
ReSQueing Parallel and Private
Stochastic Convex Optimization

Yair Carmon
Tel Aviv University

ycarmon@tauex.tau.ac.il

Arun Jambulapati
University of Washington

jmblpati@uw.edu

Yujia Jin
Stanford University

yujiajin@stanford.edu

Yin Tat Lee
Microsoft Research

yintatlee@microsoft.com

Daogao Liu
University of Washington

dgliu@uw.edu

Aaron Sidford
Stanford University

sidford@stanford.edu

Kevin Tian
Microsoft Research

tiankevin@microsoft.com

Abstract—We introduce a new tool for stochastic convex
optimization (SCO): a Reweighted Stochastic Query (ReSQue)
estimator for the gradient of a function convolved with a
(Gaussian) probability density. Combining ReSQue with recent
advances in ball oracle acceleration [CJJ+20], [ACJ+21], we
develop algorithms achieving state-of-the-art complexities for
SCO in parallel and private settings. For a SCO objective
constrained to the unit ball in Rd, we obtain the following results
(up to polylogarithmic factors).

1) We give a parallel algorithm obtaining optimization er-
ror ✏opt with d1/3✏�2/3

opt gradient oracle query depth and
d1/3✏�2/3

opt + ✏�2
opt gradient queries in total, assuming access

to a bounded-variance stochastic gradient estimator. For
✏opt 2 [d�1, d�1/4], our algorithm matches the state-of-the-
art oracle depth of [BJL+19] while maintaining the optimal
total work of stochastic gradient descent.

2) Given n samples of Lipschitz loss functions, prior works
[BFTT19], [BFGT20], [AFKT21], [KLL21] established that
if n & d✏�2

dp , (✏dp, �)-differential privacy is attained at
no asymptotic cost to the SCO utility. However, these
prior works all required a superlinear number of gradient
queries. We close this gap for sufficiently large n & d2✏�3

dp ,
by using ReSQue to design an algorithm with near-linear
gradient query complexity in this regime.

Index Terms—stochastic optimization, parallel computation,
differential privacy

I. INTRODUCTION

Stochastic convex optimization (SCO) is a foundational
problem in optimization theory, machine learning, theoretical
computer science, and modern data science. Variants of the
problem underpin a wide variety of applications in machine
learning, statistical inference, operations research, signal pro-
cessing, and control and systems engineering [Sha07], [SB14].
Moreover, SCO provides a fertile ground for the design and
analysis of scalable optimization algorithms such as the cele-
brated stochastic gradient descent (SGD), which is ubiquitous
in machine learning practice [Bot12].

SGD approximately minimizes a function f : Rd
! R by

iterating xt+1  xt � ⌘g(xt), where g(xt) is an unbiased
estimator to a (sub)gradient of f at iterate xt. When f is
convex, E kg(x)k2  1 for all x and f is minimized at
x? in the unit ball, SGD finds an ✏opt-optimal point (i.e. x

satisfying Ef(x)  f(x?
) + ✏opt) using O(✏�2

opt ) stochastic
gradient evaluations [Bub15]. This complexity is unimprovable
without further assumptions [Duc18]; for sufficiently large d,
this complexity is optimal even if g is an exact subgradient of
f [DG19].

Although SGD is widely-used and theoretically optimal
in this simple setting, the algorithm in its basic form has
natural limitations. For example, when parallel computational
resources are given (i.e., multiple stochastic gradients can
be queried in batch), SGD has suboptimal sequential depth
in certain regimes [DBW12], [BJL+19]. Furthermore, stan-
dard SGD is not differentially private, and existing private1

SCO algorithms are not as efficient as SGD in terms of
gradient evaluation complexity [BST14], [BFTT19], [FKT20],
[BFGT20], [AFKT21], [KLL21]. Despite substantial advances
in both the parallel and private settings, the optimal complexity
of each SCO problem remains open (see Sections I-A and I-B
for more precise definitions of problem settings and the state-
of-the-art rates, and Section I-C for a broader discussion of
related work).

Though seemingly disparate at first glance, in spirit par-
allelism and privacy impose similar constraints on effective
algorithms. Parallel algorithms must find a way to query the
oracle multiple times (possibly at multiple points) without
using the oracle’s output at these points to determine where
they were queried. In other words, they cannot be too reliant
on a particular outcome to adaptively choose the next query.
Likewise, private algorithms must make optimization progress
without over-relying on any individual sample to determine
the optimization trajectory. In both cases, oracle queries must
be suitably robust to preceding oracle outputs.

In this paper, we provide a new stochastic gradient estima-
tion tool which we call Reweighted Stochastic Query (ReSQue)

estimators (defined more precisely in Section I-D). ReSQue
is essentially an efficient parallel method for computing an
unbiased estimate of the gradient of a convolution of f with
a continuous (e.g. Gaussian) kernel. These estimators are

1Throughout this paper, when we use the description “private” without
further description we always refer to differential privacy [DR14]. For formal
definitions of differential privacy, see Section IV-A.



particularly well-suited for optimizing a convolved function
over small Euclidean balls, as they enjoy improved stability
properties over these regions. In particular, these local sta-
bility properties facilitate tighter control over the stability of
SGD-like procedures. We show that careful applications of
ReSQue in conjunction with recent advances in accelerated
ball-constrained optimization [CJJ+20], [ACJ+21] yield com-
plexity improvements for both parallel and private SCO.

a) Paper organization.: In Sections I-A and I-B respec-
tively, we formally describe the problems of parallel and
private SCO we study, stating our results and contextualizing
them in the prior literature. We then cover additional related
work in Section I-C and, in Section I-D, give an overview
of our approach to obtaining these results. In Section I-E, we
describe the notation we use throughout.

In Section II-A we introduce our ReSQue estimator and
prove some of its fundamental properties. In Section II-B
we describe our adaptation of the ball acceleration frame-
works of [ACJ+21], [CH22], reducing SCO to minimizing
the objective over small Euclidean balls, subproblems which
are suitable for ReSQue-based stochastic gradient methods.
Finally, in Sections III and IV, we prove our main results
for parallel and private SCO (deferring problem statements to
Problem 1 and Problem 2), respectively, by providing suitable
implementations of our ReSQue ball acceleration framework.

A. Parallelism

In Section III we consider the following formulation of the
SCO problem, simplified for the purposes of the introduction.
We assume there is a convex function f : Rd

! R which can
be queried through a stochastic gradient oracle g, satisfying
Eg 2 @f and E kgk2  1. We wish to minimize the restriction
of f to the unit Euclidean ball to expected additive error ✏opt.
In the standard sequential setting, SGD achieves this goal
using roughly ✏�2

opt queries to g; as previously mentioned, this
complexity is optimal. A generalization of this formulation is
restated in Problem 1 with a variance bound L2 and a radius
bound R, which are both set to 1 here.

In settings where multiple machines can be queried simul-
taneously, the parallel complexity of an SCO algorithm is
a further important measure for consideration. In [Nem94],
this problem was formalized in the setting of oracle-based
convex optimization, where the goal is to develop iterative
methods with a number of parallel query batches to g. In each
batch, the algorithm can submit polynomially many queries
to g in parallel, and then perform computations based on the
outputs of g. The query depth of a parallel algorithm in the
[Nem94] model is the number of parallel rounds used to query
g, and was later considered in stochastic algorithms [DBW12].
Ideally, a parallel SCO algorithm will also have bounded total

queries (the number of overall queries to g), and bounded
computational depth, e.g., the parallel depth used by the
algorithm treating the depth of each oracle query as O(1).
We discuss these three complexity measures more formally in
Section III-A.

Method g query depth computational depth # g queries

[Nes18] ✏�2 ✏�2 ✏�2

[DBW12] d
1
4 ✏�1 d

1
4 ✏�1 d

1
4 ✏�1 + ✏�2

[BJL+19] d
1
3 ✏�

2
3 d

4
3 ✏�

8
3 d

4
3 ✏�

8
3

[KTE88] d d d

Theorem 1 d
1
3 ✏�

2
3 d

1
3 ✏�

2
3 + ✏�2 d

1
3 ✏�

2
3 + ✏�2

Theorem 2 d
1
3 ✏�

2
3 d

1
3 ✏�

2
3 + d

1
4 ✏�1 d

1
3 ✏�

2
3 + ✏�2

Table I
COMPARISON OF PARALLEL SCO RESULTS. THE COMPLEXITY OF

FINDING A POINT WITH EXPECTED ERROR ✏ := ✏opt IN PROBLEM 1, WHERE
L = R = 1. WE HIDE POLYLOGARITHMIC FACTORS IN d AND ✏�1 .

In the low-accuracy regime ✏opt � d�1/4, recent work
[BJL+19] showed that SGD indeed achieves the optimal oracle
query depth among parallel algorithms.2 Moreover, in the
high-accuracy regime ✏opt  d�1, cutting plane methods
(CPMs) by e.g. [KTE88] (see [JLSW20] for an updated
overview) achieve the state-of-the-art oracle query depth of
d, up to logarithmic factors in d, ✏opt.

In the intermediate regime ✏opt 2 [d�1, d�1/4
], [DBW12],

[BJL+19] designed algorithms with oracle query depths that
improved upon SGD, as summarized in Table I. In par-
ticular, [BJL+19] obtained an algorithm with query depth
eO(d1/3✏�2/3

opt ), which they conjectured is optimal for inter-
mediate ✏opt. However, the total oracle query complexity of
[BJL+19] is eO(d4/3✏�8/3

opt ), a (fairly large) polynomial factor
worse than SGD.

a) Our results.: The main result of Section III is a pair of
improved parallel algorithms in the setting of Problem 1. Both
of our algorithms achieve the “best of both worlds” between
the [BJL+19] parallel algorithm and SGD, in that their oracle
query depth is bounded by eO(d1/3✏�2/3

opt ) (as in [BJL+19]),
but their total query complexity matches SGD’s in the regime
✏opt  d�1/4. We note that ✏opt  d�1/4 is the regime where
a depth of eO(d1/3✏�2/3

opt ) improves upon [DBW12] and SGD.
Our guarantees are formally stated in Theorems 1 and 2, and
summarized in Table I.

Our first algorithm (Theorem 1) is based on a batched SGD
using our ReSQue estimators, within the “ball acceleration”
framework of [ACJ+21] (see Section I-D). By replacing SGD
with an accelerated counterpart [GL12], we obtain a further
improved computational depth in Theorem 2. Theorem 2
simultaneously achieves the query depth of [BJL+19], the
computational depth of [DBW12], and the total query com-
plexity of SGD in the intermediate regime ✏opt 2 [d�1, d�1/4

].

B. Differential privacy

Differential privacy (DP) is a mathematical quantification
for privacy risks in algorithms involving data. When perform-
ing stochastic convex optimization with respect to a sampled

2We omit logarithmic factors when discussing parameter regimes through-
out the introduction.



dataset from a population, privacy is frequently a natural
practical desideratum [BST14], [EPK14], [Abo16], [App17].
For example, the practitioner may want to privately learn a
linear classifier or estimate a regression model or a statistical
parameter from measurements.

In this paper, we obtain improved rates for private SCO
in the following model, which is standard in the literature
and restated in Problem 2 in full generality. Symmetrically
to the previous section, in the introduction, we only discuss
the specialization of Problem 2 with L = R = 1, where L
is a Lipschitz parameter and R is a domain size bound. We
assume there is a distribution P over a population S , and
we obtain independent samples {si}i2[n] ⇠ P . Every element
s 2 S induces a 1-Lipschitz convex function f(·; s), and the
goal of SCO is to approximately optimize the population loss
f pop

:= Es⇠P [f(·; s)]. The setting of Problem 2 can be viewed
as a specialization of Problem 1 which is more compatible with
the notion of DP, discussed in more detail in Section IV-A.

The cost of achieving approximate DP with privacy loss
parameter ✏dp (see Section IV-A for definitions) has been
studied by a long line of work, starting with [BST14]. The
optimal error (i.e., excess population loss) given n samples
scales as (omitting logarithmic factors)

1
p
n
+

p
d

n✏dp
, (1)

with matching lower and upper bounds given by [BST14] and
[BFTT19], respectively. The n�1/2 term is achieved (without
privacy considerations) by simple one-pass SGD, i.e., treating
sample gradients as unbiased for the population loss, and
discarding samples after we query their gradients. Hence, the
term

p
d · (n✏dp)

�1 can be viewed as the “cost of privacy” in
SCO. Assuming that we have access to n � d✏�2

dp samples
is then natural, as this is the setting where privacy comes
at no asymptotic cost from the perspective of the bound (1).
Moreover, many real-world problems in data analysis have
low intrinsic dimension, meaning that the effective number
of degrees of freedom in the optimization problem is much
smaller than the ambient dimension [SSTT21], [LLH+22],
which can be captured via a dimension-reducing preprocessing
step. For these reasons, we primarily focus on the regime when
the number of samples n is sufficiently large compared to d.

An unfortunate property of private SCO algorithms achiev-
ing error (1) is they all query substantially more than
n sample gradients without additional smoothness assump-
tions [BST14], [BFTT19], [FKT20], [BFGT20], [AFKT21],
[KLL21], which can be viewed as a statistical-computational
gap. For example, analyses of simple perturbed SGD variants
result in query bounds of ⇡ n2 [BFGT20]. In fact, [BFGT20]
conjectured this quadratic complexity was necessary, which
was disproven by [AFKT21], [KLL21]. The problem of ob-
taining the optimal error (1) using n gradient queries has been
repeatedly highlighted as an important open problem by the
private optimization community, as discussed in [BFGT20],
[AFKT21], [KLL21], [ACJ+21] as well as the recent research
overview [Tal22].

Qualitatively, optimality of the bound (1) shows that there is
no statistical cost of privacy when the number of samples n is
large enough, as the solver relies less on any specific sample.
A natural first step towards developing optimal private SCO al-
gorithms is to ask a similar qualitative question regarding their
computational guarantees. Concretely, given enough samples
n, can we develop statistically-optimal SCO algorithms which
only query ⇡ n sample gradients?

a) Our results.: In Section IV, we develop the first
private SCO algorithm with this aforementioned computational
guarantee. Our algorithm achieves the error bound (1) up to
logarithmic factors, as well as a new gradient query complex-
ity. Our result is formally stated in Theorem 4 and summarized
in Table II and Figure 1. Up to logarithmic factors, our gradient
query complexity is

min

 
n,

n2✏2dp

d

!
+min

 
(nd)

2
3

✏dp
, n

4
3 ✏

1
3
dp

!
.

Theorem 4 improves upon the prior state-of-the-art gradient
query complexity by polynomial factors whenever d ⌧ n4/3

(omitting ✏dp dependencies for simplicity). As with prior recent
SCO advancements, our result has the appealing property that
it achieves the optimal n�1/2 error for SCO when n & d✏�2

dp .
Moreover, given n & d2✏�3

dp samples, the gradient query
complexity of Theorem 4 improves to eO(n), the first near-
linear query complexity for a statistically-optimal private SCO
algorithm in any regime. In Table II and Figure 1, we compare
our bounds with the prior art.

While there remains a gap between the sample complexity at
which our algorithm is statistically optimal, and that at which
it is computationally (nearly)-optimal, we find it promising
that our result comes within logarithmic factors of achieving
the best-of-both-worlds for sufficiently large n. This is a key
step towards optimal algorithms for the fundamental problem
of private SCO. It is an interesting open question to refine
current algorithmic techniques for private SCO to remove this
gap, and we are optimistic that the tools developed in this
paper will be fruitful in this endeavor.
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Figure 1. Comparison among our gradient complexity and previous results in
[AFKT21], [KLL21] for the non-trivial regime d  n2. We omit dependencies
on ✏dp (treated as ⇥(1) in this figure) and logarithmic terms for simplicity.



Method excess fpop loss # sample gradient queries

[BST14]
4pd log n

�p
n

+
p
d log2 n

�
n✏ n2

[BFTT19] 1p
n
+

q
d log 1

�

n✏ n
9
2

[FKT20] 1p
n
+

q
d log 1

�

n✏ n2

[BFGT20] 1p
n
+

q
d log 1

�

n✏ n2

[AFKT21] 1p
n
+

q
d log 1

�

n✏ n
3
2 ^ n2✏p

d

[KLL21] 1p
n
+

q
d log 1

�

n✏ n
5
4 d

1
8
p
✏ ^ n

3
2 ✏

d
1
8

Theorem 4 1p
n
+

q
d log 1

� log2.5 n
�

n✏ n+ (nd)
2
3

✏ ^ n2✏2

d + n
4
3 ✏

1
3

Table II
COMPARISON OF PRIVATE SCO RESULTS. THE EXCESS LOSS AND
GRADIENT COMPLEXITY OF (✏ := ✏dp, �)-DP IN PROBLEM 2, WHERE

L = R = 1. WE HIDE POLYLOGARITHMIC FACTORS IN d, n, ��1, ✏�1 IN
THE THIRD COLUMN. THE OPTIMAL LOSS [BST14], [SU15] IS ACHIEVED

BY ROWS 2-6.

C. Related work

a) Stochastic convex optimization.: Convex optimization
is a fundamental task with numerous applications in computer
science, operations research, and statistics [BV14], [Bub15],
[Nes18], and has been the focus of extensive research over the
past several decades. This paper’s primary setting of interest
is non-smooth (Lipschitz) stochastic convex optimization in
private and parallel computational models. Previously, [Gol64]
gave a gradient method that used O(✏�2

) gradient queries to
compute a point achieving ✏ error for Lipschitz convex mini-
mization. This rate was shown to be optimal in an information-
theoretic sense in [NY83]. The stochastic gradient descent
method extends [Gol64] to tolerate randomized, unbiased
gradient oracles with bounded second moment: this yields
algorithms for Problem 1 and Problem 2 (when privacy is
not a consideration).

b) Acceleration.: Since the first proposal of accelerated
(momentum-based) methods [Pol64], [Nes83], [Nes03], ac-
celeration has become a central topic in optimization. This
work builds on the seminal Monteiro-Svaiter acceleration
technique [MS13] and its higher-order variants [GDG+19],
[BJL+19]. More specifically, our work follows recent devel-
opments in accelerated ball optimization [CJJ+20], [CJJS21],
[ACJ+21], which can be viewed as a limiting case of high-
order methods. Our algorithms directly leverage error-robust
variants of this framework developed by [ACJ+21], [CH22].

c) Parallel SCO.: Recently, parallel optimization has re-
ceived increasing interest in the context of large-scale machine
learning. Speeding up SGD by averaging stochastic gradi-
ents across mini-batches is extremely common in practice,
and optimal in certain distributed optimization settings; see
e.g. [DGBSX12], [DRY18], [WBSS21]. Related to the setting
we study are the distributed optimization methods proposed
in [SBB+18], which also leverage convolution-based random-
ized smoothing and apply to both stochastic and deterministic

gradient-based methods (but do not focus on parallel depth
in the sense of [Nem94]). Finally, lower bounds against the
oracle query depth of parallel SCO algorithms in the setting
we consider have been an active area of study, e.g. [Nem94],
[BS18], [DG19], [BJL+19].

d) Private SCO.: Both the private stochastic convex
optimization problem (DP-SCO) and the private empirical risk
minimization problem (DP-ERM) are well-studied by the DP
community [CM08], [RBHT12], [CMS11], [JT14], [BST14],
[KJ16], [FTS17], [ZZMW17], [Wan18], [INS+19], [BFTT19],
[FKT20]. In particular, [BST14] shows that the exponential
mechanism and noisy stochastic gradient descent achieve the
optimal loss for DP-ERM for (✏dp, 0)-DP and (✏dp, �)-DP.
In follow-up works, [BFTT19], [FKT20] show that one can
achieve the optimal loss for DP-SCO as well, by a suitable
modification of noisy stochastic gradient descent. However,
these algorithms suffer from large (at least quadratic in n)
gradient complexities. Under an additional assumption that
the loss functions are sufficiently smooth (i.e., have Lipschitz
gradient), [FKT20] remedies this issue by obtaining optimal
loss and optimal gradient complexity under differential privacy.
In a different modification of Problem 2’s setting (where sam-
ple function access is modeled through value oracle queries
instead of subgradients), [GLL22] designs an exponential
mechanism-based method that uses the optimal value oracle
complexity to obtain the optimal SCO loss for non-smooth
functions.

Most directly related to our approach are the recent
works [KLL21] and [ACJ+21]. Both propose methods im-
proving upon the quadratic gradient complexity achieved by
noisy SGD, by using variants of smoothing via Gaussian
convolution. The former proposes an algorithm that uses noisy
accelerated gradient descent for private SCO with subquadratic
gradient complexity. The latter suggests a ball acceleration
framework to solve private SCO with linear gradient queries,
under a hypothetical algorithm to estimate subproblem so-
lutions. Our work can be viewed as a formalization of the
connection between ball acceleration strategies and private
SCO as suggested in [ACJ+21], by way of ReSQue estimators,
which we use to obtain improved query complexities.

D. Our approach

Here we give an overview of our approach towards obtain-
ing the results outlined in Section I-A and Section I-B. To
illustrate and situate our approach, we first briefly discuss prior
approaches, their insights that we leverage, and obstacles that
we overcome. Then we discuss a common framework based
on a new stochastic gradient estimation tool we introduce and
call Reweighted Stochastic Query (ReSQue) estimators which
enables our results on parallel and private SCO. Our new
tool is naturally compatible with ball-constrained optimization
frameworks, where an optimization problem is localized to
a sequence of constrained subproblems (solved to sufficient
accuracy), whose solutions are then stitched together. We
exploit this synergy, as well as the local stability properties
of our ReSQue estimators, to design our SCO algorithms.



We discuss the different instantiations of our framework for
parallel and private SCO at the end of this section.

a) Convolutions and prior approaches.: All new results
on parallel and private SCO in this paper use the convolution of
a function of interest f : Rd

! R with a Gaussian density �⇢
(with covariance ⇢2Id), which we denote by bf⇢. Such Gaussian

convolutions have a longer history of facilitating algorithmic
advances for SCO. All previous advances on parallel SCO
and Lipschitz convex function minimization used Gaussian
convolutions, i.e., [DBW12], [BJL+19], as did a state-of-the-
art (in some regimes) private SCO algorithm [KLL21]. Each
of [DBW12], [KLL21] leverage that bf⇢ is a smooth, additive
approximation to f , and [BJL+19] further used that the higher
derivatives of bf⇢ are bounded, as well as the fact that its
gradients can be well-approximated within small balls.

As one of our motivating problems, we seek to move beyond
the reliance on (high-order) smoothness properties of bf⇢, and
achieve total work bounds improving upon [BJL+19]. Unfor-
tunately, doing so while following the strategy of [BJL+19]
poses an immediate challenge. Though [BJL+19] achieves
improved parallel depth bounds for Lipschitz convex optimiza-
tion, it comes at a cost. Their approach, which relies on the pth-
order Lipschitzness of bf⇢, would naively involve computing
pth derivatives of the objective, and their approach to gradient
approximation involves estimating the gradient everywhere
inside a ball of sufficient radius. Naïvely, either of these
approaches would involve making ⌦(d) queries per parallel
step. Removing this cost is one of our main contributions to
parallel SCO, and our corresponding development is key to
enabling our private SCO results.

b) ReSQue estimators and ball acceleration.: To over-
come this bottleneck to prior approaches, we introduce a new
tool that capitalizes upon a different property of Gaussian
convolutions: the fact that the Gaussian density is locally stable
in a small ball around its center. This property is arguably
closely related to how [BJL+19] are able to prove that they
can approximate the gradients of bf⇢ inside a ball. However,
rather than building such a complete model of bf⇢, we instead
use only use this property to suitably implement independent
stochastic gradient queries to bf⇢.

Given a reference point x̄ and a query point x, our proposed
estimator for r bf⇢(x) is

draw ⇠ ⇠ N (0, ⇢2Id),

and output estimate
�⇢(x� x̄� ⇠)

�⇢(⇠)
g(x̄+ ⇠),

(2)

where g(z) is an unbiased estimate for a subgradient of f ,
i.e., Eg(z) 2 @f(z). That is, to estimate the gradient of
bf⇢, we simply reweight (stochastic) gradients of f that were
queried at random perturbations of reference point x̄. This
reweighted stochastic query (ReSQue) estimator is unbiased
for r bf⇢(x), regardless of x̄. However, when kx� x̄k ⌧ ⇢,
i.e., x is contained in a small ball around x̄, the reweighting
factor �⇢(x�x̄�⇠)

�⇢(⇠)
is likely to be close to 1. As a result, when g

is bounded and x is near x̄, the estimator (2) enjoys regularity

properties such as moment bounds. Crucially, the stochastic
gradient queries performed by ReSQue (at points of the form
x̄ + ⇠) do not depend on the point x at which we eventually
estimate the gradient.

We develop this theory in Section II, but mention one
additional property here, which can be thought of as a “rel-
ative smoothness” property. We show that when kx� x0

k is
sufficiently smaller than ⇢, the difference of estimators of the
form (2) has many bounded moments, where bounds scale
as a function of kx� x0

k. When we couple a sequence of
stochastic gradient updates by the randomness used in defining
(2), we can use this property to bound how far sequences drift
apart. In particular, initially nearby points are likely to stay
close. We exploit this property when analyzing the stability
of private stochastic gradient descent algorithms later in the
paper.

To effectively use these local stability properties of (2),
we combine them with an optimization framework called
ball-constrained optimization [CJJ+20]. It is motivated by
the question: given parameters 0 < r < R, and an oracle
which minimizes f : Rd in a ball of radius r around an
input point, how many oracles must we query to optimize
f in a ball of larger radius R? It is not hard to show that
simply iterating calls to the oracle gives a good solution in
roughly R

r queries. In recent work, [CJJ+20] demonstrated
that the optimal number of calls scales (up to logarithmic
factors) as (

R
r )

2/3, and [ACJ+21] gave an approximation-
tolerant variant of the [CJJ+20] algorithm. We refer to these
algorithms as ball acceleration. Roughly, [ACJ+21] shows that
running stochastic gradient methods on ⇡ (

R
r )

2/3 subproblems
constrained to balls of radius r obtains total gradient query
complexity comparable to directly running SGD on the global
function of domain radius R.

Importantly, in many structured cases, we have dramatically
more freedom in solving these subproblems, compared to the
original optimization problem, since we are only required to
optimize over a small radius. One natural form of complexity
gain from ball acceleration is when there is a much cheaper
gradient estimator, which is only locally defined, compared
to a global estimator. This was the original motivation for
combining ball acceleration with stochastic gradient methods
in [CJJS21], which exploited local smoothness of the softmax
function; the form of our ReSQue estimator (2) is motivated
by the [CJJS21] estimator. In this work, we show that using
ReSQue with reference point x̄ significantly improves the
parallel and private complexity of minimizing the convolution
bf⇢ inside a ball of radius r ⇡ ⇢ centered at x̄.

c) Parallel subproblem solvers.: A key property of the
ReSQue estimator (2) is that its estimate of r bf⇢(x) is a
scalar reweighting of g(x̄ + ⇠), where ⇠ ⇠ N(0, ⇢2Id) and
x̄ is a fixed reference point. Hence, in each ball subproblem
(assuming r = ⇢), we can make all the stochastic gradient
queries in parallel, and use the resulting pool of vectors
to perform standard (ball-constrained) stochastic optimization
using ReSQue. Thus, we solve each ball subproblem with a
single parallel stochastic gradient query, and — using ball



acceleration — minimize bf⇢ with query depth of roughly
⇢�2/3. To ensure that bf⇢ is a uniform ✏opt-approximation of
the original f , we must set ⇢ to be roughly ✏opt/

p
d, leading

to the claimed d1/3✏�2/3
opt depth bound. Furthermore, the ball

acceleration framework guarantees that we require no more
than roughly ⇢�2/3

+ ✏�2
opt stochastic gradient computations

throughout the optimization, yielding the claimed total query
bound. However, the computational depth of the algorithm
described thus far is roughly ✏�2

opt , which is no better than SGD.
In Section III we combine our approach with the randomized
smoothing algorithm of [DBW12] by using an accelerated
mini-batched method [GL12] for the ball-constrained stochas-
tic optimization, leading to improved computational depth as
summarized in Table I. Our parallel SCO results use the
ReSQue/ball acceleration technique in a simpler manner than
our private SCO results described next and in Section IV, so
we chose to present them first.

d) Private subproblem solvers.: To motivate our im-
proved private SCO solvers, we make the following connec-
tion. First, it is straightforward to show that the convolved
function bf⇢ is 1

⇢ -smooth whenever the underlying function f is
Lipschitz. Further, recently [FKT20] obtained a linear gradient
query complexity for SCO, under the stronger assumption
that each sample function (see Problem 2) is . pn-smooth
(for L = R = 1 in Problem 2). This bound is satisfied by
the result of Gaussian convolution with radius 1p

n
; however,

two difficulties arise. First, to preserve the function value
approximately up to ✏opt, we must take a Gaussian convolution
of radius ⇢ ⇡ ✏optp

d
. For ✏opt in (1), this is much smaller than 1p

n
in many regimes. Second, we cannot access the exact gradients
of the convolved sampled functions. Hence, it is natural to ask:
is there a way to simulate the smoothness of the convolved
function, under stochastic query access?

Taking a step back, the primary way in which [FKT20] used
the smoothness assumption was through the fact that gradient
steps on a sufficiently smooth function are contractive. This
observation is formalized as follows: if x0

 x � ⌘rf(x)
and y0  y � ⌘rf(y), when f is O(

1
⌘ )-smooth, then

kx0
� y0k  kx� yk. As alluded to earlier, we show that

ReSQue estimators (2) allow us to simulate this contractivity
up to polylogarithmic factors. We show that by coupling the
randomness ⇠ in the estimator (2), the drift growth in two-
point sequences updated with (2) is predictable. We give a
careful potential-based argument (see Lemma 5) to bound
higher moments of our drift after a sequence of updates
using ReSQue estimators, when they are used in an SGD
subroutine over a ball of radius ⌧ ⇢. This allows for the use
of “iterative localization” strategies introduced by [FKT20],
based on iterate perturbation via the Gaussian mechanism.

We have not yet dealt with the fact that while this “smooth-
ness simulation” strategy allows us to privately solve one

constrained ball subproblem, we still need to solve K ⇡

(
1
r )

2/3 ball subproblems to optimize our original function,
where r ⌧ ⇢ is the radius of each subproblem. Here we
rely on arguments based on amplification by subsampling,

a common strategy in the private SCO literature [ACG+16],
[BBG18]. We set our privacy budget for each ball subproblem
to be approximately (✏dp, �) (our final overall budget), before
subsampling. We then use solvers by suitably combining the
[FKT20] framework and our estimator (2) to solve these ball
subproblems using ⇡ n ·K�1/2 gradient queries each. Finally,
our algorithm obtains the desired

query complexity: ⇡
n
p
K|{z}

gradient queries per subproblem

· K|{z}
number of subproblems

= n
p

K, and

privacy: ⇡ ✏dp|{z}
privacy budget per subproblem

·
1
p
K|{z}

subsampling

·

p

K|{z}
advanced composition

= ✏dp.

(3)

Here we used the standard technique of advanced composition
(see e.g. Section 3.5.2, [DR14]) to bound the privacy loss over
K consecutive ball subproblems.

Let us briefly derive the resulting complexity bound and
explain the bottleneck for improving it further. First, the ball
radius r must be set to ⇡ ⇢ (the smoothing parameter) for
our ReSQue estimators to be well-behaved. Moreover, we
have to set ⇢ ⇡ ✏optp

d
, otherwise the effect of the convolution

begins to dominate the optimization error. For ✏opt ⇡
1p
n
+

p
d(n✏dp)

�1 (see (1)), this results in 1
r ⇡ min(

p
nd, n✏dp).

Next, K ⇡ (
1
r )

2/3 is known to be essentially tight for
ball acceleration with R = 1 [CJJ+20]. For the subprob-
lem accuracies required by the [ACJ+21] ball acceleration
framework,3 known lower bounds on private empirical risk
minimization imply that ⇡ np

K
gradients are necessary for

each subproblem to preserve a privacy budget of ✏dp [BST14].
As subsampling requires the privacy loss before amplification
to already be small (see discussion in [Smi09], [BBG18]), all
of these parameter choices are optimized, leading to a gradient
complexity of n

p
K. For our lower bound on 1

r , this scales
as ⇡ min(n4/3, (nd)2/3) as we derive in Theorem 4.4 To go
beyond the strategies we employ, it is natural to look towards
other privacy amplification arguments (for aggregating ball
subproblems) beyond subsampling, which we defer to future
work.

Our final algorithm is analyzed through the machinery of
Rényi differential privacy (RDP) [Mir17], which allows for
more fine-grained control of the effects of composition and
subsampling. We modify the standard RDP machinery in two
main ways. We define an approximate relaxation and control
the failure probability of our relaxation using high moment

3These subproblem accuracy requirements cannot be lowered in general,
because combined they recover the optimal gradient complexities of SGD
over the entire problem domain.

4In the low-dimensional regime d  n✏2dp, the gradient queries used per

subproblem improves to
p
nd

✏dp
p
K

.



bounds on our drift (see Section IV-B). We also provide an
analysis of amplification under subsampling with replacement
by modifying the truncated CDP (concentrated DP) tools
introduced by [BDRS18], who analyzed subsampling without
replacement. Sampling with replacement is crucial in order
to guarantee that our ReSQue estimators are unbiased for
the empirical risks we minimize when employing a known
reduction [FKT20], [KLL21] from private SCO to private
regularized empirical risk minimization.

E. Notation

Throughout eO hides polylogarithmic factors in problem
parameters. For n 2 N, we let [n] := {i | 1  i  n}. For
x 2 Rd we let kxk denote the Euclidean norm of x, and let
Bx(r) := {x0

2 Rd
| kx0

� xk  r} denote a Euclidean ball
of radius r centered at x; when x is unspecified we take it to be
the origin, i.e., B(r) := {x0

2 Rd
| kx0
k  r}. We let N (µ,⌃)

denote a multivariate Gaussian distribution with mean µ 2 Rd

and covariance ⌃ 2 Rd⇥d, and Id is the identity matrix in
Rd⇥d. For K ✓ Rd, we define the Euclidean projection onto
K by ⇧K(x) := argminx02K kx� x0

k. For p 2 [0, 1], we let
Geom(p) denote the geometric distribution with parameter p.

a) Optimization.: We say a function f : Rd
! R is

L-Lipschitz if for all x, x0
2 Rd we have |f(x) � f(x0

)| 

L kx� x0
k. We say f is �-strongly convex if for all x, x0

2 Rd

and t 2 [0, 1] we have

f(tx+(1�t)y)  tf(x)+(1�t)f(y)�
�t(1� t)

2
kx� x0

k
2
.

We denote the subdifferential (i.e., set of all subgradients) of a
convex function f : Rd

! R at x 2 Rd by @f(x). Overloading
notation, when clear from the context we will write @f(x) to
denote an arbitrary subgradient.

b) Probability.: Let µ, ⌫ be two probability densities µ,
⌫ on the same probability space ⌦. We let DTV(µ, ⌫) :=
1
2

R
|µ(!) � ⌫(!)|d! denote the total variation distance. The

following fact is straightforward to see and will be frequently
used.

Fact 1. Let E be any event that occurs with probability at

least 1 � � under the density µ. Then DTV(µ, µ | E)  �,

where µ | E denotes the conditional distribution of µ under E .

For two densities µ, ⌫, we say that a joint distribution
�(µ, ⌫) over the product space of outcomes is a coupling of
µ, ⌫ if for (x, x0

) ⇠ �(µ, ⌫), the marginals of x and x0 are
µ and ⌫, respectively. When µ is absolutely continuous with
respect to ⌫, and ↵ > 1, we define the ↵-Rényi divergence by

D↵(µk⌫) :=
1

↵� 1
log

✓Z ✓
µ(!)

⌫(!)

◆↵

d⌫(!)

◆
. (4)

D↵ is quasiconvex in its arguments, i.e. if µ = E⇠µ⇠ and ⌫ =

E⇠⌫⇠ (where ⇠ is a random variable, and µ⇠, ⌫⇠ are distribution
families indexed by ⇠), then D↵(µk⌫)  max⇠ D↵(µ⇠k⌫⇠).

II. FRAMEWORK

We now outline our primary technical innovation, a new gra-
dient estimator for stochastic convex optimization (ReSQue).
We define this estimator in Section II-A and prove that it
satisfies several local stability properties in a small ball around
a “centerpoint” used for its definition. In Section II-B, we then
give preliminaries on a “ball acceleration” framework devel-
oped in [CJJ+20], [ACJ+21]. This framework aggregates so-
lutions to proximal subproblems defined on small (Euclidean)
balls, and uses these subproblem solutions to efficiently solve
an optimization problem on a larger domain. Our algorithms in
Sections III and IV instantiate the framework of Section II-B
with new subproblem solvers enjoying improved parallelism
or privacy, based on our new ReSQue estimator.

A. ReSQue estimators

Throughout we use �⇢ : Rd
! R�0 to denote the

probability density function of N (0, ⇢2Id), i.e., �⇢(x) =

(2⇡⇢)�
d
2 exp(�

1
2⇢2 kxk

2
). We first define the Gaussian con-

volution operation.

Definition 1 (Gaussian convolution). For a function f : Rd
!

R we denote its convolution with a Gaussian of covariance

⇢2Id by bf⇢ := f ⇤ �⇢, i.e.,

bf⇢(x) := Ey⇠N (0,⇢2Id)f(x+ y) =

Z

y2Rn

f(x� y)�⇢(y)dy.

(5)

Three well-known properties of bf⇢ are that it is differen-
tiable, that if f is L-Lipschitz, so is bf⇢ for any ⇢, and that
| bf⇢ � f |  L⇢

p
d pointwise (Lemma 8, [BJL+19]). Next,

given a centerpoint x̄ and a smoothing radius ⇢, we define the
associated reweighted stochastic query (ReSQue) estimator.

Definition 2 (ReSQue estimator). Let x̄ 2 Rd
and let f :

Rd
! R be convex. Suppose we have a gradient estimator

g : Rd
! Rd

satisfying Eg 2 @f . We define the ReSQue
estimator of radius ⇢ as the random vector

erg
x̄
bf⇢(x) :=

�⇢(x� x̄� ⇠)

�⇢(⇠)
g(x̄+ ⇠) where ⇠ ⇠ N (0, ⇢2Id),

where we first sample ⇠, and then independently query g at

x̄+ ⇠. When g is deterministically an element of @f , we drop

the superscript and denote the estimator by erx̄
bf⇢.

When g is unbiased for @f and enjoys a variance bound, the
corresponding ReSQue estimator is unbiased for the convolved
function, and inherits a similar variance bound.

Lemma 1. The estimator in Definition 2 satisfies the following

properties, where expectations are taken over both the random-

ness in ⇠ and the randomness in g.

1) Unbiased: Eerg
x̄
bf⇢(x) = r bf⇢(x).

2) Bounded variance: If E kgk2  L2
everywhere, and x 2

Bx̄(⇢), then Ekerg
x̄
bf⇢(x)k2  3L2

.



Proof. The first statement follows by expanding the expecta-
tion over ⇠ and g:

Eg

Z
�⇢(x� x̄� ⇠)

�⇢(⇠)
g(x̄+ ⇠)�⇢(⇠)d⇠

=

Z
�⇢(x� x̄� ⇠)

�⇢(⇠)
@f(x̄+ ⇠)�⇢(⇠)d⇠

=

Z
@f(x̄+ ⇠)�⇢(x� x̄� ⇠)d⇠ = r bf⇢(x).

The last equality used that the integral is a subgradient of bf⇢,
and bf⇢ is differentiable.

For the second statement, denote v := x� x̄ for simplicity.
Since f is L-Lipschitz,

Ekerg
x̄
bf⇢(x)k2 = Eg

Z
(�⇢(v � ⇠))2

�⇢(⇠)
kg(x̄+ ⇠)k2 d⇠

 L2
(2⇡⇢)�

d
2

·

Z
exp

 
�
kv � ⇠k2

⇢2
+
k⇠k2

2⇢2

!
d⇠.

Next, a standard calculation for Gaussian integrals shows

Z
exp

 
2 hv, ⇠i � k⇠k2

2⇢2

!
d⇠

= exp

 
kvk2

2⇢2

!Z
exp

 
�
k⇠ � vk2

2⇢2

!
d⇠

= exp

 
kvk2

2⇢2

!
(2⇡⇢)

d
2 .

(6)

The statement then follows from (6), which yields

Z
exp

 
�
kv � ⇠k2

⇢2
+
k⇠k2

2⇢2

!
d⇠

= exp

 
�
kvk2

⇢2

!Z
exp

 
4 hv, ⇠i � k⇠k2

2⇢2

!
d⇠

= (2⇡⇢)
d
2 exp

 
2 kvk2

⇢2

!
 3 · (2⇡⇢)

d
2

(7)

and completes the proof of the second statement.

When the gradient estimator g is deterministically a sub-
gradient of a Lipschitz function, we can show additional
properties about ReSQue. The following lemma will be used in
Section IV both to obtain higher moment bounds on ReSQue,
as well as higher moment bounds on the difference of ReSQue
estimators at nearby points, where the bound scales with the
distance between the points.

Lemma 2. If x, x0
2 Bx̄(

⇢
p ) for p � 2 then

E⇠⇠N (0,⇢2Id)

✓
�⇢(x� x̄� ⇠)

�⇢(⇠)

◆p�
 2,

E⇠⇠N (0,⇢2Id)

����
�⇢(x� x̄� ⇠)� �⇢(x0

� x̄� ⇠)

�⇢(⇠)

����
p�



✓
24p kx� x0

k

⇢

◆p

.

We defer a proof to Appendix A, where a helper calculation
(Fact 3) is used to obtain the result.

B. Ball acceleration

We summarize the guarantees of a recent “ball acceleration”
framework originally proposed by [CJJ+20]. For specified
parameters 0 < r < R, this framework efficiently aggregates
(approximate) solutions to constrained optimization problems
over Euclidean balls of radius r to optimize a function over
a ball of radius R. Here we give an approximation-tolerant
variant of the [CJJ+20] algorithm in Proposition 1, which
was developed by [ACJ+21]. Before stating the guarantee, we
require the definitions of three types of oracles. In each of the
following definitions, for some function F : Rd

! R, scalars
�, r, and point x̄ 2 Rd which are clear from context, we will
denote

x?
x̄,� := argminx2Bx̄(r)

⇢
F (x) +

�

2
kx� x̄k2

�
. (8)

We mention that in the non-private settings of prior work
[ACJ+21], [CH22] (and under slightly different oracle ac-
cess assumptions), it was shown that the implementation of
line search oracles (Definition 3) and stochastic proximal
oracles (Definition 5) can be reduced to ball optimization
oracles (Definition 4). Indeed, such a result is summarized
in Proposition 2 and used in Section III to obtain our parallel
SCO algorithms. To tightly quantify the privacy loss of each
oracle for developing our SCO algorithms in Section IV (and
to implement these oracles under only the function access
afforded by Problem 2), we separate out the requirements of
each oracle definition separately.

Definition 3 (Line search oracle). We say Ols is a (�,�)-line
search oracle for F : Rd

! R if given x̄ 2 Rd
, Ols returns

x 2 Rd
with ��x� x?

x̄,�

��  �.

Definition 4 (Ball optimization oracle). We say Obo is a

(�,�)-ball optimization oracle for F : Rd
! R if given

x̄ 2 Rd
, Obo returns x 2 Rd

with

E

F (x) +

�

2
kx� x̄k2

�
 F (x?

x̄,�) +
�

2

��x?
x̄,� � x̄

��2 + �.

Definition 5 (Stochastic proximal oracle). We say Osp is a

(�,�,�)-stochastic proximal oracle for F : Rd
! R if given

x̄ 2 Rd
, Osp returns x 2 Rd

with

��Ex� x?
x̄,�

��  �
�
, E
��x� x?

x̄,�

��2  �2

�2
.



Leveraging Definitions 3, 4, and 5, we state a variant of the
main result of [ACJ+21]. Roughly speaking, Proposition 1
states that to optimize a function F over a ball of radius
R, it suffices to query ⇡ (

R
r )

2
3 oracles which approximately

optimize a sufficiently regularized variant of F over a ball of
radius r. We quantify the types of approximate optimization
of such regularized functions in Proposition 1, and defer
a detailed discussion of how to derive this statement from
[ACJ+21] in Appendix A, as it is stated slightly differently in
the original work.5

Proposition 1. Let F : Rd
! R be L-Lipschitz and

convex, and let x?
2 B(R). There is an algorithm BallAccel

(Algorithm 4, [ACJ
+

21]) taking parameters r 2 [0, R] and

✏opt 2 (0, LR] with the following guarantee. Define

 :=
LR

✏opt
, K :=

✓
R

r

◆ 2
3

, �? :=
✏optK2

R2
log

2 .

For a universal constant Cba > 0, BallAccel runs in at most

CbaK log  iterations and produces x 2 Rd
such that

EF (x)  F (x?
) + ✏opt.

Moreover, in each iteration BallAccel requires the following

oracle calls (all for F ).

1) At most Cba log(
R
r ) calls to a (

r
Cba

,�)-line search

oracle with values of � 2 [
�?
Cba

, CbaL
✏opt

].

2) A single call to (
�r2

Cba log3  ,�)-ball optimization oracle

with � 2 [
�?
Cba

, CbaL
✏opt

].

3) A single call to (
✏opt
CbaR

, ✏opt
p
K

CbaR
,�)-stochastic proximal

oracle with � 2 [
�?
Cba

, CbaL
✏opt

].

The optimization framework in Proposition 1 is naturally
compatible with our ReSQue estimators, whose stability prop-
erties are local in the sense that they hold in balls of radius
⇡ ⇢ around the centerpoint x̄ (see Lemma 2). Conveniently,
BallAccel reduces an optimization problem over a domain of
size R to a sequence of approximate optimization problems
on potentially much smaller domains of radius r. In Sec-
tions III and IV, by instantiating Proposition 1 with r ⇡ ⇢,
we demonstrate how to use the local stability properties of
ReSQue estimators (on smaller balls) to solve constrained
subproblems, and consequently design improved parallel and
private algorithms.

Finally, as mentioned previously, in settings where privacy
is not a consideration, Proposition 1 of [CH22] gives a
direct implementation of all the line search and stochastic
proximal oracles required by Proposition 1 by reducing them
to ball optimization oracles. The statement in [CH22] also
assumes access to function evaluations in addition to gradi-
ent (estimator) queries; however, it is straightforward to use
geometric aggregation techniques (see Lemma 11) to bypass
this requirement. We give a slight rephrasing of Proposition 1

5In particular, we use an error tolerance for the ball optimization oracles,
which is slightly larger than in [ACJ+21], following a tighter error analysis
given in Proposition 1 of [CH22].

in [CH22] without the use of function evaluation oracles, and
defer further discussion to Appendix 0d where we prove the
following.

Proposition 2. Let F : Rd
! R be L-Lipschitz and

convex, and let x?
2 B(R). There is an implementation of

BallAccel (see Proposition 1) taking parameters r 2 [0, R]

and ✏opt 2 (0, LR] with the following guarantee, where we

define ,K,�? as in Proposition 1. For a universal constant

Cba > 0, BallAccel runs in at most CbaK log  iterations and

produces x 2 Rd
such that EF (x)  F (x?

) + ✏opt.

1) Each iteration makes at most Cba log
2
(
R
r ) calls to

(
�r2

Cba
,�)-ball optimization oracle with values of � 2

[
�?
Cba

, CbaL
✏opt

].

2) For each j 2 [dlog2 K + Cbae], at most C2
ba ·

2
�jK log(

R
r ) iterations query a (

�r2

Cba2j
·log

�2
(
R
r ),�)-

ball optimization oracle for some � 2 [
�?
Cba

, CbaL
✏opt

].

III. PARALLEL STOCHASTIC CONVEX OPTIMIZATION

In this section, we present our main results on parallel
convex optimization with improved computational depth and
total work. We present our main results below in Theorems 1
and 2, after formally stating our notation and the SCO problem
we study in this section.

A. Preliminaries

In this section, we study the following SCO problem, which
models access to an objective only through the stochastic
gradient oracle.

Problem 1. Let f : Rd
! R be convex. We assume there

exists a stochastic gradient oracle g : Rd
! Rd

satisfying for

all x 2 Rd
, Eg(x) 2 @f(x), E kg(x)k2  L2

. Our goal is to

produce x 2 Rd
such that Ef(x)  minx?2B(R) f(x

?
) + ✏opt.

We define parameter

 :=
LR

✏opt
. (9)

When discussing a parallel algorithm which queries a
stochastic gradient oracle, in the sense of Problem 1, we
separate its complexity into four parameters. The query depth

is the maximum number of sequential rounds of interaction
with the oracle, where queries are submitted in batch. The
total number of queries is the total number of oracle queries
used by the algorithm. The computational depth and work

are the sequential depth and total amount of computational
work, treating each oracle query as requiring O(1) depth and
work. For simplicity we assume that all d-dimensional vector
operations have a cost of d when discussing computation.

B. Proofs of Theorems 1 and 2

Theorem 1 (Parallel EpochSGD-based solver). BallAccel
(Proposition 2) using parallel EpochSGD (Algorithm 1) as a



ball optimization oracle solves Problem 1 with expected error

✏opt, with

O
⇣
d

1
3

2
3 log

3
(d)

⌘
query depth

and O
⇣
d

1
3

2
3 log

3
(d) + 2

log
4
(d)

⌘
total queries,

and an additional computational cost of

O
⇣
d

1
3

2
3 log

3
(d) + 2

log
4
(d)

⌘
depth

and O
⇣⇣

d
1
3

2
3 log

3
(d) + 2

log
4
(d)

⌘
· d
⌘

work.

Theorem 2 (Parallel AC-SA-based solver). BallAccel (Propo-

sition 2) using parallel AC-SA (Algorithm 2) as a ball op-

timization oracle solves Problem 1 with expected error ✏opt,

with

O
⇣
d

1
3

2
3 log 

⌘
query depth

and O
⇣⇣

d
1
3

2
3 + d

1
4+ 2

⌘
log

4
(d)

⌘
total queries,

and an additional computational cost of

O
⇣
d

1
3

2
3 log

3
(d) + d

1
4 log4 (d)

⌘
depth

and O
⇣⇣

d
1
3

2
3 + d

1
4+ 2

⌘
· d log4 (d)

⌘
work.

The query depth, total number of queries, and total work
for both of our results are the same (up to logarithmic fac-
tors). The main difference is that AC-SA attains an improved
computational depth for solving SCO, compared to using
EpochSGD. Our results build upon the BallAccel framework
in Section II-B, combined with careful parallel implemen-
tations of the required ball optimization oracles to achieve
improved complexities.

We begin by developing our parallel ball optimization ora-
cles using our ReSQue estimator machinery from Section II-A.
First, Proposition 2 reduces Problem 1 to implementation of
a ball optimization oracle. Recall that a ball optimization
oracle (Definition 4) requires an approximate solution x of
a regularized subproblem. In particular, for some accuracy
parameter �, and defining x?

x̄,� as in (8), we wish to compute
a random x 2 Bx̄(r) such that

E

bf⇢(x) +

�

2
kx� x̄k2

�
 bf⇢(x?

x̄,�) +
�

2

��x?
x̄,� � x̄

��2 + �.

Note that such a ball optimization oracle can satisfy the
requirements of Proposition 2 with F  bf⇢, r  ⇢. In
particular, Lemma 1 gives a gradient estimator variance bound
under the setting r = ⇢.

a) EpochSGD.: We implement EpochSGD [HK14],
[ACJ+21], a variant of standard stochastic gradient descent on
regularized objective functions, in parallel using the stochastic
ReSQue estimator constructed in Definition 2. Our main
observation is that the gradient queries in Definition 2 can
be implemented in parallel at the beginning of the algorithm.
We provide the pseudocode of our parallel implementation of
EpochSGD in Algorithm 1 and state its guarantees in Propo-
sition 3.

Algorithm 1: EpochSGD(f, g, x̄, r, ⇢,�,�)
1 Input: f : Rd

! R and g : Rd
! R satisfying the

assumptions of Problem 1, x̄ 2 Rd, r, ⇢,�,� > 0

2 ⌘1  
1
4� , T1  16, T  d 48L

2

�� e

3 Sample ⇠i ⇠ N (0, ⇢2Id), i 2 [2T ] independently
4 Query g(x̄+ ⇠i) for all i 2 [2T ] (in parallel)
5 x0

1  x̄, k  1

6 while
P

j2[k] Tj  T do
7 x1

k  

argminx2Bx̄(r)

n
⌘k�
2 kx� x̄k2 + 1

2kx� x0
kk

2
o

8 for t 2 [Tk � 1] do
9 i 

P
j2[k�1] Tj + t

10 gt  
�⇢(x

t
k�x̄�⇠i)
�⇢(⇠i)

g(x̄+ ⇠i)

11 xt+1
k  argminx2Bx̄(r)h⌘kgt, xi+

�⌘k

2 kx�
x̄k2 + 1

2kx� xt
kk

2

12 end
13 x0

k+1  
1
Tk

P
t2[Tk]

xt
k, Tk+1  2Tk, ⌘k+1  

⌘k

2 ,
k  k + 1

14 end
15 return x0

k

Proposition 3 (Proposition 3, [ACJ+21]). Let f, g satisfy the

assumptions of Problem 1. When ⇢ = r, Algorithm 1 is a

(�,�)-ball optimization oracle for bf⇢ which makes O(
L2

�� )

total queries to g with constant query depth, and an additional

computational cost of O(
L2

�� ) depth and work.

b) AC-SA.: We can also implement AC-SA [GL12], a
variant of accelerated gradient descent under stochastic gra-
dient queries, in parallel using stochastic ReSQue estimators.
We provide the pseudocode of our parallel implementation of
AC-SA in Algorithm 2 and state its guarantees in Lemma 4.

Proposition 4 (Special case of Theorem 1, [GL12]). Let f, g
satisfy the assumptions of Problem 1. When ⇢ = r, Algorithm 2

is a (�,�)-ball optimization oracle for bf⇢ which makes

O

 s

1 +
L

⇢�
log

✓
�r2

�

◆
+

L2

��

!
total queries

with constant query depth, and an additional computational

cost of

O

 s

1 +
L

⇢�
log

✓
�r2

�

◆!
depth

and O

 s

1 +
L

⇢�
log

✓
�r2

�

◆
+

L2

��

!
work.

Because the statement of Proposition 4 follows from specific
parameter choices in the main result in [GL12], we defer
a more thorough discussion of how to obtain this result to
Appendix 0f.



Algorithm 2: AC-SA(f, x̄, r, ⇢,�,�)
1 Input: f : Rd

! R, g : Rd
! R satisfying the

assumptions of Problem 1, x̄ 2 Rd, r, ⇢,�,� > 0

2 K  dlog2(
�r2

� )e, T  d4
q

L
⇢� + 1e,

Nk  

l
48 · 2

k
·

L2

�2r2T

m
for k 2 [K]

3 Sample ⇠i ⇠ N (0, ⇢2Id), i 2 [N ] independently, for
N = T · (

P
k2[K] Nk)

4 Query g(x̄+ ⇠i) for all i 2 [N ] (in parallel)
5 xag

0  x̄, x0  x̄
6 for k 2 [K] do
7 for t 2 [T ] do
8 ↵t  

2
t+1 , �t  

4(L
⇢ +�)

t(t+1)

9 xmd
t  

(1�↵t)(�+�t)
�t+(1�↵2

t )�
xag
t�1 +

↵t(1�↵t)(�+�t)
�t+(1�↵2

t )�
xt�1

10 NT,[k�1]  T ·
P

k02[k�1] Nk0

11 brf(xmd
t ) 

1
Nk

P
n2[Nk]

�⇢(x
md
t �x̄�⇠NT,[k�1]+n)

�⇢(⇠NT,[k�1]+n)
g(x̄+

⇠NT,[k�1]+n)

12 xt  argminx2Bx̄(r) t(x), where
 t(x) := h↵t

brf(xmd
t )+�(xmd

t � x̄), x�xti+
�t+�(1�↵t)

2 kx� xt�1k
2
+

�↵t
2 kx� xmd

t k
2

13 xag
t  ↵txt + (1� ↵t)x

ag
t�1

14 end
15 xag

0  xag
T , x0  xag

T
16 end
17 Return: xag

T

c) Main results.: We now use our parallel ball optimiza-
tion oracles to prove Theorems 1 and 2.

Proofs of Theorems 1 and 2. We use Proposition 2 with r =

⇢ =
✏optp
dL

on F  bf⇢, which approximates f to additive ✏opt,
and x?

:= argminx2B(R) f(x). Rescaling ✏opt by a constant
from the guarantee of Proposition 2 gives the error claim. For
the oracle query depths, note that each ball optimization oracle
(whether implemented using Algorithm 1 or Algorithm 2)
has constant query depth, and at most O(log

2
(d)) ball

optimization oracles are queried per iteration on average. Note
that (see Proposition 1)

 =
LR

✏opt
, K =

✓
R

r

◆ 2
3

= d
1
3

2
3 ,

�? =
✏optK2

R2
log

2  =
✏optd

2
3

4
3

R2
log

2 .

For the total oracle queries, computational depth, and
work, when implementing each ball optimization oracle with
EpochSGD, we have that for jmax := dlog2 K + Cbae, these

are all

K log (d)

·O

0

@
X

j2[jmax]

1

2j

✓
L2

· 2
j
log

2
(d)

�2
?r

2

◆
+

✓
L2

�2
?r

2

◆
log

2
(d)

1

A

= O

✓
K log

4
(d) ·

L2

�2
?r

2

◆
= O

�
2

log
4
(d)

�

due to Proposition 3. The additional terms in the theorem
statement are due to the number of ball oracles needed. For the
computational depth when implementing each ball optimiza-
tion oracle with AC-SA we have that (due to Proposition 4),
it is bounded by

O

 
K log

3
(d) ·

r
L

r�?
log(d)

!

= O

✓
K log

4
(d) ·

p


K
1
4

◆
= O

⇣
d

1
4 log4(d)

⌘
.

Finally, for the total oracle queries and work bounds, the bound
due to the L2

�� term is as was computed for Theorem 1, and
the bound due to the other term is the same as the above
display.

IV. PRIVATE STOCHASTIC CONVEX OPTIMIZATION

We now develop our main result on an improved gradi-
ent complexity for private SCO. First, in Section IV-A, we
introduce several variants of differential privacy including
a relaxation of Rényi differential privacy [Mir17], which
tolerates a small amount of total variation error. Next, in Sec-
tions IV-B, IV-C, and IV-D, we build several private stochas-
tic optimization subroutines which will be used in the ball
acceleration framework of Proposition 1. Specifically, these
subroutines will be called as the oracles in Definitions 3, 4,
and 5 with the parameters required by Proposition 1 in the
proof of our main result (see (32), (33), and (34)). Finally, in
Sections IV-E and IV-F, we give our main results on private
ERM and SCO respectively, by leveraging the subroutines we
develop. Finally, in Sections IV-E and IV-F, we give our main
results on private ERM and SCO respectively, by leveraging
the subroutines we develop.

A. Preliminaries

In this section, we study the following specialization of
Problem 1 naturally compatible with preserving privacy with
respect to samples, through the formalism of DP (to be defined
shortly).

Problem 2. Let P be a distribution over S , and suppose there

is a family of functions indexed by s 2 S , such that f(·; s) :
Rd
! R is convex for all s 2 S . Let D := {si}i2[n] consist

of n i.i.d. draws from P , and define the empirical risk and

population risk by

f erm
(x) :=

1

n

X

i2[n]

f(x; si) and f pop
(x) := Es⇠Pf(x; s).



We denote f i
:= f(·; si) for all i 2 [n], and assume that for all

s 2 S , f(·; s) is L-Lipschitz. We are given D, and can query

subgradients of the “sampled functions” f i
. Our goal is to

produce x 2 Rd
such that Ef pop

(x)  minx?2B(R) f
pop

(x?
)+

✏opt. We again define  =
LR
✏opt

as in (9).

In the “one-pass” setting where we only query each @f i a
single time, we can treat each @f i as a bounded stochastic
gradient of the underlying population risk f pop. We note the
related problem of empirical risk minimization, i.e., optimizing
f erm (in the setting of Problem 2), can also be viewed as a
case of Problem 1 where we construct g by querying @f i

for i ⇠unif. [n]. We design (✏dp, �)-DP algorithms for solving
Problem 2 which obtain small optimization error for f erm

and f pop. To disambiguate, we will always use ✏opt to denote
an optimization error parameter, and ✏dp to denote a privacy
parameter. Our private SCO algorithm will require querying
@f i multiple times for some i 2 [n], and hence incur bias for
the population risk gradient. Throughout the rest of the section,
following the notation of Problem 2, we will fix a dataset
D 2 S

n and define the empirical risk f erm and population risk
f pop accordingly. We now move on to our privacy definitions.

We say that two datasets D = {si}i2[n] 2 S
n and D

0
=

{s0i}i2[n] 2 S
n are neighboring if |{i | si 6= s0i}| = 1. We

say a mechanism (i.e., a randomized algorithm) M satisfies
(✏dp, �)-differential privacy (DP) if, for its output space ⌦ and
all neighboring D, D0, we have for all S ✓ ⌦,

Pr[M(D) 2 S]  exp(✏dp) Pr[M(D
0
) 2 S] + �. (10)

We extensively use the notion of Rényi differential privacy
(RDP) due to its compatibility with the subsampling arguments
we will use, as well as an approximate relaxation of its
definition which we introduce. While it is likely that our
results can be recovered (possibly up to logarithmic terms)
by accounting for privacy losses via approximate differential
privacy, we present our privacy accounting via RDP to simplify
calculations.

We say that a mechanism M satisfies (↵, ✏)-Rényi differ-
ential privacy if for all neighboring D,D0

2 S
n, the ↵-Rényi

divergence (4) satisfies

D↵(M(D)kM(D
0
))  ✏. (11)

RDP has several useful properties which we now summarize.

Proposition 5 (Propositions 1, 3, and 7, [Mir17]). RDP has

the following properties.

1) (Composition): Let M1 : S
n
! ⌦ satisfy (↵, ✏1)-RDP

and M2 : S
n
⇥ ⌦ ! ⌦

0
satisfy (↵, ✏2)-RDP for any

input in ⌦. Then the composition of M2 and M1,

defined as M2(D,M1(D)) satisfies (↵, ✏1 + ✏2)-RDP.

2) (Gaussian mechanism): For µ, µ0
2 Rd

,

D↵(N (µ,�2Id)kN (µ0,�2Id)) 
↵

2�2 kµ� µ0
k
2
.

3) (Standard DP): If M satisfies (↵, ✏)-RDP, then for all

� 2 (0, 1), M satisfies (✏+ 1
↵�1 log

1
� , �)-DP.

We also use the following definition of approximate Rényi
divergence:

D↵,�(µk⌫) := min
DTV(µ0,µ)�,DTV(⌫0,⌫)�

D↵(µ
0
k⌫0). (12)

We relax the definition (11) and say that M satisfies
(↵, ✏, �)-RDP if for all neighboring D, D

0
2 S

n, recalling
definition (12),

D↵,�(M(D)kM(D
0
))  ✏.

The following is then immediate from Proposition 5, and
our definition of approximate RDP, by coupling the output
distributions with the distributions realizing the minimum (12).

Corollary 1. If M satisfies (↵, ✏, �)-RDP, then for all �0 2
(0, 1), M satisfies (✏dp, �0 + (1 + exp(✏dp))�)-DP for ✏dp :=

✏+ 1
↵�1 log

1
�0 .

Proof. Let µ, ⌫ be within total variation � of M(D) and
M(D

0
), such that D↵(µk⌫)  ✏ and hence for any event

S,

Pr
!⇠µ

[! 2 S]  exp(✏dp) Pr
!⇠⌫

[! 2 S] + �0.

Combining the above with

Pr
!⇠M(D)

[! 2 S]� �  Pr
!⇠µ

[! 2 S],

Pr
!⇠⌫

[! 2 S]  Pr
!⇠M(D0)

[! 2 S] + �,

we have

Pr
!⇠M(D)

[! 2 S]  exp(✏dp) Pr
!⇠⌫

[! 2 S] + �0 + �

 exp(✏dp) Pr
!⇠M(D0)

[! 2 S]

+ �0 + (1 + exp(✏dp))�.

Finally, our approximate RDP notion enjoys a composition
property similar to standard RDP.

Lemma 3. Let M1 : S
n
! ⌦ satisfy (↵, ✏1, �1)-RDP and

M2 : S
n
⇥ ⌦ ! ⌦

0
satisfy (↵, ✏2, �2)-RDP for any input

in ⌦. Then the composition of M2 and M1, defined as

M2(D,M1(D)) satisfies (↵, ✏1 + ✏2, �1 + �2)-RDP.

Proof. Let D, D
0 be neighboring datasets, and let µ, µ0 be

distributions within total variation �1 of M1(D), M1(D
0
)

realizing the bound D↵(µkµ0
)  ✏1. For any ! 2 ⌦, similarly

let ⌫! , ⌫0! be the distributions within total variation �2 of
M2(D,!) and M2(D

0,!) realizing the bound D↵(⌫!k⌫0!) 
✏2. Finally, let P1 be the distribution of ! 2 ⌦ according to
M1(D), and Q1 to be the distribution of M1(D

0
); similarly,

let P2,! , Q2,! be the distributions of !0
2 ⌦

0 according to



Algorithm 3: Subsampled ReSQued ERM solver, con-
vex case

1 Input: x̄ 2 Rd, ball radius, convolution radius, and
privacy parameter r, ⇢,� > 0, dataset D 2 S

n,
iteration count T 2 N

2 bT  2
blog2 Tc, k  log2

bT , ⌘  r
L min(

1p
T
, �p

d
),

x0  x̄
3 for i 2 [k] do
4 Ti  2

�i bT , ⌘i  4
�i⌘, �i  

L⌘i

�

5 y0  xi�1

6 for j 2 [Ti] do
7 zi,j ⇠unif. [n]

8 yj  ⇧Bx̄(r)(yj�1 � ⌘i erx̄
bfzi,j
⇢ (yj�1)) ;

. PSGD step using ReSQue (See Definition 2) for a
subsampled function. Lemma 5 denotes the random
Gaussian sample by ⇠i,j .

9 end
10 ȳi  

1
Ti

P
j2[Ti]

yj
11 xi  ȳi + ⇣i, for ⇣i ⇠ N (0,�2

i Id)
12 end
13 return xk

M2(D,!) and M2(D
0,!). We first note that by a union

bound,

DTV

✓Z
⌫!(!

0
)µ(!)d!d!0,

Z
P1(!)P2,!(!

0
)d!d!0

◆

 �1 + �2,

DTV

✓Z
⌫0!(!

0
)µ0

(!)d!d!0,

Z
Q1(!)Q2,!(!

0
)d!d!0

◆

 �1 + �2.

Finally, by Proposition 1 of [Mir17], we have

D↵

 Z
⌫!(!

0
)µ(!)d!d!0

�����

Z
⌫0!(!

0
)µ0

(!)d!d!0

!

 ✏1 + ✏2.

Combining the above two displays yields the claim.

B. Subsampled smoothed ERM solver: the convex case

We give an ERM algorithm that takes as input a dataset
D 2 S

n, parameters T 2 N and r, ⇢,� > 0, and a center point
x̄ 2 Rd. Our algorithm is based on a localization approach
introduced by [FKT20] which repeatedly decreases a domain
size to bound the error due to adding noise for privacy. In
particular we will obtain an error bound on df erm

⇢ with respect
to the set Bx̄(r), using at most T calls to the ReSQue estimator
in Definition 2 with a deterministic subgradient oracle. Here
we recall that f erm is defined as in Problem 2, and df erm

⇢ is
correspondingly defined as in Definition 1. Importantly, our
ERM algorithm developed in this section attains RDP bounds
improving with the subsampling parameter T

n when T ⌧ n,
due to only querying T random samples in our dataset.

We summarize our optimization and privacy guarantees on
Algorithm 3 in the following. The proof follows by combining
Lemma 4 (the utility bound) and Lemma 7 (the privacy
bound).

Proposition 6. Let x?
x̄ 2 argminx2Bx̄(r)

df erm
⇢ (x). Algorithm 3

uses at most T gradients and produces x 2 Bx̄(r) such that,

for a universal constant Ccvx,

E
h
df erm
⇢ (x)

i
�df erm

⇢ (x?
x̄)  CcvxLr

 p
d

�T
+

1
p
T

!
.

Moreover, there is a universal constant Cpriv � 1, such

that if
T
n 

1
Cpriv

, �2
log

2
(
1
� ) 

1
Cpriv

, � 2 (0, 1
6 ), and

⇢
r � Cpriv log

2
(
log T
� ), Algorithm 3 satisfies (↵,↵⌧, �)-RDP

for

⌧ := Cpriv

✓
� log

✓
1

�

◆
·
T

n

◆2

and ↵ 2

 
1,

1

Cpriv�2 log
2
(
1
� )

!
.

a) Utility analysis.: We begin by proving a utility guar-
antee for Algorithm 3, following [FKT20].

Lemma 4. Let x?
x̄ := argminx2Bx̄(r)

df erm
⇢ (x). We have, for a

universal constant Ccvx,

E
h
df erm
⇢ (xk)

i
�df erm

⇢ (x?
x̄)  CcvxLr

 p
d

�T
+

1
p
T

!
.

Proof. Denote F := df erm
⇢ , ȳ0 := x?

x̄, and ⇣0 := x̄� x?
x̄, where

by assumption k⇣0k  r. We begin by observing that in each
run of Line 8, by combining the first property in Lemma 1 with
the definition of f erm, we have that E

⇥erx̄
bfzi,j
⇢ (yj�1) | yj�1

⇤
2

@F (yj�1). Moreover, by the second property in Lemma 1 and
the fact that fzi,j is L-Lipschitz,

E
���erx̄

bfzi,j
⇢ (yj�1)

���
2
 3L2.

We thus have

E [F (xk)]� F (x?
x̄) =

X

i2[k]

E[F (ȳi)� F (ȳi�1)]

+ E [F (xk)� F (ȳk)]



X

i2[k]

0

@
E
h
kxi�1 � ȳi�1k

2
i

2⌘iTi
+

3⌘iL2

2

1

A

+ LE [kxk � ȳkk]


8r2

⌘T
+ 4

X

i2[k�1]

�2
i d

⌘iTi

+

X

i2[k]

3⌘iL2

2
+ L�k

p

d.

(13)
In the third line, we used standard regret guarantees on pro-
jected stochastic gradient descent, e.g. Lemma 7 of [HK14],
where we used that all ȳi 2 Bx̄(r); in the fifth line, we used

E[kxk � ȳkk] 

r
E
h
kxk � ȳkk

2
i
=

r
E
h
k⇣kk

2
i
= �k

p

d



by Jensen’s inequality. Continuing, we have by our choice of
parameters that �2

i
⌘iTi
 2

�i L2⌘

2�2 bT
, hence

E [F (xk)]� F (x?
x̄) 

8r2

⌘T
+

4L2⌘d

�2 bT
+

3⌘L2

2

+
L2⌘
p
d

�
·
1

bT 2



 
8Lr
p
T

+
8Lr
p
d

�T

!
+

8Lr
p
d

�T

+
3Lr

2
p
T

+
Lr
p
T
.

Here we used that 2 bT � T and bT 2
�
p
T , for all T 2 N.

b) Privacy analysis.: We now show that our algorithm
satisfies a strong (approximate) RDP guarantee. Let D

0
=

{s0i}i2[n] 2 S
n be such that D = {si}i2[n] and D

0 are
neighboring, and without loss of generality assume s01 6= s1.
Define the multiset

I := {zi,j | i 2 [k], j 2 [Ti]} (14)

to contain all sampled indices in [n] throughout Algorithm 3.
We begin by giving an (approximate) RDP guarantee condi-
tioned on the number of times “1” appears in I. The proof
of Lemma 5 is primarily based on providing a potential-based
proof of a “drift bound,” i.e., how far away iterates produced
by two neighboring datasets drift apart (coupling all other
randomness used). To carry out this potential proof, we rely
on the local stability properties afforded by Lemma 2.

Lemma 5. Define I as in (14) in one call to Algorithm 3.

Let I be deterministic (i.e., this statement is conditioned on

the realization of I). Let b be the number of times the index

1 appears in I. Let µ be the distribution of the output of

Algorithm 3 run on D, and µ0
be the distribution when run on

D
0
, such that D and D

0
are neighboring and differ in the first

entry, and the only randomness is in the Gaussian samples

used to define ReSQue estimators and on Line 11. Suppose
⇢
r � 1728 log

2
(
log T
� ). Then we have for any ↵ > 1,

D↵,�(µkµ
0
)  1500↵�2b2.

Proof. Throughout this proof we treat I as fixed with b
occurrences of the index 1. Let bi be the number of times
1 appears in Ii := {zi,j | j 2 [Ti]}, such that

P
i2[k] bi = b.

We first analyze the privacy guarantee of one loop, and then
analyze the privacy of the whole algorithm.

We begin by fixing some i 2 [k], and analyzing the RDP of
the ith outer loop in Algorithm 3, conditioned on the starting
point y0. Consider a particular realization of the Ti Gaussian
samples used in implementing Line 8, ⌅i := {⇠i,j}j2[Ti],
where we let ⇠i,j ⇠ N (0, ⇢2Id) denote the Gaussian sample
used to define the update to yj�1. Conditioned on the values
of Ii, ⌅i, the ith outer loop in Algorithm 3 (before adding ⇣i
in Line 11) is a deterministic map. For a given realization of
Ii and ⌅i, we abuse notation and denote {yj}j2[Ti] to be the
iterates of the ith outer loop in Algorithm 3 using the dataset

D starting at y0, and {y0j}j2[Ti] similarly using D
0. Finally,

define

�j :=
��yj � y0j

��2 , p :=

⇠
5 log

✓
log T

�

◆⇡
.

In the following parts of the proof, we will bound for this p the
quantity E�p

Ti
, to show that with high probability it remains

small at the end of the loop, regardless of the location of the
1 indices.

Potential growth: iterates with zi,j 6= 1. We first bound the
potential growth in any iteration j 2 [Ti] where zi,j 6= 1. Fix
y0, y00 and {⇠i,t}t2[j�1], so that �j�1 is deterministic. We have
(taking expectations over only ⇠i,j),

E⇠i,j�
p
j  E (�j�1 +Aj +Bj)

p , (15)

where

Aj := �2⌘iZj

⌦
@fzi,j (x̄+ ⇠i,j), yj�1 � y0j�1

↵
,

Bj := ⌘2iZ
2
j k@f

zi,j (x̄+ ⇠i,j)k
2 , and

Zj :=
�⇢(yj�1 � x̄� ⇠i,j)� �⇢(y0j�1 � x̄� ⇠i,j)

�⇢(⇠i,j)
.

The inequality in (15) follows from expanding the definition
of the update to �j before projection, and then using the fact
that Euclidean projections onto a convex set only decrease
distances. By the second part of Lemma 2, for all q 2 [2, p],
if
p
�j�1 

⇢
p (which is always satisfied as

p
�j�1  r),

E⇠i,jZ
q
j 

 
24q
p
�j�1

⇢

!q

.

By Lipschitzness of fzi,j and Cauchy-Schwarz (on Aj), we
thus have

E⇠i,j |Aj |
q


✓
48⌘iLq�j�1

⇢

◆q

for all q 2 [2, p],

E⇠i,jB
q
j 

✓
48⌘iLq

⇢

◆2q

�
q
j�1 for all q 2 [1, p].

(16)

Next, we perform a Taylor expansion of (15), which yields

E⇠i,j�
p
j  �

p
j�1 + p�p�1

j�1E⇠i,j [Aj +Bj ]

+p(p� 1)

·

Z 1

0
(1� t)E⇠i,j

h
(�j�1 + t(Aj +Bj))

p�2
(Aj +Bj)

2
i
dt.

(17)
By monotonicity of convex gradients and the first part of
Lemma 1, we have

E⇠i,j [Aj ]  0. (18)

By applying (16), we have

p�p�1
j�1E⇠i,jBj  p

✓
48⌘iL

⇢

◆2

�
p
j�1. (19)



Next we bound the second-order terms. For any t 2 [0, 1] we
have denoting Cj := Aj +Bj ,

E⇠i,j

h
(�j�1 + tCj)

p�2 C2
j

i

=

p�2X

q=0

✓
p� 2

q

◆
�

p�2�q
j�1 E⇠i,j

h
t2+qC2+q

j

i

 4

p�2X

q=0

2
q

✓
p� 2

q

◆
�

p�2�q
j�1 E⇠i,j

⇥
|Aj |

2+q
⇤

+4

p�2X

q=0

2
q

✓
p� 2

q

◆
�

p�2�q
j�1 E⇠i,j

h
B2+q

j

i

 4�
p
j�1

✓
48⌘iLp

⇢

◆2 p�2X

q=0

2
q

✓
p� 2

q

◆✓
48⌘iLq

⇢

◆q

+4�
p
j�1

✓
48⌘iLp

⇢

◆2 p�2X

q=0

2
q

✓
p� 2

q

◆✓
48⌘iL(2 + q)

⇢

◆2q+2

 8�
p
j�1

✓
48⌘iLp

⇢

◆2✓
1 +

96⌘iLp

⇢

◆p�2

 16�
p
j�1

✓
48⌘iLp

⇢

◆2

.

(20)
The first inequality used (a + b)p  2

p
(ap + bp) for any

nonnegative a, b and 0  t  1, the second inequality used
(16), and the third and fourth inequalities used

48⌘iL(2 + q)

⇢


1

2p

for our choices of ⌘iL  r
4 and ⇢. Finally, plugging (18), (19),

and (20) into (17),

E⇠i,j�
p
j  �

p
j�1

 
1 + 16p2

✓
48⌘iLp

⇢

◆2
!

 �
p
j�1

 
1 + 16p

✓
48⌘iLp

⇢

◆2
!p

.

Finally, using (⌘iL)2 
r2

16T 
r2

16Ti
and our assumed bound

on r
⇢ , which implies 16p

⇢2 (48⌘iLp)2 
1
Ti

, taking expectations
over {⇠t}t2[j�1] yields

E�p
j  E�p

j�1

✓
1 +

1

Ti

◆p

when zi,j 6= 1. (21)

Potential growth: iterates with zi,j = 1. Next, we handle
the case where zi,j = 1. We have that conditional on fixed
values of {⇠i,t}t2[j�1], y0 and y00,

E⇠i,j�
p
j  E⇠i,j (�j�1 +Dj + Ej)

p

 E⇠i,j

✓✓
1 +

1

bi

◆
�j�1 + 2biEj

◆p

,
(22)

where overloading f  f(·; s1), h f(·; s01),

Dj := �2⌘i
D
erx̄
bf⇢(yj�1)�

erx̄
bh⇢(y

0
j�1), yj�1 � y0j�1

E
,

Ej := ⌘2i

���erx̄
bf⇢(yj�1)�

erx̄
bh⇢(y

0
j�1)

���
2
,

and we use Dj 
1
bi
�j�1 + biEj by Cauchy-Schwarz and

Young’s inequality. Next, convexity of k·k2q implies that

Eq
j  ⌘2qi 2

2q�1

✓���erx̄
bf⇢(yj�1)

���
2q

+

���erx̄
bh⇢(y

0
j�1)

���
2q
◆
.

Next, we note that since f is Lipschitz, the first part of
Lemma 2 implies for all q  p,

E
���erx̄

bf⇢(yj�1)

���
2q
 L2qE

"✓
�⇢(yj�1 � x̄� ⇠)

�⇢(⇠)

◆2q
#

 2(L)2q,

and a similar calculation holds for h. Here we used our
assumed bound on r

⇢ to check the requirement in Lemma 2 is
satisfied. By linearity of expectation, we thus have

E⇠i,jE
q
j  (9⌘iL)

2q . (23)

Finally, expanding (22) and plugging in the moment bound
(23),

E⇠i,j�
p
j 

pX

q=0

✓
p

q

◆✓
1 +

1

bi

◆q

�
q
j�1(2bi)

p�qE⇠i,j

⇥
Ep�q

j

⇤



pX

q=0

✓
p

q

◆✓
1 +

1

bi

◆q

�
q
j�1(2bi)

p�q
(9⌘iL)

2(p�q)

=

✓✓
1 +

1

bi

◆
�j�1 + 2bi(9⌘iL)

2

◆p

.

Taking expectations over {⇠i,t}t2[j�1], and using Fact 4 with
Z  (1 +

1
bi
)�j�1 and C  2bi(9⌘iL)2, when zi,j = 1,

E�p
j 

✓✓
1 +

1

bi

◆
E
⇥
�

p
j�1

⇤ 1
p
+ 2bi(9⌘iL)

2

◆p

. (24)

One loop privacy. We begin by obtaining a high-probability
bound on �Ti . Define

Wj := E[�p
j ]

1
p .

By using (21) and (24), we observe

Wj 

8
<

:

⇣
1 +

1
Ti

⌘
Wj�1 zi,j 6= 1

⇣
1 +

1
bi

⌘
Wj�1 + 2bi(9⌘iL)2 zi,j = 1

.

Hence, regardless of the bi locations of the 1 indices in Ii,
we have

WTi 

✓
1 +

1

Ti

◆Ti
✓
1 +

1

bi

◆bi �
2b2i (9⌘iL)

2
�
 1200b2i (⌘iL)

2.

Thus, by Markov’s inequality, with probability at least 1� �
log T

over the randomness of ⌅i = {⇠i,j}j2[Ti], we have using our
choice of p,

��yTi � y0Ti

��2  1200b2i (⌘iL)
2
·

✓
log T

�

◆ 1
p

 1500b2i (⌘iL)
2.

(25)
In the last inequality, we used our choice of p. Call Ei the
event that the sampled ⌅i admits a deterministic map which
yields the bound in (25). By the second part of Proposition 5,



the conditional distribution of the output of the ith outer loop
under Ei satisfies (↵, 1500�2b2i )-RDP, where we use the value
of �i in Line 4 of Algorithm 3. We conclude via Fact 1 with
E  Ei that the ith outer loop of Algorithm 3 satisfies

✓
↵, 1500↵�2b2i ,

�

log T

◆
-RDP.

All loops privacy. By applying composition of RDP (the third
part of Proposition 5), for a given realization of I = [i2[k]Ii

with b occurrences of 1, applying composition over the log T
outer iterations (Lemma 3), Algorithm 3 satisfies

�
↵, 1500↵�2b2, �

�
-RDP.

Here, we used
P

i2[k] b
2
i  b2. This is the desired conclusion.

We next apply amplification by subsampling to boost the
guarantee of Lemma 5. To do so, we use the following key
Proposition 7, which was proven in [BDRS18]. The use case
in [BDRS18] involved subsampling with replacement and
was used in a framework they introduced termed truncated
CDP, but we will not need the framework except through the
following powerful fact.

Proposition 7 (Theorem 12, [BDRS18]). Let ⌧  1
3 , s 2

(0, 1
40 ). Let P , Q, R be three distributions over the same

probability space, such that for each pair P1, P2 2 {P,Q,R},

we have D↵(P1kP2)  ↵⌧ for all ↵ > 1. Then for all

↵ 2 (1, 3
⌧ ),

D↵(sP + (1� s)RksQ+ (1� s)R)  13s2↵⌧.

We also require a straightforward technical fact about bino-
mial distributions.

Lemma 6. Let m,n 2 N satisfy
m
n 

1
60 . Consider the

following partition of the elements I 2 [n]m with at most

b copies of 1:

S0 := {I 2 [n]m | Ii 6= 1 for all i 2 [m]},

S1 := {I 2 [n]m | Ii = 1 for k many i 2 [m]}, k 2 [1, b].

Let ⇡0 and ⇡1 be the uniform distributions on S0 and S1

respectively. Then there exists a coupling �(⇡0,⇡1) such that

for all (I, I 0
) in the support of �,

|{i | Ii 6= I
0
i}|  b.

Proof. Define a probability distribution p on elements of [b]
such that

pa :=

�m
a

�
(n� 1)

m�a

P
a2[b]

�m
a

�
(n� 1)m�a

for all a 2 [b].

Clearly,
P

a2[b] pa = 1. Our coupling � := �(⇡0,⇡1) is
defined as follows.

1) Draw I ⇠ ⇡0 and a ⇠ p independently.
2) Let I 0 be I with a uniformly random subset of a indices

replaced with 1. Return (I, I 0
).

This coupling satisfies the requirement, so it suffices to verify
it has the correct marginals. This is immediate for S0 by

definition. For I
0
2 S1, suppose I

0 has a occurrences of the
index 1. The total probability I

0 is drawn from � is then indeed

(n� 1)
a

(n� 1)m
·
pa�m
a

� =
1P

a2[b]

�m
a

�
(n� 1)m�a

=
1

|S1|
.

The first equality follows as the probability we draw I ⇠ ⇡0

which agrees with I
0 on all the non-1 locations is (n�1)a�m,

and the probability I
0 is drawn given that we selected I is

pa ·
�m
a

��1.

Finally, we are ready to state our main privacy guarantee
for Algorithm 3.

Lemma 7. There is a universal constant Cpriv 2 [1,1), such

that if
T
n 

1
Cpriv

, �2
log

2
(
1
� ) 

1
Cpriv

, � 2 (0, 1
6 ), and

⇢
r �

Cpriv log
2
(
log T
� ), Algorithm 3 satisfies (↵,↵⌧, �)-RDP for

⌧ := Cpriv

✓
� log

✓
1

�

◆
·
T

n

◆2

, ↵ 2

 
1,

1

Cpriv�2 log
2
(
1
� )

!
.

Proof. Let D, D0 be neighboring, and without loss of gener-
ality, suppose they differ in the first entry. Let Cpriv � 60, and
let I be defined as in (14). Let E be the event that I contains
at most b copies of the index 1, where

b := 2 log

✓
2

�

◆
.

By a Chernoff bound, E occurs with probability at least 1� �
2

over the randomness of I. We define P to be the distribution
of the output of Algorithm 3 when run on D, conditioned
on E and I containing at least one copy of the index 1 (call
this total conditioning event E1, i.e., there are between 1 and
b copies of the index 1). Similarly, we define Q to be the
distribution when run on D

0 conditioned on E1, and R to be
the distribution conditioned on E \ E

c
1 (when run on either D

or D0). We claim that for all P1, P2 2 {P,Q,R}, we have

D↵, �2
(P1kP2)  1500↵�2b2, for all ↵ > 1. (26)

To see (26) for P1 = P and P2 = Q (or vice versa),
we can view P , Q as mixtures of outcomes conditioned on
the realization I. Then, applying quasiconvexity of Rènyi
divergence (over this mixture), and applying Lemma 5 (with
�  �

2 ), we have the desired claim. To see (26) for the
remaining cases, we first couple the conditional distributions
under E1 and E \ E

c
1 by their index sets, according to the

coupling in Lemma 6. Then applying quasiconvexity of Rényi
divergence (over this coupling) again yields the claim, where
we set m bT � 1  T . Finally, let

s := Pr[E1 | E ] = 1�

�
1�

1
n

�bT�1

Pr[E ]

 1�
1�

1.1T
n

1�
�
2


1.2T

n
.

Note that conditional on E and the failure event in Lemma 5
not occurring, the distributions of Algorithm 3 using D and
D

0 respectively are sP +(1� s)R and sQ+(1� s)R. Hence,



union bounding with E
c (see Fact 1), the claim follows from

Proposition 7 with ⌧  6000�2
log

2
(
2
� ).

c) Regularized extension.: We give a slight extension to
Algorithm 3 which handles regularization, and enjoys similar
utility and privacy guarantees as stated in Proposition 6. Let

x?
x̄,� := argminx2Bx̄(r)

⇢
df erm
⇢ (x) +

�

2
kx� x̄k2

�
. (27)

Our extension Algorithm 4 is identical to Algorithm 3, except
it requires a regularization parameter �, allows for an arbitrary
starting point with an expected distance bound (adjusting the
step size accordingly), and takes composite projected steps
incorporating the regularization.

Algorithm 4: Subsampled ReSQued ERM solver, reg-
ularized case, convex rate

1 Input: x̄ 2 Rd, ball radius, convolution radius, privacy
parameter, and regularization parameter r, ⇢,�,� > 0,
dataset D 2 S

n, iteration count T 2 N, distance
bound r0 2 [0, 2r], initial point x0 2 Bx̄(r) satisfying
Ekx0 � x?

x̄,�k
2
 (r0)2

2 bT  2
blog2 Tc, k  log2

bT , ⌘  r0

L min(
1p
T
, �p

d
)

3 for i 2 [k] do
4 Ti  2

�i bT , ⌘i  4
�i⌘, �i  

L⌘i

�

5 y0  xi�1

6 for j 2 [Ti] do
7 zi,j ⇠unif. [n]

8 yj  argminy2Bx̄(r){h⌘i
erx̄
bfzi,j
⇢ (yj�1), yi+

1
2 ky � yj�1k

2
+

⌘i�
2 ky � x̄k2}

9 end
10 ȳi  

1
Ti

P
j2[Ti]

yj
11 xi  ȳi + ⇣i, for ⇣i ⇠ N (0,�2

i Id)
12 end
13 return xk

Corollary 2. Let x?
x̄,� be defined as in (27). Algorithm 4 uses

at most T gradients and produces x 2 Bx̄(r) such that, for a

universal constant Ccvx,

E

df erm
⇢ (x) +

�

2
kx� x̄k2

�
�

✓
df erm
⇢ (x?

x̄,�) +
�

2

��x?
x̄,� � x̄

��2
◆

 CcvxLr
0

 p
d

�T
+

1
p
T

!
.

Moreover, there is a universal constant Cpriv � 1, such

that if
T
n 

1
Cpriv

, �2
log

2
(
1
� ) 

1
Cpriv

, � 2 (0, 1
6 ), and

⇢
r � Cpriv log

2
(
log T
� ), Algorithm 4 satisfies (↵,↵⌧, �)-RDP

for

⌧ := Cpriv

✓
� log

✓
1

�

◆
·
T

n

◆2

, ↵ 2

 
1,

1

Cpriv�2 log
2
(
1
� )

!
.

Proof. The proof is almost identical to Proposition 6, so
we only discuss the differences. Throughout this proof, for
notational convenience, we define

F�
(x) := df erm

⇢ (x) +
�

2
kx� x̄k2 .

Utility. Standard results on composite stochastic mirror
descent (e.g. Lemma 12 of [CJST19]) show the utility bound
in (13) still holds with F� in place of F . In particular each
term E[F�

(ȳi) � F�
(ȳi�1)] as well as E[F�

(xk) � F�
(ȳk)]

enjoys the same bound as its counterpart in (13). The only
other difference is that, defining ⇣0 := x0 � x?

x̄,� in the proof
of Lemma 4, we have E⇣20  (r0)2 in place of the bound r2,
and we appropriately changed ⌘ to scale as r0 instead.

Privacy. The subsampling-based reduction from Lemma 7
to Lemma 5 is identical, so we only discuss how to obtain an
analog of Lemma 5 for Algorithm 4. In each iteration j 2 [Ti],
by completing the square, we can rewrite Line 8 as

yj  argminy2Bx̄(r)

⇢
1

2
ky � vk2

�
,

v =
1

1 + ⌘i�
yj�1 +

⌘i�

1 + ⌘i�
x̄�

⌘i
1 + ⌘i�

erx̄
bfzi,j
⇢ (yj�1).

Now consider our (conditional) bounds on E⇠i,j�j in (15) and
(22). We claim these still hold true; before projection, the same
arguments used in (15) and (22) still hold (in fact improve by
(1 + ⌘i�)2), and projection only decreases distances. Finally,
note that the proof of Lemma 5 only used the choice of step
size ⌘ through ⌘L

p
T  r and used the assumed bound on r

⇢

to bound the drift growth. As we now have ⌘L
p
T  r0  2r,

we adjusted the assumed bound on r
⇢ by a factor of 2. The

remainder of the proof of Lemma 5 is identical.

Without loss of generality, Cpriv is the same constant in
Proposition 6 and Corollary 2, since we can set both to be
the maximum of the two. The same logic applies to the
following Proposition 8 and Lemma 10 (which will also be
parameterized by a Cpriv) so we will not repeat it. Finally, the
following fact about initial error will also be helpful in the
following Section IV-C.

Lemma 8. We have

df erm
⇢ (x̄)�

✓
df erm
⇢ (x?

x̄,�) +
�

2

��x?
x̄,� � x̄

��2
◆


2L2

�
.

Proof. By strong convexity and Lipschitzness of df erm
⇢ , we have

�

2

��x?
x̄,� � x̄

��2 df erm
⇢ (x̄)�

✓
df erm
⇢ (x?

x̄,�) +
�

2

��x?
x̄,� � x̄

��2
◆

df erm
⇢ (x̄)�df erm

⇢ (x?
x̄,�)  L

��x?
x̄,� � x̄

�� .

Rearranging gives kx?
x̄,�� x̄k  2L

� , which can be plugged in
above to yield the conclusion.

We also state a slight extension to Lemma 8 which will be
used in Section IV-E.



Lemma 9. Define x?
x̄,x0,� := argminx2Bx̄(r){

df erm
⇢ (x) +

�
2 kx� x0

k
2
}, where x0

2 Rd
is not necessarily in Bx̄(r).

Let x0 := ⇧Bx̄(r)(x
0
). We have

✓
df erm
⇢ (x0) +

�

2
kx0 � x0

k
2
◆

�

✓
df erm
⇢ (x?

x̄,x0,�) +
�

2

��x?
x̄,x0,� � x0��2

◆


2L2

�
.

Proof. The proof is identical to Lemma 8, where we use
�
2 kx0 � x0

k
2


�
2 kx

?
x̄,x0,� � x0

k
2.

C. Subsampled smoothed ERM solver: the strongly convex

case

We next give an ERM algorithm similar to Algorithm 4,
but enjoys an improved optimization rate. In particular, it
again attains RDP bounds improving with the subsampling
parameter T

n , and we obtain error guarantees against x?
x̄,�

defined in (27) at a rate decaying as 1
T or better.

Algorithm 5: Subsampled ReSQued ERM solver,
strongly convex case

1 Input: x̄ 2 Rd, ball radius, convolution radius, privacy
parameter, and regularization parameter r, ⇢,�,� > 0,
dataset D 2 S

n, iteration count T 2 N
2 k  dlog log T e, x0  x̄
3 for i 2 [k] do
4 �i�1  2

k�i+1
2 �, ri�1  min(2r,

q
2Di�1

� ) (see
(28)), Ti�1  2

i�1�kT
5 xi  output of Algorithm 4 with inputs

(x̄, r, ⇢,�i�1,�,D, Ti�1, ri�1, xi�1)

6 end
7 return xk+1

We now give our analysis of Algorithm 5 below. The proof
follows a standard reduction template from the strongly convex
case to the convex case (see e.g. Lemma 4.7 in [KLL21]).

Proposition 8. Let x?
x̄,� be defined as in (27). Algorithm 5

uses at most T gradients and produces x such that, for a

universal constant Csc,

E

df erm
⇢ (x) +

�

2
kx� x̄k2

�
�df erm

⇢ (x?
x̄,�)�

�

2
kx?

x̄,� � x̄k2


CscL2
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Moreover, there is a universal constant Cpriv � 1, such that

if
T
n 

1
Cpriv

, �2
log

2
(
log log T

� ) 
1

Cpriv
, � 2 (0, 1

6 ), and
⇢
r �

Cpriv log
2
(
log T
� ), Algorithm 5 satisfies (↵,↵⌧, �)-RDP for

⌧ := Cpriv
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Proof. We analyze the utility and privacy separately.

Utility. Denote for simplicity F�
(x) := df erm

⇢ (x)+�
2 kx�x̄k

2,
F�
? := F�

(x?
x̄,�), and �i := E[F�

(xi) � F�
? ]. Moreover,

define for all 0  i  k,

Ei :=
2C2

cvxL
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·
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d

�iTi
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1
p
Ti
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,

Di := 4Ei
2i

s
2L2

�
·

1

4E0
,

(28)

where we define Tk = T and �k = �. By construction, for all
0  i  k � 1, Ei+1 =

1
2Ei, and so

Di+1

4Ei+1
=

r
Di

4Ei
=)

p
DiEi = Di+1. (29)

We claim inductively that for all 0  i  k, �i  Di.
The base case of the induction follows because by Lemma 8,
we have �0 

2L2

� = D0. Next, suppose that the inductive
hypothesis is true up to iteration i. By strong convexity,

E
h��xi � x?

x̄,�

��2
i


2�i

�


2Di

�
,

where we used the inductive hypothesis. Hence, the expected
radius upper bound (defined by ri) is valid for the call to
Algorithm 4. Thus, by Corollary 2,

�i+1 = E
⇥
F�

(xi+1)� F�
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 CcvxLri
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�iTi
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!
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�
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�iTi
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!
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p
DiEi = Di+1.

Here we used (29) in the last equation, which completes
the induction. Hence, iterating (29) for k = dlog2 log2 T e
iterations, where we use E0 �

L2

2�T so that Dk  8Ek, we
have

�k  8Ek 
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Privacy. The privacy guarantee follows by combining the
privacy guarantee in Corollary 2 and composition of approxi-
mate RDP (Lemma 3), where we adjusted the definition of �
by a factor of k. In particular, we use that the privacy guarantee
in each call to Corollary 2 is a geometric sequence (i.e., �2

i T
2
i

is doubling), and at the end it is 1
2�

2T 2.

D. Private stochastic proximal estimator

In this section, following the development of [ACJ+21],
we give an algorithm which calls Algorithm 5 with several
different iteration counts and returns a (random) point bx which
enjoys a substantially reduced bias for x?

x̄,� defined in (27)
compared to the expected number of gradient queries.



Algorithm 6: Bias-reduced ReSQued stochastic prox-
imal estimator

1 Input: x̄ 2 Rd, ball radius, convolution radius, privacy
parameter, and regularization parameter r, ⇢,�,� > 0,
dataset D 2 S

n, iteration count T 2 N with
T  b n

2Cpriv
c

2 Tmax  b
n

Cpriv
c, jmax  blog2

Tmax
T c

3 for k 2 [jmax] do
4 Draw J ⇠ Geom(

1
2 )

5 x0  output of Algorithm 5 with inputs
(x̄, r, ⇢,�,�,D, T )

6 if J  jmax then
7 xJ  output of Algorithm 5 with inputs

(x̄, r, ⇢, 2�
J
2 �,�,D, 2JT )

8 xJ�1  output of Algorithm 5 with inputs
(x̄, r, ⇢, 2�

J�1
2 �,�,D, 2J�1T )

9 bxk  x0 + 2
J
(xJ � xJ�1)

10 end
11 else
12 bxk  x0

13 end
14 end
15 Return: bx 1

jmax

P
k2[jmax]

bxk

Proposition 9. Let x?
x̄,� be defined as in (27). We have, for a

universal constant Cbias:

kEbx� x?
x̄,�k  Cbias
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and, for a universal constant Cvar,

Ekbx� x?
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2


CvarL2
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Proof. We begin by analyzing the output bxk of a single loop
k 2 [jmax]. For J ⇠ Geom(

1
2 ), we have Pr[J = j] = 2

�j if
j 2 [jmax], and Pr[J = j] = 0 otherwise. We denote xj to be
the output of Algorithm 3 with privacy parameter 2

� j
2 � and

gradient bound 2
jT . First,

Ebxk = Ex0 +

X

j2[jmax]

Pr[J = j]2j(Exj � Exj�1) = Exjmax .

Since T ·2jmax �
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2 �

n
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, applying Jensen’s inequality
gives
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q
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

p
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�
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�n
+
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p
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,

where the last inequality follows from Proposition 8 and
strong convexity of the regularized function to convert the
function error bound to a distance bound. This implies the

first conclusion, our bias bound. Furthermore, for our variance
bound, we have

Ekbxk � Ebxkk
2
 Ekbxk � x?

x̄,�k
2

 2Ekbxk � x0k
2
+ 2Ekx0 � x?

x̄,�k
2.

By Proposition 8 and strong convexity, Ekx0 � x?
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
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2.

Note that

Ekxj � xj�1k
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2
+ 2Ekxj�1 � x?
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and hence combining the above bounds yields

E kbxk � Ebxkk
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Now, averaging jmax independent copies shows that

E
��bx� x?
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��2 = kbx� Ebxk2 +
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where we used our earlier bias bound. The conclusion follows
by letting Cvar = C2

bias + 14Csc.

We conclude with a gradient complexity and privacy bound,
depending on the sampled J .

Lemma 10. There is a universal constant Cpriv � 1, such

that if �2
log

2
(
log logn

� ) 
1

Cpriv
, � 2 (0, 1

2 ), and
⇢
r �

Cpriv log
2
(
log T
� ), the following holds. Consider one loop in-

dexed by k 2 [jmax], and let J be the result of the Geom(
1
2 )

draw. If J 2 [jmax], loop k of Algorithm 6 uses at most 2
J+1T

gradients. Furthermore, the loop satisfies (↵,↵⌧, �)-RDP for

⌧ := 2
J
· Cpriv
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If J 62 [jmax], Algorithm 6 uses at most T gradients, and the

loop satisfies (↵,↵⌧, �)-RDP for

⌧ := Cpriv
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Proof. This is immediate by Proposition 8, where we applied
Lemma 3 and set �  �

3 (taking a union bound over the at
most 3 calls to Algorithm 5, adjusting Cpriv as necessary).

E. Private ERM solver

In this section, we give our main result on privately solving
ERM in the setting of Problem 2, which will be used in a
reduction framework in Section IV-F to solve the SCO problem
as well. Our ERM algorithm is an instantiation of Proposi-
tion 1. We first develop a line search oracle (see Definition 3)
based on the solver of Section IV-C (Algorithm 5), which
succeeds with high probability. To do so, we leverage the
following geometric lemma for aggregating independent runs
of our solver.

Lemma 11 (Claim 1, [KLL+22]). There is an algorithm

Aggregate which takes as input (S,�) 2 (Rd
)
k
⇥ R�0,

and returns z 2 Rd
such that kz � yk  �, if for some

unknown point y 2 Rd
satisfying at least 0.51k points x 2 S,

kx� yk  �
3 . The algorithm runs in time O(dk2).

Algorithm 7: High probability ReSQued ERM solver,
strongly convex case

1 Input: x̄ 2 Rd, ball radius, convolution radius, privacy
parameter, regularization parameter, and failure
probability r, ⇢,�,�, ⇣ > 0, dataset D 2 S

n, iteration
count T 2 N

2 k  20 log(
1
⇣ )

3 for i 2 [k] do
4 xi  output of Algorithm 5 with inputs

(x̄, r, ⇢,�,�,D, T )
5 end
6 Return:
x0
 Aggregate({xi}i2[k],

9
p
2CscL
� (

d
�2T 2 +

1
T )

1
2 )

Proposition 10. Let x?
x̄,� be defined as in (27). Algorithm 7

uses at most 18T log(
1
⇣ ) gradients and produces x0

such that

with probability at least 1� ⇣, for a universal constant Cls,

kx0
� x?

x̄,�k 
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d

�T
+

1
p
T

!
.

Moreover, there exists a universal constant Cpriv � 1 such

that
T
n 

1
Cpriv

, � 2 (0, 1
6 ) and

⇢
r � Cpriv log

2
(
1
� log(

T
⇣ )),

Algorithm 7 satisfies (↵,↵⌧, �)-RDP for

⌧ := Cpriv log
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Proof. For each xi, by Proposition 8,
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Further, by strong convexity and Jensen’s inequality we have

E[kxi � x?
x̄,�k] 

p
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Hence, by Markov’s inequality, for each i 2 [k] we have
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Hence by a Chernoff bound, with probability � 1� ⇣, at least
0.51k points x 2 {xi}i2[k] satisfy
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Hence the precondition of Lemma 11 holds, giving the dis-
tance guarantee with high probability. The privacy guarantee
follows from Proposition 8 and the composition of approx-
imate RDP, where we adjusted Cpriv by a constant and the
definition of � by a factor of k.

Now we are ready to prove our main result on private ERM.

Theorem 3 (Private ERM). In the setting of Problem 2, let

✏dp 2 (0, 1) and � 2 (0, 1
6 ). There is an (✏dp, �)-DP algorithm

which takes as input D and outputs bx 2 Rd
such that

E

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f erm
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Moreover, with probability at least 1��, the algorithm queries

at most the following number of gradients:
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Proof. Throughout this proof, set for a sufficiently large
constant C,

✏opt := CLR
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Note that for the given parameter settings, for sufficiently large
C, we have
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Our algorithm proceeds as follows. We apply Proposition 1
with x?

 argminx2B(R) f
erm

(x) and F  df erm
⇢ , and

instantiate the necessary oracles as follows for CbaK log 
iterations.

1) We use Algorithm 7 with r, ⇢,� defined in (30), and

T1 :=

p

C

 

p
d

p
K� log

2 
+
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K log
3  log n

�

!
,
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1

CbaK log 
,

(32)

as a (
r

Cba
,�)-line search oracle Ols.

2) We use Algorithm 5 with r, ⇢,� defined in (30), and

T2 :=

p

C

 

p
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p
K�
p
log 

+
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as a (
�r2

Cba log3  ,�)-ball optimization oracle Obo.
3) We use Algorithm 6 with r, ⇢,� defined in (30), and

T3 :=
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p
d

p
K�

+
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K

!
(34)

as a (
✏opt
CbaR

, ✏opt
p
K

CbaR
,�)-stochastic proximal oracle Osp.

We split the remainder of the proof into four parts. We first
show that the oracle definitions are indeed met. We then bound
the overall optimization error against f erm. Finally, we discuss
the privacy guarantee and the gradient complexity bound.

Oracle correctness. For the line search oracle, by Proposi-
tion 10, it suffices to show
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This is satisfied for T1 in (32), since Proposition 1 guarantees
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for a sufficiently large C, where we used K1.5
=

R
r to

simplify. By a union bound, the above holds with probability
at least 1� ✏opt

LR over all calls to Algorithm 7, since there are
at most CbaK log  iterations. For the remainder of the proof,
let Els be the event that all line search oracles succeed. For the
ball optimization oracle, by Proposition 8, it suffices to show
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This is satisfied for our choice of T2 in (33), again with � �
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. Hence,
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again for large C. Finally, for the proximal gradient oracle, by
Proposition 9, it suffices to show
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The first inequality is clear. The second is satisfied for our
choice of T3 in (34), which implies
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Optimization error. By Proposition 1, the expected opti-
mization error against df erm

⇢ is bounded by ✏opt whenever Els
occurs. Otherwise, the optimization error is never larger than
LR as long as we return a point in B(R), since the function
is L-Lipschitz. Further, we showed Pr[Els] � 1 �

✏opt
LR , so the

total expected error is bounded by 2✏opt. Finally, the additive
error between df erm

⇢ and f erm is bounded by ⇢L
p
d = ✏opt. The

conclusion follows by setting the error bound to 3✏opt.
Privacy. We first claim that each call to Ols, and Obo used

by Proposition 1 satisfies
✓
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,

�
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◆
-RDP.

We first analyze Ols. The preconditions of Proposition 10
are met, where log(

18CbaK log 
� log(

T
⇣ ))  2 log

n
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parameter settings. Moreover, our ↵ is in the acceptable range.
Finally, by Proposition 10 it suffices to note
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where the second inequality follows for sufficiently large C
due to (31). Next, we analyze the privacy of Obo. The precon-
ditions of Proposition 8 are met, where log(

log log T
� )  log

n
�



for our parameter settings, and our ↵ is again acceptable.
Finally, by Proposition 8 it suffices to note
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again for sufficiently large C from (31). Hence, by applying
Lemma 3, all of the at most CbaK log  calls to Ols and Obo
used by the algorithm combined satisfy
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Finally, we analyze the privacy of Osp. Let
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be the truncation parameter in Algorithm 6. The total number
of draws from Geom(

1
2 ) in Algorithm 6 over the course of the

algorithm is CbaK log  · jmax. It is straightforward to check
that the expected number of draws where J = j for all j 2
[jmax] is

2
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which is superconstant. By Chernoff and a union bound, with
probability � 1 �

�
n , there is a constant C 0 such that for all

j 2 [jmax], the number of times we draw J = j is bounded
by

2
�jC 0K log  log

n

�
.

Similarly, the number of times we draw J 62 [jmax] is bounded
by C 0K log  log n

� . This implies by Lemma 3 that all calls to
Osp used by the algorithm combined satisfy

✓
↵,

✏dp

6
,
�

18

◆
-RDP.

Here, we summed the privacy loss in Lemma 10 over 0 
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for sufficiently large C, where we use log , jmax  log n, and
K � log

1
� for our parameter settings. Finally, combining these

bounds shows that our whole algorithm satisfies (↵, ✏dp
2 , �

6 )-
RDP, and applying Corollary 1, gives the desired privacy
guarantee.

Gradient complexity. We have argued that with probability
at least 1 � �, the number of times we encounter the J = j

case of Lemma 10 for all 0  j  jmax is bounded by
2
�jC 0K log  log n

� . Under this event, Proposition 10, Propo-
sition 8, and Lemma 10 imply the total gradient complexity
of our algorithm is at most
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0K log n
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T1 log n+ T2 + T3 log n log
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where we use ⇣ � n�2, jmax  log n, and   n. The
conclusion follows from plugging in our parameter choices
from (32), (33), and (34).

Finally, we note that following the strategy of Section IV-C,
it is straightforward to extend Theorem 3 to the strongly
convex setting. We state this result as follows.

Corollary 3 (Private regularized ERM). In the setting of

Problem 2, let ✏dp 2 (0, 1), � 2 (0, 1
6 ), � � 0, and x0

2 B(R).

There is an (✏dp, �)-DP algorithm which outputs bx 2 B(R)

such that

E

f erm

(bx) + �

2
kx� x0

k
2
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� min
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⇢
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Moreover, with probability at least 1��, the algorithm queries

at most the following number of gradients:

O
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(nd)
2
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✏dp
,
n2✏2dp

d
+ n
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3 ✏
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3
dp

!
log

6
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.

Proof. We first note that similar to Corollary 2 (an extension
of Proposition 6), it is straightforward to extend Theorem 3
to handle both regularization and an improved upper bound
on the distance to the optimum, with the same error rate and
privacy guarantees otherwise. The handling of the improved
upper bound on the distance follows because the convergence
rate of the [ACJ+21] algorithm scales proportionally to the
distance to the optimum, when it is smaller than R. The
regularization is handled in the same way as Corollary 2,
where regularization can only improve the contraction in the
privacy proof. One subtle point is that for the regularized
problems, we need to obtain starting points for Algorithm 5
when the constraint set is Bx̄(r), but the regularization in the
objective is centered around a point not in Bx̄(r) (in our case,
the centerpoint will be a weighted combination of x̄ and x0).
However, by initializing Algorithm 5 at the projection of the
regularization centerpoint, the initial function error guarantee
in Lemma 8 still holds (see Lemma 9).

The reduction from the claimed rate in this corollary
statement to the regularized extension of Theorem 3 then



proceeds identically to the proof of Proposition 8, which calls
Corollary 2 repeatedly.

F. Private SCO solver

Finally, we give our main result on private SCO in this
section. To obtain it, we will combine Corollary 3 with a
generic reduction in [FKT20], [KLL21], which uses a private
ERM solver as a black box. The reduction is based on the
iterative localization technique proposed by [FKT20] (which
is the same strategy used by Section IV-C), and derived in
greater generality by [KLL21].

Proposition 11 (Modification of Theorem 5.1 in [KLL21]).
Suppose there is an (✏dp, �)-DP algorithm Aerm with expected

excess loss

O
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d log 1
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� ) log
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n2✏2dp

!!
,

using N(n, ✏dp, �) gradient queries, for some function N , when

applied to an L-Lipschitz empirical risk (with n samples,

constrained to B(R) ⇢ Rd
) plus a �-strongly convex reg-

ularizer. Then there is an (✏dp, �)-DP algorithm Asco usingP
i2dlogne N(

n
2i ,

✏dp
2i ,

�
2i ) gradient queries, with expected ex-

cess population loss
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Theorem 5.1 in [KLL21] assumes a slightly smaller risk
guarantee for Aerm (removing the extraneous log

3
(
n
� ) log

2 n
factor), but it is straightforward to see that the proof extends to
handle our larger risk assumption. Combining Proposition 11
and Corollary 3 then gives our main result.

Theorem 4 (Private SCO). In the setting of Problem 2, let

✏dp 2 (0, 1) and � 2 (0, 1
6 ). There is an (✏dp, �)-DP algorithm

which takes as input D and outputs bx 2 Rd
such that

E

f pop

(bx)� min
x2B(R)
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(x)
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Moreover, with probability at least 1��, the algorithm queries

at most the following number of gradients:
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APPENDIX

Fact 2. Let p 2 N. For any integer r such that 0  r  p�1,P
0qp(�1)

q
�p
q

�
qr = 0.

Proof. We recognize the formula as a scaling of the Stirling
number of the second kind with r objects and p bins, i.e., the
number of ways to put r objects into p bins such that each
bin has at least one object. When r < p there are clearly no
such ways.

Fact 3. Let p 2 N be even and p � 2. Let kxk , kyk  1
p .

Then for g(q) :=
�
(p� q)2 � (p� q)

�
kxk2+(q2�q) kyk2+

2q(p� q) hx, yi,

X

0qp

(�1)
q

✓
p

q

◆
exp

✓
1

2
g(q)

◆

 (12p kx� yk)p.

Proof. Fix some x. Let fx(y) be the left-hand side displayed
above, and let

fq
x(y) := exp

✓
1

2
g(q)

◆
.

We will perform a pth order Taylor expansion of fx around x,
where we show that partial derivatives of order at most p� 1

are all zero at x, and we bound the largest order derivative
tensor.

Derivatives of fq
x . Fix some 0  q  p, and define

Cq := q2�q, Fq := fq
x(y), vq := (q2�q)y+q(p�q)x. (35)

Note that for fixed q, Fq and vq are functions of y, and we
defined them such that ryvq = CqId, ryFq = vqFq . Next, in
the following we use

P
sym to mean a symmetric sum over all

choices of tensor modes, e.g.
P

sym v⌦2
q ⌦ Id means we will

choose 2 of the 4 modes where the action is v⌦2
q . To gain some

intuition for the derivatives of Fq , we begin by evaluating the
first few via product rule:

rfq
x(y) = Fqvq,

r
2fq

x(y) = Fqv
⌦2
q + CqFqId,

r
3fq

x(y) = Fqv
⌦3
q + CqFq

X

sym

vq ⌦ Id,

r
4fq

x(y) = Fqv
⌦4
q + CqFq

X

sym

v⌦2
q ⌦ Id + 3C2

qFqId ⌦ Id.

For any fixed 0  r  p, we claim that the rth derivative
tensor has the form

r
rfq

x(y)

= Fq

0

@
X

0sb r
2 c

Nr,s� r
2s

�
 
(Cq)

s
X

sym

v⌦(r�2s)
q ⌦ I⌦s

d

!1

A ,
(36)

where the Nr,s are nonnegative coefficients which importantly
do not depend on q. To see this we proceed by induction; the
base cases are computed above. Every time we take the deriva-
tive of a “monomial” term of the form Fq(Cq)

sv⌦(r�2s)
q ⌦I⌦s

d



via product rule, we will have one term in which Fq becomes
vqFq (and hence we obtain a FqCs

qv
⌦(r+1�2s)
q ⌦ I⌦s

d mono-
mial), and r� 2s many terms where a vq becomes CqId (and
hence we obtain a FqCs+1

q v⌦(r�1�2s)
q ⌦ I⌦(s+1)

d monomial).
For fixed 0  s  b r+1

2 c, we hence again see that Nr+1,s has
no dependence on q.

Next, note
P

0sb r
2 c

Nr,s has a natural interpretation
as the total number of “monomial” terms of the form
Fq(Cq)

sv⌦(r�2s)
q ⌦ I⌦s

d when expanding rrfq
x(y). We claim

that for all 0  q  p and 0  r  p� 1,P
0sb r+1

2 c Nr+1,s
P

0sb r
2 c

Nr,s
 p. (37)

To see this, consider taking an additional derivative of
(36) with respect to y. Each monomial of the form
Fq(Cq)

sv⌦(r�2s)
q ⌦ I⌦s

d contributes at most r � 2s + 1  p
monomials to the next derivative tensor via product rule,
namely one from Fq and one from each copy of vq . Averaging
this bound over all monomials yields the claim (37), since
each contributes at most p.

Taylor expansion at x. Next, we claim that for all 0  r 
p� 1,

r
rfx(x) = 0. (38)

To see this, we have that ((p � q)2 � (p � q)) + (q2 � q) +
2q(p � q) = p2 � p is independent of q, and hence all of
the Fq are equal to some value F when y = x. Furthermore,
when y = x we have that vq = q(p � 1)x. Now, from the
characterization (36) and summing over all q, any monomial
of the form x⌦(r�2s)

⌦ I⌦s
d has a total coefficient of

FNr,s

X

0qp

(�1)
q

✓
p

q

◆
(Cq)

s
(q(p� 1))

r�2s

= FNr,s(p� 1)
r�2s

X

0qp

(�1)
q

✓
p

q

◆
Cs

qq
r�2s.

Since Cq is a quadratic in q, each summand (Cq)
sqr�2s is

a polynomial of degree at most r  p � 1 in q, so applying
Fact 2 to each monomial yields the claim (38).

Taylor expansion at y. Finally, we will bound the injective
tensor norm of rpfx(y), where the injective tensor norm of a
degree-p symmetric tensor T is the maximum value of T[v⌦p

]

over unit norm v. We proceed by bounding the injective tensor
norm of each monomial and then summing.

First, for any 0  p  q, under our parameter settings it is
straightforward to see kvqk  p and Fq  2. Also, for any
0  s  p

2 we have Cs
q  p2s, and by repeatedly applying

(37), we have
P

0sb p
2 c

Np,s  pp. In other words, each

of the monomials of the form Fq(Cq)
sv⌦(r�2s)

q ⌦ I⌦s
d has

injective tensor norm at most 2pp (since each Cq contributes
two powers of p, and each vq contributes one power of p),
and there are at most pp such monomials. Hence, by triangle
inequality over the sum of all monomials,

��rpfq
x(y)[(y � x)⌦p

]
��  2p2p ky � xkp .

By summing the above over all q (reweighting by (�1)
q
�p
q

�
),

and using that the unsigned coefficients sum to
P

0qp

�q
p

�
=

2
p, we have

��rpfx(y)[(y � x)⌦p
]
��  4

pp2p kx� ykp .

The conclusion follows by a Taylor expansion from x to y of
order p, and using pp  3

pp!.

Proof of Lemma 2. For the first claim,
Z
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= exp

✓
p2 � p

2⇢2
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 2,

where the second equality used the calculation in (6), and the
inequality used the assumed bound on kx� x̄k. We move onto
the second claim. First, we prove the statement for all even
p 2 N. Denote v := x � x̄ and v0 := x0

� x̄ for simplicity.
Explicitly expanding the numerator yields that

(2⇡⇢)
d
2

Z
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where we define h(⇠) := (p � q) kvk2 + q kv0k2 �
2(p � q) hv, ⇠i � 2q hv0, ⇠i + k⇠k2 and Hq :=�
(p� q)2 � (p� q)

�
kvk2+(q2� q) kv0k2+2q(p� q) hv, v0i,

and compute

Sq := (2⇡⇢)
d
2

Z
(�⇢(v � ⇠))p�q

(�r(v0 � ⇠))q

(�⇢(⇠))p�1
d⇠

=

Z
exp

✓
�

1

2⇢2
h(⇠)

◆
d⇠

= (2⇡⇢)
d
2 exp

✓
1

2⇢2
Hq

◆
.

In the last line, we again used (6) to compute the integral.
When p � 2 and is even, a strengthening of the conclusion
then follows from Fact 3 (where we overload x v

⇢ , y  v0

⇢
in its application). In particular, this shows the desired claim
where the base of the exponent is 12p

⇢ kx� x0
k instead of

24p
⇢ kx� x0

k. We move to general p � 2. Define the random
variable

Z :=

����
�⇢(x� x̄� ⇠)� �⇢(x0

� x̄� ⇠)

�⇢(⇠)

���� .

Recall that we have shown for all even p � 2,

EZp


✓
12p kx� x0

k

⇢

◆p

.

Now, let p � 2 be sandwiched between the even integers q
and q + 2. Hölder’s inequality and the above inequality (for
p q and p q + 2) demonstrate

EZp
 (EZq

)
q+2�p

2
�
EZq+2

� p�q
2


✓
12(q + 2) kx� x0

k

⇢

◆p

,



where we use q(q+2�p)+(q+2)(p�q) = 2p. The conclusion
follows since q + 2  2p.

Fact 4. Let Z be a nonnegative scalar random variable, let

C � 0 be a fixed scalar, and let p 2 N and p � 2. Then

(E [(Z + C)
p
])

1
p  E [Zp

]
1
p + C.

Proof. Denote A := E [Zp
]
1
p . Taking pth powers of both sides,

we have the conclusion if

(A+ C)
p
� E [(Z + C)

p
] � 0

()

X

q2[p�1]

✓
p

q

◆
Cp�q

(Aq
� E [Zq

]) � 0.

Here we use that the q = 0 and q = p terms cancel. We
conclude since Jensen’s inequality yields

E[Zp
] � E[Zq

]
p
q =) Aq

� E[Zq
], for all q 2 [p� 1].

In this section, we discuss how to obtain Proposition 1 from
the analysis in [ACJ+21]. We separate the discussion into
four parts, corresponding to the iteration count, the line search
oracle parameters, the ball optimization oracle parameters, and
the proximal gradient oracle parameters. We note that Propo-
sition 2 in [ACJ+21] states that they obtain function error
✏opt with constant probability; however, examining the proof
shows it actually yields an expected error bound. Additionally,
Proposition 2 in [ACJ+21] is stated for x? (the comparison
point in the error guarantee) defined to be the minimizer of F ,
but examining the proof shows that the only property about
x? it uses is that x?

2 B(R).
a) Iteration count.: The bound CbaK log  on the num-

ber of iterations follows immediately from the value Kmax

stated in Proposition 2 of [ACJ+21], where we set �min  �?

and ✏ ✏opt.
b) Line search oracle parameters.: The line search or-

acle is called in the implementation of Line 2 of Algorithm
4 in [ACJ+21]. Our implementation follows the development
of Appendix D.2.3 in [ACJ+21], which is a restatement of
Proposition 2 in [CJJS21]. The bound Cba log(

R
r ) on the

number of calls to the oracle is immediate from the statement
of Proposition 2. For the oracle parameter � =

r
Cba

, we note
that the proof of Proposition 2 of [CJJS21] only requires that
we obtain points at distance at most r

17 from x?
x̄,�, although it

is stated as requiring a function error guarantee. This is evident
where the proof applies Lemma 3 of the same paper.

c) Ball optimization oracle parameters.: The ball op-
timization oracle is called in the implementation of Line 5
of Algorithm 4 in [ACJ+21]. In iteration k of the algorithm,
the error requirement is derived through the potential bound
in Lemma 5 of [ACJ+21]. More precisely, Lemma 5 shows

that (following their notation), conditioned on all randomness
through iteration k,

E
h
Ak+1 (F (xk+1)� F (x?

)) + kvk+1 � x?
k
2
i

�

⇣
Ak (F (xk)� F (x?

)) + kvk � x?
k
2
⌘

 �
1

6
�k+1Ak+1 kbxk+1 � ykk

2
+Ak+1�k+1

+a2k+1�
2
k+1 + 2Rak+1�k+1,

where the terms a2k+1�
2
k+1 + 2Rak+1�k+1 are handled iden-

tically in [ACJ+21] and our Proposition 1 (see the following
discussion). For the remaining two terms, Proposition 4 of
[ACJ+21] guarantees that as long as the method does not
terminate, one of the following occurs.

1) kbxk+1 � ykk
2
= ⌦(r2).

2) �k+1 = O(�?).
In the first case, as long as �k+1 (the error tolerance to the
ball optimization oracle) is set to be �k+1r

2

Cba
for a sufficiently

large Cba (which it is smaller than by logarithmic factors), up
to constant factors the potential proof is unaffected. The total
contributions to the potential due to all Ak+1�k+1 losses from
the iterations of the second case across the entire algorithm is
bounded by

O

✓
(K log ) ·

R2

✏opt
·
�?r2

log
3 

◆
= O

�
R2
�
.

Here, the first term is the iteration count, the second term is
due to an upper bound on Ak+1, and the third term is bounded
since �k+1 = O(�?). The initial potential in the proof of
Proposition 2 of [ACJ+21] is R2, so the final potential is
unaffected by more than constant factors. For a more formal
derivation of the same improved error tolerance, we refer the
reader to [CH22], Lemma 8.

d) Stochastic proximal oracle parameters.: Our stochas-
tic proximal oracle parameters are exactly the settings of �k, �k

required by Proposition 2 of [ACJ+21], except we simplified
the bound on �2

k = O(
✏
ak
) (note we use ✏opt in place of ✏). In

particular, following notation of [ACJ+21], we have

✏

ak
=

✏
p
�k

p
Ak

= ⌦

✓
✏ ·
p
�? ·

p
✏

R

◆
= ⌦

✓
✏2K

R2
log 

◆
.

The first equality used �ka2k = Ak for the parameter choices
of Algorithm 4 in [ACJ+21]. The second equality used that all
�k = ⌦(�?) and all Ak = O(

R2

✏ ) in Algorithm 4 in [ACJ+21],
where we chose �? =

✏K2

R2 log
2 . The final equality plugged

in this bound on �? and simplified. Hence, obtaining a variance
as declared in Proposition 1 suffices to meet the requirement.

In this section, we discuss how to obtain Proposition 2
(which is based on Proposition 1 in [CH22]) from the analysis
in [CH22]. The iteration count discussion is the same as in Ap-
pendix A. We separate the discussion into parts corresponding
to the two requirements in Proposition 2. Throughout, we will
show how to use the analysis in [CH22] to guarantee that
with probability at least 1�⌦( 1 ), the algorithm has expected



function error O(✏opt); because the maximum error over B(R)

is  LR, this corresponds to an overall error O(✏opt), and we
may adjust Cba by a constant to compensate.

e) Per-iteration requirements.: The ball optimization er-
ror guarantees are as stated in Proposition 1 of [CH22],
except we dropped the function evaluations requirement. To
see that this is obtainable, note that [CH22] obtains their line
search oracle (see Proposition 1) by running O(log(

R
r )) ball

optimization oracles to O(�r2) expected error, querying the
function value, and applying Markov’s inequality to argue
at least one will succeed with high probability. We instead
execute O(log(

R
r )) independent runs and apply a Chernoff

bound to argue that with probability O(
1

K·polylog(K) ), the
preconditions of Aggregate in Lemma 11 are met with � =

O(r), as required by the line search oracle (see Algorithm 7).
Finally, applying a union bound over all iterations implies that
the overall failure probability due to these line search oracles
is O(

1
 ) as required by our earlier argument.

f) Additional requirements.: The error requirements of
the queries which occur every ⇡ 2

�j iterations are as stated
in [CH22]. The only difference is that we state the complexity
deterministically (Proposition 1 of [CH22] implicitly states an
expected gradient bound). The stochastic proximal oracle is
implemented as Algorithm 2, [CH22]; it is also adapted with
slightly different parameters as Algorithm 6 of this paper. The
expected complexity bound is derived by summing over all j 2
[dlog2 K+Cbae], the probability j is sampled in each iteration
of Algorithm 2 of [CH22]. For all j a Chernoff bound shows
that the number of times in the entire algorithm j is sampled is
O(2

�jK log(
R
r )) (within a constant of its expectation), with

probability 1�⌦(poly( r
R )). Taking a union bound over all j

shows the failure probability of our complexity bound is O(
1
 )

as required.

In this section, we discuss how to obtain Proposition 4 using
results in [GL12]. We first state the following helper fact on
the smoothness of a convolved function bf⇢ (see Definition 1).

Fact 5 (Lemma 8, [BJL+19]). If f : Rd
! R is L-Lipschitz,

bf⇢ (see Definition 1) is
L
⇢ -smooth.

The statement of Proposition 4 then follows from recur-
sively applying Proposition 9 of [GL12] on the objective
 = bf⇢+ �

2 k·� x̄k2, which is �-strongly convex and (
L
⇢ +�)-

smooth, together with the divergence choice of V (x0, x⇤
) :=

1
2kx0 � x⇤

k
2, which satisfies ⌫ = 1. Our parameter choices

in Algorithm 2 are the same as in [GL12], where we use that
our variance bound is 3L2 (Lemma 1).

In particular, denote the iterate xag
T after the kth outer loop by

xk. We will inductively assume that E 1
2kx

k�1
�x?

x̄,�k
2


r2

2k�1

(clearly the base case holds). This then implies

E

�

2
kxk
� x?

x̄,�k
2

�
 E

⇥
 (xk

)� (x?
x̄,�)

⇤


2(

L
⇢ + �)kxk�1

� x?
x̄,�k

2

T (T + 1)

+
24L2

�Nk(T + 1)


�

2k
r2

where the second inequality is Proposition 9 in [GL12] (cf.
equation (4.21) therein), and the last is by our choice of T
and Nk. Thus, when K > log2(

�r2

� ) we have E (xag
T ) �

 (x?
x̄,�)  � as in the last outer loop k = K. The compu-

tational depth follows immediately from computing TK, and
the total oracle queries and computational complexity follow
since NK asymptotically dominates:

T ·

0

@
X

k2[K]

Nk

1

A = O (TNK + TK)

= O

 s

1 +
L

⇢�
log

✓
�r2

�

◆
+

L2

��

!
.
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