices
in Algorithm 2 are the same as in [GL12], where we use that
our variance bound is 3L? (Lemma 1).

In particular, denote the iterate 25¥ after the k:‘h outer loop by

. N N 2
2. We will inductively assume that E4[|z%~!—z% \[|? < 5=

(clearly the base case holds). This then implies

A
B |Jlet - o al? SE [0 - vt)
205 + Nl — a2 P
- T(T+1)
2412
ANL(T +1)
A 2
< 2767"
where the second inequality is Proposition 9 in [GL12] (cf.
equation (4.21) therein), and the last is by our choice of T’
and Nj. Thus, when K > log2(”) we have EU(z5¥) —
V(x%) < ¢ as in the last outer loop k = K. The compu-
tational depth follows immediately from computing T'K, and

the total oracle queries and computational complexity follow
since Ng asymptotically dominates:

-1 M| =

ke[K]
L Ar? L?
—of 1+ L1 ()+ .
(PR A¢>>

O (T Nk + TK)

	Introduction
	Parallelism
	Differential privacy
	Related work
	Our approach
	Notation

	Framework
	ReSQue estimators
	Ball acceleration

	Parallel stochastic convex optimization
	Preliminaries
	Proofs of Theorems 1 and 2

	Private stochastic convex optimization
	Preliminaries
	Subsampled smoothed ERM solver: the convex case
	Subsampled smoothed ERM solver: the strongly convex case
	Private stochastic proximal estimator
	Private ERM solver
	Private SCO solver

	References
	Appendix

